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Abstract

In this paper a hierarchical extension of the Minority Game is defined and
studied. Numerical simulations show a special type of emergent global behavior
between separated parts of the hierarchical structure, connected only through a
normalized mean field quantity.
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1 INTRODUCTION

In this paper a simple, single-level strategic game, namelythe Minority Game (MG),
will be extended to form a hierarchical organization. The individual MGs will form a
group, and individual players within each MG will make decisions which depend on
the average behavior of their own and other MGs. Calculations show that under certain
conditions the elements of the individual MGs “know” much more about each other
than one would expect.

"...Hierarchical organization is a common way to structurea group of people, where
members chiefly communicate with their immediate superior and with their immediate
subordinates. Structuring organizations in this way is useful partly because it can re-
duce the communication overhead." [1].

One of the most interesting questions in the theory of hierarchical systems is how
much information a subsystem has about the performance of the whole. In addition to
study this problem the top-down influence of the "whole" system to the elements will
also be quantitatively studied.

2 HIERARCHICAL EXTENSION of MG

MG is a simple model of inductively rational systems [2]. This game is a system of
N interacting agents. Each agent brings a decisionai (si(t), µ(t)) between+1 and
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−1 based on hersi(t) strategy and the knowledge of the history of the gameµ(t).
In all simulations each agent chooses from one of two stategies which are randomly
chosen for each agent in the beginning of the game. A strategyis a look-up table which
assigns the actual choice to the M component vectorµ(t) of the previous M outcome
signs,sgn(A(t)). A(t) is defined asA(t) =

∑

i ai (si(t), µ(t)). Each agent chooses
thesth strategy from the possible ones with probability

Prob{si (t) = s} = Zie
ΓiUis(t) (1)

WhereZ−1
i =

∑

s′ eΓiUis′ (t), Γi is the inverse temperature, and the performance of
the ith agent’ssth strategy is evaluated by a cumulative scoreUis(t). The updating
rule for the evaluation:

Uis (t + 1) = Uis (t) − ai (si(t), µ(t)) A(t) (2)

The second term represents the gain of the individual agents.

The original model is extended to form a hierarchical structure. This extension is
done in the following way.N ′ original MGs are connected into a new MG, where the
original MGs are the agents of this new game. In this hierarchical organization there
areN ′ (j = 1...N ′) original MGs, in each of whichN (i = 1...N ) (low level) agents
play and where their decision isaij(sij(t), µj(t)). We useµj since each local MG’s
history contains the local and global minority sign hence itis different for every local
MG. For simplicity we will denoteaij (si(t), µj(t)) by aij (t).

In each low level MG we have an outcome minority sign,−sgn(Aj). From the set
of these signs a global sum and a minority sign, is defined asA =

∑

j sgn(Aj) and
−sgn(A). Thus the score updating dynamics of the strategies are modified as:

Uijs(t + 1) = Uijs(t) − aij(t)

(

Aj(t) + C
∑

k

sgn (Ak(t))

)

, (3)

The constant,C, expresses the ratio of the contribution of the local and global
environments. The local environment consists of the agentsplaying in the original MG,
while the global one is derived from the connection of the MGs. The game among the
MGs, however, differs from the original. The MGs, as individual agents, don’t have
strategies and memories explicitly. Instead the global connection between the MGs is
made only through their low level agents.

WhenC → 0 we obtain the original definition. It is often assumed in the theory
of hierarchical structures that the local interactions should be much stronger than the
global ones [3]. However, the violation of this assumption implies non-trivial results.

In the context of MG for values ofC when the global interactions are stronger
than the local ones, the agents don’t choose a strategy to maximize their own winning
chance only, but also to help their whole group win against other groups.

To be able to analyze our extended multilevel model, we will decompose it into
three subsystems. Each subsystem contains binary interlayer interactions only, as
shown in Fig.(1). The characteristic quantities, namely the global efficiency and the
degree of symmetry, will be properly redefined.
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Figure 1: Hierarchical organization of the minority games

3 RESULTS

3.1 Interactions between the elementary and intermediate levels

The new additive part of Eq.(3) is the same for every elementary participant, therefore
we expect that the normalized global “waste”σ2

j /N averaged over theN ′ MG’s (de-
noted by< σ2

j /N >N ′) will show the same characteristic pattern as in the original
game. A small value of the waste implis a high value of efficiency.

By this extension, however, the total payoff of thejth MG uj = −A2
j −AjA might

be greater than zero, and thus it is no longer a "negative sum game".

Fig.(2) shows the results of the comparative studies between the original and the
special features of the extended game by calculatingσ2

j using the equation

σ2
j ≡ 〈A2

j 〉 =

Pem
∑

µj=1

ρµj

〈(

N
∑

i=1

−aij(t)A
µj

j (t)

)2〉

(4)

wherePem = 2M is the number of possible memory states,ρµj is the probability of
occurrence of theµth state in thejth MG. The〈...〉 refers to the averaging over the
possible strategies and the overline stands for the averages over the memory states.

3



0.1

1

0.1 1 10

<σ
2  >

 N
’ /

N

αN

N’=5
N’=11
N’=21
N’=31
N’=41

original MG

0.1

1

0.1 1 10

<σ
2 j >

N
’ /

N

αN

N’=11
N’=21
N’=31
N’=41

Figure 2: < σ2
j /N >N ′ as a function ofαN = Pem/N for variousN ′s, with C =

1/N ′ (left) andC = 1 (right).Γij ∼ ∞, Uijs(0) = 0, for ∀ i, j, s.

The left part of Fig. 2 refers to the case ofC = 1/N ′ for various values ofN ′.
Simulations show that the average ofσ2

j /N deviates from that obtained in the original
game, but the deviation does not depend on the value ofN ′. In the right part of Fig.(2)
(C = 1), the average ofσ2

j /N differs not only from the original characteristics, but is
different for each value ofN ′. It is easy to understand this dependence onN ′, because
the additive part in Eq.(3) does not implement any normalization. (The order of magni-
tude of the new additive factor iso(NN ′), while the original part of Eq.(3) is justo(N).
For larger values of our new additive part (which is proportional toN ′) and by the defi-
nition of MG we obtain larger values ofσ2

j /N than one would see in the original game.

A more striking result was obtained for the behavior of the symmetry between the
two minority signs. Fig.(3) plots the degree of asymmetry (θ2

j ) as a function ofαN

(left) andC (right), respectively. The asymmetry is defined by

θj =

√

√

√

√

1

Pem

Pem
∑

µj=1

〈−sgn(Aj(t))|µj〉
2 (5)

where〈−sgn(Aj(t))|µj〉 is the conditional probability of−sgn(Aj(t)) conditioned
onµj .

Our numerical results show that the system nowhere became symmetrical for the
two signs. Indeed in Fig.(3) we can see that for variousCs andN ′s we obtain the
same characteristics reflecting that there is no phase transition in the system with the
parameters we investigated. The tendency of the change occurs more slowly than in the
original game. The difference appears because our subsystems are not closed because
of the interaction between the MGs. Though there exists an ‘optimal strategy’ where
the symmetrical phase should appear, it’s efficiency is verylow.

3.2 Interactions between the middle and upper levels

Our naive expectation is to find ’random players,’ i.e. players who select their strate-
gies randomly, because the choices of the middle level players are just the results of
minority games of the lower level. These ’choices’ cannot beinterpreted as the results
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Figure 3:< θ2
j >N ′ as a function ofαN for variousN ′s (left) andCs (right).Γij ∼ ∞,

Uijs(0) = 0, for ∀ i, j, s.

of ’decisions’ because the middle level does not have any direct memories or strate-
gies. They are only mean field averages over the individual MGs. Although the lack of
memory implies the break down of the definition of the original scaled parameter,αN ,
we still found this quantity to be useful.

We define the wasteσ2
mu in terms of the variation in each of the middle level games

(mu is the symbolic notation of ”between middle and upper”). Explicitly, we have

σ2
mu ≡ 〈A2〉 =

N ′

∑

j=1

Pem
∑

µj=1

ρµj

〈





N ′

∑

j=1

−sgn

(

N
∑

i=1

aij(t)A
µj

i (t)

)

A(t)





2
〉

(6)

Note that the last term of Eq.(6) depends onN ′. The lack of normalization will not
have any effect, because we are only interested in the sign ofthe sum of the local
agents’ performance.
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Figure 4:σ2
mu/N ′ as a function ofα′

N = P/N ′ for variousN ′s, withC = 1/N ′ (left)
andC = 1 (right). Γij ∼ ∞, Uijs(0) = 0, for ∀ i, j, s.

The simulation results reflect the expectations discussed above. For those values of
C which implement larger local connections within an MG than to the global one (C =
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1/N ′) the system shows random behavior (Fig.4 left). When the global connection gets
stronger, i.e.C = 1, the system shows an emergent coordination [4], i.e. the system as
a whole shows a different than random performance. Fig.(4) (right) shows positive and
not negative deviation from the random performance. This phenomenon is the result of
the interaction of the two minority games.

3.3 Interactions between the elementary and upper levels

In this case we could ask whether there is any direct connection between the elementary
and upper levels. Here we calculated different globally averaged functionsσeu andθ2

eu

(whereeu the symbolic notation of ”between elementary and upper”). We define

σ2
eu ≡ 〈A2〉 =

Peu
∑

µ=1

ρµ

〈





N ′

∑

j=1

N
∑

i=1

aij(t)A
µ(t)





2
〉

(7)

First, we note that there is now another scaled parameter. For Peu = (2
M
2 )N ′+1 pos-

sible states of the system the new scaled parameter isαN,N ′ = Peu

NN ′
. And µ refers to

the state of the whole system (i.e.ρµ ∈
⊗N ′

j=1

⊕Pem

µj=1 ρµj ).
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Figure 5: σ2
eu/(NN ′) as a function ofαN,N ′ for variousN ′s, with C = 1/N (left)

andC = 1 (right). Γij ∼ ∞, Uijs(0) = 0, for ∀ i, j.

In these numerical simulations (Fig.(5)) the results are qualitatively the same. (With-
out normalization the value ofσ2

eu/(NN ′) increases for greater values ofN ′.)

Another interesting result of our investigation is the symmetry at this level. One
might believe thatθ2

eu would not depend on eitherN ′ or C, explicitly. However, the
simulation result (Fig.6) still shows some dependence onN ′ andC.

4 Discussion

We studied a hierarchical extension of the MG for three levels and studied the inter-
level interactions. First, the local MGs, i.e. the connections between the lower and
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Figure 6: θ2
eu as a function ofαN,N ′ for various values ofN ′ (left) andC (right).

Γij ∼ ∞, Uijs(0) = 0, for ∀ i, j, s.

middle layers were studied. It was interesting to see that for the ratioC = 1 the global
efficiency depends on the number of individual MGs. By using this formula the indi-
vidual agents know the number of all MGs. In addition, at least in a broad region of
the parameters, the degree of symmetry is never zero. Consequently, in contrast to the
original game, there always exists an optimal strategy for winning the game.

Second, the connections between the intermediate and the upper levels were inves-
tigated. For the case of relatively strong local connections, the system seems to behave
randomly. For strong global coupling the behavior deviatesfrom random behavior,
and shows a self-organized global behavior, which can be considered a special type of
’emergent coordination.’

Finally, the results of the study of the connections betweenthe lower and the up-
per level also exhibits the property seen previously: for the case ofC = 1 the global
efficiency depends on the number of games. In addition, the global efficiency shows
interesting dependences both on the values of the ratio number, and on the number of
games. In the future we intend to investigate these dependences analytically.
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