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Each time a summand is added, there
is a correction factor C that will be ap-
plied on the next loop. So first subtract
the correction C computed in the previ-
ous loop from Xj, giving the corrected
summand Y. Then add this summand to
the running sum S. The low-order bits of
Y (namely, Yl) are lost in the sum. Next,
compute the high-order bits of Y by com-
puting T – S. When Y is subtracted from
this, the low-order bits of Y will be re-
covered. These are the bits that were lost
in the first sum in the diagram. They
become the correction factor for the next
loop. A formal proof of Theorem 8, taken
from Knuth [1981] page 572, appears in
the Appendix.

5. SUMMARY

It is not uncommon for computer system
designers to neglect the parts of a system
related to floating point. This is probably
due to the fact that floating point is given
little, if any, attention in the computer
science curriculum. This in turn has
caused the apparently widespread belief
that floating point is not a quantifiable
subject, so there is little point in fussing
over the details of hardware and soft-
ware that deal with it.

This paper has demonstrated that it is
possible to reason rigorously about float-
ing point. For example, floating-point al-
gorithms involving cancellation can be
proven to have small relative errors if
the underlying hardware has a guard
digit and there is an efficient algorithm
for binary-decimal conversion that can be
proven to be invertible, provided ex-
tended precision is supported. The task
of constructing reliable floating-point
software is made easier when the under-
lying computer system is supportive of
floating point. In addition to the two
examples just mentioned (guard digits
and extended precision), Section 3 of
this paper has examples ranging from
instruction set design to compiler opt-
imization illustrating how to better
support floating point.

The increasing acceptance of the IEEE
floating-point standard means that codes

that use features of the standard are be-
coming ever more portable. Section 2
gave numerous examples illustrating
how the features of the IEEE standard
can be used in writing practical floating-
point codes.

APPENDIX

This Appendix contains two technical
proofs omitted from the text.

Theorem 14

Let O<k<p, setm=fik+l, and as-
sume fZoating-point operations are exactly
rounded. Then (m @ x) e (m @ x @ x)
is exactly equal to x rounded to p – k
significant digits. More precisely, x is
rounded by taking the significant of x,
imagining a radix point just left of the k
least-significant digits, and rounding to
an integer.

Proofi The proof breaks up into two
cases, depending on whether or not the
computation of mx = fik x + x has a carry

out or not.

Assume there is no carry out. It is
harmless to scale x so that it is an inte-
ger. Then the computation of mx = x +
(3kx looks like this:

aa”. “aabb. ..bb
aa . . .

+
aabb .0. bb

>
Zz ”.. zzbb ~“ “ bb

where x has been partitioned into two
parts. The low-order k digits are marked
b and the high-order p – k digits are
marked a. To compute m @ x from mx
involves rounding off the low-order k

digits (the ones marked with b) so

m~x= mx– xmod(~k) + r~k. (32)

The value of r is 1 if .bb ..0 b is greater
than 1/2 and O otherwise. More pre -
cisel y,

r = 1 ifa.bb ““” broundstoa+l,

r = O otherwise. (33)
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Next compute ~~x + ~ looks like this:

m@x–x=mx –xmod((3h)+ r~k–x aa”. “aabb”””bb

+
aa”” .aabb”””bb

= B’(x+r) - xmod(~’). Zzz “ “ “zZbb”””bb

The picture below shows the computation Thus, m @l x = mx – x mod(13k) + w~k,

of m @ x – x rounded, that is, (m @ x) where w = – Z if Z < /3/2, but the exact

0 x. The top line is flk(x + r), where B value of w in unimportant. Next m 8 x

is the digit that results from adding r to – x = IIkx – xmod(/3k) + wok. In a pic-

the lowest order digit b: ture

aa ..” aabb. .” bbOO”. .OO
aa. ” “aabb”””bBOO. ..OO -bb””. bb
-bb”””bb +W
Zz”” “ Zzzoo . ..00

If.bb.. b < 1/2, then r = O. Subtract-
ing causes a borrow from the digit
marked B, but the difference is rounded
up, so the net effect is that the rounded
difference equals the top line, which is
/?~x. If .bb “ o“ b > 1/2, then r = 1, and 1
is subtracted from B because of the bor-
row. So again the result is L?kx. Finally,
consider the case .bb “ “ “b=l/2. Ifr=
O, then B is even, Z is odd, and the
difference is rounded up giving /3kx.
Similarly, when r = 1, B is odd, Z is
even, the difference is rounded down, so
again the difference is 13kx. To summa-
rize,

(m@x) ex=~kx. (34)

Combining eqs. (32) and (34) gives
(m8x)–(m@x0x)=x–
x mod( 13~)+ rf?k. The result of perform-
ing this computation is

rOO”. .OO
aa. ” “aabb. .”bb

+
–bb.. ”bb

aa “.”aaOO”. .OO.

The rule for computing r, eq. (33), is the
same as the rule for rounding a “ “ “
ah””” b to p – k places. Thus, comput-
ing mx – ( mx – x) in floating-point
arithmetic precision is exactly equal to
rounding x to p – k places, in the case
when x + Okx does not carry out.

When x + 13kx does carry out, mx =

Rounding gives (m 8 x) 0 x = (3kx +
w@ – r(3k, where r=l if.bb”. ”b>
1/2 or if .bb “ “ “b = 1/2 and bO = 1. F’i-
nally,

(m C3x)-(rn@x Ox)

—— mx – x mod(fik) + w(3k

—— x – xmod[f?k) + rflk.

Once again, r = 1 exactly when rounding
a ““” ah”.. b to p – k places involves
rounding up. Thus, Theorem 14 is proven
in all cases. ❑

Theorem 8 (Kahan Summation Formula)

Suppose EJ! ~XJ is computed using the

following algorithm

s ==X[ll
C=o
fm-j=2to N{

Y=xrjl-c
T=S+Y
C=(T– S)– Y
S=T

}
Then the computed sum S is equal to
S = xx~(l + 6j) + 0( Nc2)Z I x~ 1, where

16JJ<2C.

Proof First recall how the error esti-
mate for the simple formula Xx; went.
Introduce SI = xl, s, = (1 + 8L)(s, _~ – 1
+ XL). Then the computed sum is s.,
which is a sum of terms, each of which
is an x, multiplied by an expression
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involving d~’s. The exact coefficient of xl c~= [{s~–sk_l}(l+7J –Yh](l+~k)
is(l + 6Z)(1 + d~)... (1 + 3P),.Therefore
by renumbering, the coefficient of Xz
must be (1 + 63)(1 + 8A) . . . (1 + a.), and
so on. The proof of Theorem 8 runs along
exactly the same lines, only the coeffi -
cients of xl is more complicated. In de-
tail so = co = O and

Yk=xk e %1= (.%– ck.l)(l+qk)

sk=s&~ @ Yk= (s&l +~k)(l ‘ok)

ck = (Sk e sk.1) e Y,

= [(sk - ‘k-l)(l +~k) -Y,](I +&)

where all the Greek letters are bounded
by ~. Although the coefficient of xl in s~
is the ultimate expression of interest, it
turns out to be easier to compute the
coefficient of xl in sh – Ck and Ck. When
k=l,

e,= (%(1 + 7,) - Y,)(1 + L)

= Yl((l + %)(1 + -YJ – 1)(1 + 61)

——%(% + 71 + %71)

(1 + (3,)(1+ ~,)

SI — c1 = Xl[(l + 01) – (q + ‘)’1 + %71)

(1+ ‘-L)](1+%)
[= xl 1 – ‘y~ – (7181– a~-y~

–8171 – a171aJ(1 + ~J.

Calling the coefficients of xl in these
expressions Ch and Sk, respectively, then

c1 = 26 + 0(E2)

S1=1+?7– 71+462+0(,3).

= [{((%, - %,) - %%,)(1 + u,)

-sk_l}(l + ~k) + ck_l(l + qk)]

(1+ ak)

= [{(s&l - ck-,)ffk- ~kck-~(1 + ok)

-ck_l}(l + ~,) + ck_l(l + qk)]

(1+ bk)

= [(sk-, - c&,)ok(l + yk)

‘ck-1(~~ + ~k(”k + ?’k + u~d)l

(1+ dk)

Sk – Ck

= ((Sk-, - Ck-,) - ~kck-,)

(1+ C7k)

‘[(Sk-, - c&,)uk(l ‘yk)

“k-,(~k + ~k(”k‘y, + ‘k~k))]

(1+ dk)

= (sk-, - ck-l)((l + ak)

‘~k(l + ~k)(l + 6k))

+ ck-~(–~k(l + ‘k)

+(~k + ~k(~k + ~k + uk~k))

(1+ 6k))

= (Sk-l - ck_J

(1 - u~(~k + 8k + ~k8k))

“k-l[-qk+~k

+~k(~k + uk~k)

+(~k + ‘%(”k + ~k + ‘k~k))dk]

To get the general formula for Sk and Since S~ and Ch are only being computed
Ck, expand the definitions of Sk and Ck, up to order ~2, these formulas can be
ignoring all terms involving x, with simplified to
i > 1.That gives

Sk = (Sk_l +&)(l + ok) Ck = (ok+ o(~2))&-1

= [Sk-, + (Xk- c,-,)(1 ‘~k)] +(–~k + o(e2))Ck_~

(1+ fJk) Sk = ((1 + 2e2 + o(,3))sk_,

= [(Sk-l - Ck-l) - ~kc&l](l + ‘h) +(26 + 0(~2))C&~.
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Using these formulas gives

C2 = (JZ+ 0(62)

52 = 1 +ql –’yl + 10E2+ O(C3),

and, in general, it is easy to check by
induction that

Ck = ok + 0(62)

S~=l+ql –~l+(4k +2) E2+O(e3).

Finally, what is wanted is the coeffi-
cient of xl in Sk. To get this value, let
x n+l = O, let all the Greek letters with
subscripts of n + 1 equal O and compute

Then s.+ ~ = s. – c., and the coef-
&~&t of .xI in s. is less than the coeffi-
cient in s~+ ~, which is S, = 1 + VI – -yI
+(4n+2)c2 = 1 +2c + 0(rze2). ❑
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