
Comprehending MonadsPhilip WadlerUniversity of GlasgowAbstractCategory theorists invented monads in the 1960's to concisely express certainaspects of universal algebra. Functional programmers invented list comprehensionsin the 1970's to concisely express certain programs involving lists. This paper showshow list comprehensions may be generalised to an arbitrary monad, and how theresulting programming feature can concisely express in a pure functional languagesome programs that manipulate state, handle exceptions, parse text, or invoke con-tinuations. A new solution to the old problem of destructive array update is alsopresented. No knowledge of category theory is assumed.1 IntroductionIs there a way to combine the indulgences of impurity with the blessings of purity?Impure, strict functional languages such as Standard ML [Mil84, HMT88] and Scheme[RC86] support a wide variety of features, such as assigning to state, handling exceptions,and invoking continuations. Pure, lazy functional languages such as Haskell [HPW91] orMiranda1 [Tur85] eschew such features, because they are incompatible with the advan-tages of lazy evaluation and equational reasoning, advantages that have been describedat length elsewhere [Hug89, BW88].Purity has its regrets, and all programmers in pure functional languages will recallsome moment when an impure feature has tempted them. For instance, if a counter isrequired to generate unique names, then an assignable variable seems just the ticket. Insuch cases it is always possible to mimic the required impure feature by straightforwardthough tedious means. For instance, a counter can be simulated by modifying the relevantfunctions to accept an additional parameter (the counter's current value) and return anadditional result (the counter's updated value).1Miranda is a trademark of Research Software Limited.Author's address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland. Elec-tronic mail: wadler@cs.glasgow.ac.uk.This paper appeared inMathematical Structures in Computer Science volume 2, pp. 461{493, 1992; copy-right Cambridge University Press. This version corrects a few small errors in the published version. Anearlier version appeared in ACM Conference on Lisp and Functional Programming, Nice, June 1990.1

This paper describes a new method for structuring pure programs that mimic impurefeatures. This method does not completely eliminate the tension between purity andimpurity, but it does relax it a little bit. It increases the readability of the resultingprograms, and it eliminates the possibility of certain silly errors that might otherwisearise (such as accidentally passing the wrong value for the counter parameter).The inspiration for this technique comes from the work of Eugenio Moggi [Mog89a,Mog89b]. His goal was to provide a way of structuring the semantic description of featuressuch as state, exceptions, and continuations. His discovery was that the notion of a monadfrom category theory suits this purpose. By de�ning an interpretation of �-calculus inan arbitrary monad he provided a framework that could describe all these features andmore.It is relatively straightforward to adopt Moggi's technique of structuring denotationalspeci�cations into a technique for structuring functional programs. This paper presents asimpli�ed version of Moggi's ideas, framed in a way better suited to functional program-mers than semanticists; in particular, no knowledge of category theory is assumed.The paper contains two signi�cant new contributions.The �rst contribution is a new language feature, the monad comprehension. Thisgeneralises the familiar notion of list comprehension [Wad87], due originally to Burstalland Darlington, and found in KRC [Tur82], Miranda, Haskell and other languages. Monadcomprehensions are not essential to the structuring technique described here, but they doprovide a pleasant syntax for expressing programs structured in this way.The second contribution is a new solution to the old problem of destructive arrayupdate. The solution consists of two abstract data types with ten operations betweenthem. Under this approach, the usual typing discipline (e.g., Hindley-Milner extendedwith abstract data types) is su�cient to guarantee that array update may safely beimplemented by overwriting. To my knowledge, this solution has never been proposedbefore, and its discovery comes as a surprise considering the plethora of more elaboratesolutions that have been proposed: these include syntactic restrictions [Sch85], run-timechecks [Hol83], abstract interpretation [Hud86a, Hud86b, Blo89], and exotic type systems[GH90, Wad90, Wad91]. That monads led to the discovery of this solution must count asa point in their favour.Why has this solution not been discovered before? One likely reason is that the datatypes involve higher-order functions in an essential way. The usual axiomatisation ofarrays involves only �rst-order functions (index , update, and newarray, as described inSection 4.3), and so, apparently, it did not occur to anyone to search for an abstract datatype based on higher-order functions. Incidentally, the higher-order nature of the solutionmeans that it cannot be applied in �rst-order languages such as Prolog or OBJ. It alsocasts doubt on Goguen's thesis that �rst-order languages are su�cient for most purposes[Gog88].Monads and monad comprehensions help to clarify and unify some previous proposalsfor incorporating various features into functional languages: exceptions [Wad85, Spi90],parsers [Wad85, Fai87, FL89], and non-determinism [HO89]. In particular, Spivey's work[Spi90] is notable for pointing out, independently of Moggi, that monads provide a frame-2

work for exception handling.There is a translation scheme from �-calculus into an arbitrary monad. Indeed, thereare two schemes, one yielding call-by-value semantics and one yielding call-by-name.These can be used to systematically transform languages with state, exceptions, continu-ations, or other features into a pure functional language. Two applications are given. Oneis to derive call-by-value and call-by-name interpretations for a simple non-deterministiclanguage: this �ts the work of Hughes and O'Donnell [HO89] into the more general frame-work given here. The other is to apply the call-by-value scheme in the monad of continu-ations: the result is the familiar continuation-passing style transformation. It remains anopen question whether there is a translation scheme that corresponds to call-by-need asopposed to call-by-name.A key feature of the monad approach is the use of types to indicate what parts ofa program may have what sorts of e�ects. In this, it is similar in spirit to Gi�ord andLucassen's e�ect systems [GL88].The examples in this paper are based on Haskell [HPW91], though any lazy functionallanguage incorporating the Hindley/Milner type system would work as well.The remainder of this paper is organised as follows. Section 2 uses list comprehensionsto motivate the concept of a monad, and introduces monad comprehensions. Section 3shows that variable binding (as in \let" terms) and control of evaluation order can bemodelled by two trivial monads. Section 4 explores the use of monads to structure pro-grams that manipulate state, and presents the new solution to the array update problem.Two examples are considered: renaming bound variables, and interpreting a simple im-perative language. Section 5 extends monad comprehensions to include �lters. Section 6introduces the concept of monad morphism and gives a simple proof of the equivalence oftwo programs. Section 7 catalogues three more monads: parsers, exceptions, and continu-ations. Section 8 gives the translation schemes for interpreting �-calculus in an arbitrarymonad. Two examples are considered: giving a semantics to a non-deterministic language,and deriving continuation-passing style.2 Comprehensions and monads2.1 ListsLet us write M x for the data type of lists with elements of type x . (In Haskell, this isusually written [x].) For example, [1 ; 2 ; 3] :: M Int and [`a'; `b'; `c'] :: M Char . We writemap for the higher-order function that applies a function to each elment of a list:map :: (x ! y)! (M x ! M y):(In Haskell, type variables are written with small letters, e.g., x and y, and type construc-tors are written with capital letters, e.g., M .) For example, if code :: Char ! Int maps acharacter to its ASCII code, then map code [`a'; `b'; `c'] = [97 ; 98 ; 99]. Observe that(i) map id = id ;(ii) map (g � f) = map g �map f :3

Here id is the identity function, id x = x , and g � f is function composition, (g � f) x =g (f x).In category theory, the notions of type and function are generalised to object andarrow . An operator M taking each object x into an object M x , combined with anoperator map taking each arrow f :: x ! y into an arrow map f :: M x ! M y, andsatisfying (i) and (ii), is called a functor. Categorists prefer to use the same symbol forboth operators, and so would write M f where we write map f .The function unit converts a value into a singleton lists, and the function join con-catenates a list of lists into a list:unit :: x !M x ;join ::M (M x)!M x :For example, unit 3 = [3] and join [[1 ; 2]; [3]] = [1 ; 2 ; 3]. Observe that(iii) map f � unit = unit � f ;(iv) map f � join = join �map (map f):Laws (iii) and (iv) may be derived by a systematic transformation of the polymorphictypes of unit and join. The idea of deriving laws from types goes by the slogan \theoremsfor free" [Wad89] and is a consequence of Reynolds' abstraction theorem for polymorphiclambda calculus [Rey83].In categorical terms, unit and join are natural transformations. Rather than treat unitas a single function with a polymorphic type, categorists treat it as a family of arrows,unitx :: x !M x , one for each object x , satisfying map f � unitx = unity � f for any objectsx and y and any arrow f :: x ! y between them. They treat join similarly. Naturaltransformation is a simpler concept than polymorphic function, but we will stick withpolymorphism since it's a more familiar concept to functional programmers.2.2 ComprehensionsMany functional languages provide a form of list comprehension analogous to set compre-hension. For example,[(x ; y) j x [1 ; 2]; y [3 ; 4]] = [(1 ; 3); (1 ; 4); (2 ; 3); (2 ; 4)]:In general, a comprehension has the form [t j q], where t is a term and q is a quali�er. Weuse the letters t , u, v to range over terms, and p, q, r to range over quali�ers. A quali�eris either empty, �; or a generator, x u, where x is a variable and u is a list-valuedterm; or a composition of quali�ers, (p; q). Comprehensions are de�ned by the followingrules: (1) [t j �] = unit t ;(2) [t j x u] = map (�x ! t) u;(3) [t j (p; q)] = join [[t jq] j p]:4

(In Haskell, �-terms are written (�x ! t) rather than the more common (�x : t).) Notethe reversal of quali�ers in rule (3): nesting q inside p on the right-hand side means that,as we expect, variables bound in p may be used in q but not vice-versa.For those familiar with list comprehensions, the empty quali�er and the parenthesesin quali�er compositions will appear strange. This is because they are not needed. Wewill shortly prove that quali�er composition is associative and has the empty quali�eras unit. Thus we need not write parentheses in quali�er compositions, since ((p; q); r)and (p; (q; r)) are equivalent, and we need not write (q;�) or (�; q) because both areequivalent to the simpler q. The only remaining use of � is to write [t j �], which weabbreviate [t].Most languages that include list comprehensions also allow another form of quali�er,known as a �lter, the treatment of which is postponed until Section 5.As a simple example, we have:[sqr x j x [1 ; 2 ; 3]]= fby (2)gmap (�x ! sqr x) [1 ; 2 ; 3]= freducing mapg[1 ; 4 ; 9]:The comprehension in the initial example is computed as:[(x ; y) j x [1 ; 2]; y [3 ; 4]]= fby (3)gjoin [[(x ; y) j y [3 ; 4]] j x [1 ; 2]]= fby (2)gjoin [map (�y ! (x ; y)) [3 ; 4] j x [1 ; 2]]= fby (2)gjoin (map (�x ! map (�y ! (x ; y)) [3 ; 4]) [1 ; 2])= freducing mapgjoin (map (�x ! [(x ; 3); (x ; 4)]) [1 ; 2])= freducing mapgjoin [[(1 ; 3); (1 ; 4)]; [(2 ; 3); (2 ; 4)]]= freducing joing[(1 ; 3); (1 ; 4); (2 ; 3); (2 ; 4)]:From (i){(iv) and (1){(3) we may derive further laws:(4) [f t j q] = map f [t j q];(5) [x j x u] = u;(6) [t j p; x [ujq]; r] = [tux j p; q; rux]:In (4) function f must contain no free occurrences of variables bound by quali�er q, andin (6) the term tux stands for term t with term u substituted for each free occurrence ofvariable x , and similarly for the quali�er rux . Law (4) is proved by induction over the5

structure of quali�ers; the proof uses laws (ii){(iv) and (1){(3). Law (5) is an immediateconsequence of laws (i) and (2). Law (6) is again proved by induction over the structureof quali�ers, and the proof uses laws (1){(4).As promised, we now show that quali�er composition is associative and has the emptyquali�er as a unit: (I 0) [t j �; q] = [t j q];(II 0) [t j q; �] = [t j q];(III 0) [t j (p; q); r] = [t j p; (q; r)]:First, observe that (I 0){(III 0) are equivalent, respectively, to the following:(I) join � unit = id ;(II) join �map unit = id ;(III) join � join = join �map join:To see that (II 0) and (II) are equivalent, start with the left side of (II 0) and simplify:[t j q; �]= fby (3)gjoin [[t j �] j q]= fby (1)gjoin [unit t j q]= fby (4)gjoin (map unit [t j q]):That (II) implies (II 0) is immediate. For the converse, take [t j q] to be [x j x u] andapply (5). The other two equivalences are seen similarly.Second, observe that laws (I){(III) do indeed hold. For example:join (unit [1 ; 2]) = join [[1 ; 2]] = [1 ; 2];join (map unit [1 ; 2]) = join [[1]; [2]] = [1 ; 2];join (join [[[1]; [2]]; [[3]]]) = join [[1]; [2]; [3]] = [1 ; 2 ; 3];join (map join [[[1]; [2]]; [[3]]]) = join [[1 ; 2]; [3]] = [1 ; 2 ; 3]:Use induction over lists to prove (I) and (II), and over list of lists to prove (III).2.3 MonadsThe comprehension notation suits data structures other than lists. Sets and bags areobvious examples, and we shall encounter many others. Inspection of the foregoing letsus isolate the conditions under which a comprehension notation is sensible.For our purposes, amonad is an operatorM on types together with a triple of functionsmap :: (x ! y)! (M x !M y);unit :: x !M x ;join :: M (M x)! M x ;6

satisfying laws (i){(iv) and (I){(III).Every monad gives rise to a notion of comprehension via laws (1){(3). The threelaws establish a correspondence between the three components of a monad and the threeforms of quali�er: (1) associates unit with the empty quali�er, (2) associates map withgenerators, and (3) associates join with quali�er composition. The resulting notion ofcomprehension is guaranteed to be sensible in that it necessarily satis�es laws (4){(6)and (I 0){(III 0).In what follows, we will need to distinguish many monads. We writeM alone to standfor the monad, leaving the triple (mapM ; unitM ; joinM) implicit, and we write [t j q]Mto indicate in which monad a comprehension is to be interpreted. The monad of lists asdescribed above will be written List .As an example, take Set to be the set type constructor, mapSet to be the image of aset under a function, unitSet to be the function that takes an element into a singleton set,and joinSet to be the union of a set of sets:mapSet f x = f f x j x 2 x gunitSet x = f x gjoinSet x = S x :The resulting comprehension notation is the familiar one for sets. For instance, [(x ; y) jx x ; y y]Set speci�es the cartesian product of sets x and y.We can recover unit , map, and join from the comprehension notation:(1 0) unit x = [x](2 0) map f x = [f x j x x](3 0) join x = [x j x x ; x x]:Here we adopt the convention that if x has type x , then x has type M x and x has typeM (M x).Thus not only can we derive comprehensions from monads, but we can also derivemonads from comprehensions. De�ne a comprehension structure to be any interpretationof the syntax of comprehensions that satis�es laws (5){(6) and (I 0){(III 0). Any monadgives rise to a comprehension structure, via laws (1){(3); as we have seen, these imply(4){(6) and (I 0){(III 0). Conversely, any comprehension structure gives rise to a monadstructure, via laws (1 0){(3 0); it is easy to verify that these imply (i){(iv) and (1){(4),and hence (I){(III).The concept we arrived at by generalising list comprehensions, mathematicians arrivedat by a rather di�erent route. It �rst arose in homological algebra in the 1950's withthe undistinguished name \standard construction" (sort of a mathematical equivalent of\hey you"). The next name, \triple", was not much of an improvement. Finally it wasbaptised a \monad". Nowadays it can be found in any standard text on category theory[Mac71, BW85, LS86].The concept we call a monad is slightly stronger than what a categorist means by thatname: we are using what a categorist would call a strong monad in a cartesian closed7

category. Rougly speaking, a category is cartesian closed if it has enough structure tointerpret �-calculus. In particular, associated with any pair of objects (types) x and ythere is an object [x ! y] representing the space of all arrows (functions) from x to y.Recall that M is a functor if for any arrow f :: x ! y there is an arrow map f :: M x !M y satisfying (i) and (ii). This functor is strong if it is itself represented by a singlearrow map :: [x ! y]! [M x ! M y]. This is all second nature to a generous functionalprogrammer, but a stingy categorist provides such structure only when it is needed.It is needed here, as evidenced by Moggi's requirement that a computational monadhave a strength, a function t :: (x ;M y) ! M (x ; y) satisfying certain laws [Mog89a]. Ina cartesian closed category, a monad with a strength is equivalent to a monad with astrong functor as described above. In our framework, the strength is de�ned by t (x ; y) =[(x ; y) j y y]. (Following Haskell, we write (x ; y) for pairs and also (x ; y) for thecorresponding product type.)Monads were conceived in the 1950's, list comprehensions in the 1970's. They havequite independent origins, but �t with each other remarkably well. As often happens, acommon truth may underlie apparently disparate phenomena, and it may take a decadeor more before this underlying commonality is unearthed.3 Two trivial monads3.1 The identity monadThe identity monad is the trivial monad speci�ed bytype Id x = xmapId f x = f xunit Id x = xjoinId x = x ;so mapId , unit Id , and bind id are all just the identity function. A comprehension in theidentity monad is like a \let" term: [t j x u]Id= ((�x ! t) u)= (let x = u in t):Similarly, a sequence of quali�ers corresponds to a sequence of nested \let" terms:[t j x u; y v]Id = (let x = u in (let y = v in t)):Since y is bound after x it appears in the inner \let" term. In the following, comprehen-sions in the identity monad will be written in preference to \let" terms, as the two areequivalent.In the Hindley-Milner type system, �-terms and \let" terms di�er in that the lattermay introduce polymorphism. The key factor allowing \let" terms to play this role is that8

the syntax pairs each bound variable with its binding term. Since monad comprehensionshave a similar property, it seems reasonable that they, too, could be used to introducepolymorphism. However, the following does not require comprehensions that introducepolymorphism, so we leave exploration of this issue for the future.3.2 The strictness monadSometimes it is necessary to control order of evaluation in a lazy functional program. Thisis usually achieved with the computable function strict , de�ned bystrict f x = if x 6= ? then f x else ?:Operationally, strict f x is reduced by �rst reducing x to weak head normal form (WHNF)and then reducing the application f x . Alternatively, it is safe to reduce x and f x inparallel, but not allow access to the result until x is in WHNF.We can use this function as the basis of a monad:type Str x = xmapStr f x = strict f xunitStr x = xjoinStr x = x :This is the same as the identity monad, except for the de�nition of mapStr . Monad laws(i), (iii){(iv), and (I){(III) are satis�ed, but law (ii) becomes an inequality,mapStr g �mapStr f v mapStr (g � f):So Str is not quite a monad; categorists might call it a lax monad. Comprehensions forlax monads are de�ned by laws (1){(3), just as for monads. Law (5) remains valid, butlaws (4) and (6) become inequalities.We will use Str -comprehensions to control the evaluation order of lazy programs. Forinstance, the operational interpretation of[t j x u; y v]Stris as follows: reduce u to WHNF, bind x to the value of u, reduce v to WHNF, bind yto value of v , then reduce t . Alternatively, it is safe to reduce t , u, and v in parallel, butnot to allow access to the result until both u and v are in WHNF.4 Manipulating stateProcedural programming languages operate by assigning to a state; this is also possible inimpure functional languages such as Standard ML. In pure functional languages, assign-ment may be simulated by passing around a value representing the current state. Thissection shows how the monad of state transformers and the corresponding comprehensioncan be used to structure programs written in this style.9

4.1 State transformersFix a type S of states. The monad of state transformers ST is de�ned bytype ST x = S ! (x ;S)mapST f x = �s ! [(f x ; s 0) j (x ; s 0) x s]IdunitST x = �s ! (x ; s)joinST x = �s ! [(x ; s 00) j (x ; s 0) x s; (x ; s 00) x s 0]Id :(Recall the equivalence of Id -comprehensions and \let" terms as explained in Section 3.1.)A state transformer of type x takes a state and returns a value of type x and a new state.The unit takes the value x into the state transformer �s ! (x ; s) that returns x andleaves the state unchanged. We have that[(x ; y) j x x ; y y]ST = �s ! [((x ; y); s 00) j (x ; s 0) x s; (y; s 00) y s 0]Id :This applies the state transformer x to the state s, yielding the value x and the new states 0; it then applies a second transformer y to the state s 0 yielding the value y and thenewer state s 00; �nally, it returns a value consisting of x paired with y and the �nal states 00. Two useful operations in this monad arefetch :: ST Sfetch = �s ! (s; s)assign :: S ! ST ()assign s 0 = �s ! ((); s 0):The �rst of these fetches the current value of the state, leaving the state unchanged; thesecond discards the old state, assigning the new state to be the given value. Here () isthe type that contains only the value ().A third useful operation isinit :: S ! ST x ! xinit s x = [x j (x ; s 0) x s]Id :This applies the state transformer x to a given initial state s; it returns the value computedby the state transformer while discarding the �nal state.4.2 Example: RenamingSay we wish to rename all bound variables in a lambda term. A suitable data type Termfor representing lambda terms is de�ned in Figure 1 (in Standard ML) and Figure 2 (inHaskell). New names are to be generated by counting; we assume there is a functionmkname :: Int ! Name10

that given an integer computes a name. We also assume a functionsubst :: Name ! Name ! Term ! Termsuch that subst x 0 x t substitutes x 0 for each free occurrence of x in t .A solution to this problem in the impure functional language Standard ML is shownin Figure 1. The impure feature we are concerned with here is state: the solution usesa reference N to an assignable location containing an integer. The \functions" and theirtypes are: newname :: ()! Name;renamer :: Term ! Term;rename :: Term ! Term:Note that newname and renamer are not true functions as they depend on the state.In particular, newname returns a di�erent name each time it is called, and so requiresthe dummy parameter () to give it the form of a \function". However, rename is atrue function, since it always generates new names starting from 0. Understanding theprogram requires a knowledge of which \functions" a�ect the state and which do not.This is not always easy to see { renamer is not a true function, even though it does notcontain any direct reference to the state N , because it does contain an indirect referencethrough newname; but rename is a true function, even though it references renamer .An equivalent solution in a pure functional language is shown in Figure 2. Thisexplicitly passes around an integer that is used to generate new names. The functionsand their types are: newname :: Int ! (Name; Int);renamer :: Term ! Int ! (Term; Int);rename :: Term ! Term:The function newname generates a new name from the integer and returns an incrementedinteger; the function renamer takes a term and an integer and returns a renamed term(with names generated from the given integer) paired with the �nal integer generated.The function rename takes a term and returns a renamed term (with names generatedfrom 0). This program is straightforward, but can be di�cult to read because it containsa great deal of \plumbing" to pass around the state. It is relatively easy to introduceerrors into such programs, by writing n where n 0 is intended or the like. This \plumbingproblem" can be more severe in a program of greater complexity.Finally, a solution of this problem using the monad of state transformers is shown inFigure 3. The state is taken as S = Int . The functions and their types are now:newname :: ST Name;renamer :: Term ! ST Name;rename :: Term ! Term:The monadic program is simply a di�erent way of writing the pure program: expanding themonad comprehensions in Figure 3 and simplifying would yield the program in Figure 2.11

Types in the monadic program can be seen to correspond directly to the types in theimpure program: an impure \function" of type U ! V that a�ects the state correspondsto a pure function of type U ! ST V . Thus, renamer has type Term ! Term in theimpure program, and type Term ! ST Term in the monadic program; and newnamehas type ()! Name in the impure program, and type ST Name, which is isomorphic to()! ST Name, in the pure program. Unlike the impure program, types in the monadicprogram make manifest where the state is a�ected (and so do the ST -comprehensions).The \plumbing" is now handled implicitly by the state transformer rather than explic-itly. Various kinds of errors that are possible in the pure program (such as accidentallywriting n in place of n 0) are impossible in the monadic program. Further, the type sys-tem ensures that plumbing is handled in an appropriate way. For example, one mightbe tempted to write, say, App (renamer t) (renamer u) for the right-hand side of the lastequation de�ning renamer , but this would be detected as a type error.Safety can be further ensured by making ST into an abstract data type on whichmapST , unitST , joinST , fetch, assign, and init are the only operations. This guaranteesthat one cannot mix the state transformer abstraction with other functions which handlethe state inappropriately. This idea will be pursued in the next section.Impure functional languages (such as Standard ML) are restricted to using a strict(or call-by-value) order of evaluation, because otherwise the e�ect of the assignmentsbecomes very di�cult to predict. Programs using the monad of state transformers can bewritten in languages using either a strict (call-by-value) or lazy (call-by-name) order ofevaluation. The state-transformer comprehensions make clear exactly the order in whichthe assignments take e�ect, regardless of the order of evaluation used.Reasoning about programs in impure functional languages is problematic (althoughnot impossible { see [MT89] for one approach). In contrast, programs written usingmonads, like all pure programs, can be reasoned about in the usual way, substitutingequals for equals. They also satisfy additional laws, such as the following laws on quali�ers:x fetch; y fetch = x fetch; y [x]ST ;() assign u; y fetch = () assign u; y [u]ST ;() assign u; () assign v = () assign v ;and on terms: init u [t]ST = t ;init u [t j () assign v ; q]ST = init v [t j q]ST ;init u [t j q; () assign v]ST = init u [t j q]ST :These, together with the comprehension laws (5), (6), and (I 0) � �(III 0), allow one touse equational reasoning to prove properties of programs that manipulate state.12

4.3 Array updateLet Arr be the type of arrays taking indexes of type Ix and yielding values of type Val .The key operations on this type arenewarray :: Val ! Arr ;index :: Ix ! Arr ! Val ;update :: Ix ! Val ! Arr ! Arr :Here newarray v returns an array with all entries set to v ; and index i a returns the valueat index i in array a; and update i v a returns an array where index i has value v and theremainder is identical to a. In equations,index i (newarray v) = v ;index i (update i v a) = v ;index i (update i 0 v a) = index i a; if i 6= i 0.The e�cient way to implement the update operation is to overwrite the speci�ed entry ofthe array, but in a pure functional language this is only safe if there are no other pointersto the array extant when the update operation is performed.Now consider the monad of state transformers taking the state type S = Arr , so thattype ST x = Arr ! (x ;Arr):Variants of the fetch and assign operations can be de�ned to act on an array entry speci�edby a given index, and a variant of init can be de�ned to initialise all entries in an arrayto a given value: fetch :: Ix ! ST Valfetch i = �a ! [(v ; a) j v index i a]Strassign :: Ix ! Val ! ST ()assign i v = �a ! ((); update i v a)init :: Val ! ST x ! xinit v x = [x j (x ; a) x (newarray v)]Id :A Str -comprehension is used in fetch to force the entry from a to be fetched before a ismade available for further access; this is essential in order for it to be safe to update a byoverwriting.Now, say we make ST into an abstract data type such that the only operations onvalues of type ST are mapST , unitST , joinST , fetch, assign, and init . It is straightforwardto show that each of these operations, when passed the sole pointer to an array, returnsas its second component the sole pointer to an array. Since these are the only operationsthat may be used to build a term of type ST , this guarantees that it is safe to implementthe assign operation by overwriting the speci�ed array entry.The key idea here is the use of the abstract data type. Monad comprehensions are notessential for this to work, they merely provide a desirable syntax.13

4.4 Example: InterpreterConsider building an interpreter for a simple imperative language. The store of thislanguage will be modelled by a state of type Arr , so we will take Ix to be the type ofvariable names, and Val to be the type of values stored in variables. The abstract syntaxfor this language is represented by the following data types:data Exp = Var Ix j Const Val j Plus Exp Expdata Com = Asgn Ix Exp j Seq Com Com j If Exp Com Comdata Prog = Prog Com Exp:An expression is a variable, a constant, or the sum of two expressions; a command is anassignment, a sequence of two commands, or a conditional; and a program consists of acommand followed by an expression.A version of the interpreter in a pure functional language is shown in Figure 4. Theinterpreter can be read as a denotational semantics for the language, with three semanticfunctions: exp :: Exp ! Arr ! Val ;com :: Com ! Arr ! Arr ;prog :: Prog ! Val :The semantics of an expression takes a store into a value; the semantics of a commandtakes a store into a store; and the semantics of a program is a value. A program consists ofa command followed by an expression; its value is determined by applying the commandto an initial store where all variables have the value 0 , and then evaluating the expressionin the context of the resulting store.The interpreter uses the array operations newarray, index , and update. As it happens,it is safe to perform the updates in place for this program, but to discover this requiresusing one of the special analysis techniques cited in the introduction.The same interpreter has been rewritten in Figure 5 using state transformers. Thesemantic functions now have the types:exp :: Exp ! ST Val ;com :: Com ! ST ();prog :: Prog ! Val :The semantics of an expression depends on the state and returns a value; the semanticsof a command transforms the state only; the semantics of a program, as before, is justa value. According to the types, the semantics of an expression might alter the state,although in fact expressions depend the state but do not change it { we will return to thisproblem shortly.The abstract data type for ST guarantees that it is safe to perform updates (indicatedby assign) in place { no special analysis technique is required. It is easy to see howthe monad interpreter can be derived from the original, and (using the de�nitions givenearlier) the proof of their equivalence is straightforward.14

The program written using state transformers has a simple imperative reading. Forinstance, the line com (Seq c1 c2) = [() j () com c1 ; () com c2]STcan be read \to evaluate the command Seq c1 c2 , �rst evaluate c1 and then evaluatec2". The types and the use of the ST comprehension make clear that these operationstransform the state; further, that the values returned are of type () makes it clear thatonly the e�ect on the state is of interest here.One drawback of this program is that it introduces too much sequencing. The lineexp (Plus e1 e2) = [v1 + v2 j v1 exp e1 ; v2 exp e2]STcan be read \to evaluate Plus e1 e2 , �rst evaluate e1 yielding the value v1 , then evaluatee2 yielding the value v2 , then add v1 and v2". This is unfortunate: it imposes a spuriousordering on the evaluation of e1 and e2 (the original program implies no such ordering).The order does not matter because although exp depends on the state, it does not changeit. But, as already noted, there is no way to express this using just the monad of statetransformers. To remedy this we will introduce a second monad, that of state readers.4.5 State readersRecall that the monad of state transformers, for a �xed type S of states, is given bytype ST x = S ! (x ;S):The monad of state readers, for the same type S of states, is given bytype SR x = S ! xmapSR f bx = �s ! [f x j x bx s]IdunitSR x = �s ! xjoinSR bbx = �s ! [x j bx bbx s; x bx s]Id :Here bx is a variable of type SR x , just as x is a variable of type ST x . A state reader oftype x takes a state and returns a value (of type x), but no new state. The unit takesthe value x into the state transformer �s ! x that ignores the state and returns x . Wehave that [(x ; y) j x bx ; y by]SR = �s ! [(x ; y) j x bx s; y by s]Id :This applies the state readers bx and by to the state s, yielding the values x and y, whichare returned in a pair.It is easy to see that[(x ; y) j x bx ; y by]SR = [(x ; y) j y by; x bx]SR;15

so that the order in which bx and by are computed is irrelevant. A monad with this propertyis called commutative, since it follows that[t j p; q]SR = [t j q; p]SRfor any term t , and any quali�ers p and q such that p binds no free variables of q andvice-versa. Thus state readers capture the notion of order independence that we desirefor expression evaluation in the interpreter example.Two useful operations in this monad arefetch :: SR Sfetch = �s ! sro :: SR x ! ST xro bx = �s ! [(x ; s) j x bx s]Id :The �rst is the equivalent of the previous fetch, but now expressed as a state reader ratherthan a state transformer. The second converts a state reader into the corresponding statetransformer: one that returns the same value as the state reader, and leaves the stateunchanged. (The name ro abbreviates \read only".)In the speci�c case where S is the array type Arr , we de�nefetch :: Ix ! SRValfetch i = �a ! index i a:In order to guarantee the safety of update by overwriting, it is necessary to modify twoof the other de�nitions to use Str -comprehensions rather than Id -comprehensions:mapSR f bx = �a ! [f x j x bx a]Strro bx = �a ! [(x ; a) j x bx a]StrThese correspond to the use of an Str -comprehension in the ST version of fetch.Thus, for arrays, the complete collection of operations on state transformers and statereaders consists of fetch :: Ix ! SRVal ;assign :: Ix ! Val ! ST ();ro :: SR x ! ST x ;init :: Val ! ST x ! x ;together with mapSR, unitSR, joinSR and mapST , unitST , joinST . These ten operationsshould be de�ned together and constitute all the ways of manipulating the two mutuallyde�ned abstract data types SR x and ST x . It is straightforward to show that eachoperation of type SR, when passed an array, returns a value that contains no pointer tothat array once it has been reduced to weak head normal form (WHNF); and that eachoperations of type ST , when passed the sole pointer to an array, returns as its secondcomponent the sole pointer to an array. Since these are the only operations that may be16

used to build values of types SR and ST , this guarantees that it is safe to implement theassign operation by overwriting the speci�ed array entry. (The reader may check that theStr -comprehensions in mapSR and ro are essential to guarantee this property.)Returning to the interpreter example, we get the new version shown in Figure 6. Theonly di�erence from the previous version is that some occurrences of ST have changed toSR and that ro has been inserted in a few places. The new typingexp :: Exp ! SR Valmakes it clear that exp depends on the state but does not alter it. A proof that the twoversions are equivalent appears in Section 6.The excessive sequencing of the previous version has been eliminated. The lineexp (Plus e1 e2) = [v1 + v2 j v1 exp e1 ; v2 exp e2]SRcan now be read \to evaluate Plus e1 e2 , evaluate e1 yielding the value v1 and evaluate e2yielding the value v2 , then add v1 and v2". The order of quali�ers in an SR-comprehensionis irrelevant, and so it is perfectly permissible to evaluate e1 and e2 in any order, or evenconcurrently.The interpreter derived here is similar in structure to one in [Wad90], which uses a typesystem based on linear logic to guarantee safe destructive update of arrays. (Related typesystems are discussed in [GH90, Wad91].) However, the linear type system uses a \let!"construct that su�ers from some unnatural restrictions: it requires hyperstrict evaluation,and it prohibits certain types involving functions. By contrast, the monad approachrequires only strict evaluation, and it places no restriction on the types. This suggeststhat a careful study of the monad approach may lead to an improved understanding oflinear types and the \let!" construct.5 FiltersSo far, we have ignored another form of quali�er found in list comprehensions, the �lter.For list comprehensions, we can de�ne �lters by[t j b] = if b then [t] else [];where b is a boolean-valued term. For example,[x j x [1 ; 2 ; 3]; odd x]= join [[x j odd x] j x [1 ; 2 ; 3]]= join [[1 j odd 1]; [2 j odd 2]; [3 j odd 3]]= join [[1]; []; [2]]= [1 ; 3]:Can we de�ne �lters in general for comprehensions in an arbitrary monadM ? The answeris yes, if we can de�ne [] for M . Not all monads admit a useful de�nition of [], but manydo. 17

Recall that comprehensions of the form [t] are de�ned in terms of the quali�er �, bytaking [t] = [t j �], and that � is a unit for quali�er composition,[t j �; q] = [t j q] = [t j q; �]:Similarly, we will de�ne comprehensions of the form [] in terms of a new quali�er, ;, bytaking [] = [t j ;], and we will require that ; is a zero for quali�er composition,[t j ;; q] = [t j ;] = [t j q; ;]:Unlike with [t j�], the value of [t j;] is independent of t !Recall that for � we introduced a function unit :: x ! M x satisfying the laws(iii) map f � unit = unit � f ;(I) join � unit = id ;(II) join �map unit = id ;and then de�ned [t j �] = unit t .Similarly, for ; we introduce a functionzero :: y ! M x ;satisfying the laws (v) map f � zero = zero � g;(IV) join � zero = zero;(V) join �map zero = zero:and de�ne (7) [t j ;] = zero t :Law (v) speci�es that the result of zero is independent of its argument, and can be derivedfrom the type of zero (again, see [Rey83, Wad89]). In the case of lists, setting zero y = []makes laws (IV) and (V) hold, since join [] = [] and join [[]; : : : ; []] = []. (This ignoreswhat happens when zero is applied to ?, which will be considered below.)Now, for a monad with zero we can extend comprehensions to contain a new form ofquali�er, the �lter, de�ned by(8) [t j b] = if b then [t] else [];where b is any boolean-valued term. Recall that laws (4) and (6) were proved by inductionon the form of quali�ers; we can show that for the new forms of quali�ers, de�ned by (7)and (8), they still hold. We also have new laws(9) [t j b; c] = [t j (b ^ c)];(10) [t j q; b] = [t j b; q];where b and c are boolean-valued terms, and where q is any quali�er not binding variablesfree in b. 18

When dealing with ? as a potential value, more care is required. In a strict language,where all functions (including zero) are strict, there is no problem. But in a lazy language,in the case of lists, laws (v) and (IV) hold, but law (V) is an inequality, join �map zero vzero, since join (map zero)? = ? but zero? = []. In this case, laws (1){(9) are stillvalid, but law (10) holds only if [t j q] 6= ?. In the case that [t j q] = ?, law (10)becomes an inequality, [t j q; b] v [t j b; q].As a second example of a monad with a zero, consider the strictness monad Str de�nedin Section 3.2. For this monad, a zero may be de�ned by zeroStr y = ?. It is easy to verifythat the required laws hold; unlike with lists, the laws hold even when zero is applied to ?.For example, [x � 1 j x � 1]Str returns one less than x if x is positive, and ? otherwise.6 Monad morphismsIf M and N are two monads, then h ::M x ! N x is a monad morphism from M to N ifit preserves the monad operations:h �mapM f = mapN f � h;h � unitM = unitN ;h � joinM = joinN � h2 ;where h2 = h �mapM h = mapN h �h (the two composites are equal by the �rst equation).De�ne the e�ect of a monad morphism on quali�ers as follows:h (�) = �;h (x u) = x (h u);h (p; q) = (h p); (h q):It follows that if h is a monad morphism from M to N then(11) h [t j q]M = [t j (h q)]Nfor all terms t and quali�ers q. The proof is a simple induction on the form of quali�ers.As an example, it is easy to check that unitM :: x ! M x is a monad morphism fromId to M . It follows that [[t j x u]Id]M = [t j x [u]M]M :This explains a trick occasionally used by functional programmers, where one writes thequali�er x [u] inside a list comprehension to bind x to the value of u, that is, to achievethe same e�ect as the quali�er x u in an Id comprehension.As a second example, the function ro from Section 4.5 is a monad morphism from SRto ST . This can be used to prove the equivalence of the two interpreters in Figures 5and 6. Write expST :: Exp ! ST Val and expSR :: Exp ! SR Val for the versions in thetwo �gures. The equivalence of the two versions is clear if we can show thatro � expSR = expST :19

The proof is a simple induction on the structure of expressions. If the expression has theform (Plus e1 e2), we have thatro (expSR (Plus e1 e2))= funfolding expSRgro [v1 + v2 j v1 expSR e1 ; v2 expSR e2]SR= fby (11)g[v1 + v2 j v1 ro (expSR e1); v2 ro (expSR e2)]ST= fhypothesisg[v1 + v2 j v1 expST e1 ; v2 expST e2]ST= ffolding expSTgexpST (Plus e1 e2):The other two cases are equally simple.All of this extends straightforwardly to monads with zero. In this case we also requirethat h �zeroM = zeroN , de�ne the action of a morphism on a �lter by h b = b, and observethat (11) holds even when q contains �lters.7 More monadsThis section describes four more monads: parsers, expressions, input-output, and contin-uations. The basic techniques are not new (parsers are discussed in [Wad85, Fai87, FL89],and exceptions are discussed in [Wad85, Spi90]), but monads and monad comprehensionsprovide a convenient framework for their expression.7.1 ParsersThe monad of parsers is given bytype Parse x = String ! List (x ;String)mapParse f x = �i ! [(f x ; i 0) j (x ; i 0) x i]ListunitParse x = �i ! [(x ; i)]ListjoinParse x = �i ! [(x ; i 00) j (x ; i 0) x i ; (x ; i 00) x i 0]List :Here String is the type of lists of Char . Thus, a parser accepts an input string and returnsa list of pairs. The list contains one pair for each successful parse, consisting of the valueparsed and the remaining unparsed input. An empty list denotes a failure to parse theinput. We have that[(x ; y) j x x ; y y]Parse = �i ! [((x ; y); i 00) j (x ; i 0) x i ; (y; i 00) y i 0]List :This applies the �rst parser to the input, binds x to the value parsed, then applies thesecond parser to the remaining input, binds y to the value parsed, then returns the pair(x ; y) as the value together with input yet to be parsed. If either x or y fails to parse itsinput (returning an empty list) then the combined parser will fail as well.20

There is also a suitable zero for this monad, given byzeroParse y = �i ! []List :Thus, []Parse is the parser that always fails to parse the input. It follows that we may use�lters in Parse-comprehensions as well as in List -comprehensions.The alternation operator combines two parsers:([]) :: Parse x ! Parse x ! Parse xx [] y = �i ! (x i) ++ (y i):(Here ++ is the operator that concatenates two lists.) It returns all parses found by the�rst argument followed by all parses found by the second.The simplest parser is one that parses a single character:next :: Parse Charnext = �i ! [(head i ; tail i) j not (null i)]List:Here we have a List -comprehension with a �lter. The parser next succeeds only if theinput is non-empty, in which case it returns the next character. Using this, we may de�nea parser to recognise a literal:lit :: Char ! Parse ()lit c = [() j c 0 next ; c == c 0]Parse:Now we have a Parse-comprehension with a �lter. The parser lit c succeeds only if thenext character in the input is c.As an example, a parser for fully parenthesised lambda terms, yielding values of thetype Term described previously, can be written as follows:term :: Parse Termterm = [Var x j x name]Parse[] [Lam x t j () lit `('; () lit `�'; x name; () lit `!';t term; () lit `)']Parse[] [App t u j () lit `('; t term; u term; () lit `)']Parsename :: Parse Namename = [c j c next ; `a' � c; c � `z']Parse :Here, for simplicity, it has been assumed that names consist of a single lower-case letter,so Name = Char ; and that � and ! are both characters.7.2 ExceptionsThe type Maybe x consists of either a value of type x , written Just x , or an exceptionalvalue, written Nothing: data Maybe x = Just x j Nothing:21

(The names are due to Spivey [Spi90].) The following operations yield a monad:mapMaybe f (Just x) = Just (f x)mapMaybe f Nothing = NothingunitMaybe x = Just xjoinMaybe (Just (Just x)) = Just xjoinMaybe (Just Nothing) = NothingjoinMaybe Nothing = Nothing:We have that [(x ; y) j x x ; y y]Maybereturns Just (x ; y) if x is Just x and y is Just y, and otherwise returns Nothing.There is also a suitable zero for this monad, given byzeroMaybe y = Nothing:Hence []Maybe = Nothing and [x]Maybe = Just x . For example, [x � 1 j x � 1]Maybereturns one less than x if x is positive, and Nothing otherwise.Two useful operations test whether an argument corresponds to a value and, if so,return that value: exists :: Maybe x ! Boolexists (Just x) = Trueexists Nothing = Falsethe :: Maybe x ! xthe (Just x) = x :Observe that [the x j exists x]Maybe = xfor all x ::Maybe x . If we assume that (the Nothing) = ?, it is easily checked that the isa monad morphism from Maybe to Str . We have thatthe [x � 1 j x � 1]Maybe = [x � 1 j x � 1]Stras an immediate consequence of the monad morphism law. This mapping embodies thecommon simpli�cation of considering error values and ? to be identical.The biased-choice operator chooses the �rst of two possible values that is well de�ned:(?) :: Maybe x ! Maybe x !Maybe xx ? y = if exists x then x else y:The ? operation is associative and has Nothing as a unit. It appeared in early versionsof ML [GMW79], and similar operators appear in other languages. As an example of itsuse, the term the ([x � 1 j x � 1]Maybe ? [0]Maybe)22

returns the predecessor of x if it is non-negative, and zero otherwise.In [Wad85] it was proposed to use lists to represent exceptions, encoding a value x bythe unit list, and an exception by the empty list. This corresponds to the mappinglist :: Maybe x ! List xlist (Just x) = [x]Listlist Nothing = []Listwhich is a monad morphism from Maybe to List . We have thatlist (x ? y) � (list x) ++ (list y);where � is the sublist relation. Thus, exception comprehensions can be represented by listcomprehensions, and biased choice can be represented by list concatenation. The argu-ment in [Wad85] that list comprehensions provide a convenient notation for manipulatingexceptions can be mapped, via this morphism, into an argument in favour of exceptioncomprehensions!7.3 Input and outputFix the input and output of a program to be strings (e.g., the input is a sequence ofcharacters from a keyboard, and the output is a sequence of characters to appear on ascreen). The input and output monads are given by:type In x = String ! (x ;String)type Out x = (x ;String ! String):The input monad is a function from a string (the input to the program) and to a pair ofa value and a string (the input to the rest of the program). The output monad is a pairof a value and a function from a string (the output of the rest of the program) to a string(the output of the program).The input monad is identical to the monad of state transformers, �xing the state tobe a string; and the operations map, unit , and join are identical to those in the state-transformer monad. Two useful operations in the input monad areeof :: In Booleof = �i ! (null i ; i)read :: In Charread = �i ! (head i ; tail i):The �rst returns true if there is more input to be read, the second reads the next inputcharacter.The output monad is given bymapOut f bx = [(f x ; ot) j (x ; ot) bx]IdunitOut x = (x ; �o ! o)joinOut bbx = [(x ; ot � ot 0) j (bx ; ot) bbx ; (x ; ot 0) bx]Id :23

The second component of the pair is an output transformer, which given the output ofthe rest of the program produces the output of this part. The unit produces no output ofits own, so its output transformer is the identity function. The join operation composestwo output transformers. A useful operation in the output monad iswrite :: Char ! Out ()write c = ((); �o ! c : o):This adds the character to be written onto the head of the output list.Alternative de�nitions of the output monad are possible, but these do not behave aswell as the formulation given above. One alternative treats output as a state transformer,type Out 0 x = String ! (x ;String);taking map, unit , and join as in the state transformer monad. The write operation isnow write :: Char ! Out 0 ()write c = �o ! ((); c : o):This formulation is not so good, because it is too strict: output will not appear until theprogram terminates. Another alternative istype Out 00 x = (x ;String)mapOut 00 f bx = [(f x ; o) j (x ; o) bx]IdunitOut 00 x = (x ; [])joinOut 00 bbx = [(x ; o ++ o 0) j (bx ; o) bbx ; (x ; o 0) bx]Idwrite c = ((); [c]):This formulation is also not so good, because the time to perform the concatenation (++)operations is quadratic in the size of the output in the worst case.Finally, the output and input monads can be combined into a single monad:type InOut x = String ! (x ;String;String ! String):Suitable de�nitions of map, unit , and join are left to the reader. Useful operations onthis monad are: in :: In x ! InOut xin x = �i ! [(x ; i 0; �o ! o) j (x ; i 0) x i]Idout :: Out x ! InOut xout bx = �i ! [(x ; i ; ot) j (x ; ot) bx]Idfun :: InOut ()! (String ! String)fun ~x = �i ! [ot [] j ((); i 0; ot) ~x i]Id :The �rst two are monad morphisms from In and Out to InOut ; they take input-onlyand output-only operations into the input-output monad. The last takes a value into theinput-output monad into a function from the input to the output.24

7.4 ContinuationsFix a type R of results. The monad of continuations is given bytype Cont x = (x ! R)! RmapCont f x = �k ! x (�x ! k (f x))unitCont x = �k ! k xjoinCont x = �k ! x (�x ! x (�x ! k x)):A continuation of type x takes a continuation function k :: x ! R, which speci�es howto take a value of type x into a result of type R, and returns a result of type R. The unittakes a value x into the continuation �k ! k x that applies the continuation function tothe given value. We have that[(x ; y) j x x ; y y]Cont = �k ! x (�x ! y (�y ! k (x ; y))):This can be read as follows: evaluate x , bind x to the result, then evaluate y, bind y tothe result, then return the pair (x ; y).A useful operation in this monad iscallcc :: ((x ! Cont y)! Cont x)! Cont xcallcc g = �k ! g (�x ! �k 0 ! k x) k :This mimics the \call with current continuation" (or call/cc) operation popular fromScheme [RC86]. For example, the Scheme program(call/cc (lambda (esc)(= x (if (= y 0) (esc 42) y))))translates to the equivalent programcallcc (�esc ! [x=z j z if y == 0 then esc 42 else [y]Cont]Cont):Both of these programs bind esc to an escape function that returns its argument as thevalue of the entire callcc expression. They then return the value of x divided by y, orreturn 42 if y is zero.8 TranslationIn Section 4, we saw that a function of type U ! V in an impure functional languagethat manipulates state corresponds to a function of type U ! ST V in a pure functionallanguage. The correspondence was drawn in an informal way, so we might ask, whatassurance is there that every program can be translated in a similar way? This sectionprovides that assurance, in the form of a translation of �-calculus into an arbitrary monad.This allows us to translate not only programs that manipulate state, but also programsthat raise exceptions, call continuations, and so on. Indeed, we shall see that there are25

two translations, one call-by-value and one call-by-name. The target language of bothtranslations is a pure, non-strict �-calculus, augmented with M -comprehensions.We will perform our translations on a simple typed lambda calculus. We will use T ,U , V to range over types, and K to range over base types. A type is either a base type,function type, or product type:T ;U ;V ::= K j (U ! V) j (U ;V):We will use t , u, v to range over terms, and x to range over variables. A term is either avariable, an abstraction, an application, a pair, or a selection:t ; u; v ::= x j (�x ! v) j (t u) j (u; v) j (fst t) j (snd t):In the following, we usually give the case for (fst t) but omit that for (snd t), since the twoare nearly identical. We will use A to range over assumptions, which are lists associatingvariables with types: A ::= x1 :: T1 ; : : : ; xn :: Tn :We write the typing A ` t :: T to indicate that under assumption A the term t has typeT . The inference rules for well-typings in this calculus are well known, and can be seenon the left hand sides of Figures 8 and 10.The call-by-value translation of lambda-calculus into a monad M is given in Figure 7.The translation of the type T is written T � and the translation of the term t is writtent�. The rule for translating function types,(U ! V)� = U � !M V �;can be read \a call-by-value function takes as its argument a value of type U and returnsa computation of type V ." This corresponds to the translation in Section 4, where afunction of type U ! V in the (impure) source language is translated to a function oftype U ! M V in the (pure) target language. Each of the rules for translating terms hasa straightforward computational reading. For example, the rule for applications,(t u)� = [y j f t�; x u�; y (f x)]M ;can be read \to apply t to u, �rst evaluate t (call the result f), then evaluate u (callthe result x), then apply f to x (call the result y) and return y." This is what onewould expect in a call-by-value language { the argument is evaluated before the functionis applied. If x1 :: T1 ; : : : ; xn :: Tn ` t :: Tis a well-typing in the source language, then its translationx1 :: T �1 ; : : : ; xn :: T �n ` t� ::M T �is a well-typing in the target language. Like the arguments of a function, the free variablescorrespond to values, while, like the result of a function, the term corresponds to a com-putation. Figure 8 demonstrates that the call-by-value translation preserves well-typings:26

a term that is well-typed in the source language translates to one that is well-typed inthe target language.The call-by-name translation of �-calculus into a monad M is given in Figure 9. Nowthe translation of the type T is written T y and the translation of the term t is writtenty. The rule for translating function types,(U ! V)y = M U y !M V y;can be read \a call-by-name function takes as its argument a computation of type U andreturns a computation of type V ." The rule for applications,(t u)y = [y j f ty; y (f uy)]M ;can be read \to apply t to u, �rst evaluate t (call the result f), then apply f to the termu (call the result y) and return y." This is what one would expect in a call-by-namelanguage { the argument u is passed unevaluated, and is evaluated each time it is used.The well-typing in the source language given previously now translates tox1 ::M T y1 ; : : : ; xn ::M T yn ` ty ::M T y;which is again a well-typing in the target language. This time both the free variables andthe term correspond to computations, re
ecting that in a call-by-name language the freevariables correspond to computations (or closures) that must be evaluated each time theyare used. Figure 10 demonstrates that the call-by-name translation preserves well-typings.In particular, the call-by-value intrepretation in the strictness monad Str of Section 3.2yields the usual strict semantics of �-calculus, whereas the call-by-name interpretation inthe same monad yields the usual lazy semantics.If we use the monad of, say, state transformers, then the call-by-value interpretationyields the usual semantics of a �-calculus with assignment. The call-by-name interpreta-tion yields a semantics where the state transformation speci�ed by a variable occurs eachtime the variable is accessed. This explains why the second translation is titled call-by-name rather than call-by-need. Of course, since the target of both the call-by-value andcall-by-name translations is a pure, non-strict �-calculus, there is no problem with exe-cuting programs translated by either scheme in a lazy (i.e., call-by-need) implementation.8.1 Example: Non-determinismAs a more detailed example of the application of the translation schemes, consider asmall non-deterministic language. This consists of the �-calculus as de�ned above with itssyntax extended to include a non-deterministic choice operator (t) and simple arithmetic:t ; u; v ::= � � � j (u t v) j n j (u + v);where n ranges over integer constants. This language is typed just as for lambda calculus.We assume a base type Int , and that the additional constructs typed as follows: for any27

type T , if u :: T and v :: T then (u t v) :: T ; and n :: Int ; and if u :: Int and v :: Intthen (u + v) :: Int . For example, the term((�a ! a + a) (1 t 2))has the type Int . Under a call-by-value interpretation we would expect this to returneither 2 or 4 (i.e., 1 +1 or 2 +2), whereas under a call-by-name interpretation we wouldexpect this to return 2 or 3 or 4 (i.e., 1 + 1 or 1 + 2 or 2 + 1 or 2 + 2).We will give the semantics of this language by interpreting the �-calculus in the setmonad, as speci�ed in Section 2.3. In what follows we will write f t j q g in preference tothe more cumbersome [t j q]Set .The call-by-value interpretation for this language is provided by the rules in Figure 7,choosing M to be the monad Set , together with the rules:(u t v)� = u� [v�n� = fng(u + v)� = f x + y j x u�; y v� g:These rules translate a term of type T in the non-deterministic language into a termof type Set T in a pure functional language augmented with set comprehensions. Forexample, the term above translates tof y j f f (�a ! f x 0 + y 0 j x 0 fag; y 0 fag g) g;x f1g [f2g;y (f x) gwhich has the value f2 ; 4g, as expected.The call-by-name translation of the same language is provided by the rules in Figure 9.The rules for (u t v), n, and (u + v) are the same as the call-by-value rules, replacing(�)� with (�)y. Now the same term translates tof y j f f (�a ! f x 0 + y 0 j x 0 a; y 0 a g) g;y f (f1g [f2g) gwhich has the value f2 ; 3 ; 4g, as expected.A similar approach to non-deteminism is taken by Hughes and O'Donnell [HO89].They suggest adding a set type to a lazy functional language where a set is actuallyrepresented by a non-deterministic choice of one of the elements of the set. The primitiveoperations they provide on sets are just map, unit , and join of the set monad, plus setunion ([) to represent non-deterministic choice. They address the issue of how such setsshould behave with respect to ?, and present an elegant derivation of a non-deterministic,parallel, tree search algorithm. However, they provide no argument that all programs ina traditional, non-deterministic functional language can be encoded in their approach.Such an argument is provided by the translation scheme above.28

8.2 Example: ContinuationsAs a �nal example, consider the call-by-value interpretation under the monad of contin-uations, Cont , given in Section 7.4. Applying straightforward calculation to simplify theCont -comprehensions yields the translation scheme given in Figure 11, which is simplythe continuation-passing style transformation beloved by many theorists and compilerwriters [Plo75, AJ89].Each of the rules retains its straightforward operational reading. For example, therule for applications, (t u)� = �k ! t� (�f ! u� (�x ! f x k));can still be read \to apply t to u, �rst evaluate t (call the result f), then evaluate u (callthe result x), then apply f to x (call the result y) and return y."A similar calculation on the other translation scheme yields a call-by-name version ofcontinuation-passing style. This is less well known, but can be found in [Rey74, Plo75].AcknowledgementsI thank Eugenio Moggi for his ideas, and for the time he took to explain them to me. Ithank John Launchbury for his enthusiasm and suggestions. And for helpful commentsI thank Arvind, Stephen Bevan, Olivier Danvy, Kevin Hammond, John Hughes, KarstenKehler Holst, Michael Johnson, Austin Melton, Nikhil, Simon Peyton Jones, Andy Pitts,Andre Scedrov, Carolyn Talcott, Phil Trinder, attenders of the 1989 Glasgow SummerSchool on Category Theory and Constructive Logic, and an anonymous referee.References[AJ89] A. Appel and T. Jim, Contiuation-passing, closure-passing style. In 16'th ACMSymposium on Principles of Programming Languages, Austin, Texas, January1989.[Blo89] A. Bloss, Update analysis and the e�cient implementation of functional aggre-gates. In 4'th Symposium on Functional Programming Languages and ComputerArchitecture, ACM, London, September 1989.[BW85] M. Barr and C. Wells, Toposes, Triples, and Theories. Springer Verlag, 1985.[BW88] R. Bird and P. Wadler, Introduction to Functional Programming. Prentice Hall,1988.[Fai87] J. Fairbairn, Form follows function. Software { Practice and Experience,17(6):379{386, June 1987. 29

[FL89] R. Frost and J. Launchbury, Constructing natural language interpreters in alazy functional language. The Computer Journal, 32(2):108{121, April 1989.[Gog88] J. A. Goguen, Higher order functions considered unnecessary for higher or-der programming. Technical report SRI-CSL-88-1, SRI International, January1988.[GL88] D. K. Gi�ord and J. M. Lucassen, Integrating functional and imperative pro-gramming. In ACM Conference on Lisp and Functional Programming, pp. 28{39, Cambridge, Massachusetts, August 1986.[GH90] J. Guzm�an and P. Hudak, Single-threaded polymorphic lambda calculus. InIEEE Symposium on Logic in Computer Science, Philadelphia, June 1990.[GMW79] M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF. LNCS 78, Springer-Verlag, 1979.[Hol83] S. Holmstr�om, A simple and e�cient way to handle large data structures inapplicative languges. In Proceedings SERC/Chalmers Workshop on DeclarativeProgramming, University College London, 1983.[Hud86a] P. Hudak, A semantic model of reference counting and its abstraction (detailedsummary). In ACM Conference on Lisp and Functional Programming, pp. 351{363, Cambridge, Massachusetts, August 1986.[HMT88] R. Harper, R. Milner, and M. Tofte, The de�nition of Standard ML, version2. Report ECS-LFCS-88-62, Edinburgh University, Computer Science Dept.,1988.[Hud86b] P. Hudak, Arrays, non-determinism, side-e�ects, and parallelism: a functionalperspective. In J. H. Fasel and R. M. Keller, editors, Workshop on Graph Re-duction, Santa Fe, NewMexico, September{October 1986. LNCS 279, Springer-Verlag, 1986.[Hug89] J. Hughes, Why functional programming matters. The Computer Journal,32(2):98{107, April 1989.[HO89] J. Hughes and J. O'Donnell, Expressing and reasoning about non-deterministicfunctional programs. In K. Davis and J. Hughes, editors, Functional Program-ming, Glasgow 1989 (Glasgow workshop, Fraserburgh, August 1989), Work-shops in Computing, Springer Verlag, 1990.[HPW91] P. Hudak, S. Peyton Jones and P. Wadler, editors, Report on the ProgrammingLanguage Haskell: Version 1.1. Technical report, Yale University and GlasgowUniversity, August 1991. 30

[LS86] J. Lambek and P. Scott, Introduction to Higher Order Categorical Logic, Cam-bridge University Press, 1986.[Mac71] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag,1971.[Mil84] R. Milner, A proposal for Standard ML. In ACM Symposium on Lisp andFunctional Programming, Austin, Texas, August 1984.[MT89] I. Mason and C. Talcott, Axiomatising operational equivalence in the presenceof side e�ects. In IEEE Symposium on Logic in Computer Science, Asilomar,California, June 1989.[Mog89a] E. Moggi, Computational lambda-calculus and monads. In IEEE Symposium onLogic in Computer Science, Asilomar, California, June 1989. (A longer versionis available as a technical report from the University of Edinburgh.)[Mog89b] E. Moggi, An abstract view of programming languges. Course notes, Universityof Edinburgh.[Plo75] G. Plotkin, Call-by-name, call-by-value, and the �-calculus. Theoretical Com-puter Science, 1:125{159, 1975.[RC86] J. Rees and W. Clinger (eds.), The revised3 report on the algorithmic languageScheme. ACM SIGPLAN Notices, 21(12):37{79 (1986).[Rey74] J. C. Reynolds, On the relation between direct and continuation semantics.In Colloquium on Automata, Languages and Programming, Saarbr�ucken, July{August 1974, LNCS 14, Springer-Verlag, 1974.[Rey83] J. C. Reynolds, Types, abstraction, and parametric polymorphism. In R. E.A. Mason, editor, Information Processing 83, 513{523, North-Holland, Ams-terdam.[Sch85] D. A. Schmidt, Detecting global variables in denotational speci�cations. ACMTransactions on Programming Languages and Systems, 7:299{310, 1985.[Spi90] M. Spivey, A functional theory of exceptions. Science of Computer Program-ming, 14(1):25{42, June 1990.[Tur82] D. A. Turner, Recursion equations as a programming language. In J. Darling-ton, P. Henderson, and D. A. Turner, editors, Functional Programming and itsApplications, Cambridge University Press, 1982.[Tur85] D. A. Turner, Miranda: A non-strict functional language with polymorphictypes. In Proceedings of the 2'nd International Conference on Functional Pro-gramming Languages and Computer Architecture, Nancy, France, September1985. LNCS 201, Springer Verlag, 1985.31

[Wad85] P. Wadler, How to replace failure by a list of successes. In 2'nd Symposiumon Functional Programming Languages and Computer Architecture, Nancy,September 1985. LNCS 273, Springer-Verlag, 1985.[Wad87] P. Wadler, List comprehensions. In S. L. Peyton Jones, The Implementation ofFunctional Programming Languages, Prentice Hall, 1987.[Wad89] P. Wadler, Theorems for free! In 4'th Symposium on Functional ProgrammingLanguages and Computer Architecture, ACM, London, September 1989.[Wad90] P. Wadler, Linear types can change the world! In M. Broy and C. Jones,editors, Programming Concepts and Methods (IFIP Working Conference, Seaof Gallilee, Israel, April 1990), North Holland, 1990.[Wad91] P. Wadler, Is there a use for linear logic? In Conference on Partial Evalua-tion and Semantics-Based Program Manipulation (PEPM), ACM, New Haven,Connecticut, June 1991.

32

datatype Term = Var of Name j Lam of Name � Term j App of Term � Term;fun rename t = let val N = ref 0 ;fun newname () = let val n = !N ;val () = (N := n + 1);in mkname nend;fun renamer (Var x) = Var xj renamer (Lam (x ; t)) = let val x 0 = newname ();in Lam (x 0; subst x 0 x (renamer t))endj renamer (App (t ; u)) = App (renamer t ; renamer u);in renamer tend;Figure 1: Renaming in an impure functional language (Standard ML)data Term = Var Name j Lam Name Term j App Term Termnewname :: Int ! (Name; Int)newname n = (mkname n; n + 1)renamer :: Term ! Int ! (Term; Int)renamer (Var x) n = (Var x ; n)renamer (Lam x t) n = let (x 0; n 0) = newname n(t 0; n 00) = renamer t n 0in (Lam x 0 (subst x 0 x t 0); n 00)renamer (App t u) n = let (t 0; n 0) = renamer t n(u 0; n 00) = renamer u n 0in (App t 0 u 0; n 00)rename :: Term ! Termrename t = let (t 0; n 0) = renamer t 0 in t 0Figure 2: Renaming in a pure functional language (Haskell)33

data Term = Var Name j Lam Name Term j App Term Termnewname :: ST Namenewname = [mkname n j n fetch; () assign (n + 1)]STrenamer :: Term ! ST Termrenamer (Var x) = [Var x]STrenamer (Lam x t) = [Lam x 0 (subst x 0 x t 0)) j x 0 newname; t 0 renamer t]STrenamer (App t u) = [App t 0 u 0 j t 0 renamer t ; u 0 renamer u]STrename :: Term ! Termrename t = init 0 (renamer t)Figure 3: Renaming with the monad of state transformers
exp :: Exp ! Arr ! Valexp (Var i) a = index i aexp (Const v) a = vexp (Plus e1 e2) a = exp e1 a + exp e2 acom :: Com ! Arr ! Arrcom (Asgn i e) a = update i (exp e a) acom (Seq c1 c2) a = com c2 (com c1 a)com (If e c1 c2) a = if exp e a == 0 then com c1 a else com c2 aprog :: Prog ! Valprog (Prog c e) = exp e (com c (newarray 0))Figure 4: Interpreter in a pure functional language34

exp :: Exp ! ST Valexp (Var i) = [v j v fetch i]STexp (Const v) = [v]STexp (Plus e1 e2) = [v1 + v2 j v1 exp e1 ; v2 exp e2]STcom :: Com ! ST ()com (Asgn i e) = [() j v exp e; () assign i v]STcom (Seq c1 c2) = [() j () com c1 ; () com c2]STcom (If e c1 c2) = [() j v exp e; () if v == 0 then com c1 else com c2]STprog :: Prog ! Valprog (Prog c e) = init 0 [v j () com c; v exp e]STFigure 5: Interpreter with state transformersexp :: Exp ! SRValexp (Var i) = [v j v fetch i]SRexp (Const v) = [v]STexp (Plus e1 e2) = [v1 + v2 j v1 exp e1 ; v2 exp e2]SRcom :: Com ! ST ()com (Asgn i e) = [() j v ro (exp e); () assign i v]STcom (Seq c1 c2) = [() j () com c1 ; () com c2]STcom (If e c1 c2) = [() j v ro (exp e); () if v == 0 then com c1 else com c2]STprog :: Prog ! Valprog (Prog c e) = init 0 [v j () com c; v ro (exp e)]STFigure 6: Interpreter with state transformers and readers
35

TypesK � = K(U ! V)� = (U � !M V �)(U ;V)� = (U �;V �)Termsx � = [x]M(�x ! v)� = [(�x ! v�)]M(t u)� = [y j f t�; x u�; y (f x)]M(u; v)� = [(x ; y) j x u�; y v�]M(fst t)� = [(fst z) j z t�]MAssumptions(x1 :: T1 ; : : : ; xn :: Tn)� = x1 :: T �1 ; : : : ; xn :: T �nTypings(A ` t :: T)� = A� ` t� ::M T �Figure 7: Call-by-value translation.(A; x :: T ` x :: T)� = A�; x :: T � ` [x]M ::M T �(A; x :: U ` v :: V)� = A�; x :: U � ` v� ::M V �(A ` (�x ! v) :: (U ! V))� = A� ` [(�x ! v�)]M ::M (U � !M V �)(A ` t :: (U ! V))� = A� ` t� ::M (U � !M V �)(A ` u :: U)� = A� ` u� ::M U �(A ` (t u) :: V)� = A� ` [y j f t�; x u�; y (f x)]M ::M V �(A ` u :: U)� = A� ` u� ::M U �(A ` v :: V)� = A� ` v� ::M V �(A ` (u; v) :: (U ;V))� = A� ` [(x ; y) j x u�; y v�]M ::M (U �;V �)(A ` t :: (U ;V))� = A� ` t� ::M (U �;V �)(A ` (fst t) :: U)� = A� ` [(fst z) j z t�]M ::M U �Figure 8: The call-by-value translation preserves well-typing.36

TypesK y = K(U ! V)y = (M U y! M V y)(U ;V)y = (M U y; M V y)Termsx y = x(�x ! v)y = [(�x ! vy)]M(t u)y = [y j f ty; y (f uy)]M(u; v)y = [(uy; vy)]M(fst t)y = [x j z ty; x (fst z)]MAssumptions(x1 :: T1 ; : : : ; xn :: Tn)y = x1 ::M T y1 ; : : : ; xn ::M T ynTypings(A ` t :: T)y = Ay ` ty ::M T yFigure 9: Call-by-name translation.(A; x :: T ` x :: T)y = Ay; x ::M T y ` x ::M T y(A; x :: U ` v :: V)y = Ay; x ::M U y ` vy ::M V y(A ` (�x ! v) :: (U ! V))y = Ay ` [(�x ! vy)]M ::M (M U y !M V y)(A ` t :: (U ! V))y = Ay ` ty ::M (M U y !M V y)(A ` u :: U)y = Ay ` uy ::M U y(A ` (t u) :: V)y = Ay ` [y j f ty; y (f uy)]M ::M V y(A ` u :: U)y = Ay ` uy ::M U y(A ` v :: V)y = Ay ` vy ::M V y(A ` (u; v) :: (U ;V))y = Ay ` [(uy; vy)]M ::M (M U y;M V y)(A ` t :: (U ;V))y = Ay ` ty ::M (M U y;M V y)(A ` (fst t) :: U)y = Ay ` [x j z ty; x (fst z)]M ::M U yFigure 10: The call-by-name translation preserves well-typing.37

x � = �k ! k x(�x ! v)� = �k ! k (�x ! v�)(t u)� = �k ! t� (�f ! u� (�x ! f x k))(u; v)� = �k ! u� (�x ! v� (�y ! k (x ; y)))(fst t)� = �k ! t� (�z ! k (fst z))Figure 11: Call-by-value continuation-passing style transformationx y = x(�x ! v)y = �k ! k (�x ! vy)(t u)y = �k ! ty (�f ! f uy k)(u; v)y = �k ! k (uy; vy)(fst t)y = �k ! ty (�z ! fst z k)Figure 12: Call-by-name continuation-passing style transformation
38

