• Documents
  • Authors
  • Tables

CiteSeerX logo

DMCA

Scotland, UK.

Cached

  • Download as a PDF

Download Links

  • [ftp.dcs.glasgow.ac.uk]
  • [www.dcs.gla.ac.uk]
  • [eprints.gla.ac.uk]
  • [eprints.pascal-network.org]
  • [www2.isikun.edu.tr]
  • [www.dcs.gla.ac.uk]
  • [books.nips.cc]
  • [www.stat.duke.edu]
  • [www.kyb.tuebingen.mpg.de]
  • [www.kyb.mpg.de]
  • [www.stat.duke.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by E. Solak , D. J. Leith , R. Murray-smith , W. E. Leithead , C. E. Rasmussen
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Solak_scotland,uk.,
    author = {E. Solak and D. J. Leith and R. Murray-smith and W. E. Leithead and C. E. Rasmussen},
    title = {Scotland, UK.},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Gaussian processes provide an approach to nonparametric modelling which allows a straightforward combination of function and derivative observations in an empirical model. This is of particular importance in identification of nonlinear dynamic systems from experimental data. 1) It allows us to combine derivative information, and associated uncertainty with normal function observations into the learning and inference process. This derivative information can be in the form of priors specified by an expert or identified from perturbation data close to equilibrium. 2) It allows a seamless fusion of multiple local linear models in a consistent manner, inferring consistent models and ensuring that integrability constraints are met. 3) It improves dramatically the computational efficiency of Gaussian process models for dynamic system identification, by summarising large quantities of near-equilibrium data by a handful of linearisations, reducing the training set size – traditionally a problem for Gaussian process models. 1

Keyphrases

derivative information    gaussian process model    particular importance    computational efficiency    consistent manner    empirical model    gaussian process    seamless fusion    experimental data    straightforward combination    integrability constraint    dynamic system identification    derivative observation    perturbation data    large quantity    multiple local linear model    near-equilibrium data    consistent model    nonlinear dynamic system    normal function observation    inference process   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University