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Induced and Coinduced Modules over
Cluster-Tilted Algebras

Khrystyna Serhiyenko, Ph.D.

University of Connecticut, 2015

ABSTRACT

We propose a new approach to study the relation between the module categories of

a tilted algebra C and the corresponding cluster-tilted algebra B = C nE. This new

approach consists of using the induction functor − ⊗C B as well as the coinduction

functor D(B⊗CD−). We give an explicit construction of injective resolutions of pro-

jective B-modules, and as a consequence, we obtain a new proof of the 1-Gorenstein

property for cluster-tilted algebras. We show that DE is a partial tilting and a τ -rigid

C-module and that the induced module DE ⊗C B is a partial tilting and a τ -rigid

B-module. Furthermore, if C = EndAT for a tilting module T over a hereditary alge-

bra A, we compare the induction and coinduction functors to the Buan-Marsh-Reiten

functor HomCA(T,−) from the cluster-category of A to the module category of B. We

also study the question which B-modules are actually induced or coinduced from a

module over a tilted algebra.
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Chapter 1

Introduction

Representation theory is an area of mathematics that studies abstract algebraic ob-

jects such as groups, algebras, or Lie algebras by representing their elements as ma-

trices and the operations between these elements as multiplication of matrices. This

enables us to translate questions from an abstract algebraic setting to a more concrete

linear algebra setting. Then one can use well-developed techniques of linear algebra

such as Gaussian elimination, eigenvalue theory, and vector space bases to solve these

questions. Representation theory was first introduced by Ferdinand Georg Frobenius

about 100 years ago as a tool to analyze groups in an abstract way. Since then the the-

ory vastly expanded to the study of other mathematical structures. Moreover, many

connections to other fields have been developed, such as geometry, number theory,

and particle physics. Ties to the last one have been noticed as early as 1930’s by Eu-

gene Wigner. It is known that a quantum state of an elementary particle corresponds

to an irreducible representation of the Poincaré group.

More precisely, we are interested in studying the representation theory of cluster-
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tilted algebras which are finite dimensional associative algebras that were introduced

in [18] and, independently, in [22] for the type A.

One motivation for introducing these algebras came from Fomin and Zelevinsky’s

cluster algebras [27]. Cluster algebras were developed as a tool to study dual canon-

ical bases and total positivity in semisimple Lie groups, and cluster-tilted algebras

were constructed as a categorification of these algebras. To every cluster in an acyclic

cluster algebra one can associate a cluster-tilted algebra, such that the indecompos-

able rigid modules over the cluster-tilted algebra correspond bijectively to the cluster

variables outside the chosen cluster. Generalizations of cluster-tilted algebras, the

Jacobian algebras of quivers with potentials, were introduced in [26], extending this

correspondence to the non-acyclic types. Many people have studied cluster-tilted

algebras in this context, see for example [14, 18, 19, 20, 21, 23, 24, 29].

The second motivation came from classical tilting theory. Tilted algebras are the

endomorphism algebras of tilting modules over hereditary algebras, whereas cluster-

tilted algebras are the endomorphism algebras of cluster-tilting objects over cluster

categories of hereditary algebras. This similarity in the two definitions lead to the

following precise relation between tilted and cluster-tilted algebras, which was estab-

lished in [3].

There is a surjective map

{tilted algebras} // // {cluster-tilted algebras}

C � // B = C n E

where E denotes the C-C-bimodule E = Ext2
C(DC,C) and C n E is the trivial

extension.
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This result allows one to define cluster-tilted algebras without using the cluster

category. It is natural to ask how the module categories of C and B are related,

and several results in this direction have been obtained, see for example [4, 5, 6, 13,

15, 25]. The Hochschild cohomology of the algebras C and B has been compared in

[7, 9, 10, 31].

In this work, we use a new approach to study the relation between the module

categories of a tilted algebra C and its cluster-tilted algebra B = C n E, namely

induction and coinduction.

The induction functor − ⊗C B and the coinduction functor HomC(B,−) from

modC to modB are defined whenever C is a subring of B which has the same

identity. If we are dealing with algebras over a field k, we can, and usually do, write

the coinduction functor as D(B ⊗C D−), where D = Hom(−, k) is the standard

duality.

Induction and coinduction are important tools in the classical representation the-

ory of finite groups. In this case, B would be the group algebra of a finite group

G and C the group algebra of a subgroup of G (over a field whose characteristic is

not dividing the group orders). In this situation, the algebras are semi-simple, induc-

tion and coinduction are the same functor, and this functor is exact. For arbitrary

rings, and even for finite dimensional algebras, the situation is not that simple. In

general, induction and coinduction are not the same functor and, since the C-module

B is not projective (and not flat), induction and coinduction are not exact functors.

However, the connection between tilted algebras and cluster-tilted algebras is close

enough so that induction and coinduction are interesting tools for the study of the

relation between the module categories.

Induction and coinduction have been studied for split extension algebras in [8, 12],
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and we apply some of their results to our situation.

Our first main result is on the C-C-bimodule E = Ext2
C(DC,C), considering its

right C-module structure EC as well as its left C-module structure CE, but the latter

is viewed a right C-module D(CE). In Chapter 3 we show the following.

Theorem 1.0.1. If C is a tilted algebra and B is the corresponding cluster-tilted

algebra, then

(a) DE is a partial tilting and τC-rigid C-module, and its corresponding induced

module DE ⊗B is a partial tilting and τB-rigid B-module.

(b) E is a partial cotilting and τC-corigid C-module, and its corresponding coin-

duced module D(B ⊗DE) is a partial cotilting and τB-corigid B-module.

We think it would be an interesting problem to study the possible completions of

these partial (co)-tilting modules and their endomorphism algebras.

Our second main result presented in Chapter 4 is on injective and projective

resolutions. The induction functor sends projective C-modules PC to projective B-

modules PB = PC⊗CB, and the coinduction functor sends injective C-modules IC to

injective B-modules IB = D(B ⊗C DIC). Hence, by considering injective resolutions

in modC we construct an explicit injective resolution in modB for each projective

B-module. Here ν denotes the Nakayama functor and Ω−1 the cosyzygy.

Theorem 1.0.2. Let C be a tilted algebra, B the corresponding cluster-tilted algebra,

PC a projective C-module and PB = PC ⊗C B the corresponding projective B-module.

Let

0 // PC // I0
C

// I1
C and 0 // PC ⊗ E // Ī0

C
// Ī1
C
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be minimal injective presentations in modC, and let ĨC be the injective C-module

ĨC = νν−1Ω−1PC. Then

0 // PB // I0
B ⊕ Ī0

B
// ĨB ⊕ Ī1

B
// 0

is an injective resolution of PB in modB.

The proof of the theorem uses both induction and coinduction, and it relies greatly

on the particular structure of the bimodule E. As an immediate consequence, we

obtain a new proof, which does not use cluster categories, of a result by Keller and

Reiten [29].

Corollary 1.0.3. Cluster-tilted algebras are 1-Gorenstein.

In Chapter 5 we compare induction and coinduction with the well-known equiv-

alence of categories HomCA(T,−) : CA/add τT → modB of Buan, Marsh and Reiten

[18]. Here CA denotes the cluster category. We show that induction commutes with

this equivalence on the torsion subcategory T (T ) and coinduction commutes with a

variation of this equivalence on the torsion free subcategory F(T ). We obtain the

following result.

Theorem 1.0.4. Let C be a tilted algebra and B the corresponding cluster-tilted

algebra. Then

HomA(T,M)⊗C B ∼= HomCA(T,M), for every M ∈ T (T ),

D(B ⊗C DExt1
A(T,M)) ∼= Ext1

CA(T,M), for every M ∈ F(T ).

Let us point out that these formulas implicitly use the tilting theorem of Brenner

and Butler [16].
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Finally, in Chapter 6 we address the question which B-modules can be obtained

via induction or coinduction of modules over a tilted algebra.

Theorem 1.0.5. Let B be a cluster-tilted algebra.

(a) If B is of finite representation type, then every B-module is induced and coin-

duced from some tilted algebra.

(b) If B is of arbitrary representation type, then every transjective B-module is

induced or coinduced from some tilted algebra.

(c) If B is cluster concealed, then every B-module is induced or coinduced from

some tilted algebra.

(d) If B is of tame representation type and there are no morphisms between inde-

composable projective non-transjective modules, then every indecomposable B-module

is induced or coinduced from some tilted algebra.

We remark that for general cluster-tilted algebras, there are indecomposable mod-

ules that are not induced and not coinduced. We think it would be interesting to study

the structure of these modules.

1.1 Modules over path algebras

The algebras discussed in this work can be realized using quivers. A quiver Q =

(Q0, Q1) is an oriented graph, where Q0 denotes a finite set of vertices, and Q1 denotes

a finite set of oriented edges, or arrows, in the quiver. A quiver is said to be acyclic if it

does not contain a non constant oriented path starting and ending at the same vertex.

We will only study quivers without loops ( • ee ) and oriented 2-cycles ( • (( •hh ).

Let k be an algebraically closed field, and we define the associated path algebra kQ
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below.

Definition 1.1.1. Given a quiver Q, the corresponding path algebra kQ is an asso-

ciative k-algebra with basis the set of all paths in Q. That is, the elements of this

algebra are k-linear combinations of paths in the quiver Q. Addition is the formal

addition of elements, and multiplication is given by composition of paths.

Example 1.1.2. Consider the following quiver which will be our running example.

Q̃ : 1
α−→ 2

β−→ 3

The corresponding path algebra kQ̃ is generated by the set of all possible paths

{α, β, αβ, e1, e2, e3}. Here e1 corresponds to a constant path that starts at vertex 1

and ends at vertex 1, and the other ei’s are defined similarly. Moreover, if we multiply

α · β we get a path αβ, and similarly e1 · α = α, β · e3 = β. However, β · α and β · e2

are both zero because composition of these paths does not make sense when looking

at Q̃.

As mentioned in the introduction, we do not want to study elements of the algebra

kQ, but rather use linear algebra and consider modules over this algebra. We always

take kQ to be finite dimensional, meaning Q contains only finitely many possible

paths or equivalently Q is acyclic. All (right) kQ-modules have a concrete realization

in terms of the quiver.

Definition 1.1.3. A (finite dimensional) right kQ-module M is a collection of finite

dimensional k-vector spaces Mi = Mei, so that M =
⊕

i∈Q0
Mi, together with the

following kQ action. The module structure on M is equivalent to the set M =

(Mi, ϕα)i∈Q0,α∈Q1 , where ϕα is a k-linear map, such that if α is an arrow in Q from
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vertex i to vertex j, then ϕα is a map from Mi to Mj. Moreover, the map ϕα

corresponds to the right action of the arrow α on M , sending Mi = Mei to Meiα =

Mej = Mj. Then extending this definition by linearity and multiplication yields a

well-defined kQ action on M . (See Example 1.1.7.)

In other words any kQ-module M is obtained by placing a finite number of copies

of k at each vertex in the quiver Q and a matrix between these spaces at each arrow

in Q.

Definition 1.1.4. Given any two modules M = (Mi, ϕα) and M ′ = (M ′
i , ϕ

′
α) of an

algebra kQ we can form a new module M ⊕M ′ called a direct sum as follows.

M ⊕M ′ = (Mi ⊕M ′
i ,

ϕα 0

0 ϕ′α

)

A nonzero module M is said to be indecomposable if it cannot be written as a direct

sum of two other nonzero modules.

The following is a classical result known as the Krull-Schmidt theorem. It shows

that in order to understand modules it suffices to study only the indecomposable

ones.

Theorem 1.1.5. Let M be a kQ-module. Then

M ∼= M1 ⊕M2 ⊕ · · · ⊕Mn

where Mi are indecomposable kQ-modules which are unique up to reordering.

We also want to consider morphisms or maps between modules.
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Definition 1.1.6. Given two modules M and M ′ of kQ as before, a morphism f :

M −→M ′ is a family of linear maps fi : Mi −→M ′
i for all vertices i in Q such that for

all arrows α from i to j the following diagram commutes.

Mi Mj

M ′
i M ′

j

ϕα

fi

ϕ′α

fj

Moreover, f is said to be an isomorphism if each fi is an isomorphism.

Example 1.1.7. Let M̃ = k
[ 0
1 ]
−−→ k2

[
1 0
0 1
0 0

]
−−−→ k3. Then M̃ is a module of kQ̃, where Q̃

is defined in Example 1.1.2. The module M̃ decomposes as

(0
0−→ k

1−→ k)⊕ (k
1−→ k

1−→ k)⊕ (0
0−→ 0

0−→ k).

Denote the three summands of M̃ by M̃1, M̃2, and M̃3 respectively. Let us find all

maps f ∈ HomkQ̃(M̃1, M̃2), which is the space of all kQ̃ morphisms mapping M̃1 to

M̃2.

M̃1

f
��

0

f1
��

0 // k 1 //

f2
��

k

f3
��

M̃2 k
1 // k

1 // k

Note that according to the definition of a morphism each square in the diagram above

must commute. Thus, we obtain two equations f1 = 0 and f2 = f3. This shows that

f must be of the form f = (0, a, a) where a ∈ k, so HomkQ̃(M̃1, M̃2) ∼= k. On the

other hand similar computations yield HomkQ̃(M̃1, M̃3) = 0.
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In the example above we can denote the representation M̃1 by 2
3 , meaning there

are one dimensional vector spaces at vertices 2 and 3, and the arrow is going down

from 2 to 3 carrying the identity map. With this notation

M̃ ∼= 2
3 ⊕

1
2
3
⊕ 3 .

From now on, we will only use the above notation to depict various modules.

It might seem that the algebras discussed in this section are very particular.

However, path algebras make up a broad and well-studied class of algebras. In fact,

any basic finite dimensional k-algebra is isomorphic to a quotient of a quiver path

algebra kQ. See for example [11, Theorem II.3.7].

1.2 Projective and injective resolutions

Given a finite dimensional k-algebra Λ, let mod Λ denote the abelian category of

finitely generated right Λ-modules. The set of all Λ-morphisms from M to M ′ is

denoted by HomΛ(M,M ′), where M,M ′ ∈ mod Λ. By addM we understand the full

subcategory of mod Λ whose objects are the direct sums of direct summands of the

module M . Next we recall the definitions of some important modules associated to a

given Λ-module.

Definition 1.2.1. Given a finite dimensional k-algebra Λ, let M ∈ mod Λ.

(a) The right annihilator of M is the module AnnM = {a ∈ Λ |Ma = 0}.

(b) The (Jacobson) radical radM of M is the intersection of all maximal submod-

ules of M .

(c) The top of M is the quotient module topM = M/radM .
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(d) The socle submodule socM of M is generated by all simple submodules of M .

The projective and injective modules make up another important class of modules.

In fact, any Λ-module M can be approximated on the left by projective Λ-modules

and on the right by injective Λ-modules. This means that there exist exact sequences

of the form

. . . // P2
// P1

// P0
//M // 0

0 //M // I0
// I1

// I2
// . . .

with Pi projective and Ii injective modules. Such sequences are called projective

and injective resolutions of M . The projective dimension of M in mod Λ, denoted

by pdΛM , is the smallest integer n such that there exists a projective resolution as

above with Pn+1 = 0. If no such n exists then pdΛM =∞. The injective dimension

of M , denoted by idΛM , is defined in a similar manner. These terms give rise to the

following characterisation of algebras.

Definition 1.2.2. The global dimension gl.dim Λ of the algebra Λ is the supremum

over all projective dimensions pdΛM of all M ∈ mod Λ.

Next we define the concept of syzygies. Given a Λ-module M there exists a unique

(up to isomorphism) projective Λ-module P0, called a projective cover together with

a surjective map g0 : P0 → M , such that this map does not factor through another

projective Λ-module. Then the syzygy ΩM of M is defined as the kernel of g0. In

particular, there exists the following short exact sequence of Λ-modules.
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0 // ΩM // P0
g0 //M // 0

Similarly, we define the cosyzygy Ω−1M of M . Let I0 be a unique (up to isomor-

phisms) injective Λ-module, called an injective envelope, together with an injective

map f0 : M → I0, such that this map does not factor through another injective Λ-

module. Then Ω−1M is defined as the cokernel of f0, and there exists the following

short exact sequence.

0 //M
f0 // I0

// Ω−1M // 0

Moreover, there is a nice relationship between the functor Ext and (co)-syzygy

operation, which will be used extensively later on.

Theorem 1.2.3. For any Λ-modules M and M ′ and for any n ≥ 2

ExtnΛ(M,M ′) ∼= Extn−1
Λ (ΩM,M ′) ∼= Extn−1

Λ (M,Ω−1M ′).

1.3 Auslander-Reiten theory

We recall a number of well-known functors used in the study of the representation

theory of algebras. The standard duality functor Homk(−, k) will always be denoted

by D. Let ν = DHomΛ(−,Λ) be the Nakayama functor and ν−1 = HomΛ(DΛ,−)

be the inverse Nakayama functor. These functors induce an equivalence between

projective and injective Λ-modules.

ν : proj Λ→ inj Λ ν−1 : inj Λ→ proj Λ
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Finally, given a Λ-module M we define its Auslander-Reiten translate τM as follows.

Let

P1
g1 // P0

g0 //M // 0

be a minimal projective presentation of M . This means, P0 is a projective cover of

M , and P1 is a projective cover of ΩM . Applying ν to this sequence one obtains τM

as the kernel of νg1. In particular, there exists an exact sequence

0 // τM // νP1
νg1 // νP0.

Dually, let

0 //M
f0 // I0

f1 // I1

be a minimal injective presentation of M . This means, I0 is an injective envelope

of M , and I1 is an inject envelope of Ω−1M . Applying ν−1 to this sequence one

obtains the inverse Auslander-Reiten translate τ−1M of M as the cockerel of ν−1f1.

In particular, there exists an exact sequence

ν−1I0
ν−1f1 // ν−1I1

// τ−1M // 0.

The Auslander-Reiten formula is an important result that describes a relation-

ship between the spaces Hom and Ext via the Auslander-Reiten translation. Let

HomΛ(M,M ′) (respectively HomΛ(M,M ′)) denote the space of all Λ-morphisms from

M to M ′ that do not factor through projective (respectively injective) Λ-modules.

With this notation consider the following result.
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Theorem 1.3.1 (Auslander-Reiten formula). Let M and M ′ be Λ-modules. Then

Ext1
Λ(M,M ′) ∼= DHomΛ(τ−1M ′,M) ∼= DHomΛ(M ′, τM).

Moreover, if pdΛM ≤ 1 then Ext1
Λ(M,M ′) ∼= DHomΛ(M ′, τM), and similarly if

idΛM
′ ≤ 1 then Ext1

Λ(M,M ′) ∼= DHomΛ(τ−1M ′,M).

While studying the representation theory of algebras it is useful to consider ind Λ,

which is a set of representatives of each isoclass of indecomposable right Λ-modules.

If ind Λ is a finite set then Λ is said to be a representation-finite algebra. Otherwise,

it is said to be a representation-infinite algebra.

An important tool in studying the module category of Λ is the Auslander-Reiten

quiver denoted by Γ(mod Λ). The vertices of this quiver are the elements of ind Λ, and

the arrows are the so-called irreducible Λ-morphisms. By an irreducible morphism

we understand a morphism between indecomposable modules that does not factor

through another module. Below we identify some key components of the Auslander-

Reiten quiver.

Definition 1.3.2. Let Γ(mod Λ) be the Auslander-Reiten quiver of a k-algebra Λ.

(a) A connected component P of Γ(mod Λ) is called preprojective if P is acyclic,

and for any indecomposable module M ∈ P , there exists t ≥ 0 such that M ∼= τ−tP

and P is an indecomposable projective Λ-module. A Λ-module is called preprojective

if it is a direct sum of indecomposable modules each belonging to a preprojective

component.

(b) A connected component Q of Γ(mod Λ) is called preinjective if Q is acyclic,

and for any indecomposable module N ∈ Q, there exists s ≥ 0 such that N ∼= τ sI and

I is an indecomposable injective Λ-module. A Λ-module is called preinjective if it is
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a direct sum of indecomposable modules each belonging to a preinjective component.

(c) A connected component R of Γ(mod Λ) is called regular if it contains neither

projective nor injective modules. A Λ-module is called regular if it is a direct sum of

indecomposable modules each belonging to a regular component.

Moreover, if a representation infinite algebra Λ is isomorphic to some path algebra

kQ, then its Auslander-Reiten quiver is precisely a disjoint union of preprojective,

preinjective, and regular components.

For further details on representation theory we refer to [11, 35].

Example 1.3.3. Consider the path algebra kQ̃ as defined in Example 1.1.2. This al-

gebra is representation finite, so the Auslander-Reiten quiver Γ(mod kQ̃) shown below

is also finite. The Auslander-Reiten quiver consists of a single connected component,

which means every kQ̃ module is both preinjective and preprojective.

1
2
3

!!
2
3

!!

==

1
2

!!
3

==

2

==

1

Given the Auslander-Reiten quiver it is very easy to compute τ and τ−1, which

corresponds to shifting a module left and right, respectively, along the dotted lines.

For example,

τ 1
2 = 2

3 τ 2
3 = 0 τ−12 = 1 τ

1
2
3

= τ−1 1
2
3

= 0.
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1.4 Tilted algebras

Tilting theory is one of the main themes in the study of the representation theory

of algebras. Given a k-algebra Λ one can construct a new algebra from Λ in such

way that the corresponding module categories are closely related. The key idea is the

notion of a tilting module, which we define below.

Definition 1.4.1. A module T ∈ mod Λ is called tilting if all of the following are

true:

(i) T is rigid, meaning Ext1
Λ(T, T ) = 0.

(ii) pdΛT ≤ 1.

(iii) the number of indecomposable summands of T is the number of isoclasses of

indecomposable simple Λ-modules.

Moreover T is called a partial tilting module if conditions (i) and (ii) hold.

An algebra A is said to be hereditary if every submodule of a projective A-module

is also projective. It is known, that any finite-dimensional hereditary algebra over

an algebraically closed field k is Morita equivalent to a path algebra of a uniquely

determined finite quiver Q without oriented cycles.

Given a tilting module T as defined above over a hereditary algebra A we construct

a new algebra C = EndAT called a tilted algebra. Observe that C is indeed an algebra.

Given two maps f, g going from T to T , we can define two operations, addition and

multiplication, by considering two new maps, f + g and f ◦ g (composition), which

again are morphisms from T to T .

Example 1.4.2. Let kQ̃ be the algebra defined in Example 1.1.2. Then

T̃ = 1 ⊕ 1
2
3
⊕ 3
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is a tilting kQ̃ module consisting of three distinct indecomposable direct summands.

Observe that there is a nonzero map from the third summand to the second, and from

the second summand to the first, but there is no such map from the third summand to

the first. Hence, the corresponding tilted algebra C̃ = HomkQ̃(T̃ , T̃ ) can be realized

as the path algebra of the following quiver

QC̃ = 1
α−→ 2

β−→ 3

and requiring that αβ = 0. In other words C̃ = kQC̃/〈αβ〉, where 〈αβ〉 denotes the

ideal generated by αβ.

Definition 1.4.3. A pair (T ,F) of full subcategories of mod Λ is called a torsion

pair if the following conditions are satisfied:

(a) HomΛ(M,N) = 0 for all M ∈ T , N ∈ F .

(b) HomΛ(M,−)|F = 0 implies M ∈ T .

(c) HomΛ(−, N)|T = 0 implies N ∈ F .

Given a tilting module T ∈ modA and a tilted algebra C = EndAT , consider the

following full subcategories of modA.

T (T ) = {M ∈ modA | Ext1
A(T,M) = 0}

F(T ) = {M ∈ modA | HomA(T,M) = 0}

Then (T (T ),F(T )) is a torsion pair in modA that determines another torsion pair

(X (T ),Y(T )) in modC, where

X (T ) = {M ∈ modC |M ⊗C T = 0}
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Y(T ) = {M ∈ modC | TorC1 (M,T ) = 0}.

For more details refer to [11, chapters VI and VIII]. With this notation consider the

following theorem due to Brenner and Butler.

Theorem 1.4.4. Let A be a hereditary algebra, T a tilting A-module, and C =

EndAT . Then

(a) the functors HomA(T,−) and − ⊗C T induce quasi-inverse equivalences be-

tween T (T ) and Y(T ).

(b) the functors Ext1
A(T,−) and TorC1 (−, T ) induce quasi-inverse equivalences be-

tween F(T ) and X (T ).

Moreover, TorC1 (HomA(T,M), T ) = 0 and Ext1
A(T,M)⊗C T = 0 for any M ∈ modA,

and HomA(T,TorC1 (N, T )) = 0 and Ext1
A(T,N ⊗C T ) = 0 for any N ∈ modC.

There is a close relationship between the Auslander-Reiten quivers of a hereditary

algebra and its corresponding tilted algebra. We shall need the following result.

Theorem 1.4.5. [11, p.330] Let A be a representation-infinite hereditary algebra, T

be a preprojective tilting A-module, and C = EndAT . Then

(a) T (T ) contains all but finitely many nonisomorphic indecomposable A-modules,

and any indecomposable A-module not in T (T ) is preprojective.

(b) the image under the functor HomA(T,−) of regular A-modules yields all regular

C-modules.

(c) the injective and projective dimension of all regular C-modules is at most one.

The following proposition describes several facts about tilted algebras, which we

will use throughout the thesis.
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Proposition 1.4.6. Let A be a hereditary algebra, T a tilting A-module, and C =

EndAT the corresponding tilted algebra. Then

(a) gl.dimC ≤ 2.

(b) For all M ∈ indC idCM ≤ 1 or pdCM ≤ 1.

(c) For all M ∈ X (T ) idCM ≤ 1.

(d) For all M ∈ Y(T ) pdCM ≤ 1.

(e) (X (T ),Y(T )) is splitting, which means that every indecomposable C-module

belongs either to X (T ) or Y(T ).

(f) Y(T ) is closed under predecessors and X (T ) is closed under successors.

There is also a precise description of injective modules in a tilted algebra in terms

of the corresponding hereditary algebra.

Proposition 1.4.7. Let A be a hereditary algebra, T a tilting A-module, and C =

EndAT . Let T1, . . . , Tn be a complete set of pairwise nonisomorphic indecomposable

direct summands of T . Assume that the modules T1, . . . , Tm are projective, the re-

maining modules Tm+1, . . . , Tn are not projective, and I1, . . . , Im are indecomposable

injective A-modules with soc Ij ∼= Tj/radTj, for j = 1, . . . ,m. Then the C-modules

HomA(T, I1), . . . ,HomA(T, Im),Ext1
A(T, τTm+1), . . . ,Ext1

A(T, τTn)

form a complete set of pairwise nonisomorphic indecomposable injective modules.
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1.5 Cluster-tilted algebras

Let A = kQ and let Db(modA) denote the derived category of bounded complexes

of A-modules. The cluster category CA is defined as the orbit category of the derived

category with respect to the functor τ−1
D [1], where τD is the Auslander-Reiten trans-

lation in the derived category and [1] is the shift. Cluster categories were introduced

in [17], and in [22] for type A, and were further studied in [2, 28, 29, 32]. They are

triangulated categories [28], that are 2-Calabi-Yau and have Serre duality [17].

An object T in CA is called cluster-tilting if Ext1
CA(T, T ) = 0 and T has |Q0| non-

isomorphic indecomposable direct summands. The endomorphism algebra EndCAT

of a cluster-tilting object is called a cluster-tilted algebra [18].

The following theorem will be used later.

Theorem 1.5.1. [18] If T is a cluster-tilting object in CA, then HomCA(T,−) induces

an equivalence of categories CA/add(τT )→ mod EndCAT .

1.6 Relation extensions

Let C be an algebra of global dimension at most two and let E be the C-C-bimodule

E = Ext2
C(DC,C). The relation extension of C is the trivial extension algebra

B = C n E, whose underlying C-module is C ⊕ E, and multiplication is given by

(c, e)(c′, e′) = (cc′, ce′ + ec′). Relation extensions where introduced in [3]. In the

special case where C is a tilted algebra, we have the following result.

Theorem 1.6.1. [3] Let C be a tilted algebra. Then B = C n Ext2
C(DC,C) is a

cluster-tilted algebra. Moreover all cluster-tilted algebras are of this form.
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This shows that a tilted algebra C is both a subalgebra and a quotient of the

associated cluster-tilted algebra B. In particular there exists a short exact sequence

of right B-modules

0 // E i // BB
π // CC // 0 . (1.6.1)

In general the quiver of the corresponding cluster-tilted algebra can be obtained

from the quiver of its tilted algebra by adding new arrows in the opposite direction

for each zero relation.

Example 1.6.2. Recall that C̃ = kQ̃/〈αβ〉 is a tilted algebra constructed in Example

1.4.2, and there is only one zero relation αβ = 0. Hence, we obtain the following quiver

QB̃ = 1 α // 2
β // 3

γ

hh

and the associated cluster-tilted algebra B̃ = kQB̃/〈αβ, βγ, γα〉. Note that the quiver

is not acyclic, however the resulting algebra B̃ is still finite dimensional. The theory

discussed in Section 1.1 still makes sense in this setting.

1.7 Slices and local slices

Let Λ be a k-algebra.

Definition 1.7.1. A path in mod Λ with source X and target Y is a sequence of

non-zero morphisms X = X0 → X1 → · · · → Xs = Y where Xi ∈ mod Λ for all i,

and s ≥ 1. A path in Γ(mod Λ) with source X and target Y is a sequence of arrows

X = X0 → X1 → · · · → Xs = Y in the Auslander-Reiten quiver. In addition, such

path is called sectional if for each i with 0 < i < s, we have τΛXi+1 6= Xi−1.
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Definition 1.7.2. A slice Σ in Γ(mod Λ) is a set of indecomposable Λ-modules such

that

(i) Σ is sincere, meaning HomΛ(P,Σ) 6= 0 for any projective Λ-module P .

(ii) Any path in mod Λ with source and target in Σ consists entirely of modules

in Σ.

(iii) If M is an indecomposable non-projective Λ-module then at most one of M ,

τΛM belongs to Σ.

(iv) If M → S is an irreducible morphism with M,S ∈ ind Λ and S ∈ Σ, then

either M belongs to Σ or M is non-injective and τ−1
Λ M belongs to Σ.

Given an indecomposable Λ-module Y in a connected component Γ of Γ(mod Λ)

define two full subquivers of Γ induced by the following set of vertices.

Σ(→ Y ) = {X ∈ ind Λ| ∃ X → · · · → Y ∈ Γ and every path from X to Y in Γ is sectional}

Σ(Y →) = {X ∈ ind Λ| ∃ Y → · · · → X ∈ Γ and every path from Y to X in Γ is sectional}

With this notation consider the next result due to Ringel.

Proposition 1.7.3. [33] Let Y be an indecomposable sincere module in a standard,

convex, and directed component. Then both Σ(→ Y ) and Σ(Y →) are slices. More-

over, a component that is preprojective or preinjective is standard, convex, and di-

rected.

The existence of slices is used to characterize tilted algebras in the following way.

Theorem 1.7.4. [33] Let C = EndAT be a tilted algebra. Then the class of C-

modules HomA(T,DA) forms a slice in modC. Conversely, any slice in any module

category is obtained in this way.
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The following notion of local slices has been introduced in [4] in the context of

cluster-tilted algebras.

Definition 1.7.5. A local slice Σ in Γ(mod Λ) is a set of indecomposable Λ-modules

inducing a connected full subquiver of Γ(mod Λ) such that

(i) If X ∈ Σ and X → Y is an arrow in Γ(mod Λ) then either Y ∈ Σ or τΛY ∈ Σ.

(ii) If Y ∈ Σ and X → Y is an arrow in Γ(mod Λ) then either X ∈ Σ or τ−1
Λ X ∈ Σ.

(iii) For every sectional path X = X0 → X1 → · · · → Xs = Y in Γ(mod Λ) with

X, Y ∈ Σ we have Xi ∈ Σ, for i = 0, 1, . . . , s.

(iv) The number of indecomposables in Σ equals the number of nonisomorphic

summands of T , where T is a tilting Λ-module.

Remark 1.7.6. The definition of a local slice makes sense if we replace the algebra

Λ by a cluster category CA, and then consider objects of CA instead of Λ-modules.

There is a relationship between tilted and cluster-tilted algebras given in terms of

slices and local slices.

Theorem 1.7.7. [4] Let C be a tilted algebra and B be the corresponding cluster-tilted

algebra. Then any slice in modC embeds as a local slice in modB and any local slice

Σ in modB arises in this way. Moreover, C = B/AnnBΣ.

The existence of local slices in a cluster-tilted algebra gives rise to the following

definition. The unique connected component of Γ(modB) that contains local slices

is called the transjective component. In particular if B is of finite representation type

then the transjective component is the entire Auslander-Reiten quiver of modB. In

this case there is the following statement.
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Theorem 1.7.8. [4] Let B be a representation-finite cluster-tilted algebra. Then any

indecomposable B-module lies on a local slice.

We end this section with a lemma that we will need later.

Lemma 1.7.9. Let Σ̃ be a local slice in the cluster category CA. Then Σ = HomCA(T, Σ̃)

is a local slice in modB if and only if Σ̃ contains no summand of τCAT .

Proof. HomCA(T,−) : Σ̃→ Σ is a bijection if and only if Σ̃ contains no summand of

τCAT . Now the statement follows from [4, Lemma 17].



Chapter 2

Induction and coinduction functors

In this chapter we define two functors called induction and coinduction and describe

some general results about them. Suppose there are two k-algebras C and B with the

property that C is a subalgebra of B and they share the same identity. Then there

is a general construction via the tensor product, also known as extension of scalars,

that sends a C-module to a particular B-module. In general very little can be said

about the B-modules obtained in this way. However, many interesting results can be

deduced about the structure of induced and coinduced B-modules in the special case

when B is a split extension of C.

2.1 Generic properties

Definition 2.1.1. Let C be a subalgebra of B, such that 1C = 1B, then

−⊗C B : modC → modB

25
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is called the induction functor, and dually

D(B ⊗C D−) : modC → modB

is called the coinduction functor. Moreover, given M ∈ modC the corresponding

induced module is defined to be M ⊗C B, and the coinduced module is defined to be

D(B ⊗C DM).

First observe that both functors are covariant. The induction functor is right

exact, while the coinduction functor is left exact. Now consider the following lemma.

Lemma 2.1.2. Let C and B be two k-algebras and N a C-B-bimodule, then

M ⊗C N ∼= DHomC(M,DN)

as B-modules for all M ∈ modC.

Proof.

M ⊗C N ∼= DHomk(M ⊗C N, k) ∼= DHomC(M,Homk(N, k)) ∼= DHomC(M,DN).

The next proposition describes an alternative definition of these functors, and we

will use these two descriptions interchangeably.

Proposition 2.1.3. Let C be a subalgebra of B such that 1C = 1B, then for every

M ∈ modC

(a) M ⊗C B ∼= DHomC(M,DB).

(b) D(B ⊗C DM) ∼= HomC(B,M).
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Proof. Both parts follow from Lemma 2.1.2.

Next we show some basic properties of these functors.

Proposition 2.1.4. Let C be a subalgebra of B such that 1C = 1B. If e is an idem-

potent then

(a) (eC)⊗C B ∼= eB.

(b) D(B ⊗C Ce) ∼= DBe.

In particular, if P (i) and I(i) are indecomposable projective and injective C-modules

at vertex i, then P (i)⊗C B and D(B ⊗C DI(i)) are respectively indecomposable pro-

jective and injective B-modules at vertex i.

Proof. Observe that (eC) ⊗C B = e(C ⊗C B) ∼= eB, and similarly we compute

D(B ⊗C (Ce)) = D((B ⊗C C)e) ∼= DBe. The rest of the proposition follows from

above if we let e = ei be the primitive idempotent given by the constant path at

vertex i.

2.2 Split extension algebras

We can say more about induction and coinduction functors in the situation when B

is a split extension of C.

Definition 2.2.1. Let B and C be two algebras. We say B is a split extension of C

by a nilpotent bimodule E if there exists a short exact sequence of B-modules

0 // E i // B
π // C
σ
oo // 0 (2.2.1)
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where π and σ are algebra homomorphisms, such that πσ = 1C , and E = ker π is

nilpotent.

For example, relation extensions described in Section 1.6 are split extensions.

If B is a split extension of C then σ is injective, which means C is a subalgebra

of B. Also, E is a C-C-bimodule, and we require E to be nilpotent so that 1B = 1C .

Observe that B ∼= C ⊕ E as C-modules, and there is an isomorphism of C-modules

M ⊗C B ∼= (M ⊗C C) ⊕ (M ⊗C E) ∼= M ⊕M ⊗C E. Similarly, D(B ⊗C DM) ∼=

M ⊕ D(E ⊗C DM) as C-modules. This shows that induction and coinduction of

a module M yields the same module M plus possibly something else. The next

proposition shows a precise relationship between a given C-module and its image

under the induction and coinduction functors.

Proposition 2.2.2. Suppose B is a split extension of C by a nilpotent bimodule E,

then for every M ∈ modC there exist two short exact sequences of B-modules

(a) 0 //M ⊗C E //M ⊗C B //M // 0 .

(b) 0 //M // D(B ⊗C DM) // D(E ⊗C DM) // 0 .

Proof. To show part (a) we apply M ⊗C − to the short exact sequence (2.2.1) and

obtain the following long exact sequence

TorC1 (M,C) //M ⊗C E //M ⊗C B //M ⊗C C // 0 .

However, TorC1 (M,C) = 0 since C is a projective C-module, so part (a) follows.

Similarly, to show part (b) we apply D(−⊗C DM) to sequence (2.2.1). This yields a

long exact sequence

0 // D(C ⊗C DM) // D(B ⊗C DM) // D(E ⊗C DM) // DTorC1 (C,DM) .
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The last term in the sequence is again zero, which shows part (b).

Thus, in this situation each module is a quotient of its induced module and a

submodule of its coinduced module.

In general it is not the case that induction or coinduction of an indecomposable C-

module produces an indecomposable B-module. However, in the particular situation

discussed in this section indecomposable modules induce and coinduce indecompos-

able B-modules.

Proposition 2.2.3. Suppose B is a split extension of C by a nilpotent bimodule E,

then

(a) M ⊗C B ∈ indB if and only if M ∈ indC.

(b) D(B ⊗C DM) ∈ indB if and only if M ∈ indC.

Proof. Part (a). Suppose M ∈ modC is not indecomposable. Then M ∼= M1 ⊕M2

such that neither M1 nor M2 is the zero module. Consider M ⊗C B ∼= (M1 ⊗C B)⊕

(M2 ⊗C B). Since M1 6= 0, Proposition 2.2.2 (a) implies that M1 ⊗C B 6= 0. The

same reasoning shows that M2 ⊗C B 6= 0. Therefore, we conclude that M ⊗C B is a

decomposable B-module. This shows the forward direction of the statement in part

(a).

Now, suppose M ∈ indC, but M ⊗C B ∼= M1 ⊕M2 where neither M1 nor M2

is the zero module. Because B is a split extension of C, it follows that C has a left

B-module structure. Thus, M⊗CB⊗BCC ∼= (M1⊕M2)⊗BCC , and we conclude that

M ∼= (M1 ⊗B CC) ⊕ (M2 ⊗B CC). By assumption M is indecomposable, so without

loss of generality let M1 ⊗B CC = 0. But 0 = M1 ⊗B C ⊗C B ∼= M1 ⊗B B ∼= M1,

which is a contradiction. Therefore, M ⊗C B is indecomposable.

Part (b) can be shown in a similar manner as above.
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Proposition 2.2.4. Suppose B is a split extension of C by a nilpotent bimodule E,

then for every M,N ∈ modC

(a) M ⊗C B ∼= N ⊗C B if and only if M ∼= N .

(b) D(B ⊗C DM) ∼= D(B ⊗C DN) if and only if M ∼= N .

Proof. Part (a). Suppose M ⊗C B ∼= N ⊗C B. Because B is a split extension of C, it

follows that C has a left B-module structure. Thus, we have that M ⊗C B ⊗B CC ∼=

N ⊗C B ⊗B CC , which means M ∼= M ⊗C CC ∼= N ⊗C CC ∼= N . The proof of part

(b) is similar to that of part (a) and we omit it.

The next lemma describes a relationship between the Auslander-Reiten transla-

tions in modC and modB, and induction and coinduction functors. This lemma

together with the following theorem were shown in [8].

Lemma 2.2.5. Suppose B is a split extension of C by a nilpotent bimodule, then for

every M ∈ modC

(a) τB(M ⊗C B) ∼= D(B ⊗C D(τCM)).

(b) τ−1
B D(B ⊗C DM) ∼= (τ−1

C M)⊗C B.

Theorem 2.2.6. Suppose B is a split extension of C by a nilpotent bimodule E and

T ∈ modC, then

(a) T ⊗C B is a (partial) tilting B-module if and only if T is a (partial) tilting

C-module, HomC(T ⊗C E, τCT ) = 0 and HomC(DE, τCT ) = 0.

(b) D(B ⊗C DT ) is a (partial) cotilting B-module if and only if T is a (partial)

cotilting C-module, HomC(τ−1
C T,D(E ⊗C DT )) = 0 and HomC(τ−1

C T,E) = 0.



Chapter 3

Induced and coinduced modules
over cluster-tilted algebras

In this chapter we develop properties of the induction and coinduction functors par-

ticularly when C is an algebra of global dimension at most two and B = CnE is the

trivial extension of C by the C-C-bimodule E = Ext2
C(DC,C). In the specific case

when C is also a tilted algebra, then B is the corresponding cluster-tilted algebra.

Some of the results in this chapter only hold when C is tilted, but many hold in a

more general situation when gl.dimC ≤ 2, and we make that distinction clear in the

assumptions of each statement. However, throughout this chapter we always assume

E = Ext2
C(DC,C) and a tensor product ⊗ is a tensor product over C.

The main result of this chapter holds when C is a tilted algebra. It says that DE

is a partial tilting and τC-rigid C-module, and the corresponding induced module

DE ⊗B is a partial tilting and τB-rigid B-module.
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3.1 Basic properties

We begin by presenting a number of preliminary results that lead to the main theorem.

Many of these statements will also be used in the subsequent chapters.

Proposition 3.1.1. Let C be an algebra of global dimension at most 2. Then

(a) E ∼= τ−1Ω−1C.

(b) DE ∼= τΩDC.

(c) M ⊗ E ∼= τ−1Ω−1M .

(d) D(E ⊗DM) ∼= τΩM .

Proof. Since the global dimension of C is at most 2, we have idCΩ−1M ≤ 1 (respec-

tively pdCΩM ≤ 1) for all C-modules M . Therefore, when applying the Auslander-

Reiten formula below, we obtain the full Hom-space and not its quotient by the space

of morphisms factoring through projectives (respectively injectives).

Part (a). E = Ext2
C(DC,C) ∼= Ext1

C(DC,Ω−1C) ∼= DHomC(τ−1Ω−1C,DC) ∼=

τ−1Ω−1C.

Part (b). DE = DExt2
C(DC,C) ∼= DExt1

C(ΩDC,C) ∼= HomC(C, τΩDC) ∼= τΩDC.

Part (c). Using Lemma 2.1.2 we have M ⊗ E ∼= DHomC(M,DE), which in turn by

part (b) is isomorphic to DHomC(M, τΩDC). Then, we have the following chain of

isomorphisms M ⊗ E ∼= DHomC(M, τΩDC) ∼= Ext1
C(ΩDC,M) ∼= Ext2

C(DC,M) ∼=

Ext1
C(DC,Ω−1M) ∼= DHomC(τ−1Ω−1M,DC) ∼= τ−1Ω−1M . Part (d) can be shown in

a similar manner as above.

Proposition 3.1.2. Let C be an algebra of global dimension at most 2, and let B =

C n E. Suppose M ∈ modC, then

(a) idCM ≤ 1 if and only if M ⊗B ∼= M .

(b) pdCM ≤ 1 if and only if D(B ⊗DM) ∼= M .
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Proof. Part (a). Recall that M ⊗ B ∼= M ⊕ M ⊗ E as C-modules. Therefore, it

suffices to show that M⊗E = 0 if and only if idCM ≤ 1. Proposition 3.1.1(c) implies

that M ⊗ E ∼= τ−1Ω−1M , which is zero if and only if idCM ≤ 1.

Part (b). Similarly it suffices to show that D(E⊗DM) = 0 if and only if pdCM ≤ 1.

However, Proposition 3.1.1(d) implies that D(E⊗DM) ∼= τΩM , which again is zero

if and only if pdCM ≤ 1.

As a consequence of this proposition and Lemma 2.2.5 we obtain the following

corollary, which says that a slice in a tilted algebra together with its τ and τ−1-

translates fully embeds in the cluster-tilted algebra. This result was already shown

in [ABS4] relying on the main theorem of [AZ]. Here we present a new proof using

induction and coinduction functors.

Corollary 3.1.3. Let C be a tilted algebra and B the corresponding cluster-tilted

algebra. Let Σ be a slice in modC and M a module in Σ. Then

(a) τCM ∼= τBM .

(b) τ−1
C M ∼= τ−1

B M .

Proof. We show part (a) and the proof of part (b) is similar. Since the module M

lies on a slice in modC then pdCM ≤ 1 and idCM ≤ 1. By Lemma 2.2.5(a) we have

the following isomorphism

τB(M ⊗C B) ∼= D(B ⊗C D(τCM)).

It follows from Proposition 3.1.2(a) that the left hand side is isomorphic to τBM . It

remains to show that the right hand side is isomorphic to τCM . We may suppose

without loss of generality that C = EndAT and Σ = HomA(T,DA) lies in Y(T ).
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Hence, in particular M ∈ Y(T ). Proposition 1.4.6(f) implies that τCM ∈ Y(T ),

so part (d) of the same proposition shows that pdCτCM ≤ 1. Therefore, we have

D(B⊗C D(τCM)) ∼= τCM by Proposition 3.1.2(b), and this completes the proof.

Lemma 3.1.4. Let C be an algebra of global dimension 2. Then for all M ∈ modC

(a) pdCN = 2 for all nonzero N ∈ addM ⊗ E.

(b) idCN = 2 for all nonzero N ∈ addD(E ⊗DM).

Proof. Part (a). By Proposition 3.1.1 (c), M ⊗ E ∼= τ−1Ω−1M , which is nonzero if

and only if idCM = 2. Now, consider a minimal injective resolution of M and Ω−1M

Ω−1M

&&
0 //M // I0 //

π
88

I1 // I2 // 0.

Apply ν−1 to find a minimal projective resolution of τ−1Ω−1M .

0 // ν−1Ω−1M // ν−1I1 // ν−1I2 // τ−1Ω−1M // 0.

Since C has global dimension two, ν−1Ω−1M is a projective C-module. It remains

to show that it is nonzero. By definition ν−1Ω−1M = HomC(DC,Ω−1M), which is

nonzero since we have a nonzero map π. Finally, observe that the argument above

holds if we replace τ−1Ω−1M by a nonzero direct summand of τ−1Ω−1M . This com-

pletes the proof. Part (b) can be shown in a similar manner as above.

Lemma 3.1.5. Let C be a tilted algebra. Then for all M ∈ modC

(a) idCM ⊗ E ≤ 1.

(b) pdCD(E ⊗DM) ≤ 1.
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Proof. Part (a) follows from Lemma 3.1.4(a) and Proposition 1.4.6(b). Similarly, part

(b) follows from Lemma 3.1.4(b) and Proposition 1.4.6(b).

Proposition 3.1.6. Let C be a tilted algebra. Then

(a) E ⊗ E = 0.

(b) D(E ⊗D(DE)) = 0.

Proof. Part (a). Proposition 3.1.1(c) implies that E⊗E ∼= τ−1Ω−1E, but this is zero

since idCE ≤ 1, by Lemma 3.1.5(a) with M = C. Part (b) follows directly from part

(a).

Remark 3.1.7. The above proposition does not hold if C has global dimension 2,

but is not tilted. For example, consider an algebra C given by the following quiver

with relations.

1 α // 2
β // 3

γ // 4 δ // 5 αβ = γδ = 0.

The Auslander-Reiten quiver of C is the following.

4
5

!!

1
2

!!
5

==

4

!!

3

!!

2

==

1

3
4

==

!!

2
3

==

2
3
4

==

Here E = S(1) ⊕ S(3), where S(i) is the simple module at vertex i. Hence, we see

E ⊗ E ∼= τ−1Ω−1(S(1)⊕ S(3)) = S(1).

The following lemma is used throughout the paper.
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Lemma 3.1.8. Let C be an algebra of global dimension at most 2, then

(a) Ext1
C(E,C) = 0.

(b) Ext1
C(DC,DE) = 0.

(c) Ext1
C(E,E) = 0.

(d) Ext1
C(DE,DE) = 0.

Proof. We will show parts (a) and (c), and the rest of the lemma can be proven

similarly.

Part (a). By Proposition 3.1.1(a), we see that Ext1
C(E,C) ∼= Ext1

C(τ−1Ω−1C,C),

which in turn by the Auslander-Reiten formula is isomorphic to DHomC(C,Ω−1C).

Let i : C → I be an injective envelope of C, thus we have the following short exact

sequence

0 // C i // I π // Ω−1C // 0 . (3.1.1)

Applying HomC(C,−) to this sequence we obtain an exact sequence

0 // HomC(C,C) // HomC(C, I)
π∗ // HomC(C,Ω−1C) // Ext1

C(C,C) .

However, Ext1
C(C,C) = 0 shows that π∗ is surjective. This implies that every mor-

phism from C to Ω−1C factors through the injective I. Thus, HomC(C,Ω−1C) = 0,

and this shows part (a).

Part (c). As above observe that Ext1
C(E,E) ∼= DHomC(E,Ω−1C). Applying the

functor HomC(E,−) to the sequence (3.1.1) we get an exact sequence

0 // HomC(E,C) // HomC(E, I)
π∗∗ // HomC(E,Ω−1C) // Ext1

C(E,C) .

But then by part (a) we have Ext1
C(E,C) = 0, which shows that π∗∗ is surjective.
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Thus HomC(E,Ω−1C) = 0, and this completes the proof of part (c).

Corollary 3.1.9. If the global dimension of C is at most two, then both E ⊕ C and

DE ⊕DC are rigid modules.

Proof. Observe that Ext1
C(E ⊕C,E ⊕C) ∼= Ext1

C(E,E ⊕C)⊕Ext1
C(C,E ⊕C). The

first summand is zero because of Lemma 3.1.8, and the second is zero because C is

projective. The proof of the rigidity of DE ⊕DC is similar.

3.2 On the relation-extension bimodule

The following theorem is the main result of this section. Following [1] we say that a

Λ-module M is τΛ-rigid if HomΛ(M, τΛM) = 0.

Theorem 3.2.1. If C is a tilted algebra and B is the corresponding cluster-tilted

algebra, then

(a) DE is a partial tilting and τC-rigid C-module, and its corresponding induced

module DE ⊗B is a partial tilting and τB-rigid B-module.

(b) E is a partial cotilting and τC-corigid C-module, and its corresponding coin-

duced module D(B ⊗DE) is a partial cotilting and τB-corigid B-module.

Proof. We show part (a), and the proof of part (b) is similar. First let us show

that DE is a partial tilting and τC-rigid C-module. Because C is tilted, Lemma

3.1.5(b) implies that pdCDE ≤ 1, but also DE is rigid by Lemma 3.1.8(d). This

shows that DE is a partial tilting C-module. On the other hand, by Lemma 3.1.4(b),

all nonzero indecomposable summands of DE have injective dimension 2. Thus,

pdCDE ≤ 1, by Proposition 1.4.6(b). So, applying the Auslander-Reiten formula we
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have HomC(DE, τCDE) ∼= DExt1
C(DE,DE) = 0, where the last step follows from

Lemma 3.1.8(d). This shows that DE is τC-rigid.

Now, it remains to shows that DE⊗B is a partial tilting and τB-rigid B-module.

First we show that DE ⊗ B is partial tilting. From above we know that DE is a

partial tilting C-module, thus by Theorem 2.2.6 it suffices to show the two conditions

HomC(DE⊗CE, τCDE) = 0 and HomC(DE, τCDE) = 0. The second identity follows

from the work above, so we need to show the first identity. Observe that by Lemma

3.1.4(a), pdCDE ⊗ E = 2 . Then Proposition 1.4.6 implies that DE ⊗ E ∈ X (T ).

Similarly, by Lemma 3.1.4(b), idCDE = 2, so Proposition 1.4.6 implies that DE ∈

Y(T ). However, by Proposition 1.4.6(f), Y(T ) is closed under predecessors, which

means τCDE ∈ Y(T ). By definition of a torsion pair there are no nonzero morphisms

from X (T ) to Y(T ), so HomC(DE ⊗ E, τCDE) = 0. This shows that DE ⊗ B is a

partial tilting B-module.

Now we show that DE⊗B is τB-rigid, that is HomB(DE⊗B, τB(DE⊗B)) = 0.

First observe that Lemma 2.2.5(a) yields τB(DE ⊗ B) ∼= D(B ⊗DτCDE), which in

turn by Proposition 3.1.2(b) is isomorphic to τCDE. Let f ∈ HomB(DE⊗B, τCDE).

Then we have the following diagram, whose top row is the short exact sequence of

Proposition 2.2.2(a).

0 // DE ⊗ E i∗ // DE ⊗B π∗ //

f
��

DE //

gyy

0

τCDE

.

Observe that fi∗ ∈ HomC(DE ⊗ E, τCDE), which is zero by our calculation above.

Next, the universal property of coker i∗ implies that there exists g ∈ HomC(DE, τCDE)

such that gπ∗ = f . However, we know that DE is τC-rigid, which implies that g = 0.
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This means f = 0. Thus, we conclude that DE ⊗B is τB-rigid.

Remark 3.2.2. Unlike DE, the C-module E is not τC-rigid, that is HomC(E, τCE) 6=

0. Consider, for example, the tilted algebra C given by the following quiver with

relations.

2

1

α

@@

β ��

4
δoo
γ

oo δα = γβ = 0.

3

Here E =
4
1
2
⊕ 4

1
3

and τCE = 4
1 ⊕ 4

1 .



Chapter 4

Injective resolutions

In this chapter we construct an explicit injective resolution of an arbitrary projective

B-module in a cluster-tilted algebra B using only induction and coinduction functors

applied to modules over a tilted algebra C. This resolution is described completely

in terms of C-modules and has length at most one.

We begin by deriving a number of commutative diagrams. These enable us to

define modules and morphisms involved in the construction of an injective resolution.

Most of the statements are also true when the global dimension of C is at most 2 and

we make that distinction clear.

4.1 Preliminary constructions

Lemma 4.1.1. Let gl.dimC = 2 and M ∈ modC. Suppose that idCM = 2, and that

0 //M
i0 // I0

C

i2 // I1
C

i3 // I2
C

// 0

40
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is a minimal injective resolution of M . Then there is a commutative diagram with

exact rows

0 //M
i0 //

g1

��

I0
C

i1 //

g0
��

Ω−1M // 0

0 // τΩτ−1Ω−1M
π0 // ĨC

π1 // Ω−1M // 0

where ĨC = νν−1Ω−1M is an injective C-module.

Proof. Consider the diagram below. The injective resolution of M also gives a min-

imal injective resolution of Ω−1M , which is shown in the top row of the diagram.

Then we apply the inverse Nakayama functor ν−1 = HomC(DC,−) to this resolution

and obtain a projective presentation of τ−1Ω−1M in the second row. First, note that

ν−1Ω−1M = HomC(DC,Ω−1M) is nonzero, because it contains the nonzero map i1.

Also, the global dimension of C is two, which means that ν−1Ω−1M is projective and

we actually have a projective resolution of τ−1Ω−1M .

Next we apply the Nakayama functor ν = DHomC(−, C) to the projective res-

olution of Ωτ−1Ω−1M , and obtain an injective presentation of τΩτ−1Ω−1M in the

third row of the diagram. Observe that νΩτ−1Ω−1M = νIm(ν−1i3) = Im(νν−1i3) =

Im i3 = I2
C .

Let g0 = νν−1i1. By commutativity in the diagram below, we see that i4π1g0 =

i2 = i4i1. Since i4 is injective, we conclude π1g0 = i1. This shows that we have two

short exact sequences as in the statement of the lemma and that the second square

in the diagram is commutative. Then by the universal property of ker π1 there exists

g1 ∈ HomC(M, τΩτ−1Ω−1M) that makes the first square commute.
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Ω-1M
i4

##
0 //M

i0 // I0
C

i2 //

i1
88

I1
C

i3 //

ν-1

��

I2
C

//

ν-1

��

0

ν-1I0
C

ν-1i1
yy

ν-1i2
##

0 // ν-1Ω-1M
ν-1i4 //

ν

��

ν-1I1
C

ν-1i3 //

&&

ν

��

ν-1I2
C
// τ -1Ω-1M // 0

Ωτ -1Ω-1M

88

I0
C

νν-1i1
yy

i2

##
0 // τΩτ -1Ω-1M

π0 // νν-1Ω-1M
νν-1i4 //

π1 &&

I1
C

i3 // I2
C

// 0

Ω-1M
i4

;;

Proposition 4.1.2. Let gl.dimC ≤ 2 and E = Ext2
C(DC,C), then for every M ∈

modC

M ⊗ E ∼= HomC(E,M ⊗ E)⊗ E.

Proof. Observe that by Proposition 3.1.1(c) the left hand side of the statement above

is isomorphic to τ−1Ω−1M . Now consider the right hand side

HomC(E,M ⊗ E)⊗ E ∼= D(E ⊗D(M ⊗ E))⊗ E by Lemma 2.1.2

∼= τΩ(M ⊗ E)⊗ E by Proposition 3.1.1(d)

∼= τΩτ−1Ω−1M ⊗ E by Proposition 3.1.1(c)

∼= τ−1Ω−1τΩτ−1Ω−1M by Proposition 3.1.1(c).
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Therefore, it suffices to show that τ−1Ω−1M ∼= τ−1Ω−1τΩτ−1Ω−1M . If idCM ≤ 1

then both sides are zero and the statement follows. If idCM = 2, then by Lemma

4.1.1 we have a short exact sequence

0 // τΩτ−1Ω−1M
π0 // ĨC // Ω−1M // 0 .

Next we construct the following commutative diagram

0 // τΩτ−1Ω−1M // I //

i
��

Ω−1τΩτ−1Ω−1M //

j
��

0

0 // τΩτ−1Ω−1M
π0 // ĨC // Ω−1M // 0

where I is an injective envelope of τΩτ−1Ω−1M . The map i exists and is a monomor-

phism by the properties of an injective envelope; j exists by the universal property of

the cokernel. Moreover, ĨC ∼= i(I)⊕ I ′, where I ′ is some injective C-module. By com-

mutativity Im π0 ⊂ i(I), which implies that Ω−1M ∼= I ′ ⊕ Ω−1τΩτ−1Ω−1M . Hence,

τ−1Ω−1M ∼= τ−1Ω−1τΩτ−1Ω−1M .

To simplify the notation we will write IC for an injective C-module, and IB for the

corresponding injective B-module, that is IB = D(B ⊗ DIC). Also, the morphisms

in the statements of the proceeding lemmas will be used in the proof of the main

theorem, so we keep the notation consistent throughout this chapter.

Lemma 4.1.3. Suppose PC is a projective module over a tilted algebra C such that

idCPC = 2 with an injective envelope 0 → PC
i0−→ I0

C. Then there is a commutative
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diagram with exact rows

0 // PC

(
j0i0
g1

)
//

i0
��

I0
B ⊕ τΩτ−1Ω−1PC

(
α, −l1π0

)
//(

1 0
0 π0

)
��

ĨB // 0

0 // I0
C

(
j0
g0

)
// I0
B ⊕ ĨC

(
α, −l1

)
// ĨB // 0

where ĨC = νν−1Ω−1PC is the injective C-module of Lemma 4.1.1.

Proof. By Lemma 4.1.1 there is a short exact sequence

0 // PC

(
i0
g1

)
// I0
C ⊕ τΩτ−1Ω−1PC

(
g0, −π0

)
// ĨC // 0.

We will apply the coinduction functor HomC(B,−) to this sequence, but first

observe that using Proposition 3.1.1(d) we have τΩτ−1Ω−1PC ∼= D(E⊗Dτ−1Ω−1PC).

Since C is tilted, Lemma 3.1.5(b) shows that the projective dimension of τΩτ−1Ω−1PC

is strictly less then 2, and Proposition 3.1.2(b) implies that both PC and τΩτ−1Ω−1PC

do not change under coinduction. Also, by Corollary 3.1.9 there is a C-module

isomorphism Ext1
C(B,PC) ∼= Ext1

C(C ⊕ E,PC) = 0.

Hence, coinducing the sequence above we obtain the following short exact se-

quence.

0 // PC

(
i0j0
g1

)
// I0
B ⊕ τΩτ−1Ω−1PC

(
α, −l1π0

)
// ĨB // 0

Here, α is the coinduced morphism from g0, and l1, j0 are the inclusions as in Propo-
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sition 2.2.2(b), such that there is a commutative diagram

0 // I0
C

j0 //

g0
��

I0
B

α
��

0 // ĨC
l1 // ĨB.

(4.1.1)

So far we have constructed the top short exact sequence as in the statement of

the lemma. It suffices to show that the bottom row is exact and that the diagram is

commutative. First observe that the second square commutes trivially and the first

one commutes because π0g1 = g0i0 by Lemma 4.1.1. Next, note that the bottom row

is exact at I0
C , because j0 is injective, and it is exact at ĨB, because the diagram is

commutative.

Thus it remains to show that Im
(
j0
g0

)
=ker

(
α, −l1

)
. To show the forward inclusion

consider
(
α, −l1

)(
j0
g0

)
=αj0 − l1g0 which is zero by diagram (4.1.1). Now suppose

α(a)−l1(b) = 0 for some a ∈ I0
B and b ∈ ĨC . By Lemma 4.1.1, there exists d ∈ I0

C such

that i1(d) = π1(b). Then π1g0(d) = i1(d) = π1(b) or equivalently π1(b − g0(d)) = 0.

Again Lemma 4.1.1 implies that there exists c ∈ τΩτ−1Ω−1PC such that π0(c) =

b − g0(d). Now we have α(a) = l1(b) = l1(π0(c) + g0(d)) = l1π0(c) + αj0(d), where

the last identity follows from diagram (4.1.1), so α(a − j0(d)) − l1π0(c) = 0. Using

the fact that the top row in our diagram is exact we can find p ∈ PC such that

j0i0(p) = a− j0(d) and g1(p) = c. Finally, i0(p) + d ∈ I0
C and

(
j0
g0

)
(i0(p) + d) =

(
a
b

)
since g0i0 = π0g1. This shows the reverse inclusion and completes the proof of the

lemma.

Lemma 4.1.4. Let gl.dimC = 2. Suppose PC is a projective C-module with an

injective envelope 0 → P
i0−→ I0

C and idCP = 2. Then there exists a commutative
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diagram with exact rows

0 // PB

(
u1
g2

)
// PC ⊕ τΩτ−1Ω−1PC ⊗B

(
g1, −δ1

)
//(

i0 0
0 1

)
��

τΩτ−1Ω−1PC //

π0
��

0

0 // PB

(
i0u1
g2

)
// I0
C ⊕ τΩτ−1Ω−1PC ⊗B

(
g0, −π0δ1

)
// ĨC // 0

where ĨC = νν−1Ω−1PC is the injective C-module of Lemma 4.1.1 and PB = PC ⊗B

is the corresponding projective B-module.

Proof. By Lemma 4.1.1 there is a short exact sequence

0 // PC

(
i0
g1

)
// I0
C ⊕ τΩτ−1Ω−1PC

(
g0, −π0

)
// ĨC // 0.

We will apply the induction functor DHomC(−, DB) to this sequence. Since

I0
C and ĨC are injective, Proposition 3.1.2(a) implies that these modules do not

change under induction. Also, there is a C-module isomorphism Ext1
C(ĨC , DB) ∼=

Ext1
C(ĨC , DC ⊕DE) = 0, by Corollary 3.1.9. Hence, inducing the sequence above we

obtain the following short exact sequence.

0 // PB

(
i0u1
g2

)
// I0
C ⊕ τΩτ−1Ω−1PC ⊗B

(
g0, −π0δ1

)
// ĨC // 0

Here, g2 is the image of g1 under the induction functor, and δ1, u1 are projections as

in Proposition 2.2.2(a), such that there is the following commutative diagram

PB

g2
��

u1 // PC //

g1
��

0

τΩτ−1Ω−1PC ⊗B
δ1 // τΩτ−1Ω−1PC // 0.

(4.1.2)
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Thus we have constructed the bottom row as in the conclusion of the lemma. It

suffices to show that the top row is exact and that the diagram is commutative.

First observe that the first square commutes trivially and the second one commutes

because π0g1 = g0i0, by Lemma 4.1.1. Next, note that the top row is exact at PB by

commutativity of the diagram and it is exact at τΩτ−1Ω−1PC because δ1 is surjective.

Therefore, it remains to show that Im
(
u1
g2

)
=ker

(
g1, −δ1

)
. The forward inclusion

holds, since
(
g1, −δ1

)(
u1
g2

)
=g1u1 − δ1g2 = 0, by diagram (4.1.2). Now suppose that

g1(a) − δ1(b) = 0 for some a ∈ PC and b ∈ τΩτ−1Ω−1PC ⊗ B. Applying π0 to

both sides we obtain π0g1(a) − π0δ1(b) = 0 or equivalently g0i0(a) − π0δ1(b) = 0, by

commutativity. Since the bottom row is exact we can find p ∈ PB such that i0u1(p) =

i0(a) and g2(p) = b. Note that i0 is injective so u1(p) = a. Finally,
(
u1
g2

)
(p)=

(
a
b

)
.

This shows the reverse inclusion and completes the proof of the lemma.

The next proposition describes an isomorphism between induction and coinduction

for a particular type of modules.

Proposition 4.1.5. Suppose gl.dimC = 2 and M = τΩτ−1Ω−1N for some N ∈

modC. Then the induction of M is isomorphic to the coinduction of M ⊗ E and

there is a commutative diagram with exact rows

0 //M ⊗ E 1⊗i //

φ
��

M ⊗B 1⊗π //

θ
��

M ⊗ C //

ψ
��

0

0 // HomC(C,M ⊗ E) π∗ // HomC(B,M ⊗ E) i∗ // HomC(E,M ⊗ E) // 0

where φ, θ,and ψ are isomorphisms of B-modules.

Proof. First observe that the top row is a short exact sequence by Proposition 2.2.2(a),

and the bottom row is a short exact sequence by Propositions 2.2.2(b) and 2.1.3(b).
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The maps i and π are as in sequence (1.6.1). Next we explicitly describe the rest of

the maps that appear in the diagram above.

Let us begin with the definition of ψ. First, consider

M ∼= τΩτ−1Ω−1N

∼= D(E ⊗Dτ−1Ω−1N) by Proposition 3.1.1(d)

∼= HomC(E, τ−1Ω−1N) by Lemma 2.1.2

∼= HomC(E,N ⊗ E) by Proposition 3.1.1(c).

Then Proposition 4.1.2 implies that

M ⊗ E ∼= N ⊗ E

and in turn

HomC(E,M ⊗ E) ∼= HomC(E,N ⊗ E) ∼= M.

Now, there exists a unique C-module homomorphism ψ such that

ψ : M ⊗ C → HomC(E,M ⊗ E)

m⊗ c 7−→ (e 7→ mc⊗ e).

Next, we want to show that ψ is injective. Since M ⊗C C ∼= M , it suffices to show

that ψ(m ⊗ 1) = 0 if and only if m = 0. Now suppose that ψ(m ⊗ 1) = 0 for some

m ⊗ 1 ∈ M ⊗ C, which means m ⊗ e = 0, for all e ∈ E, and we need to show that

m = 0. For this we use the universal property of the tensor product. Consider the
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diagram

M × E //

ψ &&

M ⊗C E
Ψ
��

N ⊗ E

where ψ(m, e) = m(e). Recall that we can think of M as HomC(E,N ⊗ E), so here

by m(e) we understand a map m evaluated at an element e ∈ E. One can check that

ψ is a C-balanced map, and the universal property of the tensor product implies that

there exists a unique C-module homomorphism Ψ such that Ψ(m⊗ e) = m(e). Now

suppose m⊗e = 0 for all e ∈ E. Then Ψ(m⊗e) = m(e) = 0 for all e ∈ E, which means

that m is the zero map, thus m = 0. This shows that ψ is an injective C-module

homomorphism, but since M ∼= HomC(E,M ⊗ E) are finite dimensional, this shows

that ψ is a C-module isomorphism. Because every C-module is also a B-module by

defining the action of E to be trivial, then ψ is also a B-module isomorphism.

Now we define θ, and again we use the universal property of the tensor product.

Consider the diagram

M ×B //

ϕ ((

M ⊗C B
θ
��

HomC(B,M ⊗ E)

where

ϕ : (m, (c, e)) 7−→ ((c′, e′) 7→ m⊗ (ce′ + ec′)).

Again one can easily check that this map is C-balanced, so the universal property

of the tensor product implies that there exists a unique C-module homomorphism θ
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such that

θ(m⊗ (c, e)) = ((c′, e′) 7→ m⊗ (ce′ + ec′)).

Now we want to show that θ is a B-module homomorphism. Observe that for all

(c̃, ẽ) ∈ B and m⊗ (c, e) ∈M ⊗B we have

θ(m⊗ (c, e)) · (c̃, ẽ) = ((c′, e′) 7→ m⊗ (ce′ + ec′)) · (c̃, ẽ)

= ((c′, e′) 7→ m⊗ (c(c̃e′ + ẽc′) + ec̃c′)).

On the other hand

θ(m⊗ (c, e) · (c̃, ẽ)) = θ(m⊗ (cc̃, cẽ+ ec̃))

= ((c′, e′) 7→ m⊗ (cc̃e′ + (cẽ+ ec̃)c′)),

and the two expressions are the same. This shows that θ is a B-module homomor-

phism.

Finally, we define the morphism φ. Let

φ : M ⊗ E → HomC(C,M ⊗ E)

φ : m⊗ e 7−→ (c 7→ (m⊗ e) · c)

which is a standard isomorphism of C-modules. By the same reasoning as above it is

also an isomorphism of B-modules. Thus we defined all morphisms appearing in the

proposition, so it remains to show that the corresponding diagram is commutative.
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Let m⊗ e ∈M ⊗ E, then consider

π∗φ(m⊗ e) = π∗(c 7→ (m⊗ e) · c)

= (c 7→ (m⊗ e) · c) ◦ π

= ((c′, e′) 7→ m⊗ e · π(c′, e′))

= ((c′, e′) 7→ m⊗ e · (c′, 0))

= ((c′, e′) 7→ m⊗ ec′).

On the other hand

θ(1⊗ i)(m⊗ e) = θ(m⊗ i(e))

= θ(m⊗ (0, e))

= ((c′, e′) 7→ m⊗ ec′).

This shows that the first square commutes. Now let m⊗ (c, e) ∈M ⊗B and consider

i∗θ(m⊗ (c, e)) = i∗((c′, e′) 7→ m⊗ (ce′ + ec′))

= (e′ 7→ m⊗ ce′).

Also,

ψ(1⊗ π)(m⊗ (c, e)) = ψ(m⊗ c)

= (e′ 7→ mc⊗ e′)

= (e′ 7→ m⊗ ce′).
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This shows that the second square commutes.

Next the Five Lemma implies that θ is a B-module isomorphism. This completes

the proof of the proposition.

The following corollary is a reformulation of Proposition 4.1.5 and will be used in

the proof of Theorem 4.2.1.

Corollary 4.1.6. Suppose gl.dimC = 2 and M = τΩτ−1Ω−1N for some N ∈ modC.

Then there is a commutative diagram with exact rows

0 // N ⊗ E δ0 //

φ′

��

M ⊗B δ1 //

θ′

��

M //

ψ′

��

0

0 // N ⊗ E β0 // HomC(B,N ⊗ E)
β1 //M // 0

where φ′, θ′, and ψ′ are isomorphisms of B-modules.

Proof. First observe that the top row of this diagram is equivalent to the top row of

the diagram in Proposition 4.1.5. Also, in the proof of this proposition we showed

that N⊗E ∼= M⊗E and M ∼= HomC(E,M⊗E). This implies that the bottom rows

of the two diagrams are also equivalent. Thus, we conclude that there exist φ′, θ′, and

ψ′ that make the diagram above commute.

4.2 The main theorem

The following theorem is the main theorem of this chapter. It explicitly describes an

injective resolution of length at most one for each projective module in a cluster-tilted

algebra.
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Theorem 4.2.1. Let C be a tilted algebra, B the corresponding cluster-tilted algebra,

PC a projective C-module and PB the corresponding projective B-module. Let

0 // PC // I0
C

// I1
C and 0 // PC ⊗ E // Ī0

C
// Ī1
C

be minimal injective presentations in modC, and let ĨC be the injective C-module

ĨC = νν−1Ω−1PC. Then

0 // PB // I0
B ⊕ Ī0

B
// ĨB ⊕ Ī1

B
// 0

is an injective resolution of PB in modB.

Remark 4.2.2. If the injective dimension of PC is at most one, then PC ⊗ E = 0,

by Proposition 3.1.2(a), and ĨC = νν−1Ω−1PC = νν−1I1
C = I1

C . Thus in this case the

injective resolution is

0 // PB // I0
B

// I1
B

// 0.

Moreover, this resolution is minimal.

Proof. If idCPC ≤ 1, then consider a minimal injective resolution of PC in modC

0 // PC // I0
C

// I1
C

// 0

of length at most one. We apply the coinduction functor HomC(B,−) to the injective

resolution of PC and obtain

0 // PC // I0
B

// I1
B

// Ext1
C(B,PC) .
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Indeed the injectives in modC will map to the corresponding injectives in modB, and

PC will not change, by Proposition 3.1.2(b). Also, there is a C-module isomorphism

Ext1
C(B,PC) ∼= Ext1

C(C ⊕ E,PC) ∼= Ext1
C(E,PC) which is zero, by Lemma 3.1.8(a).

Finally, observe that since idCPC ≤ 1 then PB ∼= PC⊗B ∼= PC by Propositions 2.1.4(a)

and 3.1.2(a). It also shows that PC ⊗ E = 0, which means that both injectives Ī0
B

and Ī1
B are zero. Finally, the remark above implies that ĨB = I1

B. Thus, if idCPC ≤ 1

we obtain the injective resolution of PB as in the statement of the theorem.

If idCPC = 2. We start by defining the morphisms in the injective resolution. In

order to do so, consider the following commutative diagram

0

��

0

��

0

��
0 // PC ⊗ E

β0 //

ε
��

HomC(B,PC ⊗ E)
β1 //

γ0
��

τΩτ−1Ω−1PC //

γ1
��

0

0 // Ī0
C

v0 //

κ1
��

Ī0
B

v1 //

π
��

τΩĪ0
C

γ2
��

// 0

0 // Ī1
C

l2 //

��

Ī1
B

κ2 //

��

τΩĪ1
C

��

// 0

0 0 0

(4.2.1)

where every row and column is exact. To construct this diagram, we begin with the

injective resolution in modC of PC ⊗ E as in the statement of the theorem. Note

that, by Lemma 3.1.5(a), idCPC ⊗ E ≤ 1. This sequence appears in the left most

column of the diagram above. Then we apply the coinduction functor HomC(B,−)

to this sequence and recall that Ext1
C(E,PC ⊗E) = 0, by Corollary 3.1.9. This gives
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us the short exact sequence to the right of the one we started with, which is the

middle column of the diagram. We also obtain inclusions β0, v0, l2 from the given

C-modules to the corresponding coinduced B-modules and projections β1, v1, k2 to

the corresponding cokernels as in Proposition 2.2.2(b). By the same proposition,

cok β0 = D(E ⊗ D(PC ⊗ E)) ∼= τΩτ−1Ω−1PC , where the last identity follows from

Proposition 3.1.1. Similarly, cok v0
∼= τΩĪ0

C , and cok l2 ∼= τΩĪ1
C . Thus we obtain the

commutative diagram (4.2.1).

Now we construct the commutative diagram (4.2.2) with exact rows, which ap-

pears below. We obtain the bottom two rows from Corollary 4.1.6 by letting N = PC .

Next, we draw a commutative diagram (4.1.2) in the top right corner, where the maps

g1 and g2 are as in Lemma 4.1.4. We complete the top row by PC ⊗ E, the kernel of

u1, as in Proposition 2.2.2(a). Finally, by the universal property of ker δ1 there exists

a morphism ε0 that completes the diagram and makes the upper left square commute.

Note that the bottom row of diagram (4.2.2) is the same as the top row of diagram

(4.2.1).

0 // PC ⊗ E
u0 //

ε0
��

PB
u1 //

g2
��

PC //

g1
��

0

0 // PC ⊗ E
δ0 //

φ′

��

τΩτ−1Ω−1PC ⊗B
δ1 //

θ′

��

τΩτ−1Ω−1PC //

ψ′

��

0

0 // PC ⊗ E
β0 // HomC(B,PC ⊗ E)

β1 // τΩτ−1Ω−1PC // 0.

(4.2.2)

Next we want to show that ε0 is an isomorphism. Observe that, since PC ⊗ E is

finite dimensional, it suffices to show that ε0 is injective. Suppose ε0(a) = 0, for some

a ∈ PC ⊗ E. Let u0(a) = b. Because u0 is injective, it is enough to show that b = 0.
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By commutativity g2(b) = 0, but looking at the top row of Lemma 4.1.4, we conclude

that either b = 0 or u1(b) 6= 0. In the first case we are done, so suppose u1(b) 6= 0.

Then u1(b) = u1u0(a) 6= 0, which is a contradiction since the top row of the diagram

(4.2.2) is exact. This shows that a = b = 0 and that ε0 is an isomorphism.

Now we show that the following sequence as in the statement of the theorem is

exact

0 // PB

(
j0i0u1
γ0θ′g2

)
// I0
B ⊕ Ī0

B

(
α −l1γv1
0 π

)
// ĨB ⊕ Ī1

B
// 0

where the maps are v1, π, γ0 are given in diagram (4.2.1), the maps θ′, u1, g2 in diagram

(4.2.2), the maps i0, j0, α, l1 in Lemma 4.1.3, and the map γ in diagram (4.2.3) below.

τΩτ−1Ω−1PC
π0 //

γ1ψ′

��

ĨC

τΩĪ0
C

γ

99 (4.2.3)

Here π0 is the map of Lemma 4.1.1. Observe that γ exists because ĨC is injective and

γ1ψ
′ is an injective map. Moreover, the map γ makes the diagram commute, that is

γγ1ψ
′ = π0.

First we show that the sequence we defined above is exact at PB. Suppose( j0i0u1
γ0θ′g2

)
(p) = 0 for some p ∈ PB. So on the one hand j0i0u1(p) = 0, but j0 and

i0 are injective, which means u1(p) = 0. By diagram (4.2.2) there exists b ∈ PC ⊗ E

such that u0(b) = p. On the other hand, γ0θ
′g2u0(b) = 0, but by commutativity in

diagram (4.2.2) this is equivalent to γ0β0φ
′ε0(b) = 0. Because, all of these maps are

injective it follows that b = 0, which implies p = 0. This shows that
( j0i0u1
γ0θ′g2

)
is an

injective map.
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Next we show that im
( j0i0u1
γ0θ′g2

)
=ker

(
α −l1γv1
0 π

)
, meaning that the sequence is exact at

I0
B⊕Ī0

B. To show the forward inclusion consider
(
α −l1γv1
0 π

)( j0i0u1
γ0θ′g2

)
=
(
αj0i0u1−l1γv1γ0θ′g2

πγ0θ′g2

)
.

Observe that πγ0 = 0 by diagram (4.2.1), which means that the bottom entry is zero.

The top entry is also zero, because

αj0i0u1 − l1γv1γ0θ
′g2 = l1(π0g1u1 − γv1γ0θ

′g2) by first row in Lemma 4.1.3

= l1(γγ1ψ
′g1u1 − γv1γ0θ

′g2) by diagram (4.2.3)

= l1γ(γ1ψ
′g1u1 − v1γ0θ

′g2)

= l1γ(γ1β1θ
′g2 − v1γ0θ

′g2) by diagram (4.2.2),

which is zero by commutativity of diagram (4.2.1). To show the reverse inclusion

suppose
(
α −l1γv1
0 π

)(
a
b

)
=
(

0
0

)
for some a ∈ I0

B, b ∈ Ī0
B. Since α(a)− l1γv1(b) = 0 and

the bottom row in the diagram of Lemma 4.1.3 is exact, there exists c ∈ I0
C such that

j0(c) = a and g0(c) = γv1(b). Also, we have π(b) = 0, so by diagram (4.2.1) there

exists d ∈ HomC(B,PC ⊗E), such that γ0(d) = b. Since θ′ is an isomorphism we can

find e ∈ τΩτ−1Ω−1PC ⊗B such that θ′(e) = d. Now we have

g0(c) = γv1γ0θ
′(e)

= γγ1β1θ
′(e) by diagram (4.2.1)

= γγ1ψ
′δ1(e) by diagram (4.2.2)

= π0δ1(e) by diagram (4.2.3).

Equivalently we can write g0(c)−π0δ1(e) = 0, and since the bottom row in the diagram

of Lemma 4.1.4 is exact, there exists p ∈ PB such that i0ui(p) = c and g2(p) = e.
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Now consider
( j0i0u1
γ0θ′g2

)
(p) =

( j0(c)
γ0(d)

)
=
(
a
b

)
. This shows exactness at I0

B ⊕ Ī0
B.

It remains to show that
(
α −l1γv1
0 π

)
is surjective. By definition, π is surjective,

thus it suffices to show that
(
α −l1γv1

)
is surjective. That is, given a ∈ ĨB find

c ∈ I0
B, d ∈ Ī0

B such that α(c) − l1γv1(d) = a. By Lemma 4.1.3, there exist c′ ∈ I0
B

and e ∈ ĨC such that α(c′)− l1(e) = a. Then by Lemma 4.1.4, there exist m ∈ I0
C and

n ∈ τΩτ−1Ω−1PC ⊗ B such that g0(m) − π0δ1(n) = e. Finally, let d = γ0θ
′(n) ∈ Ī0

B

and c = j0(m) + c′ ∈ I0
B and observe that

α(j0(m) + c′)− l1γv1(γ0θ
′(n)) =

= l1g0(m) + α(c′)− l1γv1γ0θ
′(n) by diagram (4.1.1)

= α(c′) + l1(g0(m)− γv1γ0θ
′(n))

= α(c′)− l1(g0(m)− γγ1ψ
′δ1(n)) by diagrams (4.2.1), (4.2.2)

= α(c′)− l1(g0(m)− π0δ1(n)) by diagram (4.2.3)

= a.

This shows surjectivity and finishes the proof of the theorem.

Remark 4.2.3. The theorem above can be dualized. That is, in a similar manner

one can construct a projective resolution of an injective B-module of length at most

one.

We obtain therefore a new proof of the following result which was first proved by

Keller and Reiten using cluster categories [29].

Corollary 4.2.4. If C is a tilted algebra and B is the corresponding cluster-tilted

algebra, then B is 1-Gorenstein.
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4.3 Examples

Example 4.3.1. Let C be the tilted algebra given by the following quiver with

relations.

1

""
3 α //

||

4
β // 5 αβ = 0.

2

The corresponding cluster-tilted algebra B is given by the quiver with relations below.

1

""
3 α //

||

4
β // 5

δ

ff αβ = βδ = δα = 0.

2

We want to construct the injective resolution of PB(1) =
1
3

2 4
as described in the

theorem above. Observe that PB(1) = PC(1), hence PC(1)⊗E = 0 and idCPC(1) ≤ 1.

In this case we only need to consider the minimal injective resolution of PC(1) given

below.

0 // PC(1) // IC(2)⊕ IC(4) // IC(3) // 0

Now according to the remark following the statement of Theorem 4.2.1 we obtain the

minimal injective resolution of PB(1) as shown below.

0 // PB(1) // IB(2)⊕ IB(4) // IB(3) // 0

Note that here IB(2) 6= IC(2) and IB(3) 6= IC(3).

Example 4.3.2. Let C be the tilted algebra given by the following quiver with
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relations.

5

2

OO

δα = 0

1

α
<<

β ""

4
δoo
γ

oo γβ = 0.

3

The corresponding cluster-tilted algebra B is of type Ã(3,2) and it is given by the

quiver with relations below.

5

2
ε

""

OO

δα = αε = εδ = 0

1

α
<<

β ""

4
δoo
γ

oo γβ = βσ = σγ = 0.

3
σ

<<

We want to construct the injective resolution of PB(2) =
2

5 4
1
2
5

, the projective B-module

at vertex 2, as in Theorem 4.2.1. First, we find minimal injective presentations of

PC(2) = 2
5 and PC(2)⊗ E =

4
1
2
5

in modC, which are given below.

0 // PC(2) // IC(5) // IC(1) 0 // PC(2)⊗ E // IC(5) // 0

We write out the explicit representations involved in the sequences above.

0 // 2
5

//
4
1
2
5

// 4 4
1 0 //

4
1
2
5

//
4
1
2
5

// 0

Here IC(i) denotes the injective C-module at vertex i, while IB(i) will denote the
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corresponding injective B-module. Next, we calculate νν−1Ω−1PC(2). Observe that

Ω−1PC(2) is the module with dimension vector (1, 0, 0, 1, 0) such that γ = 1 and

δ = 0. Then ν−1Ω−1PC(2) = HomC(DC,Ω−1PC(2)), and the only injectives that

have a nonzero morphism into Ω−1PC(2) are IC(2) and IC(5). Hence, ν−1Ω−1PC(2) =

PC(2), so νν−1Ω−1PC(2) = IC(2). Then according to Theorem 4.2.1 we construct the

injective resolution of PB(2)

0 // PB(2) // IB(5)⊕ IB(5) // IB(2)⊕ 0 // 0

or equivalently substituting the representations we have

0 //
2

5 4
1
2
5

//
2
4
1
2
5

⊕
2
4
1
2
5

//
2
4
1
2

// 0.



Chapter 5

Relation to cluster categories

In this chapter we study the relationship between induction and coinduction functors

and the cluster category. Here, we assume that A is a hereditary algebra and T ∈

modA is a basic tilting module. Let C = EndAT be the corresponding tilted algebra,

and B be the associated cluster-tilted algebra. Finally, let CA denote the cluster

category of A. We know that modA naturally embeds in CA, which in turn maps

surjectively onto modB via the functor HomCA(T,−). Recall that the induction

functor −⊗CB and the coinduction functor D(B⊗CD−) both map modC to modB,

while the module categories of A and C are closely related via the Tilting Theorem

1.4.4. Now, we want to study how the induction and the coinduction functors fit into

this larger picture.

modA oo
Tilting Theorem //

��

modC

−⊗CB

D(B⊗CD−)
��

CA
HomCA (T,−)

// modB

62



63

5.1 Induction functor

The following theorem describes the relationship between the induction functor and

the cluster category.

Theorem 5.1.1. Let A be a hereditary algebra and T ∈ modA a basic tilting module.

Let CA be the cluster category of A, C = EndAT be the corresponding tilted algebra,

and B = CnE the corresponding cluster-tilted algebra. Recall the definitions of T (T )

and Y(T ), the associated torsion class of modA and the torsion free class of modC

below.

T (T ) = {M ∈ modA | Ext1
A(T,M) = 0} Y(T ) = {N ∈ modC | TorC1 (N, T ) = 0}

Then the following diagram commutes.

T (T )
HomA(T,−) //

��

Y(T )

−⊗CB

��
CA

HomCA (T,−)
// modB

That is, HomA(T,M)⊗C B ∼= HomCA(T,M) for every M ∈ T (T ).

Proof. Let M be an indecomposable module belonging to T (T ). If M ∈ addT , then

HomA(T,M) is a projective C-module, and HomA(T,M)⊗C B is the corresponding

projective B-module. On the other hand, HomCA(T,M) is also the same projective B-

module. Hence, in this case the theorem above holds. If M 6∈ addT , then Proposition

1.4.6(d) implies that the projective dimension of HomA(T,M) ∈ Y(T ) is one. Let

0 // P 1
C

f // P 0
C

// HomA(T,M) // 0 (5.1.1)
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be its minimal projective resolution in modC. By Theorem 1.4.4(a), there exist

T 0, T 1 ∈ addT , and g ∈ HomA(T 1, T 0) such that

f = HomA(T, g), P 1
C = HomA(T, T 1), P 0

C = HomA(T, T 0).

Moreover, since M ∈ T (T ), we have that M = coker g. Applying − ⊗C T to the

projective resolution (5.1.1) and using Theorem 1.4.4(a), we obtain an exact sequence

TorC1 (HomA(T,M), T ) // T 1 g // T 0 //M // 0.

Furthermore, TorC1 (HomA(T,M), T ) = 0 by Tilting Theorem 1.4.4, which means

that the sequence above is a short exact sequence in modA. Observe that g is also a

morphism in the cluster category, and the short exact sequence above corresponds to

a triangle

T 1 g // T 0 //M // T 1[1]

in CA. Applying HomCA(T,−) to this triangle yields an exact sequence in modB

HomCA(T, T 1)
g∗ // HomCA(T, T 0) // HomCA(T,M) // 0.

Note that there is zero on the right of the sequence as HomCA(T, T 1[1]) = 0, because

T is a tilting object in CA. Also, HomCA(T, T 1) = P 1
B and HomCA(T, T 0) = P 0

B, thus

HomCA(T,M) = coker HomCA(T, g) : P 1
B → P 0

B.

On the other hand, applying the induction functor − ⊗C B to the sequence (5.1.1)
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we obtain

P 1
B

f⊗1 // P 0
B

// HomA(T,M)⊗C B // 0.

Hence, we see that

HomA(T,M)⊗C B = coker HomA(T, g)⊗ 1 : P 1
B → P 0

B.

But since topP 1
B = topP 1

C , we have

HomCA(T, g)(topP 1
B) = HomA(T, g)(topP 1

C) = HomA(T, g)⊗ 1 (topP 1
B).

Because P 1
B is projective both maps HomCA(T, g) and HomA(T, g)⊗1 are determined

by their restrictions to topP 1
B. Therefore, we construct a commutative diagram

P 1
B

HomCA (T,g)
// P 0
B

//

∼=
��

HomCA(T,M) //

h
��

0

P 1
B

HomA(T,g)⊗1 // P 0
B

// HomA(T,M)⊗C B // 0

where h is an isomorphism by the Five Lemma. This shows that for every M ∈ T (T )

we have HomCA(T,M) ∼= HomA(T,M)⊗C B, and finishes the proof of the theorem.

This result shows that the induction functor can be reformulated in terms of other

well-studied functors. In particular consider the following corollary.

Corollary 5.1.2. Let A be a hereditary algebra and T ∈ modA a basic tilting module.

Let CA be the cluster category of A, C = EndAT be the corresponding tilted algebra,
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and B = C n E the corresponding cluster-tilted algebra. Then

M ⊗C B ∼=

 HomCA(T,M ⊗C T ) if M ∈ Y(T )

M if M ∈ X (T )

for every M ∈ indC.

Proof. First, note that every M ∈ indC belongs to either X (T ) or Y(T ) by Propo-

sition 1.4.6(e). If M ∈ X (T ), Proposition 1.4.6(c) implies that idCM ≤ 1, and then

Proposition 3.1.2(a) yieldsM⊗CB ∼= M . IfM ∈ Y(T ), then Theorem 1.4.4(a) implies

that M ∼= HomA(T,N) for N = M ⊗C T ∈ T (T ). Hence M ⊗C B ∼= HomCA(T,N),

by Theorem 5.1.1.

5.2 Coinduction functor

Similarly, there is a dual statement that provides an alternative description of the

coinduction functor.

Theorem 5.2.1. Let A be a hereditary algebra and T ∈ modA a basic tilting module.

Let CA be the cluster category of A, C = EndAT be the corresponding tilted algebra,

and B = CnE the corresponding cluster-tilted algebra. Recall the definitions of F(T )

and X (T ), the associated torsion free class of modA and the torsion class of modC

below.

F(T ) = {M ∈ modA | HomA(T,M) = 0} X (T ) = {N ∈ modC | N ⊗C T = 0}
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Then the following diagram commutes.

F(T )
Ext1A(T,−)

//

��

X (T )

D(B⊗CD−)

��
CA

Ext1CA
(T,−)

// modB

That is, D(B ⊗C DExt1
A(T,M)) ∼= Ext1

CA(T,M), for every M ∈ F(T ).

Proof. LetM be an indecomposable module belonging to F(T ). Consider Ext1
A(T,M),

which belongs to X (T ) by Theorem 1.4.4(b). If Ext1
A(T,M) = I iC is an injective C-

module, then D(B ⊗C DI iC) ∼= I iB is the corresponding injective in modB. On the

other hand, by Proposition 1.4.7 we have M ∼= τT i for some T i ∈ addT . Therefore,

by Serre Duality

Ext1
CA(T, τT i) ∼= DHomCA(T i, T ) ∼= I iB. (5.2.1)

This shows that the theorem holds if Ext1
A(T,M) is injective.

If Ext1
A(T,M) ∈ X (T ) is not injective then according to Proposition 1.4.6(c) it

has injective dimension one. Consider a minimal injective resolution of this module

in modC below.

0 // Ext1
A(T,M) // I0

C

f // I1
C

// 0 (5.2.2)

Because I0
C , I

1
C are successors of Ext1

A(T,M), Proposition 1.4.6(f) implies that these

injectives belong to X (T ). By Proposition 1.4.7 and Theorem 1.4.4(b), there exist

T 1, T 0 ∈ addT , and g ∈ Ext1
A(τT 0, τT 1) such that

f = Ext1
A(T, g), I1

C = Ext1
A(T, τT 1), I0

C = Ext1
A(T, τT 0).
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Applying TorC1 (−, T ) to sequence (5.2.2) and using Theorem 1.4.4, we obtain a long

exact sequence

TorC2 (I1
C , T ) //M // τT 0 g // τT 1 // Ext1

A(T,M)⊗C T.

Observe that by the same theorem the last term in the sequence above is zero, likewise

TorC2 (I1
C , T ) = 0, because T as a left C-module has projective dimension at most one.

Thus we obtain a short exact sequence in modA

0 //M // τT 0 g // τT 1 // 0

which induces a triangle

τT 1[−1] //M // τT 0 g // τT 1

in the cluster category. Applying Ext1
CA(T,−) to this triangle we obtain an exact

sequence in modB

Ext1
CA(T, τT 1[−1]) // Ext1

CA(T,M) // Ext1
CA(T, τT 0)

g∗ // Ext1
CA(T, τT 1) .

Observe that because T is a tilting object in CA, we have Ext1
CA(T, τT 1[−1]) = 0.

Moreover, equation (5.2.1) yields Ext1
CA(T, τT 0) = I0

B and Ext1
CA(T, τT 1) = I1

B. Thus,

Ext1
CA(T,M) = ker Ext1

CA(T, g) : I0
B → I1

B.
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On the other hand, applying the coinduction functor to sequence (5.2.2) we obtain

0 // D(B ⊗C DExt1
A(T,M)) // I0

B

D(1⊗Dg) // I1
B.

Hence, we see that

D(B ⊗C DExt1
A(T,M)) = kerD(1⊗Dg) : I0

B → I1
B.

Because I1
B is injective, both maps Ext1

CA(T, g) and D(1 ⊗ Dg) are determined by

their preimages of soc I1
B. But since soc I1

B = soc I1
C , we have

Ext1
CA(T, g)−1(soc I1

B) = Ext1
A(T, g)−1(soc I1

C) = D(B ⊗C DExt1
A(T, g))−1(soc I1

B).

Thus we have a commutative diagram

0 // Ext1
CA(T,M) //

h
��

I0
B

∼=
��

Ext1CA
(T,g)

// I1
B

0 // D(B ⊗C DExt1
A(T,M)) // I0

B

D(B⊗CDExt1A(T,g))
// I1
B

and h is an isomorphism by the Five Lemma. This shows that for every M ∈ F(T ) we

have Ext1
CA(T,M) ∼= D(B ⊗C DExt1

A(T,M)), and finishes the proof of the theorem.

Corollary 5.2.2. Let A be a hereditary algebra and T ∈ modA a basic tilting module.

Let CA be the cluster category of A, C = EndAT be the corresponding tilted algebra,
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and B = C n E the corresponding cluster-tilted algebra. Then

D(B ⊗C DM) ∼=

 Ext1
CA(T,TorC1 (M,T )) if M ∈ X (T )

M if M ∈ Y(T )

for every M ∈ indC.

Proof. The proof is similar to that of Corollary 5.1.2 and we omit it.

5.3 Example

Example 5.3.1. Let A be the path algebra of the following quiver.

5
xx

1 2oo 3oo 4oo

&&
6

Let

T = 1 ⊕
5
4

6 3
2
1

⊕
5
4
3
2
1

⊕ 5
4

6 3
⊕ 5

4
6
⊕ 5

be the tilting A-module. The Auslander-Reiten quiver of modA is shown at the

top of Figure 5.3.1. The modules belonging to T (T ) are in the dark shaded regions

enclosed by a solid line, while modules belonging to F(T ) are in the light shaded

regions enclosed by a dotted line.

Then the corresponding tilted algebra C = EndAT is the algebra of the following
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1

��

2

��

3

��

4
6

��

5
4
3
2
1

��
2
1

??

��

3
2

??

��

4
6 3

??

��

5
4 4
6 3

2
1

??

��

5
4
3
2

��3
2
1

??

��

4
6 3

2

??

��

5
4 4

6 3 3
2
1 ��

??

5
4 4
6 3

2

??

��

5
4
3

��4
6 3

2
1

??

//

��

5
4

6 3
2
1

//
5

4 4
6 3 3

2 2
1

//

??

��

4
3
2

//
5

4 4
6 3 3

2

//

??

��

5
4

6 3
// 5

4 4
6 3

//

??

��

4 // 5
4

// 5

6

??

4
3
2
1

??

5
4

6 3
2

??

4
3

??

5
4
6

??

3
2
1

  
2
1

  

>>

3
2

  

4

  

5

  

6
3

  
1

>>

2

>>

  

3 4
2

>>

  

5
4

>>

  

6
3 5

>>

  

6

4
2

>>

  

5
3 4
2

//

>>

  

6
5

3 4
2

// 6
3 5

4

>>

  

6
5

>>

5
4
2

>>

3

>>

6
5
4

>>

3
2
1

��

1
4

��

5

��

6
3

��

3
2
1

��
3
2

��

4

��

??

1 5
4

��

??

6
5 3

��

??

6

��

2
1

��

??

3
2

2

��

??

3 4
2

��

??

5
4

��

??

6
1 5 3
4

��

??

6
5

��

??

2
1 6

��

??

2

??

��4
2
6

// 4
2

??

��

5
3 4
2

//

??

��

6
3 5

4
2

// 6
3 5

4

??

��

6
1 5
4

//

??

��

2
1 6

5
4

// 2
1 6

5

??

��

2
6

??

// 42
6

// 4
2

5
4
2

??

3

??

6
5
4

??

1

??

2
6
5

??

Figure 5.3.1: Auslander-Reiten quivers of modA (top), modC (middle) and modB
(bottom).
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quiver with relations.

1 2
βoo 4αoo 5

γoo 6δoo

ε{{

αβ = 0

3
σ

ii

δγα = εσ.

The Auslander-Reiten quiver of modC is shown in the middle of Figure 5.3.1.

The modules belonging to Y(T ) are in the dark shaded regions enclosed by a solid

line, while the modules belonging to X (T ) are in the light shaded regions enclosed by

a dotted line.

The cluster-tilted algebra B = C n E is represented by the following quiver with

relations.

1

ω

$$
2

β
oo

ρ

774αoo 5
γoo 6δoo

ε

��

αβ = ωα = 0 γαρ = αρδ = 0 σρ = ρε = 0

3

σ

cc

βω = ρδγ δγα = εσ.

The Auslander-Reiten quiver of modB is shown at the bottom of Figure 5.3.1,

where we identify the modules which have the same labels. The modules in the dark

shaded regions enclosed by a solid line correspond to the set {Y ⊗C B | Y ∈ Y(T )},

while those in the light shaded regions enclosed by a dotted line correspond to the

set {D(B ⊗C DX) | X ∈ X (T )}. Note that there are four modules that lie in both

sets. As stated in Theorems 5.1.1 and 5.2.1 the shape and relative position of T (T )

and F(T ) in modA correspond exactly to the set of induced Y(T )-modules and the

set of coinduced X (T )-modules respectively. Moreover, if we apply τ−1
B to the set
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of modules {D(B ⊗C DX) | X ∈ X (T )}, then their position relative to the induced

Y(T ) modules will correspond exactly to the position of F(T ) relative to T (T ) in

modA.



Chapter 6

Which modules are induced or
coinduced

If we want to study the module category of a cluster-tilted algebra via the induction

and coinduction functors, then it is natural to ask which modules in a cluster-tilted

algebra are actually induced or coinduced from the modules over some tilted algebra.

Recall from Theorem 1.7.7 that, given a cluster-tilted algebra B, every local slice Σ

gives rise to a tilted algebra C = B/Ann Σ, whose relation extension is B. Therefore,

there are a number of different tilted algebras whose relation extension results in the

same algebra B. In general the module category of B is much larger then the module

category of the corresponding tilted algebra C. Thus, it is unrealistic to expect that

every B-module belongs to the image of the induction or coinduction functor applied

to the module category of a single tilted algebra C. However, it makes sense to ask

the same question but consider all tilted algebras that give rise to the same B. In

this chapter we explore this idea in more detail.

74
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6.1 Transjective component

Definition 6.1.1. Let B be a cluster-tilted algebra and M a B-module.

1. M is said to be induced from some tilted algebra if there exists a tilted algebra C

and a C-module X such that B is the relation extension of C and M = X⊗CB.

2. M is said to be coinduced from some tilted algebra if there exists a tilted algebra

C and a C-module X such that B is the relation extension of C and M =

D(B ⊗C DM).

We begin by looking at algebras of finite representation type.

Theorem 6.1.2. If B is a cluster-tilted algebra of finite representation type then

every indecomposable B-module M is both induced and coinduced from some tilted

algebra C, depending on M .

Proof. If B is of finite representation type and M ∈ indB then by Theorem 1.7.8

there exists a local slice Σ ∈ Γ(modB) containing M . Theorem 1.7.7 implies that

there is a tilted algebra C such that Σ is a slice in Γ(modC) and B is the relation

extension of C. Hence, M is an indecomposable C-module lying on a slice, which

means idCM ≤ 1 and pdCM ≤ 1. It follows from Proposition 3.1.2 that M ∼=

M ⊗CB ∼= D(B⊗CDM). Therefore, M ∈ indB is both induced and coinduced from

the same module M ∈ indC, for some tilted algebra C.

Let us make the following observation.

Proposition 6.1.3. Suppose B is a cluster-tilted algebra and M is an indecomposable

B-module. If M is also an indecomposable C-module, for some tilted algebra C, whose

relation extension is B, then M is induced or coinduced.
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Proof. Observe that if M is a C-module, then Proposition 1.4.6(b) implies that

idCM ≤ 1 or pdCM ≤ 1. In the first case M ∼= M ⊗C B and in the second one

M ∼= D(B ⊗C B) by Proposition 3.1.2. Hence, in either case M is induced or coin-

duced from a C-module.

Therefore, it makes sense to ask which indecomposable modules over a cluster-

tilted algebra are also indecomposable modules over a tilted algebra.

Theorem 6.1.4. Let B be a cluster-tilted algebra. Then for every transjective inde-

composable B-module M , there exists a tilted algebra C, such that B is the relation

extension of C, and M is an indecomposable C-module. In particular, every transjec-

tive B-module is induced or coinduced from C.

Proof. We will show that if M is a transjective indecomposable B-module then M or

τ−1
B M lies on a local slice in modB. According to Corollary 3.1.3 this will prove the

theorem.

Let A be a hereditary algebra and T ∈ CA a cluster-tilting object such that

B = EndCAT . Let M be an indecomposable B-module lying in the transjective

component T of Γ(modB), and let M̃ ∈ CA be an indecomposable object such that

HomCA(T, M̃) = M . Finally, let Σ̃ = Σ(→M) be the full subquiver of the Auslander-

Reiten quiver of CA defined in section 1.7.

Since B ∼= EndCA(τ `CAT ), for all ` ∈ Z, we may assume without loss of generality

that Σ̃ lies in the preprojective component of modA. Furthermore, we may assume

that every preprojective successor of Σ̃ in modA is sincere. Indeed, this follows from

the fact that there are only finitely many (isoclasses of) indecomposable preprojective

A-modules that are not sincere. For tame algebras (see section 6.3) this holds, because

non-sincere modules are supported on a Dynkin quiver, and for wild algebras see [30].
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Now since M̃ is a sincere A-module, Proposition 1.7.3 implies that Σ̃ is a slice in

modA, and therefore Σ̃ is a local slice in CA. Let Σ = HomCA(T, Σ̃). Then M ∈ Σ,

and thus, if Σ is a local slice in modB, we are done.

Suppose to the contrary that Σ is not a local slice. Then Lemma 1.7.9 implies

that Σ̃ contains an indecomposable summand τCATi of τCAT . Let Σ̃′ = Σ(Ti →) in

CA. Then Σ̃′ contains τ−1
CA M̃ . Since Ti is sincere, it again follows from Proposition

1.7.3 that Σ̃′ is a local slice in CA.

Moreover Σ̃′ cannot contain any summands of τCAT , because if it did, there would

be a sectional path from Ti to a summand of τCAT , hence HomCA(Ti, τCAT ) 6= 0, which

is impossible, since T is a cluster-tilting object. Therefore Lemma 1.7.9 implies that

HomCA(T, Σ̃′) is a local slice in modB containing τ−1
B M = HomCA(T, τ−1

CA M̃).

6.2 Cluster-concealed algebras

Following [34], we say that a cluster-tilted algebra B is cluster-concealed if B =

EndCA(T ) where T is obtained from a preprojective A-module. This means that all

projective B-modules lie in the transjective component of Γ(modB). In this case, we

show that the previous theorem holds not only for the transjective modules but for

all B-modules.

Theorem 6.2.1. Let B be a cluster-concealed algebra. Then for every indecomposable

B-module M there exists a tilted algebra C whose relation extension is B, such that

M is an indecomposable C-module. Moreover, for all non-transjective modules one

can take the same C. In particular, every B-module is induced or coinduced from

some tilted algebra.
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Proof. Observe that by Theorem 6.1.4 it suffices to consider the case when M does

not belong to the transjective component of modB. In this case, B is of infinite

representation type.

Because B is cluster-concealed there exists a hereditary algebra A, and a prepro-

jective tilting A-module T such that B ∼= EndCA(T ). Observe that A is of infinite

representation type. Let C = EndA(T ) be the corresponding tilted algebra. Then B

is the relation extension of C, thus B = C nE, where E = Ext2
C(DC,C). Let RA be

the set of all regular A-modules. It is nonempty because A is of infinite representa-

tion type. It follows from Theorem 1.4.5(a) that RA ∈ T (T ). According to Theorem

1.4.5(b) the set of regular C-modules RC is obtained from RA by applying the func-

tor HomA(T,−). Also, because of Theorem 1.5.1, the set of regular B-modules RB

is obtained from RA by applying HomCA(T,−). Hence, given M ∈ RB there exists

M̃ ∈ RA such that HomCA(T, M̃) ∼= M . Because RA ∈ T (T ), Theorem 5.1.1 im-

plies that M ∼= HomA(T, M̃) ⊗C B. Hence, M is induced from the indecomposable

C-module HomA(T, M̃), and now it remains to show that M is actually an indecom-

posable C-module itself, that is M ∼= HomA(T, M̃). It follows from Theorem 1.4.5(c)

that idCHomA(T, M̃) ≤ 1, so Proposition 3.1.2(a) implies that

M ∼= HomA(T, M̃)⊗C B ∼= HomA(T, M̃).

This shows that M is an indecomposable C-module.
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6.3 Tame algebras

A particular class of hereditary algebras whose regular components are well-understood

consists of tame hereditary algebras. These algebras have been classified in the fol-

lowing way. We refer to [33, Chapter 1] for further details.

Theorem 6.3.1. A representation infinite path algebra kQ is tame if and only if the

underlying graph of the acyclic quiver Q is a union of extended Dynkin diagrams.

This means that if we forget about the orientation of the arrows in Q then we

obtain a collection of extended Dynkin diagrams. It is known, that if A is a tame

hereditary algebra then its regular components RA are a collection of stable tubes.

We give a precise definition below.

Consider the following infinite quiver ZA∞ with vertices labeled (i, j)

(1, 1)

��

(0, 1)

��

(−1, 1)

��

(−2, 1)

��

(−3, 1)

��
· · ·

??

��

(1, 2)

??

��

(0, 2)

??

��

(−1, 2)

??

��

(−2, 2)

??

��

· · ·

(2, 3)

??

��

(1, 3)

??

��

(0, 3)

??

��

(−1, 3)

??

��

(−2, 3)

??

��...

??

...

??

...

??

...

??

...

??

...

and τ(i, j) = (i+ 1, j) for i ∈ Z and j ≥ 1.

Definition 6.3.2. A stable tube of rank r is an infinite quiver isomorphic to the

quotient ZA∞/(τ r) obtained from ZA∞ by identifying each point (i, j) of ZA∞ with

the point τ r(i, j) = (i + r, j) and each arrow α : x → y in ZA∞ with the arrow

τ rα : τ rx→ τ ry.

The following definitions are of importance to the theory.
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Definition 6.3.3. Let S be a stable tube.

(a) The set of all points in S having exactly one immediate predecessor (or, equiv-

alently, exactly one immediate successor) is called the mouth of S.

(b) Given a point x lying on the mouth of S, a ray starting at x is defined to be

the unique infinite sectional path in S with source x.

(c) Given a point x lying on the mouth of S, a coray ending at x is defined to be

the unique infinite sectional path in S with target x.

For further details and examples of stable tubes see [36].

We say that a cluster-tiled algebra B is tame if B ∼= EndCA(T ), where T is a

cluster-tilting object in a cluster category CA and A is a tame hereditary algebra.

The next result describes a situation when all modules over a cluster-tilted algebra

of tame type are induced or coinduced from some tilted algebra.

Theorem 6.3.4. Let B be a tame cluster-tilted algebra. Let SB be a tube in modB

and let

PB(1), PB(2), . . . , PB(`)

denote all distinct indecomposable projective B-modules belonging to SB. If

HomB(PB(i), PB(j)) = 0 for all i 6= j and 1 ≤ i, j ≤ `

then every module in SB is induced or coinduced from the same tilted algebra C.

Proof. Let A be a hereditary algebra and T a tilting A-module such that B = EndCAT .

Thus A is tame, and we can suppose without loss of generality that T has no prein-

jective summands. The regular components of modA form a family of pairwise or-

thogonal stable tubes, see [36, Theorem XI.2.8]. The term orthogonal means that
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there are no nonzero morphisms between indecomposable modules lying in different

tubes.

Let SA be the tube in modA whose image under HomCA(T,−) is the tube SB in the

statement of the theorem. Let r denote the rank of the tube SA. Let SC denote the

skew tube in modC defined as the image of SA under the functor HomA(T,−). Thus

SC lies inside Y(T ), which implies that each module in SC has projective dimension at

most one, by Proposition 1.4.6, and therefore the coinduction functor is the identity

on SC , by Proposition 3.1.2.

Theorem 5.1.1 yields the following commutative diagram.

SA ∩ T (T )
HomA(T,−) //

HomCA (T,−) ++

SC
−⊗CB

��
SC ⊗C B ⊂ SB.

Let T1, T2, . . . , T` be the indecomposable summands of T that lie inside SA, such

that PB(i) = HomCA(T, Ti), for i = 1, 2, . . . `, are the indecomposable projective

modules in SB. Because of our assumption HomA(Ti, Tj) = 0, if i 6= j, we have that

each Ti lies on the mouth of SA, see for example [37, Proposition XII.2.1].

The local configuration in the Auslander-Reiten quiver of SA is the following.

· · ·

��

τ 2
ATi

��

τATi

��

Ti

��

· · ·

· · ·

??

��

•

??

��

•

??

��

· · ·

??

· · ·

??

•

??

· · ·

??
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The corresponding local configuration in the Auslander-Reiten quiver of SB is the

following.

· · ·

��

IB(i)

��

PB(i)

��

· · ·

· · ·

??

��

τB radPB(i)

��

radPB(i)

??

��

· · ·

??

· · ·

??

•

??

· · ·

??

Since Ext1
A(Ti,−) ∼= DHomA(−, τTi), and τTi lies on the mouth of SA, we see that

SA ∩ T (T ) consists of the r − ` corays not ending in one of the τTi, i = 1, 2, . . . , `.

Therefore SC ⊗C B has r − ` corays, because of our commutative diagram. So these

r − ` corays are in the image of the induction functor −⊗C B.

Moreover, the ` corays in SB that are not in the image of the induction functor

are precisely those ending in τB radPB(i), i = 1, 2, . . . , `. We will show that these

corays are equal to the corays in SC ending in τC radPC(i), which implies that these

corays are coinduced.

Since IB(i) = HomCA(T, τ 2
ATi) we have

τB radPB(i) = IB(i)/S(i). (6.3.1)

By our assumption on T , we have HomA(Ti, T ) = HomA(Ti, Ti) and thus IC(i) = S(i)

is simple. Moreover, by Proposition 2.2.2(b), there is a short exact sequence in modB

of the form

0 // IC(i) // IB(i) // τCΩCIC(i) // 0,

and thus
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IB(i)/S(i) ∼= τCΩCIC(i). (6.3.2)

Again using that IC(i) is simple, we see that

ΩCIC(i) = radPC(i). (6.3.3)

Combining equations (6.3.1)-(6.3.3) yields

τB radPB(i) = τC radPC(i).

Finally, let M be any indecomposable C-module on the coray in SC ending in

PC(i), but M 6= PC(i). Then M ⊗C B lies on the coray in SB ending in PB(i).

Lemma 2.2.5 implies that

τB(M ⊗C B) = D(B ⊗C D(τCM)) = τCM,

where the last identity holds because the coinduction functor is the identity on the

tube SC . This shows that the τB-translate of the coray in SB ending in PB(i) is equal

to the coray in SC ending in τC radPC(i). In particular the modules on this coray are

coinduced from C.

This finishes the proof of the theorem.
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6.4 Example

There are cluster-tilted algebras B with indecomposable modules that are not induced

and not coinduced from any tilted algebra. We provide an example of this situation

below.

Example 6.4.1. Let B be a cluster-tilted algebra given by the following quiver with

relations.

1 //

β
// 5

ε
��

αβ = βε = εα = 0

3

α

]]

δ

��

γδ = δσ = σγ = 0.

2

γ
@@

4σoo

Then there are exactly two tilted algebras C and C ′, both of infinite representation

type, whose relation extension is B. C and C ′ can be represented by the following

quivers with relations.

1 //

β
// 5 αβ = 0 1 //

β
// 5

ε
��

βε = 0

C : 3
δ

��

α

[[

γδ = 0. C ′ : 3
δ

��

γδ = 0.

2

γ

BB

4 2

γ

BB

4

There is a tube in Γ(modB) of rank four containing three distinct projective

modules. We describe it below and identify the modules that have the same label.

We will show that the four modules emphasized in bold are not induced and not

coinduced.
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4
2

��

2
3
1
5
3
4

��

4
2

4

��

3
1
5
3
4

��

??

2
3
1
5
3

��

2

??

3
4 1

5
3
4

��

??

3
1
5
3

��

??

2
3
1
5 2
3

��

??

1
5
3
4

��

??

3
4 1
5
3

��

??

3
1
5 2
3

��

??

2
3
1
5

��2
3
1 1
5 5

3
4

��

??

1
5
3

��

??

3
4 1
5 2
3

��

??

3
1
5

��

??

2
3
1 1
5 5

3
4

2
3
1 1
5 5

3

??

��

1
5 2
3

��

??

3
4 1

5

��

??

3
1 1
5 5

3
4

��

??

. . .

??

. . .

??

. . .

??

. . .

??

. . .

The corresponding skew tube in Γ(modC) is given below. Observe that it consists

of one coray ending in the projective at vertex 2, labeled
2
3
1
5
, and four rays starting

in
2
3
1
5
,

3
1
5
, 4 and 1

5 . Let E = τ−1Ω−1C and DE = τΩDC, then we make the following

computation.

E = 3
4 ⊕ 3

4 ⊕ 3
4 ⊕ 2 ⊕ 3

4 DE = 0 ⊕ 4 ⊕
2
3
1
5
⊕

2
3
1
5
⊕ 0
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3
4 1

5

!!

. . .

2
3
1
5

!!

1
5

==

!!

3
4 1 1

5 5

==

!!
4

!!

3
1
5

==

!!

2
3
1 1
5 5

==

!!

1 1
5 5

==

!!

. . .

3
4 1

5

==

!!

3
1 1
5 5

==

!!

2
3
1 1 1
5 5 5

==

!!

. . .

==

1
5

==

!!

3
4 1 1

5 5

==

!!

3
1 1 1
5 5 5

==

!!

. . .

==

2
3
1 1
5 5

==

!!

1 1
5 5

==

!!

3
4 1 1 1

5 5 5

==

!!

. . .

==

. . .

==

. . .

==

. . .

==

LetOC denote the coray in Γ(modC) ending in the projective at vertex 2. Observe

that if we induce the modules in OC , that is apply DHomC(−, DB), then we obtain a

coray in the tube of Γ(modB) that ends in the projectiveB-module at vertex 2. Recall

that there is an isomorphism of C-modules DHomC(M,DB) ∼= M⊕DHomC(M,DE)

for every M ∈ modC. On the other hand coinduction HomC(B,−) of modules in OC

will act as the identity map, because there is a C-module isomorphism HomC(B,M) ∼=

M ⊕ HomC(E,M) and the last summand is zero for all M ∈ OC . Therefore, we see

the coray OC appearing in Γ(modB). Finally, the only module in the tube above

that does not belong to OC is the simple at 4. Observe, that this module is also a

projective C-module, so inducing it we obtain the corresponding projective B-module

4
2 .

Similarly, in Γ(modC ′) there is a skew tube consisting of four corays and one ray
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starting in
1
5
3
4
, the injective C ′-module at vertex 4. Denote this ray by RC′ . Analogous

calculations yield that the ray in Γ(modB) starting in

2
3
1
5
3
4

, the injective B-module, is

coinduced from RC′ . But the induction of RC′ acts as the identity map, so we see

this exact same ray appearing in Γ(modB). Observe that every module on this ray

is indeed an indecomposable C ′-module. Finally, the simple injective C ′-module at

vertex 2, belongs to this skew tube, and its induction is again the simple module

supported at vertex 2.

In particular we observe that the B-modules which make up the mesh emphasized

in bold are not induced and not coinduced from any tilted algebra. Moreover, as

one goes down the tube in Γ(modB) there will appear infinitely many such meshes,

where no module is induced or coinduced.
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[14] L. Beaudet, T. Brüstle and G. Todorov, Projective dimension of modules over

cluster-tilted algebras, Algebr. and Represent. Theory 17 (2014), no. 6, 1797–

1807.

[15] M. A. Bertani-Økland, S. Oppermann and A Wr̊alsen, Constructing tilted alge-

bras from cluster-tilted algebras, J. Algebra 323 (2010), no. 9, 2408–2428.

[16] S. Brenner and M. Butler, Generalizations of the Bernstein-Gel’fand-Ponomarev

reflection functors. Representation theory, II (Proc. Second Internat. Conf., Car-

leton Univ., Ottawa, Ont., 1979), pp. 103–169, Lecture Notes in Math., 832,

Springer, Berlin-New York, 1980.



90

[17] A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and

cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.

[18] A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math.

Soc. 359 (2007), no. 1, 323–332 (electronic).

[19] A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras of finite representa-

tion type, J. Algebra 306 (2006), no. 2, 412–431.

[20] A. B. Buan, R. Marsh and I. Reiten, Cluster mutation via quiver representations.

Comment. Math. Helv. 83 (2008), no. 1, 143–177.

[21] P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver repre-

sentations, Comment. Math. Helv. 81 (2006), no. 3, 595–616.

[22] P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from

clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347–1364.

[23] P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations and cluster

tilted algebras, Algebr. and Represent. Theory 9, (2006), no. 4, 359–376.

[24] P. Caldero and B. Keller, From triangulated categories to cluster algebras, Invent.

Math. 172 (2008), 169–211.

[25] L. David-Roesler and R. Schiffler, Algebras from surfaces without punctures. J.

Algebra 350 (2012), 218–244.

[26] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their

representations. I. Mutations. Selecta Math. (N.S.) 14 (2008), no. 1, 59–119.



91

[27] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math.

Soc. 15 (2002), 497–529.

[28] B. Keller, On triangulated orbit categories, Documenta Math. 10 (2005), 551–

581.

[29] B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-

Yau, Adv. Math. 211 (2007), no. 1, 123–151.

[30] O. Kerner, More Representations of Wild Quivers. Igusa, Kiyoshi, A.

Martsinkovsky, and G. Todorov, Expository Lectures on Representation Theory:

Maurice Auslander Distinguished Lectures and International Conference, April

25-30, 2012, Woods Hole Oceanographic Institute, Quisset Campus, Falmouth,

MA. Providence: American Mathematical Society, 2014. 35–56.

[31] S. Ladkani, Hochschild cohomology of the cluster-tilted algebras of finite repre-

sentation type, preprint, arXiv:1205.0799.

[32] P.G. Plamondon, Cluster algebras via cluster categories with infinite-dimensional

morphism spaces. Compos. Math. 147 (2011), no. 6, 1921–1954.

[33] C.M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in

Math., vol. 1099, Springer-Verlag, 1984.

[34] C.M. Ringel, Cluster-concealed algebras. Adv. Math. 226 (2011), no. 2, 1513–

1537.

[35] R. Schiffler, Quiver Representations , CMS Books in Mathematics, Springer In-

ternational Publishing, 2014.



92
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