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Abstract of the DissertationVariable-Precision ArithmeticForVector QuantizationbyRa� DionysianDoctor of Philosophy in Computer ScienceUniversity of California, Los Angeles, 1994Professor Milo�s D. Ercegovac, ChairThis research proposes and investigates a method for the storage and computation inVector Quantization (VQ) { a promising technique for image/speech compression. Theimprovement is in the representation and arithmetic algorithm; the idea is independentof the technology and accommodates di�erent search algorithms. Speci�cally, with simplelossless compression, the codebook storage in tree searched VQ is reduced more than 20%.For large codebooks, the simulations predict that the compression would be more than 40%.The compression of codevectors is achieved with Variable-Precision Representation (VPR),where we eliminate the sign extension bits. By categorizing vectors, VPR uses non-stationarynature of codevectors. Entropy measure shows that VPR compresses at least 75% as well asHu�man coding of vector elements.In conjunction with VPR, the VQ computation complexity is reduced using Variable-Precision Classi�cation (VPC) method. VPC evaluates bit-serially beginning with the mostsigni�cant bit the codevectors which are in VPR format. When the magnitude of the errordue to the unevaluated bits is less than the magnitude of the evaluated discriminant, we canclassify without processing the remaining bits. We show that as operand precision increasesaverage necessary-precision becomes asymptotically independent of the operand precision.VPC makes the complexity of L2 norm equivalent to L1 norm. In ensuing VQ of real images,on average, the codevector element's precision necessary for classi�cation was less than fourbits.We implemented circuitry for binary classi�cation based on VPR and �xed-precisionrepresentations. Both designs were implemented in LSIlogic 1.0-� gate array, to searchbinary non-balanced trees and encode MPEGII format video (720� 576 pixels at 30 framesper second). The comparison showed that VPR lossless compression has negative decodingcost. Moreover, when the overall execution time is important, VPC halves computation asxv



measured either by AT or AT 2 complexity measures.
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CHAPTER 1IntroductionWe intend to investigate computer arithmetic as means of improving performance and costof Vector Quantization (VQ) [NK88, MRG85]. Vector quantization is a recent developmentin signal estimation and detection. It is currently under investigation for image compression,where it outperforms the current standard by Joint Picture Experts Group (JPEG). Thereis also a strong interest in dedicated hardware for VQ. Several integrated circuits have beenimplemented speci�cally for VQ [DG86, FCS90, KYJ93, DJK92, DB87].Problem: Vector QuantizationVector quantization �nds in a set of codevectors the vector most similar to the source vector,a sequence of digitized signal samples. Applications other than compression also require sucha dedicated engine: VQ has been used in segmenting images [GBJM79], recognizing speakerand speech [Kav86], and recognizing alphanumeric characters [NJ85]. Many aspects of theVQ computation have been investigated in the literature. The intent of these investigationshas been primarily to decrease computation time. Few have also considered the storageaspect. Dezhgosha and et. al. have investigated compressing codebook using conventionalcompression techniques [DJK92]. Our research di�ers in that it examines arithmetic todecrease the complexity of VQ and improve its implementation. We investigate both storageand computation aspect. Moreover, since the gains are in arithmetic of classi�cation, ourapproach can be applied in variety of algorithms using classi�cation.We investigate VQ with inner product as the metric for real time compression of video[Gra84, MRG85]. Using the arithmetic techniques developed, we implement Pruned-TreeStructured VQ (PTSVQ). PTSVQ is the scheme with the most potential to search largecodebooks. PTSVQ uses a tree structure to choose from M codevectors a replacementcodevector with only O( log(M)) classi�cations.There is a trend toward higher precision arithmetic which is typically achieved at a cor-responding increase in hardware cost. This has precluded it from high rate signal processingrequired for video. In classi�cation, we believe we can attain the bene�ts of the high-precisionwithout an increase in cost. Conventionally, classi�cation is performed in two steps. First,a suitable metric measures the distance between the source vector and each codevector.Second, comparison of the distances determines the codevector closest to the source vector.1



We will analyze these two steps as one single composite module. Our key insight is that inbinary classi�cation, regardless of the operand precision the output is only one bit.Approach: Variable-Precision ArithmeticVariable-precision arithmetic embodies two aspects. First, Variable-Precision Representation(VPR), which by eliminating sign extension bits, reduces storage and computation. In VPR,we are motivated by the reduction in dynamic range when subtracting similar codevectors.For each vector, a range indicator can store the number of Most Signi�cant Bits (MSB)which are zero for all elements. Second part is Variable-Precision Classi�cation (VPC).VPC avoids evaluation of Least Signi�cant Bits (LSB) to reduce computation. VPC iseasily integrated with VPR. Given the range indicator, VPC skips the initial iterations ofthe bit-serial evaluation.In conventional �xed-precision design, the choice of the precision for VQ evaluation in-volves a tradeo� between the engine's cost and its ability to choose the best codevector. Indesigning a conventional VQ engine, reducing precision reduces storage, memory-processorbandwidth and computation. On the other hand, in more cases the precision will not be suf-�cient to distinguish which of two codevectors is closer to the source vector. Lower precisioncauses more frequent arbitrary decisions and higher distortion in compression. Typically, theclassi�cation is performed at the quantization precision of the samples. This varies depend-ing on the application. A pixel of image is typically quantized at 8 bits. In future, this mayincrease to 10 or 12 bits. The samples of speech are quantized at 12 bits, and compact discquality music is quantized at 16 bits. VPC goes one step further. It adjusts the precision ofthe arithmetic to the instance of classi�cation.We are motivated by an inherent property of classi�cation: regardless of the operandprecision, a classi�cation reduces to binary decision(s). Binary classi�cation evaluates thedistance between the input and two codevectors and outputs one bit which indicates thesmaller distance. M -ary classi�cation breaks down to (M � 1) binary classi�cation, and isevaluated as a cascade of functions with binary outputs. In turn, VPC for every binaryfunction questions: \At what precision does this instance need to be evaluated?" In general,VPC can be used in computations whose set of possible outcomes does not increase as theoperand precision increases.VPC is similar to on-line arithmetic [EL88]: operands are processed bit-serially from themost signi�cant bit. As a composite operator, the metric is not evaluated as a sequence of\atomic" operations (e.g., multiplications, additions). Instead, we merge these operationsand rewrite the algorithm in terms of a composite operator which incrementally processesthe operands. An initial estimate is formed by processing the MSBs of the operands. VPCupdates the estimate by bit-serially processing the operands. The processing terminateswhen the error from the unprocessed least signi�cant bits cannot change the output's sign.2



By avoiding processing of superuous LSBs, on average, the classi�cation time is reduced.We have found out that in VPC the average evaluation precision is a constant.Thesis Outline� The next chapter provides an overview of vector quantization (VQ), various fast searchtechniques, and previous VQ implementations.� Chapter 3 describes lossless compression of VQ codebooks using VPR. In compressingcodebooks used in encoding real images, we measure the reduction in storage possibleby VPR. We then analyze this and compare it to the entropy of codevectors.� Chapter 4 develops the VPR architecture. We design a conventional architecture forcomparison. Both modules are implemented using gate array technology to measurethe clock period and show VPR's negative decoding cost.� Chapter 5 describes VPC algorithm. It also proves that the average necessary-precision is asymptotically constant and independent of operand precision.� Chapter 6 evaluates VPC for PTSVQ with the inner product measure. The averageprecision for classi�cation is characterized and measured for real images. Finally, theVPC architecture is presented, and its cost and performance estimated.� Chapter 7 summarizes the contributions of the dissertation and discusses future work.� Additionally, there are two appendices. Appendix A describes a VQ application. Ap-pendix B documents implementation of both VPR and conventional architectures.
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CHAPTER 2Vector Quantization (VQ)2.1 IntroductionVector quantization is the statistically optimum method for lossy data compression. Itcan yield the lowest rate-distortion. The distortion due to the compression can be madeimperceptible just like in JPEG, while its compression rate can out perform JPEG standard.An example of use is in compressing video: the images are broken into blocks of K pixels(source vectors), x; the encoder compares each source vector with N potential replacements(codevectors) x̂c; c = 1; � � � ; N , stored in a codebook; it transmits the index c of the bestmatching (least distorting) codevector to the receiver. In decompression, the index is usedto approximate x using x̂c from an identical codebook. For best results, VQ relies on largeset of patterns. Survey papers by Nasrabadi et. al. [NK88], and Makhoul et. al. [MRG85]discuss a variety of techniques for building VQ codebooks.This chapter formulates and reviews vector quantization as classi�cation using innerproduct. Section 2.2 formally describes the classi�cation problem, and the inner productsimilarity measure. Next, Section 2.3 shows how other similarity measures can be mappedinto the inner product similarity measure. Then, Section 2.4 presents a novel algebraictransformation which reduces the number of inner products in a classi�cation by one. Sec-tion 2.5 follows by a simple example, a geometric interpretation, and a real example. Finally,Section 2.6 reviews investigations in reducing computation and storage, and Section 2.7 sum-marizes previous implementations.2.2 Classi�cationN -ary classi�cation of a vector x isc = maxi=1;:::;N�1 �s(x;xi)� (2.1)where s(x; x̂) measures the similarity between x and x̂. And max�1() denotes the index i,with the highest similarity s(x; x̂i). In other words, it selects out of N replacement vectors(codevectors), the codevector x̂c which is most similar to the source vector x.Often the classi�cation is done in a metric space. That is, a K-dimensional vector spacewith a metric d(x; x̂), where d(x; x̂) measures the distance [BB78] between the two vectors x4



and x̂. The distance metric d(x; x̂) is large for dissimilar vectors and low for similar vectors.Its properties are:1. d(x;x) = 02. 0 < d(x; x̂), x 6= x̂3. d(x; x̂) = d(x̂;x)4. d(x; x̂) � d(x;y) + d(y; x̂), 8 yIn the metric space, N -ary classi�cation becomesc = mini=1;:::;N�1 �d(x; x̂i)� (2.2)where min�1() denotes the index i, with the minimum distance d(x; x̂i). In other words, itselects out of N replacement vectors (codevectors), the codevector x̂c which has the leastdistance from the source vector x.Equation (2.2) can be rewritten in the form of (2.1) by using max�1() instead of min�1()operator. Since the smallest in a set of distances is equivalent to the largest among thenegated distances: c = maxi=1;:::;N�1 ��d(x; x̂i)� (2.3)If s(x; x̂i) � �d(x; x̂i)then equation (2.3) is identical to (2.1).We will discuss only similarity measures which correspond to a distance metric. However,in general, s(x; x̂) 6= �d(x; x̂). So, s(x; x̂) is not constrained as the distance metric is. Suchmeasures are mentioned in [DH73], and VPC may be extended to these measures as well.Our analysis begins with binary classi�cation (N=2). Equation (2.1) reduces toc = 8>><>>: 2 if s(x; x̂2) � s(x; x̂1)1 otherwise (2.4)In other words between the two codevectors, choose the codevector with the highest similarityto the source vector. The comparison of two similarity measures shown in (2.4) is oftendenoted as a discriminant evaluation. Let's rewrite the above equation with the discriminantfunction. A discriminant measures the similarity of x to x̂h in contrast to x̂i:~g(x; x̂i; x̂h) 4= s(x; x̂h)� s(x; x̂i)� d(x; x̂i)� d(x; x̂h) when s(x; x̂) � �d(x; x̂)5



Rewriting the binary classi�cation (2.4) using the discriminant function,c = 8>><>>: 2 if ~g(x; x̂1; x̂2) � 01 otherwise (2.5)In other words, binary classi�cation evaluates a binary-valued functionSIGN(~g(x; x̂1; x̂2)). If the discriminant is negative then x maps into x̂1, otherwise x mapsinto x̂2. As we we will elaborate in Section 2.4, the discriminant function can be e�ectivelyused to classify among N codevectors.2.3 Inner Product Similarity MeasureMany classi�cations problems can be reduced to detecting sign of an inner product. Themost widely use application is in Mean Square Error (MSE) classi�cation [Wha71, Gra84].MSE can also be generalized to weighted MSE criteria [DH73]. Moreover, there is a lessapparent application: Itakura-Saito measure [IS68] which approximates a waveform withthe output of a recursive linear �lter. All of these three applications have been implementedwith inner product similarity measure:sign(xty+ b) = sign( KXi=1 xiyi + b)The inner product of the point's coordinates with the plane's normal determines which sideof a plane a point lies on. As shown next, minimizing mean square error is geometricallyakin to classifying between two points separated by a plane.Mean Square ErrorMean Square Error (MSE) [Wha71, Gra84] while theoretically tractable is simple to evaluate.For K-dimensional vectors x and x̂ MSE classi�er isc = mini=1;���;N�1 �(x� x̂i)t(x� x̂i)� (2.6)where min�1() denotes the index, c, for which the minimum Euclidean distance jjx� x̂cjj isachieved. In other words, it �nds the index c of the codevectors x̂c out of N codevectorswhich has the least squared error. This minimization can be carried out as a sequence of(N � 1) discriminant evaluations.MSE is attractive for two reasons. First, a small distance implies small observable di�er-ence between vectors, where the two vectors are observed in the same way they were sampled.6



Second, during the generation of codevectors (training), it provides a way to cluster sourcevectors into codevectors (replacement vectors).We can evaluate an inner product to �nd the codevector which yields the least MSE, asis done in [Wha71]. Expanding (2.6), and dividing it by two:c = mini=1;���;N�1 �12 jjxjj � xtx̂i � (�12 jjx̂ijj)� (2.7)The �rst summation is independent of i and does not a�ect the minimization. It is ignored.The last summation ei 4= �12 jjx̂ijj2 (2.8)depends only on the vector x̂. It is precomputed and stored with the codevector. Equation(2.7) becomes an inner product xtx̂i summed along with a constant:c = mini=1;���;N�1 ��xtx̂i � ei� (2.9)Equation (2.9) can be rewritten:c = maxi=1;���;N�1 �xtx̂i + ei� (2.10)because, the smallest in a set of numbers is equivalent to the largest in the negated set ofnumbers.We must note that arithmetically Equation (2.10) may not have a lower complexitythan Equation (2.6). Inner product uses multiplication instead of subtraction and squaring.Squaring even with the subtraction beforehand would have lower theoretical complexitythan multiplication. Additionally, the inner product metric requires storage and additionof ei. However, as we will see later Chapter 3, the inner product evaluation can be moreamenable to processing codevectors compressed with VPR. Also for classifying with smallN , an algebraic transformation shown later in this chapter, makes (2.10) more attractivethan (2.6).Weighted Mean Square ErrorWeighted MSE [DH73], a general form of MSE, is also used in classi�cation. With Npatterns, c = mini=1;���;N�1 �(x� x̂i)tW(x� x̂i)� (2.11)where x and x̂ are K-dimensional column vectors and W is a positive de�nite K�K matrix.WMSE can, for example, allow some elements to be weighted more heavily than others in7



classi�cation of the vector. When W is positive de�nite and also symmetric, (2.11) evaluatesMahalanobis distance [DH73].In image compression, a weighted distortion attains a better subjective image quality[MS74], since the human visual system's sensitivity varies for di�erent spatial frequencies.Until recently however, weighted MSE was not used since it requires more computation thanMSE.Davidson in [DCG88] has shown the weighted MSE metric can also be evaluated as aninner product. They expanded (2.11), and divided it by two:c = mini=1;���;N�1 �12xtWx� xtWx̂i + 12 x̂itWx̂i�If the weight is independent of codevector x̂i, weighted MSE can be evaluated by thesame architecture which evaluates the MSE metric. To do so, the following are precomputedand stored: yi = Wx̂i; and ei = �jjWx̂ijj2so that c = maxi=1;���;N�1 �xtyi + ei� (2.12)Although the above equation is identical to its counterpart (2.9) in the previous section,the codevector precision is di�erent. For m-bit unsigned weights, the codevector element'sprecision increases from n to (n+m). VPC, however, will be shown to deal with the increasedcodevector precision without modi�cation, as it can evaluate the codevector at any precision.Linear Prediction's Similarity MeasureFor completeness we will also discuss Itakura-Saito measure [MRG85, IS68]. It is used,when compressing speech with Linear Predictive Coding (LPC). In LPC, an all pole linearpredictor estimates a segment of speech. The predictor is given as input a sinusoid whosepitch is extracted from the speech segment. The predictor's coe�cients are then chosen tominimize the di�erence between the output and the speech samples. In VQ of the �ltercoe�cients, we would like a vector of coe�cients which minimizes MSE between the speechand the linear prediction. To do so, Itakura-Saito measure would maximize the similarity ofthe autocorrelation between the speech and the predictor's coe�cients:s(x;y) = Rxx;0Ryy;0 + 2 KXk=1Rxx;kRyy;k (2.13)where Rxx is the autocorrelation of the speech samples, and Ryy is the autocorrelation ofthe �lter coe�cients. 8



2.4 Algebraic TransformationThe maximization in (2.10) requires N evaluations and (N � 1) comparisons. There is anovel way to reduce the the number of inner products by one. We subtract the �rst termin the maximization from the remaining (N � 1) terms. This will bias each term by thesame amount and, therefore, it will not change the index of the maximum measure. Thistransformation is useful with the inner product metric because the �rst term is implicitlyevaluated within the remaining terms. Equation (2.10) reduces to (N � 1) evaluations and(N � 1) comparisons, c = maxi=2;���;N�1 �0;xt(x̂i � x̂1) + (ei � e1)� (2.14)After precomputing (x̂i � x̂1) and (ei � e1), the above equation reduces toc = maxi=2;���;N�1 �0;xty(i) + bi� (2.15)The reduction is signi�cant for small N . In binary tree searched VQ (N = 2) this halvesthe number of inner products. Exact evaluation of an element of yi(= x̂i� x̂1), on the otherhand, does require an additional bit of precision for storage and evaluation.2.5 Classi�cation ExampleWe will �rst show a \paper and pencil" example of VQ. We will use matrix-vector multipli-cations and vector additions. The codebook matrix is stack of vectors y, where yi = x̂i� x̂irepresents the replacement vector x̂i. A set of vectors y form the rows of the codebookmatrix. Inner products similarity measure evaluations are grouped into matrix-vector mul-tiplications where the codebook is multiplied by the source vector x. The resulting vectorhas the measure of similarity between the source vector and the codevectors. Classi�cationis then �nding the biggest entry in the resulting vector.In following example, the vectors are four dimensional (K = 4):x = (�5;�4; 4; 5)t;x̂1 = (0; 0; 0; 0)t; e1 = 0;x̂2 = (�100;�10; 10; 100)t ; e2 = �10100;x̂3 = (�10;�10; 10; 10)t; e3 = �200;x̂4 = (�5;�3; 3; 5)t; e4 = �34;x̂5 = (0; 10; 10; 0)t; e5 = �100;9



where ei is de�ned by (2.8). Subtracting the �rst codevector from the rest,y2 = (�100;�10; 10; 100)t; b2 = �10100;y3 = (�10;�10; 10; 10)t; b3 = �200;y4 = (�5;�3; 3; 5)t; b4 = �34;y5 = (0; 10; 10; 0)t; b5 = �100:First, we evaluate the similarity measures in the maximization (2.15):0BBBBBBBBBBB@ �9020�2040�100 1CCCCCCCCCCCA = 0BBBBBBBBBBB@ �100; �10; 10; 100�10; �10; 10; 10�5; �1; 1; 50; 10; 10; 0 1CCCCCCCCCCCA� 0BBBBBBBBBBB@ �5�445 1CCCCCCCCCCCA + 0BBBBBBBBBBB@ �10100�200�34�100 1CCCCCCCCCCCAThen, we �nd the index of the best entry c:c = maxi=1;���;N�1 (0;�9020;�20; 24;�100)= 4Geometric InterpretationBinary classi�cation using inner product metric partitions the space with a plane. Vectorson one side of the partition are quantized into the point 1 (c = 1), and on the other sideinto the point 2 (c = 2). As shown in Figure 2.1 in a plane, classi�cation partitions with astraight line. In physical space, it partitions with a plane. In general, in a K-dimensionalspace, it partitions with a (K � 1)-dimensional hyperplane.Classi�cation with an inner product is also referred to as a hyperplane test. It determineswhich side of the hyperplane the source vector is on. It performs an inner product betweenthe source vector and the vector normal to the plane (i.e., codevector), and it adds a constant.The constant, represented by bias b is the distance of the hyperplane from origin.In N -ary classi�cation, the space is divided into N regions or classes. Between every twoclasses lies a hyperplane. Combinatorially, there are N choose 2 (= N(N�1)2 ) hyperplanes.Contrary to a popular misconception fortunately, far fewer hyperplane tests su�ce. Simplyput, we need only (N �1) tests. Each test eliminates one class, and after (N �1) tests, onlythe best class is left. 10
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Figure 2.1: The inner product metric partitioning the plane with a straight line.
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VQ ExampleNow, we show an application of VQ. For image compression, we encoded with mean-residualVQ [Bak84] which by removing the mean does a simple form of preprocessing. The codebookwas generated using k-means clustering [LBG80]. The data set used for training was 4 � 4blocks (vector dimension K = 16) from 13 256 � 256 pixel images. The codebook whichhad about 2000 codevectors was organized into a binary-tree shown in Figure 2.7. Thetree-structure allowed �nding replacement codevector in less than twelve classi�cations.We will show the inputs and output data set pictorially. Figure 2.2(a) shows a halftonedimage of Lena. A popular picture for testing image processing algorithms, it is an 256� 256pixel image, whose grey levels were halftoned for display purposes. Figure 2.3 is the residualimage after mean of each 4x4 blocks was removed. Subtracting the mean causes some pixelsto become negative. For display purposes the pixels were biased up, such that the mostnegative value was displayed as pitch black and zero value was displayed with a gray value.Also since preprocessing has removed most of the image energy, the residual was magni�edfour times (� 4). As can be seen, even after the magni�cation most pixels still have lowintensity. This implies that their most signi�cant bits are zero. This was an intuitivemotivation for variable-precision representation of the vectors. Finally, we examine theresult of vector quantization. Figure 2.2(b) shows the coded-decoded residual image with themean added. Some of the distortion due to coding is apparent even on the halftoned image.With more sophisticated preprocessing methods, this distortion would become imperceptiblewithout decreasing the compression rate.For a better illustration, we look at Lena's eye and a magni�ed section of the codebook.Figure 2.4(a) shows Lena's eye. Figure 2.5 shows a page from the codebook used for com-pressing the image. It has 64 codevectors, where each codevector is arranged as 4� 4 pixels.The last picture, Figure 2.4(b) is the coded-decoded image, where codevectors have replaced4 � 4 block of pixels. Again we may note the block artifacts inherent in all compressiontechniques which compress one block of the image at a time.2.6 Fast Search MethodsThere has been a variety of approaches to decrease the computation time of VQ. In VQ,a full codebook search would inspect every codevector for the best matching one. Such anexhaustive search of codebooks is similar to the operation of a content associative memory.It has to perform O( KN) operations per source vector. Number of entries is large: Ntypically ranges from 28 to 220. It was shown both experimentally and theoretically, thatincreasing N and K increases the performance. Correspondingly, techniques are developedwhich reduce the amount of computation. They can be categorized as follows:12



(a)
(b)Figure 2.2: (a) Lena, (b) Lena coded at one bit per pixel.13



Figure 2.3: Lena's residual.1. The distance evaluation and comparing against the maximum can be done in tandem.The evaluation of the metric then can be stopped when the metric is greater thanthe previously computed distance [BG85]. In some ways this is similar to VPC. It,however, cannot be used with similarity measures.2. Techniques similar to hashing can be used for accessing the codevector with less com-putation. Similar to hashing each codevector has a precomputed tag. Unlike hashingusing these tags, we can exclude large number of codevectors from the ensuing exhaus-tive search. Although they reduce computation, these techniques still require O( KN)operations. These tags also require additional storage.3. Techniques which are variations of Tree-Structured VQ (TSVQ) [Gra84, BGGM80]are most attractive. They reduce the computational complexity to O( K log(N))operations per search.Partial DistanceBei and Gray [BG85] showed an optimization applicable in sequential evaluation of thedistance metric. They would stop the evaluation as soon as the partial distance becamegreater than the minimum. As shown in Figure 2.6, the evaluation of metric and comparisonare e�ectively merged together into one composite computation.The partial evaluation is applicable for any distance metric. That is, for any measurewhere every term of the summation is non-negative. During the metric evaluation, if a par-14



(a)
(b)Figure 2.4: (a)Lena's eye, (b) Eye coded at one bit per pixel.15



Figure 2.5: A page of codebook.tially evaluated metric is greater than the minimum, the evaluation can output the outcomeearly. Bei and Gray [BG85] evaluated the performance in classi�cation of auto-regressivesequences and real images. For binary classi�cation, the improvement was more than 25%.Since the �rst distance is always evaluated, the improvement would be less than 50%. Amore signi�cant drawback is the inability to apply this idea to similarity measures such asinner product, where each term can be either positive or negative. This makes this techniqueunattractive in binary classi�cation, where the two distance evaluations can be replaced byone inner product similarity measure.partial distance[0] = 0;for i = 1; � � � ; Kif partial distance[i] > min thenterminate;elsepartial distance[i] = partial distance[i� 1] + (xi � yi)2;if partial distance[i] < min thenmin = partial distance[i];Figure 2.6: Partial evaluation of metric.16



Excluding CodevectorsFor completeness, we present methods for eliminating codevectors without metric evalua-tions. These techniques require additional storage for the associated index tables. We arenot aware of custom hardware for any of these techniques. The following is a brief summary.We can index the codevectors using some of the elements of codevector [SM87]. Basedon corresponding source vector's element, we can then limit the search to codevectors withina hypercube around the source vector. An extension of this idea is K-d trees [Ben75]. K-dtree is a tree-structure which for branching uses hyperplanes which are normal to one of theK axis. Since all but one of the elements of the corresponding codevector are zero, the innerproducts reduce to element-by-element comparisons. K-d tree VQ has a performance lessthan TSVQ, since the orientation of its hyperplanes at the branch nodes is restricted to benormal to one of the principle axis.We can bound the search area with a hypersphere instead of a hypercube. In suchan approach, codevectors are ordered and listed based on their norm. Then depending onsource vector's norm, we index into the list and limit the search to a spherical shell containingcodevectors with similar distances from origin [Mad90]. A more sophisticated variant of thismethod uses the �rst singular value of the codevectors instead of the vector norm[AC87] forindexing. It can o�er better performance, although it requires some form of singular valuedecomposition.Tree-Structured CodebookTree-structured VQ (TSVQ) [Gra84, BGGM80] is fast. Using the tree-structured codebookdecreases the computational complexity of VQ from O( KN) to O( K log(N)). As shown inFigure 2.7, a tree-structure permits �nding the best codevector with a series of classi�cations.Each classi�cation chooses the best branch out of a set of branches. Trees with binarybranches result in the least number of classi�cations. In binary TSVQ moreover, two MSEevaluations can be replaced with one hyperplane test. This halves the computation andstorage.TSVQ has higher distortion than exhaustive VQ. After all to get the tree-structure, thecodevectors are clustered together to form the parent codevector, approximating piecewiselinear partition with one linear partition. This results in non-optimal codevector selec-tion. Experiments reveal that tree structured codebooks of size N designed by the general-ized Lloyd algorithm (LBG) typically yield a distortion-rate performance comparable to fullsearch codebooks of sizeN=2, or alternatively one dB more noise in data compression [Bak84].Trees with 4, 8, 16, or in general M classi�cations at every node would make the perfor-mance of the tree-structured search comparable to the exhaustive search. The generalizationis simple. Let fx̂1; x̂2; � � � ; x̂Mg be the set of all children of the current node. At each branch-17
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x̂l x̂rx̂l x̂r x̂l x̂rx̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8
y1y2y4 y5 y6 y7y3Figure 2.7: A codebook structured as a binary tree.ing node, we then descend to node x̂c which is closest to the source vector x.More recently Chou et. al. [CLG88] developed a pruned tree search algorithm whichgreatly improves the distortion rate performance of TSVQ. Kiang et.al. [KBSC92] improvethe algorithm by allowing a �ner degrees of tree pruning. The key idea is as follows. Be-ginning with a binary tree structured codebook of rate 2R, the algorithm prunes away leastfrequently used subtrees. While increasing the distortion, eliminating the sub-tree decreasesthe rate. This is continued until the desired average rate R is obtained. Entropy PrunedTree-Structured VQ (PTSVQ) [CLG88], reduces the average codevector index length by re-moving the infrequently used codevectors. By allowing control on the depth in searching thetree, PTSVQ permits the user to vary the compression rate. A drawback of PTSVQ is itsvariable index rate and variable search time. On the positive side, the variable search timeconveniently masks the variable execution time of VPC. TSVQ has also been extended tomulti-path TSVQ [CCW91], which searches for the four best candidates in the tree. Overall,PTSVQ seems the most viable fast search technique.2.7 Previous ImplementationsTable 2.1 summarizes previous VQ implementations. Most of the early VQ implementationwere for speech compression. Since speech has orders of magnitude lower data rate thanvideo, a VQ encoder is easier to realize. The implementation's precision depends largely18



Table 2.1: Summary of previous implementations.Year First Author Precision Measure Operator Algorithm[Reference] (bits)1984 Tao [TAG84] 8 MSE parallel VQ1986 Davidson [DG86] 12 MSE parallel VQ1986 Nelson [NR86] 9 MSE serial VQ1987 Abut [ATS87] 8 MSE parallel VQ1987 Dionysian[DB87] 7 IP parallel VQ1988 Davidson[DCG88] 12 IP parallel VQ1989 Ramamoorthy [RPT89] 9 MSE serial VQ1990 Fang [FCS90] 8 IP parallel TSVQ1992 Dezhgosha [DJK92] 9 MAD parallel VQ1993 Kolagotla [KYJ93] 8 IP parallel TSVQon the application. Image pixels used in VQ compression are 8 bits. Depending on thepreprocessing, its precision could increase to 9 or 10 bits. Meanwhile, speech samples are 12bits.Several chips directly evaluate sum of square of di�erence distance. A VLSI imple-mentation by Davidson [DG86] has parallel subtractors, squaring circuits, and adders. Itoperates on 12-bit operands. There are similar VQ architectures which use 8-bit operands[ATS87, TAG84]. Architectures which have bit-serial subtract, square and addition operatorshave also been designed [NR86, RPT89]. These use 9-bit operands.More recent chips evaluate Inner Product (IP). In binary hyperplane test, one IP simi-larity measure replaces evaluation of two MSE distance measures. Inner product has onlytwo type of operators: multiply and accumulate, which makes it easier to implement thansubtract-square-add circuitry needed for distance evaluation. A Systolic architecture pro-posed by Davidson [DCG88] uses parallel multipliers and adders with 12-bit operands. Vari-ations of this Systolic architecture can trade between the number of multiplier-adder unitsused and throughput. It can also fully search the codebook or search through balancedtrees. Another chip [KYJ93] uses the same architecture with intent to cascade it with a19



linear predictor to form Predictive VQ.A recent chip by Fang et.al. [FCS90] can search 8-level balanced trees. It containseight inner product processor and eight adjoining codebooks. Each processor, is fed 8-bitoperands, has a multiplier, an accumulator and a comparator. Each adjoining codebookstores hyperplanes for a given level of the tree.Another recent chip designed by Dezhgosha et.al. [DJK92], uses Mean Absolute Distance(MAD) for the classi�cation. Built using subtractors and adders, it searches exhaustively.Also, the pixels and the codevectors are non-uniformly quantized at 5-bit to reduce codebookstorage.We, Dianysian (the prior name of Dionysian :-) and Baker, designed a chip [DB87] atUCLA to evaluate the inner product metric, with 7-bit operands. Each pipelined chip con-tained �ve parallel multipliers and adders with each multiply-add unit forming one pipelinestage. In addition it had registers to store �ve source vectors. The chips would have beencascaded to permit processing of vectors with up to 64 elements.2.8 SummaryVector quantization (VQ) approximates a source vector by a codevector, representing theimage by codevector indices instead of pixels. Many VQ techniques are derived from theclassi�cation �eld, and the key computation is identical. We summarized the previous inves-tigations in reducing computation, and highlighted the one we believe is the most promisingone: tree structured VQ (TSVQ). TSVQ reduces the computational complexity logarithmi-cally. M -ary trees allow a tradeo� between better codevector selection and quicker searchtime. We developed a generalization of binary hyperplane tests to M -ary hyperplane tests.This novel technique permits reducing the number of inner products in a classi�cation byone. Finally, we tabulated the previous hardware designs. A recently published design incor-porated codebook compression. Another design, a VLSI implementation used a large portionof the chip for codebook storage. These highlight codevector storage as an important issue.
20



CHAPTER 3Variable-Precision Representation (VPR)3.1 IntroductionIn vector quantization (VQ) as the codebook size increases, the noise in the compressiondecreases. This has been shown both theoretically and experimentally. High performanceVQ systems have become viable with the rapid progress in memory technology. Successfulproprietary video transmission systems using VQ have been built [Mok89]. VQ is also acandidate for the next generation of image/speech compression standards. In this chapter,we present a scheme for reducing the codebook storage needed in vector quantization. Withstorage reduction, we can �t larger codebooks in a given amount of memory. This canimprove the cost-performance of the system.The memory structure of VQ depends on the search technique employed. In real-timeVQ of video and speech with large codebooks, exhaustive search of the replacement vectorx̂c is computationally prohibitive. A variety of codebook structures [NK88], [MRG85] havebeen devised to reduce the search time, sometimes at cost of additional storage. A popularone is Tree Structured VQ (TSVQ) which uses a tree structure to search N codevectors inO(log(N)) time. Normally, TSVQ requires twice the number of codevectors. In additionto the leaves of the codebook tree x̂c; c = 1; � � � ; N , it needs the codevectors on the treebranches. If the leaf codevectors are used only in decoding, binary TSVQ can avoid theirstorage. In binary TSVQ, in every tree branch, the two mean square error evaluations can bereplaced with an inner product with the vector normal to the plane separating the two leaves[DH73]. This reduces the computation and averts an increase in number of codevectors fora given codebook.In the next section, we describe previous work in compression and introduce a novel wayfor vector prediction. In Section 3, we present VPR and discuss storing the codebook asdi�erence of codevectors. In the ensuing section, we show the reduction in storage of actualcodebooks using VPR; we follow with a quantitative analysis of the factors a�ecting theperformance using a pruned TSVQ [CLG88]. Finally, in Section 6, we extend the schemeused for binary tree to M -ary tree. 21



3.2 Codebook CompressionSource coding schemes [JN84] are applicable to compressing codebook. For example, a scalarquantizer can be used. While it introduces noise, it is simple to implement. In speci�c, �-law code [JN84] with � = 255 quantizes a 13-bit magnitude of a speech sample into aoating point number with 3-bit exponent and 4-bit mantissa (7 bits). Originally used inlocal telephone stations, this code has been used for compressing the elements of codevectorstrained on speech samples. For better performance, one can train the scalar quantizer { theprecursor to vector quantizer, on codevector elements.Dezhgosha and et. al. [DJK92] present a non-conventional VQ system. It combines eval-uation of L1 distance metric (mean absolute di�erence) with non-uniform scalar quantizationof the codevector elements. The quantizer is trained on elements which exhibit a 2-sidedexponential pdf. The element's magnitude are quantized into 9 di�erent values (4 bits). Fordecoding, look up tables are placed between the storage and the processor. (The paper doesnot emphasize these tables. Without them, however, conventional weighted representationarithmetic which they use would not operate.) The paper also states that the loss due tothe 4-bit scalar quantization to be less than 0.2 (i.e., 36.41 vs. 36.28). These SNR numbersare not in dB units (log of mean square error). Since their design minimizes L1 (mean ofabsolute di�erence) in quantization, they similarly used log of L1 a recent criterion for errormeasurement. The reported SNR cannot be used for general comparison, although it doesseems marginal. VPR, on the other hand, focuses on noiseless compression which does nota�ect the distortion in VQ. Moreover, it is arithmetically benign. It decreases the amountof computation.We use codevector prediction to improve compression. We note an inherent propertyof codevectors: the di�erence between two neighboring codevectors is small. By encodingthe di�erence between codevectors' centroid, the energy of the stored codevectors reduces.This lowers the entropy. This also can be realized just by pairwise subtraction of centroidcodevectors. Even a simple scheme of coding the di�erence { the hyperplane codevector {can provide signi�cant compression.In storing codevector di�erence, VPR is an e�ective vector compression scheme. Byclassifying codevectors based on the largest element of the vector in magnitude (max jxij),it accounts for the non-stationary nature of codevector whose characteristic varies from onecodevector to another. For each vector, VPR chooses the precision to accommodate thelargest element in magnitude. For many vectors, all the vector elements are small enoughnot to need one or more of the leading bits in their representation. This signi�cantly reducesthe number of bits for codebook storage.We will compare VPR with two alternatives: zeroth- and �rst-order entropy coders.Zeroth-order entropy coding is the best noiseless compression when vector elements aremutually independent. First-order entropy coding is preferred when autocorrelation of vector22



elements is large. It compresses the di�erence between an element and its prediction usingthe adjacent element. In either case, the decoding is somewhat complex. For example,Hu�man decoder requires a table (e.g., programmable logic array) to convert the code intoa representation more permissive to computation. It also needs shifters for unpacking ofvector elements. More importantly, Hu�man codes are variable length. Its length cannotbe determined prior to decoding. As a result, the decoding is serial. In VQ decoders, wherethe codevector elements are accessed serially, the marginal gain o�ered by this method maybecome attractive; specially so, as transistors per chip increase and chip design becomessimpler. VPR, meanwhile, does not require decoding and is not restricted to serial codevectoraccess. Howard and Vitter [HV92] did present a parallel variant of Hu�man coding. It,however, needs a re-allocation network. The re-allocation network distributes the spaceunused by the short codes to the space needed by the long codes. The re-allocation networkrequires even more inter-connectivity, incurring further cost. In addition as we will discusslater, di�erence entropy coding has other implementation di�culties.3.3 Variable-Precision Representation (VPR)Variable-precision representation is an extension of Block Floating Point (BFP) [Opp70].BFP is a oating point system with a single exponent for all the elements of a vector y.Originally used in digital �lters [Opp70], BFP represents K n-bit 2's complement integersas a vector of n-bit fractions and a single exponent:y = (y1; y2; � � � ; yK)t 2e0 ; jyij � 1 8iBFP has the advantages of oating point numbers, while by having a common exponent forall the vector elements, it requires less storage for the exponents.BFP, through normalization, avoids overow (or underow) [Opp70]. VPR uses BFP rep-resentation where the vector is normalized. It views normalization as compression. Throughnormalization, VPR reduces vector precision. This eliminates e bits per element.In VPR, leading bits which are zero in all the elements are eliminated and the numberof eliminated bits is stored in e:(y01; y02; :::; y0K)t = (y12e; y22e; � � � ; yK2e)t 2�ewhere y is before and y0 is after block normalization; both y and y0 are in fractional 2'scomplement form. The oating point radix is two. This maximizes the bit reduction possibleby VPR. In vector normalization, the element with the least number of zeros determines thenormalization. Or equivalently the smallest e is chosen such that,jyij < 2�e 8i23
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Figure 3.1: Reduction in storage using variable-precision representation (VPR).This will normalize the fractional representation y0,12 � jy0ij 9iIn other words, e designates the smallest interval which contains all the vector elements:e(y) = b� log2(max8i jyij)cLet's show an example. Figure 3.1 shows the two di�erent ways to store 8-bit precision(n = 8) elements ofy = ( -1/32, 13/128, 5/128, -1/32 )t. Note that when a negative number is converted into2's complement, the left most bits that were zero become extension of the sign. Fixed-precision 2's complement representation needs 4�8 = 32 bits. VPR eliminates three leadingbits (e = 3), it needs 4 � (8� 3) + 3 = 23 bits. VPR needs nine less bits.In general, the n-bit �xed-precision requires nK bits for the K element vector y. Incomparison, VPR needs (n � e(y))K bits for vector elements and dlog2(n)e bits for vectorrange e. When K � 3, e(y) is one or greater, VPR uses fewer bits.24



ComputationLet's review the computation the codevectors participate in. It selects one of the two branchesin the binary TSVQ: sign(xty + b)where y = (x̂i � x̂h) is the hyperplane and b = (kx̂hk � kx̂ik)=2 is the bias term. It is alsoreferred to as a hyperplane test [DH73]. In VPR, we evaluatesign(xty0 + b0)where y0i is (10 � e(y)) bits, and b0 = b=22e.To avoid overow, the dynamic range of the elements is increased in preprocessing. Tostart with, a pixel is 8-bit. An element of x, xi, is 9-bits { it is the di�erence of an 8-bitpixel from the estimate in preprocessing. An element of y, yi is 10-bits { it is the di�erenceof two 9-bit elements.3.4 Experimental ResultsWe generated three codebooks with k-means clustering [LBG80]. Each codebook used adi�erent set of images for training. As shown as an example in Chapter 2, the �rst codebookwas a mean-residual [Bak84] codebook with 16 element vectors (K = 16). It was trained on adata set made of 4�4 blocks of pixels (K = 16) from 13 256�256 pixel images. The codebookhad 211 codevectors. The second mean-residual codebook was trained on a data set made of4 � 8 pixel blocks (K = 32) from 10 256 � 256 pixel images. It contained 210 codevectors.The third codebook was for interpolative VQ [HH88] with 32 element codevectors (K = 32).Its 210 codevectors were trained on 10 256� 256 images. All codebooks used binary TSVQ.The trees were pruned using an algorithm developed by Kiang et. al. [KBSC92].Figure 3.2 uses the entropy function [JN84] as an upper bound in compressing the centroidcodevectors x̂, and the hyperplane codevectors y. The zeroth-order entropy H of RandomVariable (RV) Y is de�ned as,H(Y ) = Xi �p(Y = i) log2(p(Y = i))where Y is an element from one of the codevectors y. Zeroth order entropy measures theinformation, in bits, required for representing elements of the vector independent of eachother.As shown in Figure 3.2, hyperplane codevector is a good representation for compressedstorage of codebook. The hyperplane codevector is a prediction of one centroid codevector25



11:522:533:544:5
23:5 24 24:5 25 25:5 26 26:5 27 27:5 28E[e][bit] SNR [dB] n�H1(y) 33 3 3 3 3 3 3n �H(y) 22 2 2 2 2 2 2n�H(x) 22 2 2 2 2 2 2

Figure 3.2: Bits reduced with Hu�man coding for K = 16 codebook.by a similar one. As can be seen, as a residual of vector prediction, the hyperplane code-vector has lower entropy than the original vector. Figure 3.2 plots the �rst order entropy,which shows the e�ect of removing the correlation. As can be seen, this can lead to slightlybetter compression. This suggests that in the codevector subtraction most of the correlationamong the elements was also removed. Entropy H(Y ) is then close to the maximum possiblereduction in storage. Implementation of �rst order predictor would be both complex andrestrict the throughput. To predict the adjacent element, the evaluation needs to be sequen-tial. The evaluation, moreover, would require a multiplier and a subtractor for prediction.These are in addition to the Hu�man decoding of each vector element.As shown in Figure 3.3, the VPR compression ranges from 2.4 bits to 3.4 bits. In otherwords, on average the largest element in the vector was 1/5 to 1/10 of the dynamic range.Since the vector elements are 10-bit, the reduction in storage ranges from 24% to 34%. Theshown memory reduction accounts for exponent storage:et(y) = e(y)� 4Kwhere four bits overhead to store the exponent is subtracted from the VPR's bit saving. Asshown in Appendix B, when including other implementation detail, the overhead increasesonly 3% per element (from 4.0 to 4.5 bits per codevector).In these plots, both axis are logarithmic: The exponent e is the logarithm of the max-imum of the elements log( max( xi)). The SNR is logarithm of error's variance -log( �)in encoding images from the training set. Figure 3.3 shows the same positive linear-liketrend in reduction of the entropy as shown in Figure 3.2. We explain the following way: As26
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Figure 3.3: Bits reduced for K = 16 codebook.number of codevectors increases, the K-dimensional space, crowded by more codevectors, ispartitioned to smaller cells. The smaller distant among the centroid codevectors results inshorter hyperplane codevectors. This improves the compression index E[e(y)].By categorizing codevectors in compression, VPR accommodates non-stationary natureof codevectors. As shown in Figure 3.4, the reduction for branches added to the bottomof the tree structure can surpass four bits per element. Its performance surpasses that ofHu�man coding, which assumes, incorrectly, that the data is stationary. An entropy coder(e.g., Hu�man coder) compresses all elements of a vector with a single coder. Similarly,the scalar Laplacian quantizer used by Dezhgosha [DJK92] has one quantizer for all thecodevectors. On the other hand, VPR groups vectors based on exponents and codes eachgroup di�erently. It exploits the non-stationarity of codevectors.Figure 3.4 shows that not only subtracting the codevectors improves E[e], but also pre-processing source vectors, by reducing the vector energy improves E[e]. We will investigatethis with VPR representation of auto-regressive sequences.Finally, VPR is robust. We measured the codebook compression for both 16 and 32elements codebooks which were coded using MRVQ and Interpolative VQ (IVQ) [HH88].We also pruned the codebooks to N codevectors. Table 3.1 shows the compression usingHu�man and VPR coding. As can be seen, VPR has similar savings for the 32 elementcodevectors (K = 32). 27
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Figure 3.4: Bits reduced for added branches of codebook tree.Table 3.1: VPR compression of several codebooks.Code VQ K Tree N n�H(x̂) n �H(Y ) E[e] StorageBook Pruned [bit] [bit] [bit] Reduced1 MRVQ 16 Yes 466 2.32 3.05 2.66 26%2 " 16 No 1906 2.58 3.49 3.27 33%3 " 32 Yes 292 2.32 3.35 2.65 26%4 " 32 No 913 2.53 3.78 3.30 33%5 IVQ 32 Yes 875 2.06 3.68 3.36 34%6 " 32 No 922 2.11 3.72 3.40 34%28



3.5 Analysis of PreprocessingWe will show that source vector preprocessing improves the VPR compression. VQ pre-processing aims at improving the signal compression by extracting features from the signaland compressing them separately. It yields a hybrid coder which achieves better signalcompression without requiring bigger codebooks. Some preprocessing techniques such asmean-residual VQ reduce the energy of the source vector (x). Another example we willinvestigate, gain-shape VQ, normalizes the energy of the source vectors. Both such tech-niques reduce L1 of the source vector x, max( xi). As we will see, this aids the codebookcompression (e / log(max(xi))).We will analyze the e�ect of preprocessing of the source vectors on the codevector com-pression. We will compress �rst-order Auto-Regressive (AR) sequence. AR sequence ac-counts for the correlation which exists in real-world image and sound [Gra84] and which isrooted in the continuity of real signals:x1 = N (� = 0; �2n = �2x)xk = �xk�1 + N(� = 0; �2n = �2x(1� �2)) k = 2; :::;Kwhere the vector elements are output of a �rst order AR source which is excited by a Normal(Gaussian) random variable. This is also referred to as a Gauss-Markov source. The �rstelement is a zero mean Normal RV with variance �2x. Subsequent element are a fraction ofthe previous element summed with a Normal RV of variance �2n:�2n = �2x(1� �2)The fraction is dependent on the variance-normalized correlation �,� = E[XkXk�1]�2x ; 0 � � � 1We note that due to correlation between vector elements, a RV with small �2n results invectors elements with large �2x.In the following analysis, we assume that preprocessing of source vectors e�ects codevec-tors similarly. Each codevector x̂ is the centroid of a cluster of source vectors x determinedduring the training. During the training on the source vectors, codevectors track the sta-tistical properties of source vectors, inheriting their characteristics. For example, in mean-residual VQ, where preprocessing results in zero mean source vectors, codevectors which weinspected also had zero mean. Or the inspected codevectors x̂ had correlation within theneighborhood of source vector correlation (e.g., �x = 0:23 while �x̂ = 0:29 ).29



Mean-Residual VQMean-residual VQ is a simple form of preprocessing of input signal. The vector mean, whichis coded separately, is used to predict the vector. The residual vector which has lowervariance is then the vector which is quantized.Subtracting the vector mean, results in signi�cant reduction in storage. Figure 3.5 showsthe a�ect of removing the mean. It measures the average exponent E[e] for 10,000 autoregressive vectors with and without their mean. The variance was set at �2x = 0:17, andcorrelation was set at � = 0:98, while vector dimension K ranged from 1 to 64. This was arelatively high variance picture (256 � 256 pixel copy of Baboon) which was far more thanthe average values measured on a set of 20 images. For an average AR sequence segment,subtracting the mean, increases the exponent often by more than one bit. For convenience,every pixel was normalized (�1 � x � 1).One would strictly assume that subtraction increases the dynamic range. To avoid over-ow the maximum number of bits used in the representation should increase by one. Onaverage, however, the residual has a smaller maximum. As a result, E[e] of codevector im-proves and less bits are used. A supporting argument is that �x estimates the elements. Fora vector dimension of K = 32, the variance of the residual vector was decreased to 1/6 ofthe original. Moreover, VPR of the 10-bit element codevectors with a high probability hadalso the MSB zero p(e(x� i�x) � 1) � 0:95, where i denotes the vector (1; 1; ; :::; 1).In VPR coding, the average exponent of mean-residual codebook gives a conservativeestimate on performance of other VQ preprocessing schemes. Mean-residual VQ was chosenfor the ease which it could be implemented with. In actual systems, preprocessing can bemore elaborate. Other techniques such as interpolative VQ [HH88], which during predictionaim to reduce the maximum, would reduce the codebook storage further. Alternatively,mean-residual VQ can be viewed as a two-band sub-band coder where the high band is vectorquantized. More than two bands are shown to be desirable in sub-band coding [WBBW88].With more bands, the variance of the sub-band coded image decreases. This will also makeVPR compress more. For example with the maximum possible number of sub-bands, thecoder will be performing a discrete cosine transform of the whole image, where the varianceof most coe�cients is quite small.Gain-Shape VQGain-shape VQ is a VQ preprocessing technique which encodes the energy of a vector x andthe normalized shape vector u (u = x=jjxjj) separately. Average energy of an element of u,E[u2i ], becomes E[u2i ] = jjujj2K = jj xjjxjj jj2K30
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Figure 3.5: Increase in bit reduction E[e] by subtracting vector mean �x.E[u2i ] = 1KFigure 3.6 shows the performance for normalized vectors, with K varying from 1 to 64.With increasing K, the average energy of an element ui decreases, improving the averageexponent E[e]. In the Figure we have also shown the probability that the MSB is zero,p(e(u) � 1). For large vector dimensionK, it is almost one (e.g., p(e(u) � 1) � 0:993forK =32). If we drop the MSB of the magnitude, very few if any of the normalized codevectorelements will saturate the reduced dynamic range. This result can be useful in �xed-precisionimplementation.The simulations were cross checked. To observe the e�ect of the pseudo-random gener-ation, two di�erent random numbers were used. The di�erence in result between the twoset of vectors was less than 0.1 bit. The simulation results are insensitive to the statisticaluctuations due to averaging and random number generators to less than 0.1 bits. Eachsimulation had a set of 10,000 pseudo-random vectors x.3.6 Theoretical Performance of VPRWe analyze the performance of VPR as a function of vector variance, using an analyticalmodel. The model yields only a lower bound, even so it gives a signi�cant insight. Themodel measures the performance for a stationary codevector pdf. It conservatively deviatesfrom measured values due to the non-stationary nature of codevectors.31
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Figure 3.6: For large K the MSB almost always zero (p(e(u) � 1) � 1).Recalling the de�nition for hyperplane codevector y,y 4= x̂i � x̂hwhere i and h are two nearby centroid codevectors. A hyperplane codevector is the residualvector after one centroid codevector predicts a nearby one.We observed that the histogram of hyperplane codevectors y resembles a two sided ex-ponential pdf. Figure 3.7 shows a histogram of the hyperplane codevector elements. Thecodevectors are from the K = 16 codebook mentioned previously. The hyperplane codevec-tor's elements, which are summation of many RV, might be suspected to have a Normal pdf.However, as generally known [JN84], the histogram of pixels after prediction instead of beingbell shaped has a sharp peak at zero. There are two reasons. First, a Normal pdf requiresthat all the summed random variables to be independent. In real images this cannot beexpected. Second, a Normal pdf requires that the random variables be stationary. Images,on the other hand, are composed of variety of textures.As shown in Figure 3.7, two sided exponential pdf, also called Laplacian, match the pdfof codevector elements well. The Laplacian density of the RV Y isfy(y) = 1p2�y e�p2�y jyjSuperimposed on the histogram is a zero mean Laplacian pdf with � = 0:097, where thestandard deviation was that of the codevector elements L(� = 0; � = 0:097).32
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Figure 3.7: A Laplacian pdf superimposed on histogram of codevector elements.Let's estimate the average reduction for a vector of independent identically distributedLaplacian random variables. Since we are looking at the magnitude of the elements, letGy(y) denote the Probability Distribution Function (PDF) of jyj:Gy(y) 4= P (jY j < y) = Z y0 2fy(u)du= 1� e�p2�y jyjGy(y) can be also viewed as the PDF of an exponential pdf with mean � = �yp2 . Using Gy(y),we can estimate the average exponent E[e(Y)]:E[e(Y)] = nXi=1 iP (e(Y) = i) = nXi=1 P (e(Y) � i)= nXi=1 P (L1(Y) < 2�i)= nXi=1Gy(2�i)K= nXi=1 �1 � e�p2�y 2�i�KNow, let's compare this analytical result to the experimental results.The analytical estimate, illustrated in Figure 3.8, is conservative. It signi�cantly under-estimates the actual reduction of non-stationary vectors. The analytical estimate assumes allvector elements belong to a memoryless random sequence with Laplacian pdf and constant33
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������������������� �������������� ���������� HHHHHHHHHHHHHHHHHHH. . .x̂mothery3y2 yM�1 x̂Mx̂3x̂1 x̂2y1 . . .Figure 3.9: Storing codevectors as chain of di�erences.Storing Chain of Di�erencesAs shown in Figure 3.9, an M -ary tree can be stored as a chain of di�erences. Each siblingis predicted by the closest codevector which has not been put in the storage. The sibling issubtracted from the predictor and is stored. The di�erences forms the link of the chain. Toreconstruct a codevector, all the previous codevectors in the chain are accessed. This is idealwhen the the M codevectors in the codebook are searched sequentially in a �xed order.Depending on the sequence of storage, the compression varies. The compression is de-noted by the sum of the exponent e(x̂i � x̂h) of the codevector di�erence varies. In thefollowing equation, we change the enumeration of M codevectors such that the number ofbits used in storage is minimized:max8enumeration e(x̂1) + MXi=2 e(x̂i � x̂i�1)Akin to the traveling salesman problem, it can be solved with similar heuristics. To accessa codevector x̂j, we would have to access all the previous codevectors in the tour:x̂j = x̂1 + jXi=2(x̂i � x̂i�1)where we have stored x̂1; x̂2 � x̂1; x̂3 � x̂2; � � � ; x̂M � x̂M�1.In an M -ary tree, we can incrementally perform the inner product. This is similar tobinary trees, where the search processor conveniently used di�erence of codevectors (y =(x̂l� x̂r)) in the computation, With inner product measure, the evaluation of codevector x̂jcan use the result of evaluation of x̂j�1. This can reduce the computation:xtx̂j = xtx̂1 + jXi=2 xt(x̂i � x̂i�1)35



������������������� �������������� ���������� HHHHHHHHHHHHHHHHHHH. . .x̂mothery3y1 yM�1 . . .x̂3x̂1 x̂2 x̂My2Figure 3.10: Storing di�erences from a sibling.Storing Di�erence from One CodevectorPredicting from only one codevector permits fetching codevectors concurrently. We cantest all M codevectors as the predictor, choosing the one with most reduction in saving.For example in Figure 3.10, for reconstructing codevector xi, we need the predictor x3and the di�erence yi. Furthermore with inner product metric, we need to store only thecodevector di�erence. This was already shown in Section 2.4. These two factors togetherpermit reconstructing a codevector with only one accesses.For better compression, we can optimize the prediction. We can generate the optimalcodevector. Compression improves when the predicting codevector is similar to all codevec-tors by L1 measure ( L1(x̂i� x̂predict)). Figure 3.11 shows codevector, xpredict, where xpredictis the centroid which uses the exponent measure for distance:xpredict = minx �1Xi e(x̂i � xpredict)The above equation yields the predictor which minimizes the distance. Note that whenL1 � L2, this scheme is identical to prediction from xmother. Indeed, xpredict could beiteratively derived from the parent codevector. As already discussed, the codevector xpredictitself does not need to be stored.Prediction from one codevector is most e�ective for small M . For large set of codevectorM , the prediction can be poor. For example, in exhaustive search of large codebook(M = N),one codevector cannot excel in predicting the other ones. After all, a codebook is collection ofcodevectors which captures the diversity of the input. Any portion of the signal which wouldhave been common to all the codevectors would have been extracted by the VQ preprocessorbefore the codevectors were ever generated. 36



!!!!!!!!!!!!!!!!!!!!!!!!! """""""""""""""" ��������� eeeeeeeeee!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""��������� eeeeeeeeee. . .x̂3x̂2 x̂predict x̂My2y1 y3 yMx̂1 . . .Figure 3.11: Storing di�erence from a single predictor.3.8 ConclusionHyperplane codevectors are better suited for storage than centroid codevectors. Hyperplanecodevectors which are the di�erence between two similar centroid codevectors have lessinformation than centroid codevector. This was experimentally veri�ed. Both the zeroth-and �rst-order entropy for 16 element (K = 16) codevectors were measured. The reductionwith zeroth-order entropy of the centroid codevectors varied from 2.3 to 2.6 bits per element,while for the hyperplane codevectors it varied from 3.0 to 3.5. The improvement was at about0.7 bits. On the other hand, the �rst-order entropy, which required a predictor could improveour reduction by about 0.1 bits. This suggests that subtracting similar centroid codevectorshas removed most of the element-element correlation. Finally, with VQ preprocessing, evenfor centroid codevectors there was signi�cant reduction in storage. VQ preprocessor aimingto reduce information in signal, also reduces the information in the codebook.Variable-precision representation (VPR) is an e�ective noiseless encoding of hyperplanecodevectors, whose decoding is amiable to arithmetic. VPR determines the vector elements'leading bits which are sign extension. It then avoids storing these bits for each vectorelement. Instead, for each vector, it stores the number e( y). The decoding takes advantageof reduced precision, resulting in negative decoding cost. VPR is also e�ective in reducingstorage. For storing a binary tree structured VQ codebook, VPR saves between 24% and34% in storage. It compresses 75% as well as entropy coding. VPR e�ectiveness stems fromthe non-stationary nature of codevector. The savings increases as the signal to noise ratio(SNR) of VQ coder increases. With even bigger codebooks than were simulated with thecurrent machines, we predicted the saving will be greater than 40%.
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CHAPTER 4VPR Architecture4.1 IntroductionThis chapter discusses VPR's architecture and the cost-performance of its implementation.First, we present bit-serial VPR architecture. Then, we discuss speedup using pipelinedand bit-parallel evaluation. This is followed by a VPR implementation which can vectorquantize real time video (MPEGII rate). Since in variable-precision representation (VPR)the noiseless compression is achieved by eliminating zero MSBs, we suspect VPR basedclassi�er has low or even negative decoding cost. We verify this by a comparison with aconventional �xed precision implementation. We try to generalize the comparison of thesetwo implementations by analysis of the VPR architecture vis-a-vis the conventional.4.2 ArchitectureThis section looks at a bit-serial non-pipelined VPR architecture. The processor architectureis determined by the format of data storage. After we discuss organization of codevectors,we describe the details of the inner product processor.Memory OrganizationLet's consider storage of one codevector. As the precision varies by one bit, the number of bitsrequired for representation vary by K bits. A general approach would treat the elements asseparate variable-precision numbers, packed into memory words. The processor would thenhave to unpack them into �xed precision numbers to feed to the parallel multipliers andadders. The unpacking conversion step would require a shifter.We present a packing scheme which avoids the unpacking step. We note the commonprecision of vector elements' mantissa. Let a word have K bits for K element vector. Withone word for each bit of precision, the vector y uses (n � e(y)) words. Each word groupsbits of the same weight of all the vector elements, spreading an element across several words.Storage used, K� (n�e(y)) bits, is the minimum number of bits to represent a VPR vector.In Figure 4.1, the dashed line demarcates one of the vector elements. For example withK = 16 and n = 10, each vector y needs (10 � e(y)) 16-bit words per vector. Next, we38



�� @@@���Array MSBs WordLSBs WordMemory . . . . . .. . .. . .. . .Oneelementvector n� e K-bitFigure 4.1: In variable-precision representation, storing elements bit-serially.describe an inner product operator which evaluates y in the same order as it is stored inFigure 4.1.Bit-Serial Inner ProductAs discussed in previous chapter, the VPR computation determinessign(xty0 + b0)where, y0 = y2e ; b0 = b22eRecall the vector y is the hyperplane codevector, and the bias term b is the distance of thehyperplane from the origin.We can evaluate the codevector as it is read in VPR format. To show this, we dissectthe inner product into bit-serial evaluation:xty0 = Xk xky0k= �Xk xky0k;0 + n�1�e(y)Xj=1 2�j Xk xky0k;jThe inner loop is implemented in hardware. In other words, in every cycle it multipliesthe xk with j-th bit of yk and sums the result. The outer loop is sequential evaluation ofn � e(y) iterations. As shown in Figure 4.2, evaluation of the inner loop forms the bulkof the processor. For fast execution, the inner product is accumulated in carry-save form.Every cycle, partial products which have the same weight are generated and summed. Afterthe last iteration, the sign detector adds the saved-carry to the pseudo-sum and outputs thesign. 39
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As we will discuss later in Chapter 5, VPR inner product module can be incorporated intovariable-precision classi�cation (VPC) [DE90]; VPC architecture would complement VPR.While VPR would avoid the sign extension MSBs; it would skip the superuous LSBs. Theevaluation would be similar to Figure 4.2, except the bit-serial evaluation would be fromMSB to LSB. It would also keep track of the error of the inner product (xty0 + b0). Whenthe error becomes less than the estimate of the inner product, the sign of the output cannotchange with succeeding evaluation. At this point it could terminate the evaluation.4.3 Increasing ThroughputA bit-serial architecture, although simple to implement, may not have enough throughput.For increasing the throughput, we look at both bit-parallel evaluation and pipelining.Bit-Parallel EvaluationFor an arbitrary speedup, we can trade in chip area and pins for bit-parallel evaluation. Weevaluate the inner product bit-parallel. Evaluation at higher digit radix reduces the numberof iterations. Even when evaluating at higher radix, we vary the storage precision by one bitat a time (radix-2). This retains all of the VPR reduction of storage.Let's look at the memory organization for a digit-serial processor. Figure 4.3 showsthe memory organization for the m-bit digit serial processor. It is similar to the bit-serialmemory organization except it widens a word from K bits to mK bits. For m-bit digit, we'llgroup m K-bit words into an mK-bit word. When we divide the element's (n � e(y)) bitsinto m-bit chunks, we need &n� e(y)m 'words. Sometimes, though, we need to fetch one more word. For example, Figure 4.4 showsthat a single m-bit access cannot fetch an m-bit element. When the previous codevectoruses only part of the word, the current codevector begins at the middle of a word. Thisworst case scenario is shown by the codevector y1 which starts in the middle of a word andspreads into an additional word. At worst case, we need ! words,! = &n� e(y)m '+ 1Bit-parallel evaluation requires more memory-processor bandwidth. For one, it accessesm bits at a time, even when only one bit was needed. A less obvious drawback is in VPRpacking which results in the MSBs of vector elements to be non-aligned with the wordboundary. When vectors are accessed randomly, as is in binary TSVQ, we use only the bits41
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of the target codevector, even though we fetch the whole word. Fetching bits which do notbelong to the targeted codevector, incurs additional tra�c on the memory-processor bus.For an architecture with maximum parallelism at the bit-level, let m = n:! � 2It may be possible to fetch a codevector in one access (! = 1). In the worst case, however,a codevector may be stored across the word boundary. Accessing such a codevector wouldtake two cycles.For a bit-parallel scheme, the speed up Sparallel(m) with respect to bit-serial becomesSparallel(m) = n!In words, the speedup is the ratio of the memory accesses in bit-serial and bit-parallel ar-chitectures. For an architecture with maximum bit-level parallelism, for maximum speedup,let m = n: Smax parallel = Sparallel(m = n)Smax parallel � n2In other words, misalignment in storing variable length codes results in at least two cyclesfor evaluation. Area-time ratio of bit-parallel to bit-serial implementation isAserialAparallel � Sparallel(m) = K(Aradix�2 gen + Aadder)K(Am�bitgen + Aadder) �= K(Aradix�2 gen + Aadder)Km(Aradix�2 gen + Aadder) n� e!� n!m = n�emdn�em e+ 1 (4.1)Due to truncation and alignment issue, the evaluation time does not inversely decreasewith the processor size.The inner product evaluation can be broken to summation across memory accesses, bits'weight, and vector elements:xty0 = !�1Xj=0 jm+m�1Xi=jm 2�iXk xky0k;i| {z }hardware (4.2)where the two inner summations are implemented in hardware, and the outer summation issequential. For simplicity, we have assumed that the elements are non-negative numbers.43



To reduce wiring, we reorganize the mK partial product generators of an element togetherinto K m-bit partial product generators {K sub-multipliers of m by (n � 1) bits. This isreected in changing the summation order from (4.2):xty0 = !�1Xj=0 Xk jm+m�1Xi=jm 2�ixky0k;i| {z }hardwareFigure 4.5 shows the corresponding digit-serial processor. The digit-serial processor is alsosimilar to bit-serial processor, except it replicates the partial product generators m times, andit masks to annul the portion of the word which belongs to another codevector. E�ectively,on the y, it trims the accessed elements to (n� e(y)) bits.As shown in Figure 4.6, the partial product generator incorporates m AND gates to maskout the bits not belonging to the codevectors. When accessing codevectors randomly, as isdone in binary TSVQ, the masks allow us to fetch a VPR codevector with variable numberof words.PipeliningPipelining is an attractive means of increasing throughput. It is both low cost and simpleto incorporate. It reduces the inner product evaluation time by reducing the cycle time.Instead of waiting for propagation through the summation network, we need to wait onlyfor propagation through one pipeline stage. The pipelining speedup Spipe(l) [Kog81] isSpipe(l) = nToriginal(n + l � 1)Ts ; Ts � Toriginall + Tlatch� nln + l � 1As the number of stages of the pipeline l increases, stage time Ts decreases. Even if eachcodevector to be chosen for classi�cation depends on the previous one, Spipe still can be large.For a codevector with precision n, there are n independent evaluations. In the limit, as thelevels of pipeline l increases, the speedup approaches n:liml!1 Spipe(l) = nIn words, the pipelined processor can at most fully evaluate the classi�cation in the time thenon-pipelined processor would evaluate one bit. As we will show later, there are practicalimpediments to increasing l. In practice, the number of pipeline stages l is few. Pipeliningincurs overhead due to latency and Tlatch. 44
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On a pipelined architecture, a 4-ary tree may execute in comparable or even less timethan a binary tree. A 4-ary tree has one more inner product than binary tree but has oneless pipeline break. In two binary branches, two inner products are evaluated randomly:2 T (Binary Branch) = 2��n2 � + l � 1� + 1 cycleswhere we have assumed half the time a codevector would be misaligned. In 4-ary tree, threeinner products are evaluated sequentially. On a pipelined processor, only the �rst one incursl � 1 cycles of pipeline latency:T (4-ary Branch) = �n + n + n2 � + (l� 1) + 0:5 cyclesFor what pipeline latency l, and precision n, does one 4-ary branch evaluate in comparableor less time than two binary branches?T (4-ary Branch) � 2 T (Binary Branch)�n + n + n2 � + (l � 1) + 0:5 � 2��n2 � + l � 1� + 1�n2 � � l � 1:5For the implemented radix-4 architecture which was pipelined to six levels,n = 10 ; l = 6searching a 4-ary tree would require slightly less time than searching a binary tree. It wouldtake 2% less time than binary trees (20.5 versus 21 cycles), even though there is 50% morecomputation (3 versus 2 inner product).Our implementation which we discuss next was for searching binary trees. At the timeonly algorithms to search 4-ary trees were not readily available. It can be easily modi�edfor a 4-ary tree. To do so, the sign detector would be replaced with a maximizer { a registerwhich keeps track of the maximum of inner products and a comparator which compares themaximum and the output of inner product both in redundant representation.4.4 ImplementationTo fully assess VPR, we proceed to implement the VPR core of the VQ processor. Thedeveloped core evaluates the sign of the inner product, where the codevector is in VPRformat. As shown in Appendix A, it is targeted for MPEGII 1 data rate. We used VIEWlogic1720� 576 pixels at 30 frames per second 47



for capturing the design schematic and verifying it. We also measured the critical pathassuming that it was fabricated in LSI Logic 1.0-� gate array [Cor91].Gate array is attractive for two reasons. First, gate array provides a test ground forcomparison of two competing architectures. Given the schematics of the design, we canestimate the cycle time and know the gate count. Second, the gate array is a viable meansfor production. Tools automatically will map the schematic into a gate array. Partiallyfabricated dies will expedite the fabrication time and reduce the cost.In our analysis we have also evaluated the impact of pipelining. A six stage pipeline(l = 6) can decrease the total execution time about 25%. It is simple to pipeline either ofthe designs. For accumulation both designs used CSAs. To pipeline we only need to insertthe pipelining registers.VPR ImplementationA bit-serial (radix-2) architecture would be simple to design. It would also minimize thememory bandwidth. However, even when pipelined, the processor could not encode at thevideo rate of MPEGII standard. Therefore, we implemented a radix-4 design. We have alsodeveloped the pipelining. The design and its pipelining are presented in Appendix B.The VPR implementation is based on Figure 4.5 using radix-4 partial product generators.The VPR core is 16 (= K) radix-4 partial product generators and a summation tree. Theradix-4 partial product generators, which use string recoding (Booth) of the multiplier,act like digit-serial multipliers. Their output along with the bias term is gathered by atree of adders and accumulated in a carry-save redundant form. Through the multipliers,the addition tree is iteratively fed the digits of the VPR codevector. It presents its �nalaccumulation to the sign detector. For fast execution time, the sign detector is based on acarry look ahead adder as discussed in Appendix B.VPR has 4-bit of control information for each stored codevector. For 10-bit elements(n = 10) in VPR format, the exponent e would nominally require four bits. Inspectionsof the codebooks presented in the previous chapter show that less than 1% of the timee 2 f8; 9; 10g. Limiting e to three bits, results in negligible decrease in VPR compression.To minimize its storage cost, we store e in three bits. We use the fourth control bit to storean o�set marker. It ags when the codevector begins in the middle of a radix-4 memoryword. The VPR controller is described in detail in Appendix A.
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Fixed-Precision ImplementationFor comparison, a conventional architecture based on multipliers and adders is designed. Itevaluates the inner product as follows:xty+ b = Xk xkyk + bxty+ b = 3Xi=0 4i+4Xk=4i+1 xkyk + b| {z }hardwarewhere the inner summation is implemented with four multipliers and adders, and the outersummation is executed in four iterations. The design is described further in Appendix B.4.5 ComparisonFor comparison, we conservatively estimate the execution time which included signal routingoverhead. In both designs, the critical path has been traced. It starts from the string recodingcircuitry through the addition circuitry. Since for low latency, both alternatives for the nextaddress are fetched to the controller. As soon as the comparison determines the sign, theaddress multiplexor outputs either right or left branch address to fetch the next codevector.With on-chip memory, address multiplexing and memory access require 21 ns. In minimallypipelined design (l = 2), memory access requires one pipeline stage. In maximally pipelineddesign (l = 6), it requires three clock cycles.In both implementations, we conservatively estimate the execution time. The criticalpath is determined to go from the string recoding circuitry through the addition circuitry.In the measurement of the critical path, we account for a conservative e�ect of routing. Sincefor low latency, both alternatives for the next address are fetched to the controller. As soonas the comparison determines the sign, the address multiplexor outputs either right or leftbranch address to fetch the next codevector. With on-chip memory, this can be performedin 21 ns. In minimally pipelined design (l = 2), memory access requires one pipeline stage.In maximally pipelined design (l = 6), it requires three clock cycles.In radix-4 VPR design, there are overhead both due to misalignment and fetching oddnumber of bits. When the number of bits is odd, half the time we read in an extra bit. Whenthe number of bits is even, half the time the word may be misaligned, forced fetching anextra word. Assuming that both the probability of being even or odd, aligned or misalignedis each 0.5, then on average half the time we fetch an extra word. This increases the averagenumber of bits fetched to four (8 bits), where we assumed a relatively conservative 3.0 bitsreduction (3.3 bits reduction was the maximum measured).VPR compresses the codevectors, and it has a negative decoding cost. That is, VPR49



Table 4.1: Memory bandwidth of VPR versus �xed-precision design.Pipeline CK Avg(Worst) Avg(Worst) BW BW�T � 10�6[level] [ns] Time[cycle] Time[ns] [pin] [pin�sec]VPR 2 20.7 5(7) 103.5(144.9) 42 4.35(6.09)Conv 2 20.7 5 103.5 45 4.66VPR 6 8.3 9(11) 74.7(91.3) 42 3.14(3.83)Conv 6 8.3 9 74.7 45 3.36
Table 4.2: Performance and cost of VPR versus �xed-precision design.Pipeline Area CK CK Avg(Worst) AT�10�3 AT 2�10�12[level] [gate] [ns] [FA] Time[cycle] [gate�sec] [gate�sec2]VPR 2 9100 20.7 7 5(7) 0:94(1:32) 97(191)Conv 2 9993 20.7 8 5 1:03 107VPR 6 11164 8.3 5 9(11) 0:83(1:02) 62(93)Conv 6 12841 8.3 4 9 0:96 7250



reduces the total time of VQ. Table 4.2 shows the number of gates, the clock cycle (CK) andthe evaluation time for several designs. For VPR implementation, we also show the worstcase time in parenthesis. We have calculatedAT 2 (Area� (T ime)2), which in many instanceshas been used as a complexity measure. For VQ at the required throughput, we can halvethe time by doubling the area, so AT is a better complexity measure. For variable-time innerproduct, which can be used in searching pruned trees, VPR is on par with conventional. Fora �xed time inner product, VPR's compression does incur 21% more AT cost.Table 4.1 shows the number of bits accessed from memory and BW � T . We omittedpins required in both architecture to fetch the address. In conventional architecture, in everycycle we fetch four 10-bit elements and �ve bits of bias. In VPR architecture, in every cyclewe fetch 16 radix-4 digits, four bits of bias term, an o�set bit, three bits of exponent, andin addition the address space has two bits more resolution address. On average, VPR againperformed better than conventional. For the worst execution time, however, VPR has aproblem similar to other variable length codes. Due to packing of codevectors, an addedword sometimes has to be accessed. Even so, the number of pins used may be three pins less(45 versus 42 pins). At most in binary classi�cation where we fetch both exponent for lowlatency address generation, VPR will have the same number of pins as conventional. Also inthe single chip system discussed next, we note that the memory-processor bandwidth occursinside the chip. The bandwidth comparison becomes unimportant.VPR, through storage reduction, can reduce system complexity. Given that the VQsystem meets the throughput of the application, the key criteria is the system complexity.In comparing VPR and conventional, let's consider a single chip system. We can storerelatively large codebooks on the same chip which houses the processor. For storage, wechoose Read Only Memory (ROM) in lieu of Random Access Memory (RAM). A ROM cellrequires far less area than RAM. In the 1.0-� technology, 7 bits of ROM can �t in the samearea as a single gate. It is quite feasible to put a 4096 entry codebook with 16 elementcodevectors (N = 4096;K = 16) on ROM by the the processor. The conventional systemrequires 64 mm2, while VPR permits putting the processor along with the codebook in just45 mm2, a 30% saving. These numbers were calculated for 1.0-� technology. We believethat in other technologies, VPR similarly reduce the storage. We like to remind, that in aVQ system, we can use the 30% area to store bigger better performing codebooks.4.6 Analytical ComparisonTo better illustrate the on-line product summation, we compare it with two alternatives: �rstwith several parallel multipliers and adders, and second with K conventional serial-parallelmultipliers [RPT89]. The qualitative comparison is supported numerically, by estimates ofthe number of full adders each structure requires. To simplify the comparison, all alternativesuse linear array of adders. 51



The inner product to be evaluated isytx = Xk ykxk= y1x1 + y2x2 + :::+ yKxKwhere each of the K elements for simplicity is n unsigned bits. Decomposing the multipli-cation to addition of partial terms,ytx = (�y1;0x1 + 2�1y1;1x1 + :::+ 21�ny1;(n�1)x1) (4.4)+(�y2;0x2 + 2�1y2;1x2 + :::+ 21�ny2;(n�1)x2)+:::+(�yK;0xK + 2�1yK;1xK + :::+ 21�nyK;(n�1)xK)A parallel multiplier concurrently evaluates the contents of the parenthesis and an adderaccumulates the result. The multiplier uses n2 and an accumulator uses 2n + dlog2Ke fulladders. Each of the K elements uses a multiplier and an adder for one cycle. The totalnumber of full adders � cycles, FAparallel, isFAparallel(K;n) = K(n2 + 2n + dlog2Ke)Now, we rearrange the above equation to sum the terms with the same weight concur-rently, and iteratively shift and accumulate the sum:ytx = �(y1;0x1 + y2;0x2 + :::+ yK;0xK) (4.5)+2(y1;1x1 + y2;1x2 + :::+ yK;1xK)+:::�21�n(y;1(n�1)x1 + y2;(n�1)x2 + :::+ yK;(n�1)xK)This reordering is similar to the way Peled and Liu [PL74] distributed the multiplications ina digital �lter when implementing with read only memory (ROM). In the ROM, all di�erentways elements of x can be summed together were precomputed and stored. The bit-vectorof the same signi�cant bits yi would then address the ROM. The output of the ROM wouldbe equivalent to one of the terms in the parenthesis. Instead of embedding the processingbit-serially using a ROM, VPR embeds the processing in a summation network.For n iterations, the VPR structure uses K partial term adder and an accumulator. InVPR, the partial term adder operates on longer words than conventional. A partial termadder has n + dlog2Ke Full Adders (FA). The accumulator has 2n + dlog2KeFA. Thisincludes one bit of sign extension for on-line sign detection. The total number of full adders� cycles, FAvpr isFAvpr(K;n) = nK(n + dlog2Ke) + n(2n + dlog2Ke)52
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Figure 4.7: Bit-serial partial term generator as a 1� n multiplier.Finally, we compare VPR with bit-serial multipliers. Figure 4.7 shows the partial termgenerator used in the bit-serial arithmetic of Figure 4.2. In conjunction with an accumulator,it forms a serial-parallel multiplier [NR86], [RPT89]. The conventional sequential multiplieris an accumulator and a partial term generator, which transfers the result to an auxiliarylatch. For n cycles, K multiplier iterate over (2n + dlog2Ke) full adders. With shimmingthe multiplications of adjacent elements in the vector by n cycles, one multiplier can beinitialized with the result of the adjacent multiplier. Then, just K sequential multipliersperform the inner product.FAserial(K;n) = nK(2n + dlog2Ke)A parallel adder and a latch replace K bit-serial adders and K parallel auxiliary latcheswhich would sum the multipliers' output. Moreover, when not bit-level pipelined, there isno equivalent of accumulation latch. In comparison to the VPR inner product, this designapproximately needs additional nK full adders and latches. This design is similar to thebit-serial implementation by Ramamoorthy and et. al. [RPT89].Routing ComparisonIn full custom implementation, the VPR inner product structure may incur more rout-ing overhead than the multiply accumulate structure. When the multiplier is the linear-53



multiplier, the multiplicand can be transferred between the partial product generators byabutment. On the other hand, in VPR structure all the elements xk are fed to partial termgenerator. This increases the routing overhead with respect to the linear-multiplier,�wiring / K �VPR PPGENwiring � dK=ne �Multiplierwiring/ nK � dK=nen/ nKIn words, the increase in routing depends linearly on both K and n. On the positive note,storing the source vector x on-chip requires only as many registers as there are partial productgenerators (i.e., nK bits). Since the number of latches are few, the high bandwidth betweenthe inner product hardware and the source vector can be encapsulated in the chip.VPR can have a lower latency summation network than conventional. In our analyticalcomparison, we assumed a linear summation network. Now let's look at a tree summationnetwork used to minimize the summation delay. In VPR, summation is done by one network.With multipliers and accumulators the summation is broken into two networks. First, themultiplier sums the partial terms. Then the adders accumulate the output of the multipliers.This partitioning results in non-optimality. It increases the overall depth of the adder treeby two full adders when compared to VPR's summation network.VPR for a Programmable-Precision FilterSince inner product is used also as a digital �lter, VPR can be also used for digital �ltering,although the application is di�erent. In a programmable �lter not only the coe�cientsmay vary, but also their precision may vary also. VPR can be used for increasing therange of throughput the �lter module can accommodate. The vector coe�cient y would bestored as VPR. VPR can have similar application to what the architecture by Peled and Liu[PL74] implemented using ROM. The VPR network can be used to implement programmableprecision �lter. As the required precision of coe�cients decreases, the number of iterationsalso decreases. For example:Coe�cient Bit-Serial String RecodedPrecision Iterations Iterations5-bit ) 5 310-bit ) 10 5That is, if the application requires less precision, one could demand a higher throughput.VQ and �lters di�er only in accessing the operands y: VQ fetches a codevector y from thememory, while FIR �lter fetches it from a shift register acting as a tapped delay line.54



4.7 ConclusionVariable-precision representation is noiseless encoding which is amiable to arithmetic. Unlikeother compression schemes not only it does not require costly decoding, it even reduces thecomputational complexity. VPR determines the vector elements' leading bits which are signextension. VPR avoids storing e( y) leading bits of each vector element. Instead, for eachvector, it stores the number e( y). In the radix-4 implementation, we also store an o�set bit,which marks if the number uses half of a radix-4 memory word. Over all, a VPR codevectorhas four bits of overhead.A VPR inner product is implemented. It processes the codevector element's digit-serially,and the source vector's elements in bit-parallel. Incorporating string recoding, it achieves ahigh throughput and demonstrates the issues in using bit-serial variable-precision represen-tation and radix-4 evaluation. It has lower complexity than a sequential multiplier baseddesign. When used as a variable-time module, it also has lower complexity than conventionalmultiply-accumulate approach.We also noticed the e�ect of pipelining on inner product module. In a pipeline module,evaluating 4-ary branch would take slightly less time (i.e., 2%) than evaluating two binarybranches. In two binary branches, since the two inner products are evaluated randomly,the pipe is ushed twice. In a 4-ary branch, since the three inner products are evaluatedsequentially, the pipe is ushed only once.
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CHAPTER 5Variable-Precision Classi�cation (VPC)5.1 IntroductionClassi�cation is the cornerstone of digital signal processing. Originally, it was used in thecommunication channels for distinguishing signals from noise. Now it also compresses soundsand images [Gra84], [MRG85] being used as a vector quantizer. It also appears in recognitionsystem for speech [Kav86] or characters [NJ85], and in image segmentation [GBJM79]. More-over, cluster of classi�ers are being evaluated for connectionist computations [Wid87]. Manyresearchers develop and enhance systems using the classi�er as one of the given buildingblocks.It was conventionally believed that as the precision of the operands increases, so would thecomplexity of the classi�er. For example, a conventional inner product based classi�cationwhich uses multipliers and adders would have O(n2) complexity with respect to precision nsince multipliers have O(n2) complexity with respect to precision. This chapter describesvariable-precision classi�cation (VPC) algorithm and shows that the average computationcomplexity is independent of operand precision. In practice, VPC can reduce the averagenumber of iterations by skipping evaluation of the unnecessary LSBs. This convenientlycomplements VPR's elimination of superuous (zero) MSBs.First in Section 5.2, we show how Binary VPC (BVPC) algorithm evaluates the discrim-inant bit-serially to the necessary precision. Ensuing this, we derive an upper bound on theoperand precision necessary for determining the output's sign. Next in Section 5.3, we derivean upper bound on the average necessary-precision in BVPC algorithm. Finally in Section5.4, we generalize Binary VPC to M -ary VPC, and let an auxiliary theorem generalize theupper bound for BVPC to M -ary VPC.5.2 Binary VPCFrom Chapter 2, we determine the key operation in VQ as binary classi�cationc = 8>><>>: 2 if ~g(x; x̂1; x̂2) � 01 otherwise56



Operands g(:) + �VPC Evaluation of g(:)Figure 5.1: Variable-precision classi�er (VPC) computes g(:) and its error.Let's de�ne the discriminant gi;h which is output in binary fractional representation,gi;h(x) � ~g(x; x̂i; x̂h)2dlog2(max(j~g(x;x̂i;x̂h)j))e (5.1)That is, gi;h is the discriminant ~g(x; x̂i; x̂h) divided by the smallest power of two whichnormalizes the discriminant. (jgi;hj � 1). Arithmetically, ~g(x; x̂i; x̂h) is evaluated as gi;h(x).Then, function ~g(x; x̂i; x̂h) is replaced by its binary representation gi;h(x),c = 8>><>>: 2 if g1;2(x) � 01 otherwise (5.2)Figure 5.1 shows the key aspect of VPC: it calculates incrementally g(:) and its accuracy.The evaluation stops when we determine the sign(g1;2(x)). This is possible when the error� is smaller than g(:). The average classi�cation time may become signi�cantly less than afull-precision classi�cation.Before analyzing VPC further, let's clarify the notion of precision. A signed fractionhas j bits precision i� the absolute error between the real fraction and its representation isless than 2�j+1. In other words, we have included the sign bit when counting the number'sprecision.De�nition 1 (�) The necessary precision, �, is the lowest precision in evaluation such thatthe ignored operand bits do not a�ect the sign of the discriminant.The least possible necessary-precision is denoted by �,� 4= min( �) (5.3)In tailoring an architecture, this question arises: \What is the necessary precision todetermine the output?" As we'll show, the answer depends on several factors such as: thefunction g(:), the input vector x, the discriminant's value, and the error interval �.57



BVPC donesignsign(g1;2(x))KK� � � ; g1;2()1; g1;2()0� � � ;x1;x0Figure 5.2: Binary variable-precision classi�er (BVPC).Figure 5.3 shows evaluation of (5.2) with BVPC. As illustrated in Figure 5.2, x, and g1;2(:)arrive bit-serially, with the most signi�cant bit �rst. First, BVPC evaluates ~g(x; x̂1; x̂2) usingthe MSB of the operands. Then, BVPC increments the precision. After � cycles, it canterminate, delivering sign, and setting done ag. To �nd the necessary precision, BVPCincrements the evaluation precision by one bit at a time. Later when implementing BVPC,we consider incrementing two or more bits per recurrence.Figure 5.3 shows the content of the box shown in Figure 5.2. BVPC performs three stepsin every iteration:1. Increment the estimate's precision:w[j] = 2w[j � 1] + G1;2j (x)where w[j] is the estimate of the discriminant with j-bit precision vector elements:w[j] � 2jg1;2(x) with j-bit operandsand G1;2j (:) is the function of j which increments the estimate's precision from (j � 1) toj bits. By doubling the estimate every iteration, we can often makeG1;2j (:) independentof j. For initial � iterations, since the output is zero, we skip steps (2) and (3).2. Update the error interval. This accounts for increase in estimate's accuracy: The errorinterval is �rst set to INITIALBOUNDS. Subsequently, the recurrence updates theerror interval. At the j-th iteration, (�[j]; �[j]) bounds the error between the discrimi-nant and its estimate: �[j] < 2jg1;2(x)� w[j] < �[j]Equivalently, w[j] 2 (2jg1;2(x) + �[j]; 2jg1;2(x) + �[j])3. Terminate if the estimate has the necessary precision. If w[j] 2 (�[j]; �[j]), the discrim-inant needs to be more precise. We go back to step 1 for another iteration. Otherwise,once w[j] exits the ambiguity interval (�[j]; �[j]), we can terminate. The precisionnecessary to make the discrimination unambiguous is then j (� = j).58



begin BVPC(�[�]; �[�]) = INITIALBOUNDS;w[�1] = 0;//Bit-serial recurrencefor j = 0; 1; :::; n� 1w[j] = 2w[j � 1] + G1;2j (x);if j > � then (�[j]; �[j]) = UPDATE(�[j � 1]; �[j � 1]; j);if j � � then beginsign = 8>>>>>>><>>>>>>>: +1 if w[j] � �[j]�1 if w[j] < �[j]U otherwise ==U = Undeterminedif (sign = �1 or sign = +1) then beginc = 8>><>>: 2 if sign = +11 otherwiseterminate BVPC;end ifend ifend forc = 8>><>>: 2 if w[n� 1] � 01 otherwiseend BVPC Figure 5.3: Binary variable-precision classi�cation algorithm.Even with full precision n-bit evaluation of the operands, the discriminant in (5.2) maystill be zero. We can decrease the number of ambiguous decisions by storing the vectorelements at higher precision. Later in the chapter, a lemma will show that linear increasein precision results in exponential decrease in likelihood of ambiguities when discriminating.With few zero discriminants, we arbitrarily have mapped these source vectors into c = 2 aswas shown in (5.2).
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On-line LDINITEvaluation ofg1;2(x) Latchxg1;2() BVPC111 � � � 1 < 0111 � � � 1 > 0, where 1 � �1gj�� 2 f1; 0; 1g sign 2 f1; 1gdone( gj�� 6= 0)KK
Figure 5.4: BVPC as an on-line evaluation.5.3 Necessary PrecisionWe can analyze variable-precision arithmetic in the framework of on-line arithmetic [EL88].BVPC is a special case of on-line arithmetic, where operands arrive bit-serially, one bit at atime with the most signi�cant bit �rst. For the �rst (�-1) recurrences nothing is output, sothe output sign cannot be determined. Afterwards, at the iteration j, the (j-�)-th MSB ofg1;2j (x) is represented with redundant binary Signed Bit (SB), where the bit gj 2 f-1, 0, 1g.SB inherits the following property from weighted binary representation:jgjj2�j > nXi=j+1 jgij2�i (5.4)In other words, the weight of a bit is larger than the combined weight of all less signi�cantbits. Therefore, the most signi�cant non-zero bit determines the sign: gj = +1 impliessign = +1, and gj = �1 implies sign = �1. As illustrated in Figure 5.4, BVPC terminatesthe on-line evaluation at the output of the �rst non-zero bit.Duprat and et. al. [DHM89] constructed bounds for �, and tabulated the results foron-line evaluation of common functions. For a single variable function with continuousderivative, they showed the following bound,�(f(x)) � &log2 maxx2[0;1] �����df(x)dx �����' + 1 (5.5)60
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...(Uncertain) 0�14 gFigure 5.5: The operand precision (in bits) necessary to determine sign of the normalizeddiscriminant g.Given � of an on-line function, we can construct the error interval for BVPC. At thej-th iteration, the error interval is (�2�j+�; 2�j+�), j � �. After evaluating � bits of theoperands, every recurrence halves the error bounds with respect to the estimate. This isshown in Figure 5.5. The error interval can sidestep the update stage of the BVPC algorithm.Since the estimate is conveniently doubled in every recurrence, the error interval can be keptconstant at (-1/2, 1/2). This resembles algorithms such as division and square root whichscale remainders.In Figure 5.6, we show three examples of variable-precision classi�cations. The estimatesused in the three classi�cations are denoted by \+", \x", and \*". The collection of errorintervals are normalized with respect to the initial interval and shown as �(g). BVPCterminates as soon as the estimate comes up from the uncertain region under the curve �(g).Even a simple function �(g) will bound the average precision necessary for classi�cation.Theorem 1 A function of the discriminant, �( g) is an upper bound on the necessary pre-cision �: � � �(g) = � + b� log2 j g jc 8 gProof There is an integer m such that,2�m �j g j� 2�m+161
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Figure 5.6: Instances of BVPC where �(g) is aggregate of error intervals.In words, we �nd an integer power of two which bounds g. Inverting the above equation:m = b� log2(j g j)cIn SB representation, m has a speci�c meaning. The signi�cant bits i, i > m havea weighted sum less than 2�m. For g to be greater than 2�m, at least one of the mostsigni�cant m bits of g has to be nonzero. As stated by (5.4), the most signi�cant nonzerobit unambiguously speci�es the sign. We then need at most m MSBs of the discriminant.We may need less bits, due to the multiple representations possible for g.Given m MSBs of g, by the on-line property of De�nition 5.3:� � � + m� � + b� log2 j g jcIn other words, by evaluating �+m bits of the operands, we evaluate m bits of discriminant.This upper bound is shown in Figure 5.5. 2Figure 5.7 puts the relationship among various variables into perspective. The lowerbound is �. The upper bound is �(g), which itself it capped by n, the number of bits percodevector element. In other words,1 � � � � � �(g) � n62
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n0n�(g)�� . . . . . . LSBFigure 5.7: The relation among various notations.As a property of on-line arithmetic, the maximum discriminant's precision n0 is � less thanthe operand precision: n0 4= n� �where the operands use nonredundant (e.g., 2's complement) representation and the discrim-inant uses SB representation.5.4 Average Necessary-PrecisionIn binary VPC, average necessary-precision is usually independent of operand precision. Theaverage necessary-precision or average precision for short depends on the statistical characterof the discriminant g(x). Let's de�ne the probability density function (pdf ) of p(g) asp(g) 4= limm!1 pm(g)2�m (5.6)In words, p(g) represents the probability mass function pm(g) as m, the number of bits usedin representation of g, becomes large. We then use E[:], the expectation operator to denotethe average necessary-precision for p(g). Average of �(g), E[�(g)] upper bounds the averagenecessary-precision.First, let's show the average precision when the normalized discriminant is equally likelyfor any value. If g has uniform probability of occurrence, (i.e., p(g) = 0:5) then on the averageless than (�+ 1) bits of the operands are su�cient regardless of the operand precision. Asseen in Figure 5.5, in half of the undetermined interval, a one bit increase in the estimate's63



resolution determines the sign of g. Equivalently, the probability of evaluating operand bitsdecreases exponentially with their signi�cance. As the operand precision increases, the sumof this geometric series approaches �+1 (= � + 12 + 14 + 18 + 116 + :::).To analyze the average precision, we have to answer: \What is the density of p(g) nearzero?" In particular, as g approaches zero, p(g) weights more on the average precision. Thefollowing states the key condition necessary for a bound on the average precision:De�nition 2 (non-singularity) The pdf p(g) is non-singular i� p(g) is �nite in a �niteneighborhood of zero:p(g) non-singular () �nite Q; Q � maxg2(�2�n;2�n) p(g)where n is a nonnegative integer. In other words, Q is the least upper bound of p(g), forvalues of g small enough to need more than n bits to be distinguished from zero.Discriminants, which we have encountered, have non-singular pdf. These include metricswith sum, multiply, and absolute di�erence operations. The vector fx̂g and the vectorsfxg when generated by Gauss-Markov sources have �nite pdf. Term by term multiplication,or the absolute di�erence between two such vectors, would not create impulses in theirpdf. Since the resulting pdf is the convolution of the probability density functions of theseelements, summing the elements of the resulting vector also would not create impulses in pdfof g. Consequently, the inner product between these vectors would not result in impulsesin the function p(g). Using similar arguments, the p(g) of the L1 distance (sum of absolutedi�erence) is non-singular.Our theoretical result can be better assessed in the context of theory of InformationBased Complexity (IBC) [TW91]. IBC evaluates the e�ect of precision of numbers on thecomplexity of computations. In IBC, the worst case complexity is the longest computationtime of all the instances of the computations. For classi�cation with metrics which usemultiplication and addition, the complexity grows as square of precision. The average casecomplexity, on the other hand is independent of the operand precision and the discriminantfunction. This runs counter to typical observations in IBC analysis, where the computationbecomes intractable as the precision increases.Theorem 2 If p(g) is non-singular in a �nite neighborhood of zero, then average case com-plexity of classi�cation with respect to precision n is O( 1).Proof Let's calculate the average precision necessary for classi�cation, E[ �(g)]. As Fig-ure 5.8 demarcates, we evaluate the summation E[ �(g)] in two parts: experimentally we candetermine the average precision necessary for a �nite n. This will be denoted as E[�n(g)](E[�n(g)] � n). The discriminant precision n0 (= n+�) will not be su�cient to classify when64
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� E[�n(g)] + 2Q Z og=0 (�(g)� n)dgAs shown in Figure 5.8, the integration of �(g) with respect to the domain is a simplesummation along the range. Changing the variable of summation to j:E[ �(g)] � E[�n(g)] + 2Qo( =2z }| {limm!1 mXj=0 12j )E[ �(g)] � E[�n(g)] + 12�+n 4Q 2Lemma 1 If p(g) is continuous then a simulation with su�ciently large operand precision,n, can be extrapolated to the limit of n!1.Let p(g) be continuous i� it can be approximated by its mean � arbitrarily well in a�nite neighborhood g 2 [� 12n0 ; 12n0 ]. Basing the p(g) on Monte-Carlo simulations with metricevaluations, mean � of the neighborhood becomes� = p( n-bit eval.)2�n0+1where p( n-bit eval.), is the probability of n-bit evaluation of the operands. And 2�n0+1 isthe width of the neighborhood.If p(g) is continuous, then for a su�ciently large n, we can replace Q in the theorem'supper bound for �. This will result in an approximate value for the average precision givenin�nite-precision operands:E[ �(g)] � E[�n(g)] + 2�n0+2 �Q� E[�n(g)] + 2�n0+2 � �� E[�n(g)] + 2�n0+2 � p( n-bit eval.)2�n0+1� E[�n(g)] + 2p( n-bit eval.) 2To �nd a su�ciently large n0 (= n + �), operand precision n is incremented in thesimulations until the probability of using n-bit precision halves at each increment. Thisindicates that for the neighborhood [� 12n0 ; 12n0 ], g is su�ciently small for the discriminant'sdistribution p(g) to be approximated well by its mean, �.66



With �nite evaluation precision, ambiguous decisions cause higher error rate in classi�ca-tion, and produce more distortion in vector quantization. However, as the next two lemmaencapsulate, these adverse a�ects decrease exponentially with respect to operand precisionn.Lemma 2 In classi�cation with m-bit operands and su�ciently large n (m > n), probabilityof an arbitrary decision follows this relationp(g1;2(x) = 0) / 2m�nWith an experimentally measured n, p(g) can be approximated by � for g 2 [� 12n0 ; 12n0 ].The additional (m-n) precision will decrease the occurrence of ambiguous decisions by 2m�n.2Lemma 3 In vector quantization with m-bit operands and a su�ciently large n (m > n),the distortion becomes E[(x� x̂cjn)2]� E[(x� x̂cjm)2] / 2m�nwhere (x� x̂cjn) is the quantization distortion with n-bit operands.After increasing the precision beyond n-bit, the pdf becomes uniform. Each additionalbit of precision then can halve the distortion. 25.5 M -ary VPCWe now extend binary VPC to M -ary VPC. From de�nition of VQ in Chapter 2, M -aryclassi�cation is c = maxi=1;:::;M�1s(x; x̂i) (5.7)We can �nd the best codevector c by (M � 1) binary classi�cations. Each binary clas-si�cation would determine that one codevector is a better replacement than another one.This is akin to removing the worst of the two from the list of codevectors contending for themaximum. With (M � 1) binary classi�cations, (M � 1) codevectors would be eliminatedfrom the list. There will be only one codevector remaining. This will be the one most similarto the source vector.Figure 5.9 shows M -ary VPC (MVPC). MVPC uses variable-precision evaluation similarto BVPC, except the estimate is generalized:w[j] � 2j(s(x; x̂)) with j-bit evaluation67



Also, G1;2j (x) is replaced by Gj(x; x̂i):w[j] � 2w[j � 1] + Gj(x; x̂)In the outer loop, c is the index of the codevector with the highest similarity measure atany iteration of i. The i-th iteration, i 2 f2; :::;Mg, chooses between the vector x̂i and thevector x̂c. Finally after (M � 1) iterations, the index for best codevector is c.To reduce computation, s(x; x̂c) which is the highest similarity measured at any iterationof i, is stored as max[m], its precision is stored as m, and its error bounds are stored as "and ": "[m] < 2ms(x; x̂c)�max[m] < "[m]In the inner loop, which follows the BVPC Algorithm, the notation is identical: Thevariables are indexed by the iteration variable j. In the outer loop, for clarity, only thetransition of the variables from one iteration to the other are marked: The variable afterthe execution of the assignment has \ ' " superscript. Since M -ary VPC is based on binaryVPC, it also asymptotically requires a constant average precision independent of operandprecision.Theorem 3 If p(s(x; x̂))8(x; x̂) is non-singular, then the average case complexity of M-aryclassi�cation is O( 1) with respect to precision n.Proof Using formulation (5.2) for classi�cation between x̂i and x̂h:c = 8>><>>: h if gi;h(x) � 0i otherwisewhere gi;h(x) = s(x; x̂h) � s(x; x̂i). From Theorem 2, the average precision for binaryclassi�cation between x̂i and x̂h is bounded, if p( gi;h) is non-singular. p( gi;h) is non-singularif singularities of p(s(x; x̂i)) and p(s(x; x̂h)) (i 6= h) are �nite distance apart.The average precision for M -ary classi�cation, E[�(g)] isE[�(g)] = 1M � 1 MXi=2 �E[�(gi;h)]; 8h 2 1; :::; i� 1�In words, it is the average precision in all the required binary classi�cations averaged over(M � 1) classi�cations. Consequently, �nite E[�(gi;h)] ) �nite E[�(g)]. (For E[�(gi;h)] to be�nite, it is su�cient if p(s(x; x̂i)) is non-singular 8i.) 268



begin MVPCm = �;max[�] = P�j=0 2��jGj(x; x̂1);c = 1;("[�]; "[�]) = INITIALBOUNDS;for i = 2; 3; :::;Msign = U ;(�[�]; �[�]) = INITIALBOUNDS;w[�1] = 0;for j = 0; 1; :::; n� 1 //Bit-serial recurrencew[j] = 2w[j � 1] + Gj(x; x̂i);if ( j > m ) then begin //Inc precision of max[.]("[m+ 1]; "[m+ 1]) = UPDATE("[m]; "[m]; j);max[m+ 1] = 2max[m] + Gm+1(x; x̂c);m0 = m + 1;end ifif j > � then (�[j]; �[j]) = UPDATE(�[j � 1]; �[j � 1]; j);if j � � then beginsign = 8>>>>>>><>>>>>>>: +1 if w[j]� �[j] � 2m�j (max[m]� "[j]);�1 if w[j]� �[j] < 2m�j(max[m]� "[j]);U otherwise;if ( sign = �1 or sign = +1 ) then terminate inner loop;end ifend forif sign = +1 or if w[n� 1] � max[n� 1] then begin //Replace maximummax0[j] = w[j];m0 = j;c0 = i;("[j]; "[j])0 = (�[j]; �[j]);end ifend forend MVPC Figure 5.9: M -ary Variable-Precision Classi�cation Algorithm69



5.6 ConclusionThis chapter developed Variable-Precision Classi�cation. VPC development �ts in the con-text of information based complexity (IBC). Unlike many other algorithms, the averagecase complexity of VPC is independent of operand precision. Based on this, we presenteda general algorithm applicable with many metrics. First, we described binary VPC algo-rithm. It bit-serially evaluates the discriminant to the necessary precision. Then, we derivedan asymptotically constant bound on average precision. This demonstrated that as theoperand precision increases, the average precision becomes independent of it. The boundholds in practice, since it only requires the discriminant pdf to be continuous around zero.Finally, the binary VPC algorithm was generalized to M -ary VPC, and we demonstratedthat the computational complexity of M -ary classi�cation is also independent of precision.
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CHAPTER 6Vector Quantization with VPC6.1 IntroductionGiven the encouraging theoretical results from the previous chapter, we now assess variable-precision classi�cation (VPC) for vector quantization (VQ). As noted in Chapter 2, VQbased compression represents a block of K pixels with the index of best matching codevector.Speci�cally, VQ classi�es an input block x into one of N codevectors y, where the numberof codevectors is large. For classi�cation, it uses inner product. There have been severalinner product modules implemented for VQ [DB87, MJBD92, FCS90, KYJ93, DCG88], andfor pattern recognition[NJ85]. Inner product is a popular metric for classi�cation.The primary application of VPC is reducing the average evaluation time of VQ. Some ofthe best VQ search algorithms require variable number of classi�cations per input. VPC be-comes attractive since the encompassing computation also takes variable time. For example,in PTSVQ [CLG88], searching the unbalanced tree requires variable number of classi�ca-tions per source vector. This can mask the variable execution time of VPC. VPC can also beused when the classi�cation latency can vary. For example, in o�-line compression, or evenin decoding in a packet switched network where the primary criteria is the average packettransmission latency.Another application is reducing the memory-processor tra�c. Currently, the processorchip uses di�erent technology than the memory chip. These two di�erent chips are oftenhoused in di�erent packages. For every inner product we need to fetch one codevector whichis Kn bits. This results in extensive and costly inter-chip tra�c.In the next section, we show Binary VPC (BVPC) with inner product similarity measure.Then in Section 6.5, we measure and demonstrate the asymptotic bound on average precisionfor classi�cation. We evaluate the performance for classi�cation of auto-regressive sequences,followed by vector quantization (VQ) of real images. Finally, we present a VQ architectureusing VPC, and discuss pipelining and digit-serial evaluation. In comparison to VPR andconventional approaches, this architecture reduces the total evaluation time and memory-processor bandwidth. 71



6.2 Binary VPC with Inner ProductIn this section, we describe the variable-precision evaluation of the inner product discriminantg: gi;h(x) = xtyi;h + bi;hAfter briey covering the theoretically optimal architecture, we described a scheme moreamenable to implementation.For most bene�t from variable-precision evaluation, both operands x and y can be eval-uated with variable-precision. This would be theoretically optimal yielding O(1) computa-tional complexity with respect to the operand precision. The architecture would result inminimum number of full adders used for each classi�cation. Basically, it would use serial-serial multipliers, where we incrementally increase the precision of both x and y operands.Despite its optimality, it has drawbacks. The throughput of serial-serial multipliers is noto-riously low. Moreover, even though it evaluates bit-serially, it still requires registers in whichto store all the bits of codevector y and x which have been so far received. To increase thethroughput, we could use digit-serial processing with d digits, e�ectively evaluating n � nmultiplication, as m = n=d, d � d sub-multiplications. Even so for evaluating i-th digit,we would need (2i � 1) cycles. Aside from the throughput, there is an even more impor-tant drawback. If the codebook-processor bus has limited bandwidth, there is a mismatchbetween processing and memory-processor data transfer.Alternatively, only y can be evaluated with variable-precision. This would optimize thememory-processor bus. Figure 6.1 shows the processor's inputs and its interface to memory.The source vector x is stored on-chip, and is evaluated at �xed-precision. For every bitof the codevector element received, it takes one cycle to generate one full-precision partialterm. The architecture iterates on the elements of the vector y until the necessary precisionis reached. This actually simpli�es the controller since the processor implicitly takes on thetask of bu�ering the source vector. On the other hand, variable-precision evaluation of onlyy changes the complexity of classi�cation to O(n).Both approaches are variations on partitioning of a multiplier. The �rst design partitionthe multiplication into d � d sub-multiplications, where terms evaluated at a given stepform a square tile of the multiplication. The second design partitions the multiplication intopartial term evaluation, where each of these 1�d sub-multiplications form a thin slab of themultiplication.Figure 6.2 presents the Binary VPC algorithm, the center piece of this chapter. TheLinear-BVPC algorithm shown next is based on the Binary VPC (BVPC) algorithm pre-sented in the previous chapter, where in each iteration one more bit of the codevector element72



readysignloaded prior to the classi�cationsSource vector x isprocessed bit-serially from MSBK-dimensional codevector y isKb sign(xty + b)� � � ;y1;y0dlog2K + 2n � 1eFigure 6.1: Minimized memory bandwidth for BVPC with inner product.is evaluated. The incremental evaluation of the function gi;h(x) isGi;hj (x) = 8>><>>: �PKk=1 yi;hk;0xk + bi;h j = 0PKk=1 yi;hk;jxk otherwise (6.1)where yi;hk;j is the codevector's k-th element's j-th bit; and bi;h is the bias term for the (i,h)hyperplane. In other words to get the initial estimate w[0], Gi;hj sums partial terms of thesign bits. In subsequent iterations, it sums partial terms of the next signi�cant bits of thecodevector.6.3 Sign SelectionIn the previous chapter, Figure 5.5 showed the sign selection function's outlook of the carry-saved estimate. It has three regions: positive, negative, and the interim uncertain regionsurrounding zero. As it inspects more bits of the estimate, the undecided region exponentiallyshrinks. As soon as the detector �nds a non-zero digit, it outputs the sign and signals toterminate the evaluation. A sign selection function has as input the redundant estimate ofthe inner product, and it outputs the sign in the earliest iteration possible.In this section, we will describe three sign selection functions. All the three error intervalsare based on this inequality:g(x) = jxtyj= jx1y1 + x2y2 + :::+ xKyKj� jx1jjy1j+ jx2jjjy2jj+ :::+ jxKjjjyKj (6.2)A stack of the error intervals, one for every step of the estimate re�nement, forms thesign selection function. First, we'll show Interval A. It is an interval derived using on-line73



begin LINEAR-BVPC(�; �) = INITIALBOUNDS;for j = 0; 1; :::; n� e� 1 //Bit-serial recurrenceif j = 0 thenw[0] = Gi;h0 (x);elsew[j] = 2w[j � 1] + Gi;hj (x);sign = 8>>>>>>><>>>>>>>: +1 if w[j] � ��1 if w[j] < �U otherwise // U = Undeterminedif sign = +1 or sign = �1 then terminate loop;end forif sign = U thensign = 8>><>>: +1 if w[n� e� 1] � 0�1 if w[n� e� 1] < 0c = 8>><>>: 2 if sign = +11 otherwise.end LINEAR-BVPCFigure 6.2: Binary VPC with inner product similarity measure.
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methodology. Then, we will show intervals B and C. They are designed speci�cally forvariable-precision classi�cation of inner product.Interval AThe simplest interval to evaluate, Interval A, replaces xi and yi in (6.2) with (1 � 2n�1). Itresults in the maximum magnitude of the inner product of two K-dimensional vectors withn-bit elements: jxtyj � K(1 � 2�n+1)(1� 2�n+1) (6.3)The bounds on Interval A are only dependent on j, the number of MSBs of y evaluated:(jxtyjn-bit � jxtyjj-bit) < K(1 � 2�n+1)(2�j � 2�n+1)We enlarge Interval A, to simplify updating it:jxtyj � (jxtyjwith j-bit operands) < K(1� 2�n+1)2�jAs seen in the above equation, the interval for the iteration (j + 1) is half of the interval forthe iteration j. This is achieved by doubling of the estimate in every iteration. As a resultInterval A does not need updating:INITIALBOUNDS = [�K(1� 2�n+1);K(1 � 2�n+1)]As we will similarly see next with Interval B, any interval which is independent of thevariable-precision operands, neatly avoids the update step. Since the intervals would all beshrunk with the same factor, the ratio of succeeding intervals remains a factor of two.Interval BInterval B starts by replacing the maximum sum of elements of yi shown in (6.2) with theactual summation: jxtyj � max(jy1j; jy2j; :::; jyKj) KXk=1 jxkj (6.4)In general, this is an instance of Holder's inequality with q!1:jxtyj � kxkpkykq; 1 < p; q � 1; 1=p + 1=q = 1This interval is much smaller than interval A. Instead of maximum value of elements,it uses the summation of elements. For example, with uniformly distributed elements of x,75



it is half the size of Interval A. The di�erence between these two interval increases afterevaluating the partial terms which depend of the sign of y. The inner product's upper andlower bounds are di�erent than formulated in (6.4):maxk=1;:::;K(jykj) KXk=1 min(xk; 0) < xty < maxk=1;:::;K(jykj) KXk=1 max(xk; 0)In other words after the �rst cycle, a partial term will be positive i� the correspondingelement of y is positive, and otherwise the partial term will be negative. Now, we canevaluate each bound separately. The elements of x are summed into two groups. One groupis the summation of positive elements, the other of negative elements. For a uniformlydistributed element probability, Interval B becomes one fourth the size of Interval A.The upper bound is the sum of the all the positive x elements multiplied by the yelement largest in magnitude. The lower bound is the sum of all the negative elementsof x multiplied by the y's element largest in magnitude. Both summations are computedprior to the classi�cations of the source vector. To simplify evaluating the initial intervaland updating it, we substitute the maximization by 1, which is slightly greater than themaximum possible magnitude of yk (i.e., 2�n+1). This simpli�es the bounds' update. Theupper and lower error bounds becomeKXk=1 min(xk; 0) < xty < KXk=1 max(xk; 0)where max(xk; 0) is an unary operator which substitutes 0 for all the negative elements andoutputs the positive elements una�ected. Similarly, min(xk; 0) permits selection of all theelements which are less than zero. This is used as a convenient means of showing summationof negative elements.With j + 1 bits of y evaluated, the error is bounded by21�j KXk=1 min(xk; 0) < xtyn-bit � xtyj-bit < 21�j KXk=1 max(xk; 0)Similar to Interval A, Interval B does not require updating of the initial bounds,INITIALBOUNDS = ( KXk=1 min(xk; 0); KXk=1 max(xk; 0))Interval CInterval C swaps x and y in Interval B. Interval C replaces xi in (6.2) with max(jxij):jxtyj � max( x1; x2; :::; xK) KXk=1 jykj (6.5)76



In words, it swaps x and y in (6.4). Shown variations of bound C, use di�erent informationabout codevectors y to upper bound (6.5). We discuss it for comparative purposes only.Even when looking at its variations, Interval C is more costly than Interval B and does notperform as well. It can, however, give some insight.In the simplest version, by inspecting y, it replaces K in the Interval A by an equal orsmaller integer, L. L is the maximum number of bits of the same signi�cance which are `1'across all elements of y. Since the maximization is among codevectors' elements, it can beprecomputed and stored.As evaluation progresses, L could potentially decrease. We can also narrow IntervalC by updating L in every iteration to exclude the bits already evaluated. This, however,complicates the updating and further increases the bandwidth. We could further narrowthe bound by making it a function of received vector x. The initial bound, however, wouldrequire a multiplication.We believe Interval B is preferable to Interval C. When x and y are statistically similar,Interval B which is the actual evaluation of the summation, bounds the inner product tighterthan Interval C. In terms of hardware, Interval B requires only two accumulators and oneadditional comparator. Instead of these, Interval C needs more storage and bandwidth forthe codebook. When a codebook is o� the chip, then there is also additional o�-chip tra�cto bring in the Interval and its updates. This can be prohibitive.Example of Binary VPCThe example shown in Table 6.1 and 6.2 uses BVPC to classify between x̂1 and x̂2 of theexample previously shown in Section 2.5. The precision n of a two's complement element iseight bits (n = 8). The inner product of four elements requires 18 bits (log2(4�28�27)+1)),which includes one bit for the addition of the bias b.Table 6.1 illustrates the variable-precision classi�cation with Interval B, where x = (-5,-4,4, 5)t, and y = (-100,-10,10,100)t . As shown the �rst two iterations would su�ce for theclassi�cation, even though all eight iterations are shown. Bits of the multiplier are shown intwo's complement binary system. For ease of display, all other values, which were fractional,are scaled by a factor of 128 and are shown as decimal integers. The scaling does not a�ectany other aspect of the algorithm. The Table 6.2 shows the same classi�cation with theintervals B and C. In this example, Intervals A, B and C require �ve, two and �ve iterationsrespectively. In the following section, we characterize BVPC using VQ of images.
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Table 6.1: Example of BVPC with x = (-5,-4, 4, 5)t, and y = (-100,-10,10,100)t .j Multiplying Added Added Estimate Interval SignBits Partial b (w[j]) B(y1; y2; y3; y4)j Product Term0 (1,1,0,0) +9x128 -10100 -8948 |,| U1 (0,1,0,1) +1x64 0 -8884 -576,576 -12 (0,1,0,1) +1x32 0 -8852 -288,2883 (1,1,0,0) -9x16 0 -8896 -144,1444 (1,0,1,0) -1x8 0 -9004 -72,725 (1,1,0,1) -4x4 0 -9020 -36,366 (0,1,1,0) +0 0 -9020 -18,187 (0,0,0,0) +0 0 -9020 -9,9Table 6.2: Iterations of example classi�cation with Interval A, B, and C.j Estimate Interval Sign Interval Sign Interval Signw[j] A B C0 -8948 | U |,| U | U1 -8884 65024 U -576,576 -1 48768 U2 -8852 32256 U -288,288 24192 U3 -8996 15872 U -144,144 11904 U4 -9004 7680 -1 -72,72 5760 -15 -9020 3584 -36,36 26886 -9020 1536 -18,18 11527 -9020 512 -9,9 38478



6.4 M -ary VPCFor completeness, we will show M -ary variable-precision classi�cation with inner productmetric. It is based on the general M -ary VPC presented in Figure 5.9, where the similaritymeasure has been set to inner product. The algorithm 6.3 has been modi�ed to avoidintermittent increasing of the maximum's precision. Variable-precision evaluation of themaximum would decrease the average precision, but it would make pipelining di�cult. Inmiddle of an inner product, we might have to break the current pipelined evaluation toevaluate one more bit of the codevector which yielded the current maximum. Alternatively,when the inner product is replacing the current maximum we evaluate it to full precision.Then, for sign selection, the current maximum is subtracted from the estimate and the resultcompared against the interval.M -ary evaluation is based on Equation (2.15) in Chapter 2. We incrementally re�nethe estimate w[j] of (xtyi + bi). After each re�nement, we compare it against the currentmaximum. When the sign of the di�erence is unequivocally negative or it is unequivocallypositive but the inner product is with the last codevector yi, we terminate evaluation. M -aryclassi�cation's performance is comparable to binary classi�cation. The bias term bi reducesthe number of new maximum's and hence the number of full evaluations.6.5 Statistical AnalysisWe measured the sensitivity of BVPC to variance, correlation, and vector dimension usingAuto-Regressive (AR) sequences. As discussed in Chapter 3, AR sequences are made ofcorrelated random variables which have identical PDF. Each random variable in the sequencegets a fraction of the previous element summed with an independent Normal source, withzero mean and �2n variance. AR sequences synthesize the PDF and the correlation of samplesequences of natural sounds and images:x1 = N(� = 0; �2n = �2x)xk = �xk�1 + N(� = 0; �2n = �2x(1� �2)) k = 2; :::;Kwhere variance of x, �2x is �2x = �2n1 � �2and � is the variance-normalized correlation between xk and xk�1. In VQ of image or speech,the vector ylinearly depends on the center of a cluster of source vectors x. When modelingthe source vectors as AR sequences, y becomes an AR sequence. The �x and � were chosenfrom among measurements on a set of 20 images. We also normalized the pixels. This made�x independent of the number of bits in the pixel representation.79



begin LINEAR-MVPCmax = 0;c = 1;for i = 2; 3; :::;M //M � 1 binary classi�cationssign = U ;(�; �) = INITIALBOUNDS;w[0] = �PKk=1 y(i)k;(n�1)xk + bi;//Bit-serial recurrencefor j = 1; 2; :::; n� e� 1 //n � 1 other partial termsw[j] = 2w[j + 1] + PKk=1 y(i)k;jxk;diff = w[j]� 2�jmaximum;sign = 8>>>>>>><>>>>>>>: +1 if diff + � � 0�1 if diff + � < 0U otherwiseif sign = �1 or ( sign = +1 and i = M) then terminate inner loop;end forif sign = U thensign = 8>><>>: +1 if w[n� e� 1] � max�1 if w[n� e� 1] < maxif sign = +1 then beginmax0 = w[j];c0 = i; //Best matching codevectorend ifend forend LINEAR-MVPCFigure 6.3: M -ary VPC with inner product similarity measure.
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Similar to VPR simulations, these simulations were cross checked. First to verify cor-rectness of the VPC algorithm, a conventional classi�er cross checked every decision of VPC.This assured that the evaluated precision was su�cient. Then, we veri�ed a simple simula-tion using the previously shown theorem. Given one element vectors y = �1 and x uniformlydistributed, we have observed the theoretically predicted pdf and average precision.To observe the e�ect of the sample set on the simulation results, two di�erent randomnumber generators were used. We classi�ed sets of 10,000 pseudo-random vectors fx;yg.Then for each curve, one of its points was re-ran with an alternative random number gener-ator [PFTV88]. This would check not only for anomalies in the random number generatorbut also in the sample size. Little di�erence would assure us that the general behavior ofthe system and the conclusions we draw from the graphs were independent of our sampling.The change in pdf between the simulation runs using the two pseudo-random sources wassmall. From our observation of average precision, it was less than 0.025 bits ( < 2%). Sincethe results were close, we were assured that the 10,000 classi�cation taken in the �rst runwere good indicator of the discriminant pdf.The elements of the sequence were evaluated at 10 bits. It was an 8-bit positive pixelwhich had gone through processing. In subtraction from the predicted image, it acquired asign bit, and in subtraction from the nearest centroid codevector, its dynamic range increasedby one bit. As we will also see, this can be extrapolated to the case of in�nite-precisionnumbers.Asymptotic Bound on Average PrecisionFigure 6.4 shows the asymptotic bound on average precision as the operand precision in-creases. The necessary precision was evaluated for a set of 10,000 classi�cations. Sincenone of the classi�cations required more than 10-bit precision, and presuming we have zeroprobability of 10-bit necessary-precision because of the small sample set,p(� � n) � 10�3 (6.6)At 10-bit precision, we have a very good estimate of the in�nite-precision case. UsingLemma 1 from Chapter 5, we can now extrapolate to the in�nite-precision case:E[ �(g)] � E[�n(g)] + 2p(� � n) � E[�n(g)] + 0:002 (6.7)where we have substituted for p(� � n) its upper bound from (6.6). The average precisionis approximately 0.002 bits more than the average precision with 10-bit operands available.For all practical purpose, the simulations depict the in�nite-precision case.81
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1 2 3 4 5 6 7 8 9 10E[�][bit] Operand Precision n [bit]Asymptotic BoundP(� � n)PDFFigure 6.4: Average precision versus operand precision.SensitivityFigure 6.5 shows average precision has little sensitivity to operand variance. Three curvesshow the sensitivity of average precision for statistically di�erent operands. The operandsare the 16 elements of a vector with �=0.98. As shown, normalizing the gain of the vector(i.e., GSVQ) makes the VPC performance independent of the vector element's variance. To alesser extent, removing the mean of the vector which reduces the variance of the elements (i.e.,MRVQ), also reduces its sensitivity. Even for unprocessed vectors, however, our simulationsshows surprising little sensitivity. This suggests VPC is inherently independent of operandvariance for other reason. We believe that this is due to VPR representation of vectors.To reduce storage, VPR normalizes a block of oating point numbers. In an arithmeticallybenign way, VPR is normalizing the gain. Next we set the variance �2 = 0:029 and plot therelationship of average precision with the correlation coe�cient.As can be seen in Figure 6.6, as correlation increases, the average precision decreases.This phenomenon can be described by the Central Limit Theorem. The theorem states thatwhen independent random variables are added, the resulting pdf will approach a Normal pdf.When correlation is zero (�=0), all the elements of AR sequence are completely independent.Element by element multiplication produces independent random variables. The resultingdiscriminant pdf is similar to a Normal pdf. As the correlation approaches one, the elements ofAR sequence become dependent. Inner product of these elements, reduces to simply scalingone of the identical elements. Since in our simulations we had used a uniform pdf, a lowvalue discriminant has lower density near zero than the bell shaped Normal pdf has. Sincesmall discriminants require higher necessary precision, higher correlation results in lower82



0123
45

0:01 0:1 1E[�][bit] Variance �2 VQ ++ + + + + + + +MRVQGSVQ 3
3 3 3 3 3 3 3 3

Figure 6.5: Average precision E[�] versus vector variance �2.average precision. For example, even if the element pdf was a double sided exponential pdf,for � ! 0 the discriminant pdf would again approach the Normal pdf as stated by CentralLimit Theorem. In general, regardless of element pdf as correlation increases the averageprecision should become similar.6.6 Experimental ResultsTo experimentally gauge the average precision, we compressed real images. In speci�c, weselected two images from USC data base : Baboon and Lena. Lena represented imagescomposed primarily with low frequencies. Baboon, also known in literature as the mandrill,represented images composed of primarily high frequencies. Both were 256� 256 pixels andwere compressed using mean-residual VQ (MRVQ) with pruned binary trees (PBTSVQ). Thenumber of elements in the codevector were 16 (K = 16), while the number of codevectors inthe pruned tree ranged from 466 to 1906 codevectors (N = 466; � � � ; 1906).The negative slope of the curve is as a result of the change in characteristics of thecodevectors it is classifying among. As can be seen in Figure 6.7, as the compression errordecreases, the average precision increases by 0.5 bits in both images. For Baboon, the increaseis from 3.1 to 3.6 bits. For Lena, the increase is from 2.4 to 2.9 bits. For better compressionVQ has to classify among codevectors which have less distance from each other. However, wedo not believe this increases the average precision. In the last section, we showed that due toVPR, VPC is to a large extent independent of codevector variance (i.e., average distance).We believe in a more subtle reason: the type of the clusters the codevector is representing83
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0 0:2 0:4 0:6 0:8 1E[�][bit] Autocorrelation � MRVQFigure 6.6: Average precision E[�] versus vector correlation �.di�ers. For better compression, random details are encoded. These are harder to groupinto clusters than the smooth details. The same factor which impedes the performance ofVQ, also impedes the performance of VPC. In worst case, the VPC improvement solelywould come from eliminating the leading zeroes in VPR representation. This bounds theaverage-precision at average storage precision (i.e., � 6 bits for 10-bit operands).The trends in the two curve and the gap between them seem to depend on the same factor.The average precision depends on the type of the cluster the codevector is representing. VQof Lena entails classifying between well de�ned codevectors di�erentiated with few key lowfrequencies. On the other hand, VQ of Baboon entails classifying between codevectors whichhave irregular high frequency content. Such codevectors would have less well de�ned clustersthan those used with the image of Lena. As a result, the average discriminant would be closerto zero, causing higher average precision.6.7 Two Sign Selection FunctionsIn this section, we quantitatively compare Intervals A and B for sign selection. Interval Awas used to theoretically show that the average precision has an asymptotic bound. It wasdesigned based on an on-line signed-digit converter. Interval B is optimized for an earlyoutput of the sign (i.e., a non-zero digit). It narrows the bound based on the source vectorelements. We will look at its increased performance in light of increased complexity. First,we will quantify the advantage of Interval B in performance. Then, we will describe therequired additional hardware. 84
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Figure 6.7: Average precision E[�] versus VQ mean square error.Performance ComparisonFigure 6.8 shows that Interval B is far preferable than Interval A. In the simulations, IntervalB implemented speci�cally for VPC application improves the performance by more than afactor of two for zero mean sequences. The vector dimension was varied from 2 to 64. Inboth curves, due to Central Limit Theorem, as the vector rank increases the discriminant'spdf becomes more bell shaped around zero. Although in both cases the average precisionincreases, the trend is slower with Interval B. While Interval A grows with the maximumvalue of the discriminant. Interval B performs better. By summing the elements' magnitude,it tracks the discriminants far better.Evaluating Interval AThe Signed-Digit (SD) converter forms the core of the composite sign detector. For E[�]iterations, the signed-digit adder converts two MSBs from carry-saved into signed-digit form.If all the converted digits are zero, the remaining lower signi�cant bits of the redundantnumber are inspected. The LSBs of PS and CS are added to with n+ log2(K) bits precision(i.e., PSn�1; � � � ; PS2n�1+log2(K) and CSn�1; � � � ; CS2n�1+log2(K)). Since we only need the carryout in the addition, the circuitry can be simpli�ed into Carry Look Ahead (CLA) circuitry.In gate arrays, CLAs are both fast and cost e�ective. Since this is on the critical path, theaddition is done in parallel. On the other hand, the probability of inspecting LSBs is low,and we could also wait another cycle for its evaluation.The SD converter adds the Pseudo Sum (PS) and Carry Saved (CS) terms. A one bit sign85
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2 10 20 30 40 50 60 64E[�][bit] K Scheme AScheme BFigure 6.8: Average precision in classifying K-element auto-regressive sequences.extension allows treating each term as a two's complement number. The two's complementnumber is mapped bit by bit to a SD number. If the MSB is one, it is mapped to negativeone (1). Otherwise each bit is copied unchanged. The one-bit sign extension would haveassured that the MSBs which are being converted will not change by subsequent additionof less signi�cant partial terms. These remaining partial terms collectively have the samemaximum value that the last partial term had. Subsequent additions cause at most a carryfrom the last partial terms MSB, which are absorbed by the extra bit of the sign extension.To design the SD converter, we simplify an SD adder for its two input PS and CS. SincePS is at most half the value of CS, the SD representation does not require more bits torepresent. As shown in the table 6.3, the MSB outputs zero transfers (T = 0). In radix-4conversion, moreover, the remaining digits of PS and CS are positive. Therefore, there areno negative transfers (T 2 f0; 1g).Evaluating Interval BVariable size of Interval B results in more elaborate evaluation and comparison when com-pared to Interval A. The bounds on Interval B are not �xed. We need to precompute thesefor each source vector. For this, we need two accumulators. One accumulator sums thepositive elements. The other sums the negative elements. These accumulators are active asx is being loaded on-chip for classi�cation. Afterward, Interval B requires two high precisioncomparators. This lengthens the critical path. To investigate the tradeo� between the com-parator precision and the average necessary-precision, we did simulations with VQ of Lena.86



Table 6.3: Converting carry-saved into signed-digit form.T=0 T=1PS0; PS1 PS0; PS1 PS0; PS1 PS0; PS1CS0; CS1 00 0 1 00 0 100 00 0 1 01 0 001 01 0 0 10 0 110 10 11 01 1011 11 10 00 0 1In speci�c, the picture was 256x256 pixel and the codebook had about 2000 16-dimensionalcodevectors. In each simulation, about 45000 classi�cation were done.As seen in Figure 6.9, we loose little in performance by looking at the 11 MSBs of theestimate. The knee of the curve is at n̂ < 10. When the comparator's precision is decreasedfurther to 11-bit the average precision increase is still less than 0.2 bits.As shown in Figure 6.9 as the precision of comparator approaches two bit n̂ = 2, theperformance of Interval B approaches that of Interval A. The comparators for Interval Bwould simply evaluate digit-serially from MSB to LSB, comparing 2-bits in each cycle. Thisresembles the performance for Interval A. Interval A, which acts as an upper bound onperformance degradation, is basically a two bit comparator. This is because the bound in Ais approximated a power of two. The bound A is comparing against a number whose onlyone is in MSB position. In other words, Interval A is a sign selection function which is givenonly the two MSBs of the estimate.Figure 6.10 shows the circuitry to calculate the error Interval B. For each received sourcevector x, the bounds (�; �) are initialized as follows(�; �) = ( KXi=1 min(xk; 0); KXi=1 max(xk; 0))There are two accumulators, for the two bounds �, and �. Since we exclusively add an elementinto the upper bound or into the lower bound, the two accumulators can share their adder.Figure 6.11 shows comparison of 11 MSBs of redundant estimate against the two errorbounds. The comparison occurs for each of the �rst (n � e � 1) cycle. In the last cycle,we stop comparing against the error bounds. Instead, a full-precision evaluation determinesthe sign of the estimate. As shown, for the full-precision comparison one of the error bound87
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Figure 6.11: Interval B sign selection circuitry.comparators is used in conjunction with a 12-bit carry look ahead circuitry.CostAlthough Interval A is simple to evaluate, Interval B doe not require a lot of circuitry either.When K is either a power of two, or is replaced by the next greater power of two, Interval Arequires only a simpli�ed signed-digit adder and a log(K) + n carry look ahead circuit.Evaluation of Interval B, on the other hand, needs one log(K) + 10 adder and two registersof the same size to compute the bounds. Although it requires more elaborate sign detectioncircuitry than Interval A, the increase in complexity is o�set by more than a factor of tworeduction in average precision necessary for classi�cation.6.8 VPC ArchitectureWe now show a simple way to design bit-serial architecture. Starting from the VPR design,it is modi�ed for variable-precision classi�cation (VPC). It minimizes the evaluation timeand memory-processor tra�c, since it can vary the precision one bit at a time. When it canmeet the throughput, it is preferable for implementation.89



Figure 6.12 shows the VPC architecture. While, it evaluates all the partial products ofsame signi�cance concurrently, VPC can reach a decision with fewer iterations then VPR.VPC implementation di�ers from VPR in two aspects. First, the order of bit-serial evalu-ation is changed. VPC evaluates from MSB to LSB in an on-line fashion. Second, its signdetector is more sophisticated. Using two comparators, it decides on an early terminationof evaluation. At the end of every iteration, the two comparators check the estimate againstthe lower and upper bounds on the sign selection interval. When either comparators candecide, the sign is output and the done ag raised.Since VPC uses redundant representation in accumulating the estimate, can VPC alsobene�t from redundant operand representation? First, let's look at the codevectors andwhether we may gain anything from precomputing and then storing them. Since storageaccess and cost are a key factor in the VQ design, any advantage which is gained fromredundant representation will be very costly. Unlike codevectors, the source vectors are notstored. Their computation cost would be lowered by redundant representation. This would,however, shift the burden to VPC. In mean-residual VQ, VPC is K times more complex thanthe source vector preprocessing. Redundant representation only seems more relevant withsource vectors. Redundant source vectors, would e�ectively double the number of terms tobe generated and summed in the VPC inner product. This makes redundant source vectorsalso unattractive. Both for codevectors and source vectors, VPC does not favor redundantrepresentation.In an M -ary classi�er, instead of just detecting the sign of the i-th estimate, the classi�ercompares the estimate with the maximumof the (i�1)-th inner products evaluated. The datapath expands into two subtractors and a sign detector. In every iteration, the inner productwith its two error bounds are subtracted from the maximum. If the sign is ambiguous, theevaluation continues. If the sign of the result is positive, its evaluation terminates. Otherwiseif the sign of the result is negative, it evaluates the inner product at full precision and replacesthe current maximum. At the last inner product, we can evaluate as a binary classi�cation.After determining the sign we can output the index. Since in the last inner product we donot need to store the new maximum, there is no need for a full-precision evaluation.VPC ControllerFigure 6.13 shows the timing of VPC for binary classi�cation. The processing period foreach bit yi;j consists of three parts: (i) fetching the j-th bits of y from memory, (ii) summingthe partial products, and (iii) deciding whether to continue or terminate the iteration. Asindicated in the �gure, these parts can be overlapped. Such an architecture is attractive forlow rate video and speech.VPC controller is similar to VPR controller, except it also monitors done ag. VPRcontroller would enhance the design by Holmberg [Hol90] with a counter. The counter at90
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Figure 6.12: Architecture of binary linear VPC.
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Processing Cycleof bit j of all yi(j < n� 1) Bit j � 1 Bit j � 2
FetchComputeDecide Figure 6.13: Timing of VPC.the beginning of each evaluation is loaded with the precision of the inner product. VPCcontroller adds one more modi�cation. The termination signal can be generated either bya count down to zero or when the done ag is raised. With Interval B, the controller alsomanages the accumulators which during loading of the source vectors evaluate the upperand lower bounds.ImplementationCombining the VPR implementation with some design modi�cation, we had an accurateestimate of the cost and performance of VPC. The speci�cation and the throughput werenot changed (e.g., K = 16 and n = 10, MPEGII). As shown in Figure 6.14, the VPC data-path was also similar to VPR data-path. This simpli�ed the controller and reduced thepartial product generator to just nine (= n � 1) AND gates. The primary di�erence wasthe sign detector that output every iteration. We also changed the order of evaluation ofoperand bits to be from MSB to LSB.Similar to VPR implementation, in VPC variable-precision addition of the hyperplanebias term b would reduce the memory-processor bandwidth. With an o�-chip codebook, thenumber of I/O pins can be an issue. Variable-precision addition of bias can reduce the 20pins required by the speci�cation (e.g., K = 16 and n = 10) to four pins. In a radix-2 VPC,with every bit of inner product, two bits of bias term are added. We believe there will beonly a small a�ect on the average precision. Even though, the bias term is not added in fullprecision, its precision increases at twice the rate of the terms in the inner product. For thetypical classi�cation, which results in three bit average precision, E[�] = 3, the bias term willhave six bits precision. In this case, the estimate itself will have around six bits precision.When the memory-processor bandwidth is at premium, the cost of multiplexing b should benegligible. 92
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6.9 ThroughputFor the shown design, the throughput would be far lower than what was shown in Chapter 4.Even so VPC would still compress 1/4 CIF video which inputs 760 � 103 pixels per second1. Next we will look at two ways of increasing the throughput: digit-serial evaluation andpipelining. As we will see pipelining alone permits su�cient throughput for MPEGII 2 datarates.Increasing ThroughputWe have shown a simple bit-serial architecture. By increasing the precision one bit at a time,it uses the minimum number of iterations for evaluation. Bit-serial evaluation, however,requires E[�] cycles per classi�cation. This limits the throughput.An obvious way to increase the throughput is to use several inner product modules. Thishigh level parallelism is attractive when the required throughput is very high. Although wemay not be able to take advantage of variable number of iterations, it would be attractivefor reduction of energy dissipation/consumption. For future work, we could look at it. Inhere, we will focus at increasing the evaluation radix and/or pipelining.When the evaluation is bit-serial and non-pipelined for typical operand precision, VPCis preferable choice for implementation. On the other hand, the throughput requirementsmay force us to use a digit-serial and/or pipelined evaluation. For what operand precision isVPC better than conventional approach? To answer we use the notion of su�cient-precision�̂, which is the number of bits which are evaluated. Su�cient-precision �̂ adds the a�ect ofimplementation detail to the calculated necessary-precision �. For a bit-serial non-pipelinedVPC module, the su�cient precision is same as the necessary precision (�̂ = �). Next, we'llquantify the increase in precision (�̂ � �) for pipelining.Pipelining which was proposed for VPR, can be used with VPC. Pipelining the VPCmodule is similar to pipelining the VPR module shown in Chapter 4. Pipeline latency,however, incurs higher cost. In an M -ary VPC module, we need to look at the output afterevery iteration. In a simple l-stage implementation, this comparison is delayed by (l � 1)cycles. The su�cient-precision �̂ becomes�̂ = � + l � 1In other words, an l-stage pipeline increases the average precision by l bits.The degradation caused by pipeline latency can be avoided. We can interleave evaluationof l classi�cations. To do so we would evaluate l classi�cations independently. The l stage1176�144 pixels (1/4 CIF) at 30 frames/sec = 760,320 pixel/sec2720� 576 pixels at 30 frames per second 94



pipeline then achieves a factor of l more throughput than a non-pipelined system. Thiscould permit high level of pipelining. We can have full bit-level pipelining of the summationnetwork and the comparator pair. On the other hand, the interleaved evaluations doesrequire on-chip bu�ering of each interleaved source vectors, and a more elaborate controllerto track these concurrent classi�cations.We could increase the throughput by increasing the evaluation radix. In a radix-r archi-tecture, the time taken in number of iteration T (r) becomesT (r) = �log2 rThe above multi-fold increase in throughput is applicable whenever the function can beevaluated in parallel. It would not be realizable for metrics using operations such as division.With inner product metric, where fully parallel evaluation is possible, there is no limit onthe radix (e.g., r = 2n).The drawback is increase in the su�cient-precision. The increase is due to evaluatinglog2 r bits at a time. Su�cient-precision �̂ could be as much as�̂ � � + log2 r � 1where we assumed the worst case of evaluating one digit, while only evaluation of one bitwas necessary.Assuming uniform discriminant pdf, radix-4 evaluation increases the average precision byone bit. In radix-4, two bits of the multiplier are needed for each partial term. In instanceswhen the number of bits to give the su�cient precision is odd, even number of bits isevaluated. In these instances, radix-4 multiplication results in an estimate with superuousaccuracy. Similar to VPR design, there is also overhead due to misalignment of packedcodevectors. With uniform pdf, the su�cient-precision becomes�̂ � � + 1:0In a pipelined radix-4 implementation, the di�erence between the necessary and su�cient-precision is two-fold, �̂ � � + 2(l � 1) + 1:0where the 1.0 bits overhead is incurred when fetching two bits at a time.String recoding which was used in the implementation of the VPR architecture, can alsobe used with VPC architecture. In the VPC, the string recoding starts from the MSB,incurring one bit delay. String recoding from MSB is similar to string recoding from LSB.When starting to recode from MSB, expecting a carry, we delay the output by one cycle.Recoding from MSB requires sign extension to implicitly delay by one clock cycle. To send95



Table 6.4: Memory bandwidth of VPC versus VPR design.Pipeline CK Avg(Worst) Avg(Worst) BW BW � T (�10�6)[level] [ns] Time[cycle] Time[ns] [pin] [pin�sec]VPR 2 20.7 5(7) 103.5 (144.9) 42 4.35 (6.09)VPC 3 14.8 5.6(12) 82.9 (178) 24 1.99 (4.26)VPC 5 8.3 7.6(14) 63.1 (116.2) 24 1.51 (2.79)VPR 6 8.3 9(11) 74.7 (91.3) 42 3.14 (3.83)only two bits per cycle to the recoder, we extend the sign inside the recoder by one bit. In the�rst cycle, then we get three bits out of only two received bits. For a multiplicand with oddnumber of bits, the multiplication does not need additional cycle. The su�cient-precisionshown in the previous equation remains valid.For VPC to be attractive in exhaustive searched VQ, the operand precision n should begreater than the su�cient precision �̂, where �̂ incorporates the cost of pipeline break. Thisdoes not apply for binary searched VQ, where after the inner product and pipeline breakoccurs as we determine which branch to take.6.10 ComparisonVPC reduces the computational complexity both in terms of execution time and area. In-stead of radix-2 partial product generators used in VPR, VPC module uses radix-2 genera-tors. Even though, VPC requires an elaborate sign detector with comparators and initial-ization of bounds, the overall gate count decreases about 15%. Table 6.4 shows the clockcycle (CK), execution time and the pin counts of the competing architectures. Even thoughVPC evaluates bit-serially, eliminating superuous LSBs decreases the execution time fromthat of radix-4 VPR. Table 6.5 shows that both AT and AT complexity measures decreaseby more than 20%. Table 6.4 shows that the VPC is also quite e�ective in reducing thememory bandwidth used by more than a factor of two. This is to a lesser extent due toradix-2 evaluation, which fetches only the bits of the required codevector.When pipelining is incorporated, VPC remains preferable to both VPR and conventionaldesigns. VPC reduces the overall execution time. Even though pipelining increases theaverage precision, it similarly a�ects VPR. VPC due to its shorter overall critical path canbe pipelined with one less level than VPR. As a result the overall execution time of a radix-296



Table 6.5: Performance and cost of VPC versus VPR design.Pipeline Area CK Avg(Worst) AT � 10�3 AT 2 � 10�12[level] [gate] [ns] Time[cycle] [gate�sec] [gate�sec2]VPR 2 9100 20.7 5 (7) 0.94 (1.32) 97 (191)VPC 3 7492 14.8 5.6 (12) 0.62 (1.33) 51 (236)VPC 5 8230 8.3 7.6 (14) 0.52 (0.96) 33 (111)VPR 6 11164 8.3 9 (11) 0.83 (1.02) 62 (93)VPC is less than a radix-4 VPR. VPC, less pipelined and with radix-2 multiplication, canbe implemented with fewer circuitry than VPR. Radix-4 design on the other hand has oneadvantage, it worst case execution time is 20% less. The worst case speed is critical whenthere is a �xed time for compressing a frame of image.If we were to use o�-chip memory further pipelining would be useful. For example, if thememory bus is half the speed of the processor, we could halve the processor and double itsclock rate. In other words, the pipelining would be used to reduce the number of gates. Forthe lowest average precision, the elements would still be fetched bit-serially; one signi�cantbit would be fully evaluated before the next one.6.11 ConclusionsWe have quanti�ed signi�cance of the presented arithmetic insight for classi�cation. Mostclassi�cations can be done with low-precision. For example in image coding with VPC mod-ule, we have observed the average necessary-precision to be less than 3.6 bits. (VPC comple-mented VPR's elimination of superuous MSBs.) Through simulations on auto-regressivesources, we also postulated that the average precision is largely independent of variance. Alsofor large vector dimensions and low correlation, the average precision is also independent ofelement pdf.When the total execution time is important, VPC is preferable to the conventional andVPR implementations. We presented a simple modi�cation which converts the VPR im-plementation into a VPC design. The decrease in execution time more than o�sets theincreased complexity, halving the AT 2 cost. The resulting pipelined design could vectorquantize MPEGII video.In digital signal processing, the trend has been toward higher precision. There have97



been several widely used 24-bit digital signal processors. Since VQ gain increases onlylogarithmically with the number of codevectors, increasing precision also becomes a viableavenue for VQ in future. VPC will become even more viable, when 10-bit pixels becomecommon.Evaluating at average precision is more valuable when the operand precision increases.VPC has a computational complexity of O(1) with respect to precision. Using a corollaryto VPC, the simulations can predict the performance for a higher precision. Meanwhile,the performance of VQ improves logarithmically when increasing the precision beyond 10bits, while the conventional inner product implementation's complexity grows in square ofthe number of bits O(n2). This had been the intuitive reason for the limited interest inincreasing the evaluation precision.
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CHAPTER 7Summary and Future ResearchThis dissertation explores arithmetic and number representation as a means of reducing costof vector quantization. The investigation has two parts. Variable-precision representation(VPR) reduces the number of bits stored by eliminating leftmost bits which are sign extensionin all bits of a codevector. On the least signi�cant side, Variable-precision classi�cation(VPC) reduces the number of iterations for classi�cation by eliminating the rightmost bitswhich are superuous. This chapter summarizes the key contributions of the dissertationand suggests potential directions for future research.Summary� We developed a noiseless compression technique which has negative decoding cost:variable-precision representation. We simulated the performance of VPR for real code-books. The codevectors were trained in image compression with pruned binary-treestructured VQ (PBTSVQ). For comparison, we also measured the codevector compres-sion using entropy coding (e.g., Hu�man coding). VPR is shown to e�ectively reducethe codebook storage. VPR performs 75% as well in comparison to entropy coding.Although VPR is implemented for binary trees, the approach can be generalized toM -ary trees with comparable if not better performance.� We implemented the decoder-processor module. It is a novel module, which unlikeconventional evaluation incrementally increases the precision of inner product. Formost compression, the precision of elements varies one bit at a time. For a highthroughput, it evaluates in radix-4 (i.e., two bits at a time). Also for comparison, weimplemented a conventional inner product module composed of four multipliers andadders. When VPR processor can be used in variable-time applications the decodinghas negative cost. Specially when pipelined, the decoding overhead of VPR is morethan o�set by the average decrease in the evaluation time. The AT measure showed22% reduction in complexity, while AT 2 measure showed 29% reduction in complexity.� We developed the variable-precision classi�cation algorithm. In conjunction with VPR,it reduces the number of bits evaluated. We showed that the average necessary-precision is asymptotically constant. In other words, as the operand precision increasesthe computational complexity of classi�cation becomes independent of it.99



� We measured the performance of VPC for image compression, where VQ was based onthe inner product discriminant. The average precision for classi�cation was measuredin two ways. First, using auto-regressive vectors we showed that VPC was relativelyinsensitive to change in vector variance. Then, we compressed two images: Lenaand Baboon, measuring the average necessary-precision. With Baboon, the averageprecision necessary for classi�cation was less than 3.6 bits. With Lena, the averageprecision was less than 2.9 bits.� We implemented VPC module. When the total execution time is important, VPC wasshown to halve the computation based on either AT or AT 2 complexity measure. VPCis attractive when the total execution time is important such as in o�-line processing orwhen there already is a queue bu�er before and the average execution time is important.We also showed a simple generalization of VPC to M -ary VPC. Whenever we wouldnot need to replace the maximum, VPC would avoid full-precision evaluation.Future ResearchIn this dissertation, we have signi�cant improvements in hardware for compressing images.VPC can potentially result in even greater gains when compressing speech.� We would like to evaluate the performance of VPC in compression of speech. Speechsamples are often quantized at 12-bit, and precision of 16-bit is widely used (e.g.,compact disc recording). The high operand precision would make VPC performancemore attractive than it was with 8-bit pixels used in image compression. It would beworthwhile to develop the corresponding software and measure the performance for theabove mentioned applications.� Derive a theoretical estimate for performance of VPC, assuming two-sided exponentialpdf for correlated codevector and source vector elements. It can act as an upper boundon VPC's performance. It would also con�rm our �ndings on average precision ofauto-regressive sequences, that the discriminant pdf approaches the Normal pdf.� Implement VPC in gate arrays. For estimating cost-performance we already havedeveloped a detailed design of VPC on paper. A gate array design could show theviability of VPC.� We would like to investigate e�ectiveness of VPC for reducing power consumption/dissipation. VPC's reduction in average number of iterations reduces the total amountof energy drain. This is valuable when using VQ in a battery powered equipment. Forexample, VQ maybe used on-board satellites or in cellular speech and video commu-nications. 100



Also as densely packed circuitry become technology feasible, VPC may address thepower dissipation. For Large Constraint-Length Viterbi decoding [BDB+92], thereis massively parallel implementation of classi�ers. Also for high quality compressionsystems, there are proposals for massively parallel VQ architectures [DCG88].
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APPENDIX AVQ ApplicationA.1 Required ThroughputFor a black and white video source, we can calculate the required throughput. Let's considerthe video which is sampled at rate of ff frames/sec, where each frame is w pixels wide andh pixels high. The resulting source vector arrival frequency isfv = ffwhKwhere K is the number of elements in the vector.Colored video is typically treated as an extension of monochrome video. Colored imageis separated into three images: the primary intensity image, and two subsampled chromatic-ity images which have a quarter of the resolution of the intensity image. As a result thecomputation required for a colored video is about 1.5 times more than for a black and whitevideo.Let the processor clock frequency be fc. For a radix-4 VPR, each K-dimensional distor-tion computation requires n=2 clock cycles. The frequency of distance evaluation becomesfd = 2n � fcThis throughput places an upper bound on the number of codevectors N which can beindividually inspected: N � fdfvFor images, typical values are an arrival rate ff of 10 frames/sec and block sizes of about256�240 (in the U.S) and 360�288 elsewhere (in Europe and Japan). For a clock frequencyof fc = 20 MHz (fc is usually limited by the Codebook access time), above inequalityyields an upper bound on the codebook size N as N � 32. Since the distortion incurredis a monotonically decreasing function of the codebook size, an N=32 VQ system wouldundergo undesirable distortion and performance degradation. Thus, full search schemes(which require large codebooks) are constrained by the limited processing power of thechip compared to the high sample rates. In actual system design, most often a fast searchtechnique is employed. 102



Speci�cationAt a high throughput, we intend VQ at proposed MPEGII rate (12:3�106 pixel/sec) video us-ing PBTSVQ. MPEGII is the next standard for image compression, designed for compressionof high quality video used in broadcasting studio. In our simulations, we use mean-residualVQ with 16-pixel vector (K = 16) as a simple form of preprocessed VQ. In actual system de-sign, a more sophisticated preprocessor would be employed. In some aspect our speci�cationis similar to a system analyzed by Modestino et. al. [MK92]. That system would encode at arate (R = 1 bit/pixel). Instead of using a separately transmitted mean to predict the block,they predict the block by the adjacent already transmitted blocks. The image pixels aretypically digitized at 8-bit precision. Subtracting the mean of the vector from its elements,adds one bit to represent the sign of the pixel. Subtracting two centroid codevector to �ndthe hyperplane codevector results in 10 bits per stored codevector element. The speci�cationbecomes: Frame Height h = 576 pixelsFrame Width w = 720 pixelsFrame Frequencyff = 30 frame/secK = 16Video Frequencyfv = 12:4� 106 pixel/secn = 10 bitsCompression Rate R � 1:0 bit/pixelFor a replacement codevector, a pruned tree which has up to 12 levels is searched (R �0:75 bit/pixel). Required throughput is at mostfd = fvK � (KR � 4)= 9:3 � 106 inner product/secwhere we have allocated four bits for quantizing the vector mean [Bak84], leaving (KR � 4)bits for encoding the codevector index. (Equivalently, the required evaluation time Td is 107ns.)
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APPENDIX BImplementationsB.1 VQ Search ControllerFigure B.1 shows a controller designed to search VQ trees stored using VPR. The base ad-dress would have already been fetched. The codevectors would be stored in adjacent location.When VPR-controller raises the done ag, the search-controller begins fetching the next hy-perplane vector. Based on the given sign, the search-controller fetches one of two codevectors.If the left branch was chosen, the base address would be used to fetch the next codevector.If the right branch was chosen, the base address is o�set by the relative address of theright branch before fetching the codevector (relative address = b(e(yl) + offset(yl))=2c).As the search proceeds, all the signs of the hyperplane tests are shifted one bit at a time intoa register. At the end of the search, the shift register has index of the chosen codevector.A conventional VQ controller was implemented at UCLA. It was part of a video compres-sion board which was designed by Holmberg [Hol90]. It included a controller for searchingPBTSVQ with bit-serial inner product data path. Designed for FPGA but never built,the micro-controller was intended for �xed precision elements. It was similar to the VPRcontroller, except the relative address of the branch was a constant �ve.The conventional search-controller can be easily modi�ed for variable-precision codevec-tors. It needs only two changes. First, its modulo-5 counter which initiates a new computa-tion every �ve cycles is removed. Instead, we initiate with the done signal which is outputfrom the inner product nano-controller. Second, in calculating the address of codevectors,the relative address of the second branch is not �xed at �ve. It is a function of exponente(y).Even though variable size of codevectors requires an address space which has two bits�ner resolution, the storage overhead is still low. First, the exponent of each codevector canbe stored in three bits. Also in binary classi�cation for every codevector pair, we need tostore the o�set and address of the �rst codevector. Since with radix-4 storage of elements,there is two more bits resolution than conventional approach. All accounted, for every twocodevector nine bits more are stored (i.e., 4.5 bits per codevector). Compared with M -aryclassi�cation, our overhead increases only little (i.e., 4.0 bits vs. 4.5 bits).104



B.2 VPR ImplementationData PathAs shown in Figure B.2, the VPR core is 16 (= K) radix-4 partial product generatorsand a summation tree. The radix-4 partial product generators, which use string (Booth)recoding of the multiplier, act like digit-serial multipliers. Their output along with the biasterm is gathered by a tree of adders and accumulated in a carry-save redundant form. Themultipliers and addition tree is iteratively fed the digits of the VPR codevector. It presentsits �nal accumulation to the sign detector. For fast execution time, the sign detector isbased on a 4-bit carry look ahead adder. For lower complexity, it is stripped to the barecircuitry needed to calculate the sign bit. Speci�cally, �ve 4-bit carry look ahead modulesare concatenated.Figure B.3 shows the string recoded partial product generator. In a radix-4 implemen-tation, string recoding of the multiplier is attractive. String recoding simpli�es the partialproduct generator. Instead of requiring two adders, a string recoded generator uses an adderand a 4-1 multiplexor.String recoding can be viewed as breaking any digit which is `3' to `-1' with a `1' carriedto the next signi�cant position. This maps the digit set f0,1,2,3g into f-2,-1,0,1,2g. Thedigit recoding needs three adjacent bits. In every cycle, two bits are fetched. A latch whichstores the overlapping bit from the previous cycle provides the third bit. This latch is resetat the beginning of the recoding.The summation network also adds the bias term b. Bias term b is stored in variableprecision to minimize storage, and is added digit-serially to minimize access. From Chapter 2which described the inner product computation,b � �12 KXk=1(yk)2 (B.1)With (n� e(y)) bits in y0k, the number of bits in b0 = b=22e is,bits(b0) = dlog2Ke+ 2n � 3� 2e(y)= 21 � 2e(y) ; n = 10;K = 16When the precision of y0k decreases by one bit, the precision of b0 decreases by two bits. Notethat, LSB was eliminated when the summation was divided by two. In here, we now alsotruncate the second LSB, bits(b0) = 20 � 2e(y)Now b0 can be multiplexed in equal sized nibbles (i.e., 4 bits). This is convenient. Withevery digit of codevector y0, we store one nibble of bias b0. The nibble memory addressingcan easily be made identical to that of the codevector y0.105



STATE // D = maximum depth of treeregister addressnext < D + 2 >, // address of a codevector paireleft < 3 >, // exponent of left brancheright < 3 >, // exponent of right branchoffsetnext; // o�set of left branchlabel < D >; // current node labellabelleaf < D >, // label > labelleaf are leavescounter address < D + 2 >, // current codebook addressoffset;shift register index < D >; // built in multiply by 2INPUTboolean reset, begin, sign, done;OUTPUTboolean end;integer index < D >;BEGIN PRUNED BINARY TSVQif resetf reset address k reset index k reset offset k reset egif �rst iterationf load addressnext k load offsetnext k load eleft k load eright k load label gif done:sign0f address = addressnext k offset = offsetnext k e = eleft gif done:signf address = addressnext + b(offsetnext + eleft)=2c koffset = (addressnext)0 � offsetnext � eleft;LSB k e = erightgif donef index = 2index+ sign gif label > labelleaff end = 1 gEND PBTSVQFigure B.1: Controller for searching binary tree structured VQ codebooks.106
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GeneratorPartial ProdPartial ProdGeneratorPartial ProdGenerator 19-2Adder TreeLatchLatchSign Detector
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Latch output 0 if reset=1unit delay if reset=0
Figure B.2: Implemented VPR inner product with radix-4 string recoded partial productgenerators.
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Latchreset Recoder Partial10TermGeneratorString xk9
add 1Figure B.3: 2� 9 string recoded (Booth) partial product generator.ControllerVPR has 4-bit of control information for each stored codevector. For 10-bit elements (n =10) in VPR format, the exponent e would nominally require four bits. Inspections of thecodebooks presented in the previous chapter show that less than 1% of the time e 2 f8; 9; 10g.Limiting e to three bits, results in negligible decrease in VPR compression, while it minimizesstorage. We use the fourth control bit to store an o�set marker. It ags when the codevectorbegins in the middle of a radix-4 memory word.As shown in Figure B.4, VPR controller has only three bits of output. It outputs thetwo masks needed in the radix-4 multiplication, and it ags when the execution is done. Ithas two parts: a variable-step down counter, and a recoder which initializes the counter. Foreach codevector y it reads e(y) and offset(y). For fast execution, we pipeline the recoding.In the �rst cycle, the only information that we need is whether codevector's �rst 2-bit wordis aligned: m0 = offset; m1 = 1; done = 0where m0 is the mask on the LSB of the word. At the beginning of the second cycle, theinitial state of the counter is loaded with w and loneMSB. w is set to the number of non-masked words in the element (w = b(10 � e + offset)=2c); loneMSB is set to one if the lastword to be read will be half used (loneMSB = offset� eMSB)). The variable-step counteris a combination of w and loneMSB. It counts down on the number of bits of the elementsto be evaluated. Finally, when the computation is done, the VPR-controller can ag thesearch-controller. In appendix A, we presented the VQ controller. Basically, in addition tothe signals the VQ controller manages, the VPC controller deals with the terminate signals.The controller uses it to schedule a classi�cation arbitrary cycles apart from the previous108



��w 3Recoder VariableStepDownCounterloneMSBw = b10�e+offset2 cloneMSB = offset� e03 2fmsk0;msk1gdonereseteoffset
Figure B.4: VPR controller initializing a variable-step down counter for each codevector.one.Figure B.5 shows the input and output to VPR module. Its control section was shown inFigure B.4. The data path module is shown in detail in Figure B.6. Namely, 16 string recodedpartial product generators whose output is summed and it is followed by a sign detector.The design requires 9100 gates. The critical path is calculated to be 20.7 nsec, where wehave included the e�ect of fan-out and wiring delay had the circuitry been fabricated in 1.0-�technology with 40% array utilization. Figure B.7 shows the implementation of masking andthe string recoding.Figure B.8 shows a sample timing diagram for VPR architecture. It contains the inputand output to the implemented inner product module. The hair-line is placed between twodi�erent sections of the timing diagram. Before the hair-line the fetch registers are reset andthe source vector is loaded. The hair-line marks the beginning of the three classi�cations.Raising of the done signal marks the end of each classi�cation.B.3 Fixed-Precision ImplementationFor comparison, a conventional architecture based on multipliers and adders is designed. Itevaluates the inner product as follows:xty+ b = Xk xkyk + b= 3Xi=0 4i+4Xk=4i+1 xkyk + b| {z }hardwarewhere the inner summation is implemented with four multipliers and adders, and the outersummation is executed in four iteration.As shown in Figure B.10, the conventional alternative has four string recoded multiplierswhose carry-save output is summed in an adder tree along with the bias term and then109



Figure B.5: VPR controller and data path.110



Figure B.6: VPR data path.111



Figure B.7: String recoded partial product generator.112



is accumulated again in carry-save form. For K = 16, the evaluation completes in fourcycles. To reduce memory bandwidth, the bias term b, which is 20 bits, is multiplexed. It istransmitted �ve bits at a time in four cycles.For bu�ering the source vector, it has a circular bu�er which stores four elements. As itrecirculates them, it outputs the elements sequentially. To start the next vector quantization,the bu�er is �lled with the content of the FIFO. FIFO itself is tapped from the bus whilethe previous inner product is being done.Figure B.11 is the top level schematic in the conventional architecture. As can be seen,the architecture is four string recoded multiplier which are summed and accumulated in fourcycles. The design requires 9993 gates. The critical path is calculated to be 20.7 nsec, wherewe have included the e�ect of fan-out and wiring delay had the circuitry been fabricated in1.0-� technology with 40% array utilization. Figure B.12 shows the implementation of themultiplier. As can be seen it is comprised of four string recoded partial product generators.Figure B.9 shows a sample timing diagram for conventional architecture. It containsthe input and output to the implemented inner product module. The simulation resultsare divided by the hair-line. Before the hair-line, the fetch registers are reset and the sourcevector is loaded. The hair-line marks the beginning of the three classi�cations. We simulatedthe classi�cation of the same source vectors shown for VPR implementation. We usedequivalent clock cycles for both architecture. As can be seen for these codevectors, the totalsimulation time in conventional design is longer than the VPR design.B.4 Pipelining ImplementationsPipelining of either of the designs is simple. To pipeline we need to insert the pipeliningregisters. Since for accumulation both designs used CSAs, there is no carry ripple to consider.With l stage pipeline, the signal along the critical path will then have l clock cycles topropagate. The other cost of pipelining is increasing the number of clock cycles for evaluationby l.Pipelining VPR and conventional implementations are similar. First, same number oflatches would be used in the pipelining. Second, the length of pipelines would be the same.At worst case, the conventional approach, which has two more levels in its summation tree,would require one more level in the pipeline.In a pipelined architecture, two factors determine the shortest clock cycle Ts,Ts = max(Tmem; Tprocessor)where Tmem is the memory access time, Tprocessor is the processor cycle time.Often, when the codebook memory is o�-chip the memory access time Tmem determinesthe clock cycle. In many quickly prototyped full custom circuitry, the designer opts for113



simplicity of a non-fully pipelined architect Tprocessor. Finally, pipelining due to its overheadresult in a minimum stage time Tmax throughput which gives the maximum throughput.Example 1: DRAM1 memory is used.Ts = Tmem = TDRAM� 60nsecFor a given budget to be spent on memory, DRAM allows the storage of the biggest code-books. On DRAM, when an access is local to a page of memory (� 256 locations), there isfast sequential access mode. Using the fast page mode, the previous DRAM can be accessedin 1/3 the time of a random access.Tmem = TDRAM page� 30nsecNote that, if the memory is several times slower than the processor, we can multiplex theprocessor's data path and implement less circuitry.Example 2: Processor is implemented in full custom [MJBD92]. For 2 � LSI Logic,Ts = Tprocessor� 25nsecThe available building blocks and tools limit the clock speed.Example 3: VPR processor is down loaded into the �eld programmable XILINX FieldProgrammable Gate Array (FPGA)[Com91]. Even with a large FPGA chip2, to �t a VQprocessor requires the architecture to be modi�ed to use the circuitry available for addition.Using the builtin carry acceleration circuitry, it reduces the number of cells, but it requirescarry propagation at every level of the summation network. Moreover in FPGA technology,the full adder cell circuitry are twice as slow as the gate array technology. Combined withcarry propagation, these result in a slow processor,Ts = Tprocessor = Tcarry propagate adder� 35nsec; for 12-bitsExample 4: We pipeline the inner product module which we have implemented. It isimplemented in conventional gate array technology, where both the technology and designtools are well developed. The codebook would also be stored on-chip to reduce the access11Mx4 AAA4M204 DRAM, NMB Technologies2XILINX XC4010 with 200 con�gurable logic blocks114



latency. The pipeline which gives the maximum throughput would have �ve stages (l = 5).We estimate the shortest clock cycle Ts as,Ts = Tprocessor = T3FA� 10nsecIn words, the critical path is 3 full adders. This is greater than the minimum 2 full addersused with the accumulation feedback with carry-save adders. Calculations have shown thata pipeline with 3 full adders per stage performs comparable to a pipeline with 2 full addersper stage, due to the increased latency and bu�ering overhead.
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Figure B.8: VPR architecture timing diagram.

Figure B.9: Timing diagram for conventional architecture.116
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Figure B.10: Conventional inner product module implemented for comparison.117



Figure B.11: Multiply-accumulate inner product architecture.118



Figure B.12: String recoded multiplier.119
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