• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Sentiment Knowledge Discovery in Twitter Streaming Data

Cached

  • Download as a PDF

Download Links

  • [www.cs.waikato.ac.nz]
  • [www.cs.waikato.ac.nz]
  • [www.cs.waikato.ac.nz]
  • [www.cs.waikato.ac.nz]
  • [www.l2f.inesc-id.pt]
  • [www.hughchristensen.co.uk]
  • [www.hughchristensen.co.uk]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Albert Bifet , Eibe Frank
Citations:62 - 3 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Bifet_sentimentknowledge,
    author = {Albert Bifet and Eibe Frank},
    title = {Sentiment Knowledge Discovery in Twitter Streaming Data},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Abstract. Micro-blogs are a challenging new source of information for data mining techniques. Twitter is a micro-blogging service built to discover what is happening at any moment in time, anywhere in the world. Twitter messages are short, and generated constantly, and well suited for knowledge discovery using data stream mining. We briefly discuss the challenges that Twitter data streams pose, focusing on classification problems, and then consider these streams for opinion mining and sentiment analysis. To deal with streaming unbalanced classes, we propose a sliding window Kappa statistic for evaluation in time-changing data streams. Using this statistic we perform a study on Twitter data using learning algorithms for data streams. 1

Keyphrases

sentiment knowledge discovery    twitter streaming data    data mining technique    classification problem    twitter data stream    knowledge discovery    new source    twitter data    unbalanced class    data stream mining    sentiment analysis    data stream    time-changing data stream    twitter message    micro-blogging service    sliding window kappa statistic    opinion mining   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University