
On the Power of Quantum Computation �Daniel R. Simon yAbstractThe quantum model of computation, introduced by Feynman and �rst formalizedby Deutsch, is a probabilistic model, similar to the probabilistic Turing Machine, inwhich the laws of chance are those obeyed by particles on a quantum mechanical scale,rather than the rules familiar to us from the macroscopic world. Researchers suchas Deutsch and Jozsa, Brassard and Berthiaume, and Bernstein and Vazirani havealready given tantalizing hints that this model may be signi�cantly more powerful, ina complexity theoretic sense, than the probabilistic Turing Machine. We present heresome compelling evidence for this computational advantage: a problem of distinguishingbetween two fairly natural classes of function, which can be solved exponentially fasterin the quantum model than in the classical probabilistic one, when the function is givenas an oracle drawn equiprobably from the uniform distribution on either class. Drawingon this work, Shor has recently developed remarkable new quantum polynomial-timealgorithms for the discrete logarithm and integer factoring problems.1 IntroductionThe issue of the computational power of quantum mechanical processes was �rst raised byFeynman ([Fey]), who asked whether such physical processes could be e�ciently simulatedon a computer, and identi�ed some reasons why the task might be di�cult. His ideas wereelaborated on by Deutsch ([Deu]), who proposed that machines using quantum mechanicalprocesses might be able to perform computations that \classical" computing devices (thosethat do not exploit quantum mechanical e�ects) can only perform very ine�ciently. To thatend, he developed a(n at least theoretically) physically realizable model for a \quantumcomputer", that he conjectured might be more e�cient than a classical Turing Machine forcertain types of computations.�This work was supported by Gilles Brassard's NSERC research grant.yD�epartement IRO, Universit�e de Montr�eal, C.P. 6128, Succursale Centre-Ville, Montr�eal, Qu�ebec, H3C3J7, Canada; simon@iro.umontreal.ca 1



Since the construction of such a computer is beyond the realm of present technology, andwould require overcoming a number of daunting practical barriers, it is worth asking �rstwhether the proposed model even theoretically o�ers any substantial computational bene�tsover the classical Turing Machine model. The �rst hint of such a possibility was given byDeutsch and Jozsa ([DJ]), who presented a simple \promise problem" that can be solved ef-�ciently without error on Deutsch's quantum computer, but that requires exhaustive searchto solve deterministically without error in a classical setting. Brassard and Berthiaume([BB1]) recast this problem in complexity theoretic terms, and thus constructed an oraclerelative to which the quantum computer is exponentially more e�cient than the classical(zero-error) probabilistic Turing Machine. In [BB2], they exhibited a similar separation fornon-deterministic (zero-error) Turing Machines. (See also [BB3].)Unfortunately, the problems explored in [DJ], [BB1], [BB2] and [BB3] are all e�cientlysolved by a (classical) probabilistic Turing Machine with exponentially small error prob-ability. However, Bernstein and Vazirani ([BV]) constructed an oracle which produces asuperpolynomial relativized separation between the quantum and (classical) probabilisticmodels. They also gave the �rst e�cient construction of a universal quantum computerwhich can simulate any quantum computer (as de�ned by Deutsch) with only polynomialoverhead (Deutsch's universal quantum computer was subject to exponential slowdown).In this paper, we present an expected polynomial-time algorithm for a quantum com-puter that distinguishes between two reasonably natural classes of polynomial-time com-putable function. This task appears computationally di�cult in a classical setting; inparticular, if the function is supplied as an oracle, then distinguishing (with non-negligibleprobability) between a random function from one class and a random member of the otherwould take exponential time for a classical probabilistic Turing Machine. (A direct conse-quence is an oracle which produces an exponential relativized gap between the quantumand classical probabilistic models.) Recently Shor ([Sho]), drawing on the general approachpresented here and using a number of ingenious new techniques, has constructed quantumpolynomial-time algorithms for the discrete logarithm and integer factoring problems.2 Quantum Probability and Computation2.1 Classical and Quantum ProbabilityWe can represent a (classical) probabilistic computation on a Turing Machine (TM) as alevelled tree, as follows: each node corresponds to a state of the machine (ie., a con�gu-ration), and each level represents a step of the computation. The root corresponds to themachine's starting con�guration, and each other node corresponds to a di�erent con�gura-2



tion reachable with non-zero probability, in one computation step, from the con�gurationrepresented by its parent node. Each edge, directed from parent to child, is associated withthe probability that the computation follows that edge to the child node's con�gurationonce reaching the parent node's con�guration. Obviously, con�gurations may be duplicatedacross a single level of the tree, as children of di�erent parents, as well as appearing ondi�erent levels of the tree; nevertheless we represent each such appearance by a separatenode. Also, we say that any such computation tree is well-de�ned, meaning that the proba-bilities on the edges emanating from a parent node, and the con�gurations associated withits children, are strictly a function of the con�guration associated with the parent node,regardless of the node's position in the tree.Of course, this tree must necessarily conform not only to the constraints set by thede�nition of the TM whose computation it represents, but also to the laws of probability.For example, the probability of a particular path's being followed from the root to a node issimply the product of the probabilities along its edges. Hence we can associate a probabilitywith each node, corresponding to the probability that that node is reached in the computa-tion, and equal to the product of the probabilities assigned to the edges in the path leadingto it from the root. Moreover, the probability that a particular con�guration is reached ata certain step i in the computation is simply the sum of the probabilities of all the nodescorresponding to that con�guration at level i in the tree. (For example, the probability of aparticular �nal con�guration is the sum of the probabilities of all leaf nodes correspondingto that con�guration). Finally, the sum of the probabilities of all the con�gurations at anylevel of the tree must always be 1, regardless of the starting con�guration. A necessary andsu�cient condition for a well-de�ned computation tree always to satisfy this constraint isthat the sum of the probabilities on edges leaving any single node always be 1.A familiar equivalent representation of our well-de�ned computation, of course, is theMarkov chain, in which a vector of probabilities for each possible con�guration at a givenstep is multiplied by a �xed matrix to obtain the vector of probabilities of each con�gura-tion at the next step. For example, a space-S(n)-bounded computation can be representedby a Markov process with 2O(S(n)) states. Such a process can always be translated into aprobabilistic TM (PTM), as long as (a) it never takes one con�guration to another withnonzero probability unless the second can be obtained from the �rst via a single TM op-eration (ie., changing the control state, and/or changing the contents of the cell under thetape head, and/or moving the head position by one cell), and (b) it assigns probabilities tonew con�gurations consistently for any set of original con�gurations in which the controlstate and the contents of the cell under the tape head are identical. We say that processeswith this property are local; obviously, the computation of any PTM can be represented asa computation tree which is not only well-de�ned but also local.3



A computation on a quantum Turing Machine, or QTM (as described in [Deu]) canbe represented by a similar tree, but the laws of probability in the world of quantummechanics require that we make some adjustments to it. Instead of a probability, eachedge is associated with an amplitude. (In general, an amplitude is a complex number withmagnitude at most 1, but it is shown in [BV] that it is su�cient for complexity theoreticpurposes to consider only real amplitudes in the interval [�1; 1].) As before, the amplitude ofa node is simply the product of the amplitudes of the edges on the path from the root to thatnode. The amplitude of a particular con�guration at any step in the computation is simplythe sum of the amplitudes of all nodes corresponding to that con�guration, at the level inthe tree corresponding to that step. In the vector-matrix representation corresponding tothe classical Markov process, a quantum probabilistic step corresponds to multiplying thevector of amplitudes of all possible con�gurations at the current step by a �xed matrix, toobtain the vector representing the amplitude of each con�guration in the next step.Now, the probability of a con�guration at any step is the square of its amplitude. Forexample, the probability of a particular �nal con�guration is the square of the sum (notthe sum of the squares) of the amplitudes of all leaf nodes corresponding to that con�gura-tion. This way of calculating probability has some remarkable consequences; for instance,a particular con�guration c could correspond to two leaf nodes with amplitudes � and ��respectively, and the probability of c being the �nal con�guration would therefore be zero.Yet the parent nodes of these two nodes might both have nonzero probability. In fact, thecomputation would produce c with probability �2 if only the con�guration of one of theleaf nodes were in some way di�erent. Similarly, if both leaf nodes had amplitude �, thenthe probability of c being the �nal con�guration would be, not 2�2, but rather 4�2|thatis, more than twice the probability we would obtain if either of the nodes corresponded toa di�erent con�guration. This mutual in
uence between di�erent branches of the compu-tation is called interference, and it is the reason why quantum computation is conjecturedto be more powerful, in a complexity theoretic sense, than classical computation.However, even a quantum computation tree must obey the property that the sum of theprobabilities of con�gurations at any level must always equal 1. The choice of amplitudes onthe edges leading from a node to its children must therefore be restricted so as to ensure thatthis condition is always obeyed. It turns out not to be su�cient simply to require that foreach node the sum of the squares of the amplitudes on edges leading to its children be 1. Infact, even deterministic computation steps, in which a single outgoing edge to a single childhas amplitude 1, can violate this constraint, by causing previously di�erent con�gurations indi�erent branches of the tree to become identical. Such an event might change the patternof interference, thereby altering the sum of the probabilities of the con�gurations.Computation steps which never violate this constraint are called unitary, because theyare equivalent to multiplying the vector of amplitudes of all possible con�gurations by a uni-4



tary matrix. (Recall that a unitary matrix is one whose inverse is its conjugate transpose;when we restrict ourselves to real amplitudes, such a matrix becomes orthogonal|thatis, equal to the inverse of its transpose.) A QTM must always execute unitary steps; forinstance, its deterministic steps must be reversible, in the sense that the preceding con�g-uration can always be determined given the current one. (This restriction eliminates theaforementioned problem of distinct con�gurations suddenly becoming identical.) Probabilis-tic steps, to be unitary, must also be reversible, in the sense that some unitary probabilisticstep \undoes" the step. Such \un
ipping" of quantum coins is made possible by the magicof interference, which can cause alternative branches to cancel each other out, leaving theremaining ones (possibly all leading to an identical outcome) certain.Deutsch's QTM model of computation is simply a PTM which obeys the rules of quan-tum, rather than classical, probability. Just as the computation tree of a classical probabilis-tic computation is always well-de�ned and local, with probabilities always summing to 1,the computation tree of a quantum computation is always well-de�ned, local and unitary.At each step, the amplitudes of possible next con�gurations are determined by the ampli-tudes of possible current con�gurations, according to a �xed, local, unitary transformationrepresentable by a matrix analogous to the stochastic matrix of a Markov process.It is important to note that the standard equivalent characterization of a classical prob-abilistic computation tree, in which a deterministic machine simply reads a tape containingpre-written outcomes of independent fair coin tosses, does not appear to have a counterpartin the quantum model. It is true that an e�cient universal QTM was shown in [BV] torequire only a �xed, standard set of amplitudes for all its \probabilistic" steps. However,the reversibility condition guarantees that no new interference will be introduced once thosesteps have been completed (say, after all the \quantum coins" have been tossed), and anyremaining computation will thus be unable to exploit quantum e�ects. Hence the proba-bilistic and deterministic parts of the quantum computation tree cannot be \teased apart"the way they can in the classical case, and we must always keep an entire tree in mind whenwe deal with quantum computation, rather than assuming we can just follow a particular(deterministic) branch after some point. We therefore refer to a quantum computation asresulting, at any one step, in a superposition of all the branches of its tree simultaneously.2.2 Notation and an ExampleIt is useful to have a notation to denote superpositions (that is, entire levels of a compu-tation tree). We say that at any step i, the computation is in a superposition of all thecon�gurations jc1i; : : : ; jcki corresponding to nodes that appear in level i of the tree repre-senting the computation, each jcji having amplitude �j . (Borrowing quantum mechanicsnotation, we distinguish symbols representing con�gurations from those representing am-5



plitudes by placing ji brackets around con�guration symbols.) An abbreviated notation forthis superposition is Pj �jjcji; as we shall see, the suggestive addition/summation notationfor superpositions is quite appropriate.A simple example of a unitary quantum probabilistic step is the quantum \fair coin 
ip"performed upon a single bit. It is represented by the following matrix M :M = 1p2 " 1 11 �1 #M acts on 2-element column vectors whose top and bottom entries represent the am-plitudes of the states j0i and j1i respectively. A bit in state j0i is transformed by M into asuperposition of j0i and j1i, both with amplitude 1=p2. Similarly, a bit in state j1i is trans-formed into a superposition of j0i and j1i with amplitude of magnitude 1=p2 in each case,but with the sign, or phase of the amplitude of j1i being negative. In other words, the statej0i is transformed into (1=p2)j0i+ (1=p2)j1i, and j1i becomes (1=p2)j0i+ (�1=p2)j1i.It turns out that this transformation is its own inverse. For example, performing it a sec-ond time on a bit that was originally in state j0i produces (1=p2)((1=p2)j0i+(1=p2)j1i)+(1=p2)((1=p2)j0i+ (�1=p2)j1i). Collecting like terms in this expression (here we see theaptness of the addition/summation notation) allows us to obtain the amplitude of eachdistinct con�guration, which in this case is 1 for j0i and 0 for j1i. Similarly, performingthis same transformation twice on the initial con�guration j1i gives us j1i (with certainty)again.In a system of n bits, with 2n possible con�gurations, we can perform such a transforma-tion on each bit independently in sequence. The matrices representing these transformationswill be of dimension 2n� 2n, of course; their rows, each corresponding to a di�erent con�g-uration, will each have two non-zero entries, taken from either the top or bottom row ofM .Their columns will similarly have two non-zero entries each, taken from either the left orright column of M . Also, they will all be unitary, since they each represent a local, unitarytransformation.The result of performing these n di�erent transformations in sequence will be a super-position of all possible n-bit strings. The amplitude of each string at the end of the ntransformations will have magnitude 2�n=2. As the transformations are applied in turn, thephase of a resulting con�guration is changed when a bit that was previously a 1 remainsa 1 after the transformation is performed. Hence, the phase of the amplitude of stringx is determined by the parity of the dot product of the original con�guration string andx. More precisely, if the string w is the original con�guration, then the performing the6



product transformation composed of these n transformations in sequence will result in thesuperposition 2�n=2Xx (�1)w�xjxi:This product transformation was introduced in [DJ], and is referred to in [BV] as the Fouriertransformation F .3 Using quantum probability3.1 Problem: Is a function invariant under some xor-mask?Suppose we are given a function f : f0; 1gn ! f0; 1gm, with m � n, and we are promisedthat either f is 1{to{1, or there exists a non-trivial s such that 8x 6= x0(f(x) = f(x0) ,x0 = x � s), where � denotes bitwise exclusive-or. We wish to determine which of theseconditions holds for f , and, in the second case, to �nd s.We now present an algorithm for a QTM which solves the above problem, with zeroerror probability, in expected time O(nTf(n) + G(n)), where Tf (n) is the time required tocompute f on inputs of size n, and G(n) is the time required to solve an n�n linear systemof equations over Z2. The algorithm is very simple, consisting essentially of (an expected)O(n) repetitions of the following routine:Routine Fourier-twice1. perform the transformation F described above on a string of n zeroes,producing 2�n=2Px jxi.2. compute f(x), concatenating the answer to x, thus producing 2�n=2Px j(x; f(x))i.3. perform F on x, producing 2�nPyPx(�1)x�yj(y; f(x))i.End Fourier-twiceNote that the (deterministic) computation of (x; f(x)) from x in time Tf(n) in step 2can always be made reversible (and hence unitary) at the cost of only a constant factor inthe number of computation steps. This is due to a result obtained independently by Lecerf([Lec]) and Bennett ([Ben]).Suppose f is 1{to{1. Then after each performance of Fourier-twice, all the possiblecon�gurations j(y; f(x))i in the superposition will be distinct, and their amplitudes willtherefore all be 2�n, up to phase. Their probabilities will therefore each be 2�2n, and k7



independent repetitions of Fourier-twice will thus yield k con�gurations each distributeduniformly and independently over con�gurations of the form j(y; f(x))i.Now suppose that there is some s such that 8x 6= x0(f(x) = f(x0) , x0 = x � s).Then for each y and x, the con�gurations j(y; f(x))i and j(y; f(x� s))i are identical, andthe amplitude �(x; y) of this con�guration will be 2�n((�1)x�y + (�1)(x�s)�y). Note that ify � s = 0 (mod 2), then x � y = (x � s) � y, and �(x; y) = 2�n+1; otherwise �(x; y) = 0.Thus k independent repetitions of Fourier-twice will yield k con�gurations distributeduniformly and independently over con�gurations of the form j(y; f(x))i such that y � s = 0(mod 2).In both cases, after an expected O(n) repetitions of Fourier-twice, su�ciently manylinearly independent values of y will have been collected that the non-trivial string s� whosedot product with each is 0 will be uniquely determined. s� can then easily be obtained bysolving the linear system of equations de�ned by the values of y. In the second case, thisstring s� must be the s we are looking for, since we know that y � s = 0 (mod 2) for eachy generated in the second case. On the other hand, in the �rst case, where f is 1{to{1,s� will simply be a random string. Hence a simple evaluation of, say, f(0n) and f(s�)will determine whether we have found the true s (in the second case) or simply selected arandom string (in the �rst case).If we allow a bounded error probability, we can use essentially the same algorithm tosolve slightly less constrained promise problems. For example, in the case where f is 1{to{1,the outputs of O(n) repetitions of Fourier-twice will with probability 1 � 2O(n) containa basis for (Z2)n. On the other hand, if there exists an s such that for a fraction at least1 � �=n of possible choices of x, f(x) = f(x � s), then the outputs of n repetitions ofFourier-twice will still all satisfy y � s = 0, with probability at least 1 � �, regardless ofany other properties of f . Hence we can e�ciently distinguish between these two classes offunction (for appropriate �) on a quantum computer with negigible error probability.3.2 Relativized Hardness of our ProblemNow, in a relativized setting, suppose that an oracle is equiprobably either an oracle uni-formly distributed among permutations on n-bit values, or an oracle uniformly distributedamong those 2{to{1 functions f for which there exists a single nonzero s such that f(x)always equals f(x�s). Then a classical probabilistic oracle TM would require exponentiallymany oracle queries to successfully distinguish the two cases with probability non-negligiblygreater than 1=2. 8



Theorem 3.1 Let O be an oracle constructed as follows: for each n, a random n-bit strings(n) and a random bit b(n) are chosen. If b(n) = 0, then the function fn : f0; 1gn f0; 1gnchosen for O to compute on n-bit queries is a random 1-to-1 function; otherwise, it is arandom 2-to-1 function such that fn(x) = fn(x � s(n)) for all x, where � denotes bitwiseexclusive-or. Then any PTM that queries O no more than 2n=4 times (except for �nitelymany n) cannot correctly guess b(n) with probability greater than (1=2) + 2�n=2 (except for�nitely many n), over choices made in the construction of O, and its own probabilisticchoices.Proof: (sketch) Consider any such PTM M . We say that M 's choice of the �rst k queriesis good for n if M queries O at two n-bit input values whose exclusive or is s(n). If Mmakes a good choice of 2n=4 queries for n, then the distribution on answers given by Odi�ers depending on b(n); otherwise, the distributions are identical (ie., completely randomdistinct values for each distinct query). Since the probability that M guesses b(n) is onlygreater than 1=2 when its choices are good for n, we need only calculate that probabilityto obtain a bound on M 's probability of guessing b(n).Now, since O's answers are randomly chosen wherever they are not required to beidentical, they reveal no information other than sameness or distinctness. HenceM 's queriescan be assumed chosen independently of previously given query answers. But for anyk queries, the number of distinct pairs of input values queried (and hence the number ofdistinct values of s for which the queries might be good for n) is less than k2. The probabilitythatM 's (assumed independently chosen) 2n=4 queries are good for n is therefore no betterthan (2n=4)2=2n, or 2�n=2, over choices of s(n). It follows thatM cannot estimate b(n) withprobability better than (1=2)+ 2�n=2.We can also use the above theorem to prove the existence of a speci�c oracle relativeto which there is an exponential gap (in terms of classical computing time) between BPPand its quantum analogue, BQP (de�ned in the natural way; see [BV]). Let E be the(countable) set of classical oracle PTM's making at most 2n=4 queries on input 1n. We saythat M 2 E solves an oracle O generated as in Theorem 3.1 if for all n, M computes b(n),with error bounded away from 1=2, on input 1n. By Boole's inequality, the probability thatthere exists such an M , for an O so generated, is at most the sum over the choices of Mof the probability that M solves O. Since this latter probability is zero for all M 2 E, anoracle O chosen as described in Theorem 3.1 will with probability 1 be solved by noM 2 E.Hence with probability 1, the language f1njb(n) = 1g, for b(n) chosen as in Theorem 3.1,cannot be accepted with error bounded away from 1=2 by any M 2 E.Theorem 3.2 There exists an oracle O relative to which BQP 6� PTIME(2�n) (with two-sided error). 9



4 ConclusionSince any quantum computer running in polynomial time can be fairly easily simulatedin PSPACE, as was pointed out in [BV], we are unlikely to be able to prove anytimesoon that BQP is larger than P . However, Shor ([Sho]) has recently made a huge advancetowards establishing the complexity-theoretic advantage of the quantum model comparedto the classical one, by giving quantum polynomial-time algorithms for two well-knownpresumed-hard problems, those of computing discrete logarithms modulo a prime and offactoring integers. His algorithms follow the very rough outline of the ones presented here,but with many additional sophistications that allow them to work over the �eld Z�p (forprimes p such that p � 1 is smooth) rather than (Z2)n, and to extract much more than asingle bit of information per iteration.A logical next step might be to try to separate BPP and BQP based on a more generalcomplexity-theoretic assumption such as P 6= NP or the existence of one-way functions.Alternatively, it may be possible to prove limits to the advantages of quantum computationthrough simulation results of some kind. Further possible simpli�cations of the modelshould also be explored; for example, does the \fair quantum coin 
ip" su�ce as a universalnon-classical step, the way its classical counterpart, the fair coin 
ip, su�ces as a universal(classical) probabilistic step?Another issue is that of alternative models of quantum computation. Yao ([Yao]) haspresented a quantum circuit model and proven it equivalent to the QTM. In contrast, it isnot yet known whether a quantum cellular automaton is equivalent or more powerful, or evenhow reasonably to de�ne such a machine. Still other distinct quantum-based computationalmodels may exist, as well.Beyond the question of models is the matter of their implementation. For example,any physical realization of a quantum computer would necessarily be subject to some error;exact superpositions would end up being represented by approximations just as determin-istic discrete computations and random coin 
ips are approximated in modern computersusing analog quantities such as voltages. Some work has been done on the feasibilty ofresiliently simulating true randomness with \approximate randomness" (see, for example,[VV], [CG]); similar work is necessary to determine if computation using approximationsof quantum superpositions can be made comparably resilient. Only once these and othertheoretical issues have been dealt with can we even begin to consider the possibility ofactually implementing a quantum computer.10



AcknowledgementsMany thanks to Charles Bennett, Ethan Bernstein, Gilles Brassard, Jeroen van de Graaf,Richard Jozsa, and Dominic Mayers for valuable insights and helpful discussion.References[Ben] C. H. Bennett, Logical Reversibility of Computation, IBM J. Res. Develop., Vol 17,pp. 525{532 (1973).[BB1] A. Berthiaume and G. Brassard, The Quantum Challenge to Structural ComplexityTheory, Proc. 7th IEEE Conference on Structure in Complexity Theory (1992).[BB2] A. Berthiaume and G. Brassard, Oracle Quantum Computing, Proc. Physics of Com-putation (1992).[BB3] A. Berthiaume and G. Brassard, Oracle Quantum Computing, J. Modern Optics, toappear.[BV] E. Bernstein and U. Vazirani, Quantum Complexity Theory, Proc. 25th ACM Symp.on Theory of Computation, pp. 11{20 (1993).[CG] B. Chor and O. Goldreich, Unbiased Bits from Sources of Weak Randomness andProbabilistic Communication Complexity, SIAM J. Comput. 17, pp. 230{261 (1988).[Deu] D. Deutsch, Quantum Theory, the Church{Turing Principle and the Universal Quan-tum Computer, Proc. R. Soc. Lond., Vol. A400, pp. 73{90 (1985).[DJ] D. Deutsch and R. Jozsa, Rapid Solution of Problems by Quantum Computation,Proc. R. Soc. Lond., Vol. A439, pp. 553{558 (1992).[Fey] R. Feynman, Simulating Physics with Computers, International Journal of Theoret-ical Physics, Vol. 21, nos. 6/7, pp. 467{488 (1982).[Lec] Yves Lecerf, Machines de Turing reversibles. R�ecursive insolubilit�e en n�N del'�equation u = �n ou � est un \isomorphism de codes". Comptes Rendus de L'A-cademie Francaise des Sciences, Vol. 257, 2597-2600 (1963).[Sho] P. Shor, Algorithms for Quantum Computation: Discrete Log and Factoring, Manu-script.[VV] U.V. Vazirani and V.V. Vazirani Random Polynomial Time is Equal to Slightly-Random Polynomial Time, Proc. 26th IEEE Symp. on Foundations of ComputerScience, pp. 417{428 (1985). 11



[Yao] A. Yao, Quantum Circuit Complexity, Proc. 34th IEEE Symp. on Foundations ofComputer Science, 1993.

12


