@MISC{Sengstock12latentcontextual, author = {Christian Sengstock and Michael Gertz}, title = {Latent Contextual Indexing of Annotated Documents}, year = {2012} }
Share
OpenURL
Abstract
In this paper we propose a simple and flexible framework to index context-annotated documents, e.g., documents with timestamps or georeferences, by contextual topics. A contextual topic is a distribution over document features with a particular meaning in the context domain, such as a repetitive event or a geographic phenomenon. Such a framework supports document clustering, labeling, and search, with respect to contextual knowledge contained in the document collection. To realize the framework, we introduce an approach to project documents into a context-feature space. Then, dimensionality reduction is used to extract contextual topics in this context-feature space. The topics can then be projected back onto the documents. We demonstrate the utility of our approach with a case study on georeferenced Wikipedia articles.