• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

The Ant System: Optimization by a colony of cooperating agents (1996)

Cached

  • Download as a PDF

Download Links

  • [dsp.jpl.nasa.gov]
  • [www.cs.nott.ac.uk]
  • [www.cs.nott.ac.uk]
  • [www3.esc.auckland.ac.nz]
  • [www2.esc.auckland.ac.nz]
  • [www.iro.umontreal.ca]
  • [www.cs.nott.ac.uk]
  • [www.agentgroup.unimo.it]
  • [faculty.washington.edu]
  • [www.cs.nott.ac.uk]
  • [masters.donntu.edu.ua]
  • [www.inf.ufrgs.br]
  • [www.lirmm.fr]
  • [www.cs.nott.ac.uk]
  • [staff.washington.edu]
  • [ftp.cs.umn.edu]
  • [iridia.ulb.ac.be]
  • [www.csr.unibo.it]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Marco Dorigo , Vittorio Maniezzo , Alberto Colorni
Venue:IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B
Citations:1290 - 45 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Dorigo96theant,
    author = {Marco Dorigo and Vittorio Maniezzo and Alberto Colorni},
    title = {The Ant System: Optimization by a colony of cooperating agents},
    journal = {IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B},
    year = {1996},
    volume = {26},
    number = {1},
    pages = {29--41}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical Traveling Salesman Problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the Ant System (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadrat...

Keyphrases

ant system    classical traveling salesman problem    computation avoids premature convergence    positive feedback    viable new approach    acceptable solution    positive feedback account    early setup    main characteristic    early stage    search process    optimization problem    stochastic combinatorial optimization    new computational paradigm    rapid discovery    constructive greedy heuristic    report simulation result    good solution    parameter selection    tabu search    way ant colony function   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University