
Letter to the editor

Dear Editor,

In a recent paper Balboa, Tyler, and Grzywacz (2001)

report findings which contradict elements of my work

on the origins of scaling in natural images (Ruderman,
1997). Here I refute their claim and in addition show

that the theoretical approximations presented in their

Appendix are not appropriate for ensembles of natural

images.

In a self-similar image ensemble any ensemble aver-

aged statistic has a spatial dependence which is pure

power-law. A change in scale alters the coefficient in

front of this power-law term but does not change its
functional form. One such statistic is the ensemble

power spectrum which has been shown to obey a power-

law for over 2.5 decades in spatial frequency (Ruderman

& Bialek, 1994; van der Schaaf & van Hateren, 1996).

Statistics of higher-order, such as entire histograms of

image properties, have also been shown to scale (Lee,

Huang, & Mumford, 2001; Ruderman & Bialek, 1994).

In my original article I proposed occluding objects with
sharp luminance edges whose size distribution is power-

law as the source of self-similarity in natural image

ensembles. I stated that such an image ensemble must

have a correlation function whose spatial dependence

is a power law (and may contain an added constant):

CðxÞ � x�g. As a counter-example I showed an image of

occluding squares whose size distribution gives an ex-

ponential ensemble correlation function, CðxÞ � e�x=a,
and is thus not a self-similar ensemble.

Balboa et al. disagree that power-law spectra can

arise only from power-law correlations and conclude

that almost any image composed of occluding ob-

jects––regardless of their size distribution––will have a

power-law spectrum. Central to Balboa et al.�s argument

is the demonstration in their first figure that my en-

semble of occlusion-based images with exponential
correlation has a power-law spectrum, contrary to my

previous statement. They show the spectrum of a single

image drawn from this distribution. The spectrum in

their figure does show a generally power-law trend,

though their data are limited only to high frequencies.

While their 512 � 512 pixel image spans 2.5 decades in

spatial frequency, they plot the spectrum over only the

top 1.7 decades. As Balboa et al. themselves point out,
one expects this spectrum on theoretical grounds to

behave as ½1 þ ð2pfaÞ2��3=2
, with f the spatial frequency

in cycles per pixel and a the correlation length. For a of

any reasonable size, like 10 pixels in their example, this

spectrum will not be power-law at the lower frequencies.

To demonstrate that this spectrum is poorly ap-

proximated by a power-law I created an ensemble of 50
512 � 512 pixel images using the same object size dis-

tribution as their image, although employing circles

rather than squares since the circle ensemble�s corre-

lation function is more exactly exponential. A sample

image is shown in Fig. 1. Fig. 2 contains the measured

ensemble power spectrum over the full range of spatial

frequencies. At the lower half of the logarithmic fre-

quency range the measured spectrum deviates greatly
from power-law (dashed line). The solid line in the

graph represents the parameter free theoretical predic-

tion of the spectrum, which fits the data well and dem-

onstrates that the spectrum is not power-law.

Another difficulty in their treatment is found in their

Appendix A.1. Its Eq. (4) breaks the spectrum of 1D

cuts through images of luminance edges into the product

of two parts: the spectrum of a 1D step edge (1=x2) and
a factor which depends on the spacing of the edges.

Balboa et al. claim that for natural images this second

factor is proportional to x2 at low frequencies and

approximately constant at high frequencies. As an ex-

ample, a Poisson distribution of edges with average in-

ter-edge distance a makes this factor ðxaÞ2=½1 þ ðxaÞ2�,
which behaves as Balboa et al. describe. They claim that

in total the 1D spectrum should be at at low frequencies
and fall as 1=x2 at high frequencies. However, it can be

shown theoretically that an image ensemble such as

natural images with 2D spectrum 1=x2�g has 1D cuts

with spectrum 1=x1�g. Thus the approximation pre-

sented by Balboa et al. does not match the spectral be-

havior seen in the natural image ensembles they model.

To achieve a power-law spectrum the distribution of

object edge intervals must itself be power-law over the
relevant frequencies; it cannot have a length scale as

does a Poisson process or as in Balboa et al.�s approxi-

mation. The 1=x2 spectrum of edges does not dominate

in natural images. Instead the overall spectrum derives

from this edge spectrum in combination with the sta-

tistics of edge occurrences.

Balboa et al. conclude that ‘‘the power spectrum be-

comes a weak statistical indicator of the structure in the
visual world’’. This statement is based on the spectra of

single images limited to their highest frequencies. It

is not surprising that individual images of general ori-

gin can have spectra with approximately power-law
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behavior over a limited frequency range. But the spectra

of natural images which have demonstrated scaling are

from ensembles of many images and over their entire

frequency range, providing a robust set of repeatable

measurements. The spectra of these image ensembles

restrict which image models can obey them, and they

reflect the structure of the natural environment. Dis-

covering which properties give rise to these statistical
regularities is of great importance not only for under-

standing the design of visual systems (Simoncelli &

Olshausen, 2001) but for exploring the structure of the

visual environment as well.
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Fig. 2. Power spectrum of image ensemble (squares) showing marked deviation from power-law at low frequency (log–log axes, frequency in cycles/

image). Theoretical prediction based on an exponential correlation function matches well (solid line). Dashed line is a fit to the power-law high

frequency asymptote, f �3, and deviates significantly from the data for half the frequency range.

Fig. 1. Example image from an ensemble made of overlapping circles drawn from an exponential size distribution. The ensemble correlation function

is approximately exponential with length scale a ¼ 9:3.
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