• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Factor Graphs and the Sum-Product Algorithm (1998)

Cached

  • Download as a PDF

Download Links

  • [www.cs.toronto.edu]
  • [www.research.microsoft.com]
  • [www.wisdom.weizmann.ac.il]
  • [www.psi.toronto.edu]
  • [people.csail.mit.edu]
  • [www.isiweb.ee.ethz.ch]
  • [www.comm.utoronto.ca]
  • [www.mathe2.uni-bayreuth.de]
  • [www.mathe2.uni-bayreuth.de]
  • [www.mathe2.uni-bayreuth.de]
  • [www.psi.toronto.edu]
  • [www.comm.toronto.edu]
  • [cba.mit.edu]
  • [www.comm.utoronto.ca]
  • [www.comm.toronto.edu]
  • [www2.ife.ee.ethz.ch]
  • [people.csail.mit.edu]
  • [www.seas.harvard.edu]
  • [www.stanford.edu]
  • [www.wisdom.weizmann.ac.il]
  • [www.ics.uci.edu]
  • [www.mit.edu]
  • [www-classes.usc.edu]
  • [www.wisdom.weizmann.ac.il]
  • [www.psi.toronto.edu]
  • [www.ics.uci.edu]
  • [www.comm.toronto.edu]

  • Other Repositories/Bibliography

  • CiteULike
  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Frank R. Kschischang , Brendan J. Frey , Hans-Andrea Loeliger
Venue:IEEE TRANSACTIONS ON INFORMATION THEORY
Citations:1790 - 69 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Kschischang98factorgraphs,
    author = {Frank R. Kschischang and Brendan J. Frey and Hans-Andrea Loeliger},
    title = {Factor Graphs and the Sum-Product Algorithm},
    journal = {IEEE TRANSACTIONS ON INFORMATION THEORY},
    year = {1998},
    volume = {47},
    pages = {498--519}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple computational rule, the sum-product algorithm operates in factor graphs to compute---either exactly or approximately---various marginal functions by distributed message-passing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.

Keyphrases

factor graph    sum-product algorithm    bayesian network    markov random field    fourier transform algorithm    tanner graph    distributed message-passing    many graphical model    many variable factor    wide variety    local function    simple computational rule    bipartite graph    artificial intelligence    specific instance    digital communication    signal processing    backward algorithm    iterative turbo    belief propagation algorithm    kalman filter    various marginal function    global function    viterbi algorithm   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University