
44 “ David Goldberg

Each time a summand is added, there
is a correction factor C that will be ap-
plied on the next loop. So first subtract
the correction C computed in the previ-
ous loop from Xj, giving the corrected
summand Y. Then add this summand to
the running sum S. The low-order bits of
Y (namely, Yl) are lost in the sum. Next,
compute the high-order bits of Y by com-
puting T – S. When Y is subtracted from
this, the low-order bits of Y will be re-
covered. These are the bits that were lost
in the first sum in the diagram. They
become the correction factor for the next
loop. A formal proof of Theorem 8, taken
from Knuth [1981] page 572, appears in
the Appendix.

5. SUMMARY

It is not uncommon for computer system
designers to neglect the parts of a system
related to floating point. This is probably
due to the fact that floating point is given
little, if any, attention in the computer
science curriculum. This in turn has
caused the apparently widespread belief
that floating point is not a quantifiable
subject, so there is little point in fussing
over the details of hardware and soft-
ware that deal with it.

This paper has demonstrated that it is
possible to reason rigorously about float-
ing point. For example, floating-point al-
gorithms involving cancellation can be
proven to have small relative errors if
the underlying hardware has a guard
digit and there is an efficient algorithm
for binary-decimal conversion that can be
proven to be invertible, provided ex-
tended precision is supported. The task
of constructing reliable floating-point
software is made easier when the under-
lying computer system is supportive of
floating point. In addition to the two
examples just mentioned (guard digits
and extended precision), Section 3 of
this paper has examples ranging from
instruction set design to compiler opt-
imization illustrating how to better
support floating point.

The increasing acceptance of the IEEE
floating-point standard means that codes

that use features of the standard are be-
coming ever more portable. Section 2
gave numerous examples illustrating
how the features of the IEEE standard
can be used in writing practical floating-
point codes.

APPENDIX

This Appendix contains two technical
proofs omitted from the text.

Theorem 14

Let O<k<p, setm=fik+l, and as-
sume fZoating-point operations are exactly
rounded. Then (m @ x) e (m @ x @ x)
is exactly equal to x rounded to p – k
significant digits. More precisely, x is
rounded by taking the significant of x,
imagining a radix point just left of the k
least-significant digits, and rounding to
an integer.

Proofi The proof breaks up into two
cases, depending on whether or not the
computation of mx = fik x + x has a carry

out or not.

Assume there is no carry out. It is
harmless to scale x so that it is an inte-
ger. Then the computation of mx = x +
(3kx looks like this:

aa”. “aabb. ..bb
aa . . .

+
aabb .0. bb

>
Zz ”.. zzbb ~“ “ bb

where x has been partitioned into two
parts. The low-order k digits are marked
b and the high-order p – k digits are
marked a. To compute m @ x from mx
involves rounding off the low-order k

digits (the ones marked with b) so

m~x= mx– xmod(~k) + r~k. (32)

The value of r is 1 if .bb ..0 b is greater
than 1/2 and O otherwise. More pre -
cisel y,

r = 1 ifa.bb ““” broundstoa+l,

r = O otherwise. (33)

ACM Computmg Surveys, Vol 23, No 1, March 1991

Floating-Point Arithmetic e 45

Next compute ~~x + ~ looks like this:

m@x–x=mx –xmod((3h)+ r~k–x aa”. “aabb”””bb

+
aa”” .aabb”””bb

= B’(x+r) - xmod(~’). Zzz “ “ “zZbb”””bb

The picture below shows the computation Thus, m @l x = mx – x mod(13k) + w~k,

of m @ x – x rounded, that is, (m @ x) where w = – Z if Z < /3/2, but the exact

0 x. The top line is flk(x + r), where B value of w in unimportant. Next m 8 x

is the digit that results from adding r to – x = IIkx – xmod(/3k) + wok. In a pic-

the lowest order digit b: ture

aa ..” aabb. .” bbOO”. .OO
aa. ” “aabb”””bBOO. ..OO -bb””. bb
-bb”””bb +W
Zz”” “ Zzzoo . ..00

If.bb.. b < 1/2, then r = O. Subtract-
ing causes a borrow from the digit
marked B, but the difference is rounded
up, so the net effect is that the rounded
difference equals the top line, which is
/?~x. If .bb “ o“ b > 1/2, then r = 1, and 1
is subtracted from B because of the bor-
row. So again the result is L?kx. Finally,
consider the case .bb “ “ “b=l/2. Ifr=
O, then B is even, Z is odd, and the
difference is rounded up giving /3kx.
Similarly, when r = 1, B is odd, Z is
even, the difference is rounded down, so
again the difference is 13kx. To summa-
rize,

(m@x) ex=~kx. (34)

Combining eqs. (32) and (34) gives
(m8x)–(m@x0x)=x–
x mod(13~)+ rf?k. The result of perform-
ing this computation is

rOO”. .OO
aa. ” “aabb. .”bb

+
–bb.. ”bb

aa “.”aaOO”. .OO.

The rule for computing r, eq. (33), is the
same as the rule for rounding a “ “ “
ah””” b to p – k places. Thus, comput-
ing mx – (mx – x) in floating-point
arithmetic precision is exactly equal to
rounding x to p – k places, in the case
when x + Okx does not carry out.

When x + 13kx does carry out, mx =

Rounding gives (m 8 x) 0 x = (3kx +
w@ – r(3k, where r=l if.bb”. ”b>
1/2 or if .bb “ “ “b = 1/2 and bO = 1. F’i-
nally,

(m C3x)-(rn@x Ox)

—— mx – x mod(fik) + w(3k

—— x – xmod[f?k) + rflk.

Once again, r = 1 exactly when rounding
a ““” ah”.. b to p – k places involves
rounding up. Thus, Theorem 14 is proven
in all cases. ❑

Theorem 8 (Kahan Summation Formula)

Suppose EJ! ~XJ is computed using the

following algorithm

s ==X[ll
C=o
fm-j=2to N{

Y=xrjl-c
T=S+Y
C=(T– S)– Y
S=T

}
Then the computed sum S is equal to
S = xx~(l + 6j) + 0(Nc2)Z I x~ 1, where

16JJ<2C.

Proof First recall how the error esti-
mate for the simple formula Xx; went.
Introduce SI = xl, s, = (1 + 8L)(s, _~ – 1
+ XL). Then the computed sum is s.,
which is a sum of terms, each of which
is an x, multiplied by an expression

ACM Computing Surveys, Vol 23, No 1, March 1991

46 * David Goldberg

involving d~’s. The exact coefficient of xl c~= [{s~–sk_l}(l+7J –Yh](l+~k)
is(l + 6Z)(1 + d~)... (1 + 3P),.Therefore
by renumbering, the coefficient of Xz
must be (1 + 63)(1 + 8A) . . . (1 + a.), and
so on. The proof of Theorem 8 runs along
exactly the same lines, only the coeffi -
cients of xl is more complicated. In de-
tail so = co = O and

Yk=xk e %1= (.%– ck.l)(l+qk)

sk=s&~ @ Yk= (s&l +~k)(l ‘ok)

ck = (Sk e sk.1) e Y,

= [(sk - ‘k-l)(l +~k) -Y,](I +&)

where all the Greek letters are bounded
by ~. Although the coefficient of xl in s~
is the ultimate expression of interest, it
turns out to be easier to compute the
coefficient of xl in sh – Ck and Ck. When
k=l,

e,= (%(1 + 7,) - Y,)(1 + L)

= Yl((l + %)(1 + -YJ – 1)(1 + 61)

——%(% + 71 + %71)

(1 + (3,)(1+ ~,)

SI — c1 = Xl[(l + 01) – (q + ‘)’1 + %71)

(1+ ‘-L)](1+%)
[= xl 1 – ‘y~ – (7181– a~-y~

–8171 – a171aJ(1 + ~J.

Calling the coefficients of xl in these
expressions Ch and Sk, respectively, then

c1 = 26 + 0(E2)

S1=1+?7– 71+462+0(,3).

= [{((%, - %,) - %%,)(1 + u,)

-sk_l}(l + ~k) + ck_l(l + qk)]

(1+ ak)

= [{(s&l - ck-,)ffk- ~kck-~(1 + ok)

-ck_l}(l + ~,) + ck_l(l + qk)]

(1+ bk)

= [(sk-, - c&,)ok(l + yk)

‘ck-1(~~ + ~k(”k + ?’k + u~d)l

(1+ dk)

Sk – Ck

= ((Sk-, - Ck-,) - ~kck-,)

(1+ C7k)

‘[(Sk-, - c&,)uk(l ‘yk)

“k-,(~k + ~k(”k‘y, + ‘k~k))]

(1+ dk)

= (sk-, - ck-l)((l + ak)

‘~k(l + ~k)(l + 6k))

+ ck-~(–~k(l + ‘k)

+(~k + ~k(~k + ~k + uk~k))

(1+ 6k))

= (Sk-l - ck_J

(1 - u~(~k + 8k + ~k8k))

“k-l[-qk+~k

+~k(~k + uk~k)

+(~k + ‘%(”k + ~k + ‘k~k))dk]

To get the general formula for Sk and Since S~ and Ch are only being computed
Ck, expand the definitions of Sk and Ck, up to order ~2, these formulas can be
ignoring all terms involving x, with simplified to
i > 1.That gives

Sk = (Sk_l +&)(l + ok) Ck = (ok+ o(~2))&-1

= [Sk-, + (Xk- c,-,)(1 ‘~k)] +(–~k + o(e2))Ck_~

(1+ fJk) Sk = ((1 + 2e2 + o(,3))sk_,

= [(Sk-l - Ck-l) - ~kc&l](l + ‘h) +(26 + 0(~2))C&~.

ACM Computing Surveys, Vol, 23, No. 1, March 1991

Floating-Point Arithmetic - 47

Using these formulas gives

C2 = (JZ+ 0(62)

52 = 1 +ql –’yl + 10E2+ O(C3),

and, in general, it is easy to check by
induction that

Ck = ok + 0(62)

S~=l+ql –~l+(4k +2) E2+O(e3).

Finally, what is wanted is the coeffi-
cient of xl in Sk. To get this value, let
x n+l = O, let all the Greek letters with
subscripts of n + 1 equal O and compute

Then s.+ ~ = s. – c., and the coef-
&~&t of .xI in s. is less than the coeffi-
cient in s~+ ~, which is S, = 1 + VI – -yI
+(4n+2)c2 = 1 +2c + 0(rze2). ❑

ACKNOWLEDGMENTS

This article was inspired by a course given at Sun

Microsystems by W, Kahan, ably organized by David

Hough of Sun, from May through July 1988. Its

aim is to enable others to learn about the interac-

tion of floating point and computer systems without
having to get up in time to attend 8:00 am lectures.

Thanks are due to Kahan and many of my col-
leagues at Xerox PARC (especially John Gilbert)
for reading drafts of this paper and providing many
useful comments, Reviews from Paul Hilfinger and

an anonymous referee also helped improve the pre-
sentation.

REFERENCES

AIIO, A. V., SETHI, R., AND ULLMAN, J. D. 1986.
Compders: Princ~ples, Techn~ques and Tools.

Addison-Wesley, Reading, Mass.

ANSI 1978. American National Standard Pro-
gramming Language FORTRAN, ANSI Stan-
dard X3.9-1978. American National Standards
Institute, New York.

13ARNETT,D. 1987. A portable floating-point envi-
ronment. Unpubhshed manuscript.

BROWN, W. S, 1981. A simple but realistic model
of floating-point computation. ACM Trans.
Math. Softw. 7, 4, 445-480.

CARDELLI, L., DONAHUE, J., GLASSMAN, L., JORDAN,
M., KASLOW, B,, AND NELSON, G. 1989. Mod-
ula-3 Report (revised). Digital Systems Re-
search Center Report #52, Palo Alto, Calif.

CoDY, W. J. et al. 1984. A proposed radix- and
word-length-independent standard for floating-
point arithmetic. IEEE Micro 4, 4, 86-100.

CODY, W. J. 1988. Floating-point standards–The-
ory and practice. In Reliability in Computing:

The Role of Interual Methods on Scientific Com-

puting, Ramon E. Moore, Ed. Academic Press,
Boston, Mass., pp. 99-107.

COONEN, J. 1984, Contributions to a proposed
standard for binary floating-point arithmetic.
PhD dissertation, Univ. of California, Berke-
ley.

DEKKER, T. J. 1971. A floating-point technique for
extending the available precision. Numer.
Math. 18, 3, 224-242.

DEMMEL, J. 1984. Underflow and the reliability of
numerical software. SIAM J. Sci. Stat. Com-

put. 5, 4, 887-919.

FARNUM, C. 1988. Compiler support for floating-
point computation. $of%w. Pratt. Experi. 18, 7,
701-709.

FORSYTHE, G. E., AND MOLER, C. B. 1967. Com-
puter Solut~on of Linear Algebraic Systems.
Prentice-Hall, Englewood Cliffs, N.J.

GOLDBERG, I. B. 1967. 27 Bits are not enough
for 8-digit accuracy. Commum. ACM 10, 2,
105-106.

GOLDBERG, D. 1990. Computer arithmetic. In
Computer Arch itecture: A Quantitative Ap-
proach, David Patterson and John L. Hen-
nessy, Eds. Morgan Kaufmann, Los Altos,
Calif., Appendix A.

GOLUB, G. H., AND VAN LOAN, C. F. 1989. Matrix

Computations. The Johns Hopkins University
Press, Baltimore, MD.

HEWLETT PACKARD 1982. HP-15L’ Advanced
Funct~ons Handbook.

IEEE 1987. IEEE Standard 754-1985 for Binary
Floating-Point Arithmetic, IEEE. Reprinted in
SIGPLAN 22, 2, 9-25.

KAHAN, W. 1972. A Survey of Error Analysis. In
Information Processing 71, (Ljubljana, Yugo-
slavia), North Holland, Amsterdam, vol, 2, pp.
1214-1239.

KAHAN, W. 1986. Calculating Area and Angle
of a Needle-like Triangle. Unpublished manu-
script.

KAHAN, W. 1987. Branch cuts for complex ele-
mentary functions. In The State of the Art m

Numerical Analyszs, M. J. D. Powell and A
Iserles, Eds., oxford University Press, N. Y.,
Chap. 7.

KAHAN, W, 1988. Unpublished lectures given at
Sun Microsystems, Mountain View, Calif.

KAHAN, W., AND COONEN, J. T. 1982. The near
orthogonality of syntax, semantics, and diag-
nostics in numerical programming environ-
ments. In The Relations Zp between Numerical

Computation and Programming Languages, J.
K Reid, Ed North-Holland, Amsterdam, pp
103-115.

KAHAN, W., AND LEBLANC, E. 1985. Anomalies in
the IBM acrith package. In Proceedings of the
7th IEEE Symposwm on Computer Arithmetic
(Urbana, Ill.), pp. 322-331.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

48 9 David Goldberg

KERNIGHAN, B. W., AND RITCHIE, D, M, 1978. The
C Programmvzg Language. Prentice-Hall, En-
glewood Cliffs, NJ.

KIRCHNER, R , AND KULISCH, U 1987 Arithmetic
for vector processors. In Proceedings of the 8th

IEEE Symposium on Computer Arithmetic
(Como, Italy), pp. 256-269.

KNUTH, D. E. 1981. The Art of Computer Pro-
gramming Addison-Wesley, Reading, Mass.,
vol. II, 2nd ed.

KULISH, U. W., AND MIRAN~ER W L. 1986. The
Arithmetic of the Digital Computer: A new
approach SIAM Rev 28, 1,1–36

MATULA, D. W., AND KORNERUP, P. 1985. Finite

Received December 1988; final revision accepted March 1990

Precision Rational Arithmetic: Slash Number

Systems. IEEE Trans. Comput. C-34, 1,3-18.

REISER, J. F., AND KNUTH, D E. 1975. Evading
the drift in floating-point addition Inf. Pro-

cess. Lett 3, 3, 84-87

STERBETZ, P. H. 1974. Floatmg-Pomt Computa-
tion, Prentice-Hall, Englewood Cliffs, N.J.

SWARTZLANDER, E. E , AND ALEXOPOULOS, G. 1975,
The sign/logarithm number system, IEEE
Trans Comput. C-24, 12, 1238-1242

WALTHER, J, S. 1971. A umfied algorlthm for ele-
mentary functions. proceedings of the AFIP
Spring Jo,nt Computer Conference, pp. 379-
385,

ACM Computmg Surveys, Vol. 23, No 1, March 1991

