














We have the following lemma for buyers in AEGIS-MP.

Lemma 6. For AEGIS-MP, it holds that OPT(LJ , �SJ) <

etJ ×OPT(WJ , �SJ), where t = (1 + κ).

Due to the limitation of space, we leave the detailed proof
to our technical report [30].
We now present the approximation ratio of AEGIS-MP.

Theorem 3. AEGIS-MP achieves (δmax+eδmaxtJ
2+etJ)-

approximation.
Proof. Let O be the set of winners in the optimal allocation,

and winners are allocated bundles from �SO = (SO
1 ,S

O
2 , · · · ,

SO
n ). We partition the winners into three categories, and

bound the value of them separately.
� We denote the winners that also stay in WJ by N1. In

this case, winners might win other interested channel bun-
dles in the optimal allocation, so we get

OPT(N1, �SO) ≤ δmax ×OPT(WJ , �SJ). (6)

� We turn to another set of winners N2, which is the sub-
set of losers in AEGIS-MP, i.e., N2 ⊆ LJ . Buyer i belongs
to N2 if and only if she is a winner in the optimal allocation
O, and her allocated bundle SO

i is not included in SJ
i , which

is the bundle that the buyer i declares in AEGIS-MP when
she drops out. We have the following claim for winners N2.

Claim 1: OPT(N2, �SO) < eδmaxtJ
2 ×OPT(WJ , �SJ).

Proof. Let Fj =
{
i ∈ N2

∣∣∣ |Sj
i | = |Hi|, |Sj+1

i | < |Hi|
}
be the

set of buyers from N2 that first shrink their bundles in the
jth iteration, and we have N2 =

⋃J−1
j=0 Fj . According to the

first and third properties of undominated strategy in Defi-
nition 9, we can conclude that Sj

i contains some interested
channel bundles for all i ∈ N and 0 ≤ j ≤ J − 1. Therefore,
for any i ∈ Fj , we have

Vi(S
O
i ) ≤ δmax × Vi(S

J
i ), ∀i ∈ Fj . (7)

According to the First Time Shrink property, all bun-

dles �Sj+1 of buyers in Fj are disjoint. Additionally, by the
Shrinking Sets property, we have SJ

i ⊆ Sj+1
i , implying

bundles �SJ of buyers in Fj are also disjoint. Therefore,

(Fj , �SJ) is a valid allocation. Since Fj ⊆ N2 ⊆ LJ , we get

OPT(Fj , �SJ) ≤ OPT(LJ , �SJ). (8)

Combining with Inequalities (7)(8), we conclude that

OPT(Fj , �SO) =
∑

i∈Fj

Vi(S
O
i ) ≤ δmax

∑

i∈Fj

Vi(S
J
i )

= δmaxOPT(Fj , �SJ ) ≤ δmaxOPT(LJ , �SJ ). (9)

Using Inequality (9) and Lemma 6, we get

OPT(Fj , �SO) < eδmaxtJ ×OPT(WJ , �SJ).

Finally, we conclude that

OPT(N2, �SO) ≤ ∑J−1
j=0 OPT(Fj , �SO) < eδmaxtJ

2OPT(WJ , �SJ) (10)

� We denote the winners in LJ
∖N2 by N3. According to

the definition of N2, the allocated bundles of winners in N3

are contained in bundles �SJ , together with Lemma 6, we get

OPT(N3, �SO) ≤ OPT(LJ∖N2, �SJ)

≤ OPT(LJ , �SJ) < (etJ)OPT(WJ , �SJ). (11)

We now combine these three types of winners together

(Inequalities (6)(10)(11)), and conclude thatOPT(O, �SO) ≤

OPT(N1, �SO) +OPT(N2, �SO) +OPT(N3, �SO) < (δmax +

eδmaxtJ
2 + etJ)OPT(WJ , �SJ).

From the above analysis, we now can get our main result
for AEGIS-MP according to Definition 4.

Theorem 4. AEGIS-MP is an implementation of an
O(δmaxtJ

2)-approximation in undominated strategies.

6. EVALUATION RESULTS
In this section, we show our evaluation results. We im-

plement AEGIS using network simulation, and compare its
performance with CRWDP [5] and NSR-MP. CRWDP is
an unknown single-minded combinatorial spectrum auction,
and NSR-MP is a variant of AEGIS-MP. Neither CRWDP
nor NSR-MP considers channel spatial reusability.

6.1 Methodology
We use two complementary datasets, namely Google Spec-

trum Database [9] and GoogleWiFi [32], to evaluate the
performance of our mechanisms. We take Google Spectrum
Database as our first dataset. We first extract WiFi nodes in
an area (Latitude range: [40◦25′18′′, 39◦38′29′′], Longitude
range: [−76◦34′40′′,−74◦52′20′′]) fromWiGLE.net [27], and
we then query Google Spectrum Database the available TV
white spaces and corresponding maximum permissible power
for each WiFi node, which is considered as a portable de-
vice in the database. Portable devices can work on unused
TV channel 21 through 51, except channel 37, 38, 39. To
generate conflict graphs, we apply a simple Free Space prop-
agation model [26] to predict the interference range between
nodes, and consequently create the conflict graphs.3 We
also evaluate our mechanisms in a practical conflict graph,
built from exhaustive signal measurements, in the second
data set. The second dataset, GoogleWiFi, records 78 APs
in a 7km2 residential area of the Google WiFi network in
Mountain View, California. It was collected by a research
group from UC Santa Barbara in April 2010 [32].
We build a set of auction configurations by sampling WiFi

nodes in the first data set, and the number of WiFi nodes
varies from 200 to 2000 with increment of 200. For the
second data set, we assume the number of leasing channels
can be one of three values: 6, 12 and 24. We consider the
case of single-minded buyers and the case of multi-minded
buyers, who can have up to 10 interested bundles (i.e., li ≤
10). For each buyer i, her li interested channel bundles are
randomly generated from her available channel set, and the
valuations on bundles are uniformly distributed over (0, 1].
The maximum closeness parameter of valuation is set as 5,
i.e., δmax = 5. The minimum monetary unit in the auction
systems is set as ε = 10−5. In AEGIS-MP, since buyers
may have multiple undominated strategies at their decision
points, we assume that buyers randomly select one of them.
All the results of performance are averaged over 200 runs.
Metrics: We evaluate the following five metrics:
� Social Welfare: The sum of winning buyers’ valuations

on their allocated bundles of channels.
� Revenue: The sum of payments received from buyers.
� Satisfaction Ratio: The fraction of winners over buyers.
� Channel Utilization: The number of radios worked on

each channel.
� Channel Eccentricity: The ratio of allocated channels

over actually used channels for one buyer. In AEGIS-MP, for
each winner, the final allocated bundle may contain multiple
interested bundles and uninterested channels, but the winner
only use one interested bundle. Therefore, we use channel
eccentricity to measure this channel over-allocation.
3Other propagation models, e.g., Egli and Longley-Rice [26],
could be used to generate more accurate conflict graphs.
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Figure 3: Performance of AEGIS, CRWDP and NSR-MP on Google Spectrum Dataset.
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Figure 4: Channel eccentricity and channel utilization of AEGIS.

6.2 Performance on Google Spectrum Dataset
By varying the number of buyers, we collect a set of per-

formance data, as illustrated in Figure 3. We can see that
AEGIS always outperforms the other two mechanisms, CR-
WDP and NSR-MP. This result demonstrates that exploit-
ing channel spatial reusability can significantly improve the
performance of spectrum auction systems. Figure 3 also
shows that when the number of buyers increases, the social
welfare and revenue increase, while the satisfaction ratio de-
creases. On one hand, AEGIS allocates channels more ef-
ficiently among more buyers, hence the social welfare and
revenue increase. On the other hand, larger number of buy-
ers leads to more intense competition on limited channels,
thus decreases the satisfaction ratio. We also observe from
Figure 3 that revenue is much lower than social welfare.
Similar to previous work [31], we can institute reserve prices
for channels to increase revenue, and make a trade-off be-
tween revenue and social welfare. How to determine an op-
timal reserve price is out of the scope of this paper. In-
tuitively, multi-minded auction mechanisms should perform
better than single-minded ones because of the more feasible
bundle choices for buyers. However, as shown in Figure 3,
AEGIS-MP is slightly worse than AEGIS-SG in terms of
social welfare and revenue. As we will discuss later, the
channel eccentricity of winners in AEGIS-MP is the main
reason for this degradation of system performance.
We now present the evaluation results of channel eccen-

tricity and channel utilization. The channel eccentricity for
AEGIS-SG is always equal to 1, because the allocated bun-
dle is exactly buyer’s interested bundle. Figure 4(a) shows
the channel eccentricity of AEGIS-MP. We randomly select
one instance from the 200 simulation instances when the
number of buyers is fixed at 2000, and calculate the chan-
nel eccentricity for each winner. The placement of a circle
in Figure 4(a) indicates one set of winners with the same
channel eccentricity and the same size of used channel bun-
dle. The size of a circle is logarithmic to the number of
winners. Though some of winners’ channel eccentricities are

equal to 1, there exist about 67% winners, whose channel ec-
centricities are larger than 1. On one hand, AEGIS-MP just
stimulates buyers to take undominated strategies, such that
buyers can still maintain multiple bundles or uninterested
channels in their active bundles during the auction. On the
other hand, buyers only use the most valuable channel sub-
set among their allocated bundles. Therefore, the size of
allocated bundle can be larger than that of actually used
bundle in some cases, leading to channel over-allocation.
The channel eccentricity affects the channel utilization of

AEGIS-MP. By fixing the number of buyers at 2000 and
running 200 simulation instances, we record the average
channel utilization for each channel, and plot the results
in Figure 4(b). We do not include CRWDP and NSR-MP in
this analysis, because they do not consider channel spatial
reusability. As shown in the figure, different TV channels
have different channel utilization. The reason is that TV
white spaces are spatially heterogeneous, e.g., channel 47
can be accessed to almost all buyers, while channel 33 are
only available to around 36% buyers. In AEGIS-MP, we dis-
tinguish between allocated channels and used channels. We
can observe from Figure 4(b) that the allocated number is
always larger than the used number for each channel. This is
because some winners have channel eccentricity higher than
1. We can also see from Figure 4(b) that the channel utiliza-
tion of AEGIS-MP is always lower than that of AEGIS-SG.
The reason is that the winners with high channel eccentric-
ity in AEGIS-MP disables some possible allocations of their
interfering neighbors. From the above analysis, we can get
that buyers’ manipulated strategies on channel demands in-
deed impact the performance of spectrum auction systems.

6.3 Performance on GoogleWiFi Dataset
Figure 5 shows the system performance of AEGIS, CR-

WDP, and NSR-MP on GoogleWiFi dataset when there are
6, 12, 24 channels. Since channels are accessible to all buy-
ers in this setting, we average the channel utilization on
all channels on this dataset. Generally, the evaluation re-
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Figure 5: Performance of AEGIS, CRWDP and NSR-MP on GoogleWiFi Dataset.

sults are similar with those on Google Spectrum Dataset.
Again, AEGIS achieves better performance than CRWDP
and NSR-MP. Figure 5 also shows that when the number of
channels increases, the social welfare and satisfaction ratio
increase, and channel utilization decreases. The reason is
that fixing the number of buyers, larger supply of channels
results in more trades in the auction, and thus increases so-
cial welfare and satisfaction ratio. The channel utilization
decreases because buyers can be allocated to more chan-
nels when the number of channels increases. For revenue,
AEGIS-SG decreases with the number of channels, while
AEGIS-MP, CRWDP and NSR-MP increase. The clear-
ing price calculation in AEGIS-SG is based on critical bid.
When larger number of channels are accessible in the auc-
tion, more buyers are allocated channels, reducing the crit-
ical bids for winners. Hence, the revenue of AEGIS-SG de-
creases. Though the clearing price of CRWDP is also cal-
culated based on critical bid, there still exist considerable
losers when the number of channels becomes large. There-
fore, the critical bids for winners still stay high, so that the
revenue continue to grow with the increase of channels. The
clearing prices of AEGIS-MP and NSR-MP are the bids of
winners at the end of the auctions. Larger supply of chan-
nels leads to more winners, and thus revenues in AEGIS-MP
and NSR-MP become higher.

7. CONCLUSION
Considering the five challenges for designing a practical

spectrum auction mechanism, we have proposed AEGIS,
which is the first framework of unknown combinatorial auc-
tion mechanisms for heterogeneous spectrum redistribution.
For the case with unknown single-minded buyers, we have
designed a direct revelation combinatorial auction mecha-
nism, call AEGIS-SG. AEGIS-SG achieves strategy-proofness
and approximately efficient social welfare. We have fur-
ther considered the case with unknown multi-minded buyers,
and designed an iterative ascending combinatorial auction,
namely AEGIS-MP. AEGIS-MP is implemented in undom-
inated strategies, and has a good approximation ratio. We
have implemented AEGIS and evaluated its performance on
two practical datasets. Compared with the existing work,
AEGIS achieves superior performance, in terms of social
welfare, revenue, satisfaction ratio, and channel utilization.
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