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Abstract

Discovering contrasts between collections of data is an impor-
tant task in data mining. In this paper, we introduce a new type of
contrast pattern, called a Minimal Distinguishing Subsequence
(MDS). An MDS is a minimal subsequence that occurs frequently
in one class of sequences and infrequently in sequences of another
class. It is a natural way of representing strong and succinct con-
trast information between two sequential datasets and can be use-
ful in applications such as protein comparison, document compar-
ison and building sequential classification models. Mining MDS
patterns is a challenging task and is significantly different from
mining contrasts between relational/transactional data. One par-
ticularly important type of constraint that can be integrated into
the mining process is the maximum gap constraint. We present an
efficient algorithm called ConSGapMiner, to mine all MDSs ac-
cording to a maximum gap constraint. It employs highly efficient
bitset and boolean operations, for powerful gap based pruning
within a prefix growth framework. A performance evaluation with
both sparse and dense datasets, demonstrates the scalability of
ConSGapMiner and shows its ability to mine patterns from high
dimensional datasets at low supports.

1. Introduction
Contrasting collections of data is an important objective

in data mining and sequences are a particularly important
form of data. In this paper, we introduce a new type of pat-
tern that is useful for contrasting collections of sequences,
called a Minimal Distinguishing Subsequence (MDS). A
distinguishing subsequence is a subsequence that appears
frequently in one class of sequences, yet infrequently in an-
other. A distinguishing subsequence is minimal if none of
its subsequences is distinguishing. A key property of an
MDS is that its items do not have to appear consecutively –
there may be gaps between them. As mentioned in [4], in
the analysis of purchase behaviours, web-logs and biochem-
ical data (e.g. motifs research), sequence patterns with gaps
are often much more useful than ones with no gaps.
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There are many situations where MDSs can be applied,
such as the comparison of proteins, design of microarrays,
characterisation of text and the building of classification
models. We give two specific examples to highlight the
idea.

Example 1.1 When comparing the two protein families zf-
C2H2 and zf-CCHC, we discovered a protein section CLHH
appearing as a subsequence 141 times among a total of 196
protein sequences in zf-C2H2, but never appearing among
the 208 sequences in zf-CCHC. This subsequence repre-
sents a very strong contrast feature, that is potentially in-
teresting to biologists. From a classification perspective,
an unknown protein sequence containing CLHH as a sub-
sequence seems unlikely to be a member of the zf-CCHC
family.

Indeed the potential usefulness of contrasts for protein
datasets is highlighted by [12], where it is observed that bi-
ologists are very interested in identifying significant subse-
quences that discriminate between outer membrane proteins
and non-outer membrane proteins. Furthermore, the higher
dimensional structure of proteins makes allowing gaps in a
subsequence particularly important. Elements which have a
gap between them in the sequence, may in fact be spatially
very close in the 3-dimensional protein.

Example 1.2 Comparing the first and last books from the
Bible, we found that the subsequences “having horns”,
“faces worship”, “stones price” and “ornaments price”
appear multiple times in sentences in the Book of Revela-
tion, but never in the Book of Genesis. (The gap between the
two words of each pair is≤ 6 non trivial words.) Such pairs
might be seen as a fingerprint associated with the Book of
Revelation and may be of interest to Biblical scholars.

Items in an MDS do not necessarily have to appear immedi-
ately next to each other in the original sequences. However,
subsequences in which items are far away from each other
are likely to be less meaningful than those whose items are
close in the original sequence. A key focus, therefore, is to
set a maximum gap constraint when mining the MDS set.
This restricts the distance between neighbouring elements
of the subsequence. The benefits are that the mining output
is smaller and more intuitive and the mining process can be
faster.



Challenges: Several challenges arise in the mining of
MDSs. The first is that the Apriori property does not hold
for distinguishing subsequences (unlike it does for frequent
subsequences), meaning that the subsequences of a distin-
guishing sequence are not necessarily distinguishing them-
selves. Hence, any bottom up mining strategy needs to em-
ploy extra techniques for pruning the search space. This is
especially important, since the search space is exponential
and the number of MDS patterns present in the data may
also be very large.

The second challenge is that the MDS’s frequency
threshold cannot be set as high as it is in frequent subse-
quence mining. There, for some of the dense databases, the
thresholds may need to be set to at least 80% [13]. Using
the same thresholds for MDS mining is likely to result in
empty output. In MDS mining, thresholds usually below
30% are needed for dense databases.

The third challenge arises with respect to the gap con-
straint. Gap constraints have been considered in other con-
texts, such as episode pattern mining [9, 3]. Techniques
there rely upon storing all possible occurrences in a list. For
each candidate, a scan through the list is performed to test if
it fulfills the gap constraint. This may be workable in pure
frequent pattern mining under high frequency thresholds.
However, since the gap constraint is not class preserved (see
Section 3 for a brief explanation) [16] and the search space
is potentially larger in MDS mining, the position list may
be very large and thus such scans become very costly.
Our contributions: Besides introducing the concept of
minimal distinguishing subsequences, we describe a new
algorithm called ConSGapMiner (Contrast Sequences with
Gap Miner), to efficiently mine the complete MDS set for
a (maximum) gap constraint. We employ a novel technique
using efficient bitset and boolean operations, to determine
whether a candidate subsequence can satisfy the gap con-
straint. We also employ several other pruning strategies.

Experimental analysis shows that ConSGapMiner is able
to efficiently mine MDSs from some very dense real-world
databases, using a relatively low frequency threshold. In-
deed, using the gap constraints, it is able to mine patterns
for some very long proteins, in circumstances that would
challenge the current generation of frequent subsequence
miners.
Related Work: Emerging patterns, introduced by [5], can
be used to build high accuracy classification models in rela-
tional databases ([8]). It is difficult to translate the mining
techniques for emerging patterns to sequential databases,
since the order in which items occur in sequential data is
significant and items may also occur multiple times. Con-
trasts for relational data have been considered in other work
as well, see [2] and [14] for details.

In [4], the related concept of emerging substrings is in-
troduced. These are strings of items used to differentiate

between two classes of sequences. A suffix tree is used to
store all the substrings. Because substrings are a special
case of subsequences using maximum gap as 0, our frame-
work can also be used to mine minimal distinguishing sub-
strings. However, since the items in subsequences may not
necessarily appear consecutively, the use of a suffix tree is
unsuitable for mining them. Also, the search space is larger
and consequently the mining problem is more difficult.

An algorithm is given in [6] to mine a single best subse-
quence pattern maximising some function, which describes
pattern goodness (and could describe a contrast). It does not
enumerate a collection patterns.

Work in [7] examines the useful feature space for se-
quence databases. The algorithm used is SPADE [17], re-
lying on the Apriori property. Thus, any contrast patterns
it finds must have all their subsequences being contrast as
well. This assumption isn’t true for MDS patterns.

References [16] and [9] consider sequential pattern min-
ing with gap constraints. However, their algorithm stores
all occurrences for a given candidate in a list, which needs
to be scanned when checking the gap constraint. This idea
becomes less effective in situations where the alphabet size
and support thresholds are small and many long sequences
need to be checked (such as in protein datasets).

There exists a large body of work on finding motif pat-
terns for protein sequences (see e.g. [10]). Such patterns
are related to MDSs, but are far more general and thus much
more difficult to mine. They also take into account various
biological constraints and usually have 100% support.
Organisation: Section 2 introduces the basic concepts used
and Section 3 describes the ConSGapMiner algorithm. Ex-
perimental results are given in Section 4, followed by dis-
cussion in Section 5 and conclusion in Section 6.

2. Problem definition
Let I be a set of distinct items. We call I the alphabet

and |I| the size of the alphabet. A sequence S over I is an
ordered list of items, denoted as e1e2e3...en, where ei ∈ I for
1≤ i≤ n. For example, DNA sequences are sequences over
the alphabet of {A, C, G, T}, and the Declaration of Inde-
pendence document is a sequence over the alphabet consist-
ing of English words. We write S[i] to denote the i-th item
of S, namely ei. Note that the sequences we consider are
univariate sequences, i.e. each element of the sequence is
a single item. Although more general sequence definitions
exist, the univariate representation is able to capture some
of the most important and popular sequences, such as DNA,
proteins, documents and Web-logs.

A sequence S′ is a subsequence of a sequence S =
e1e2e3...en (and S is a supersequence of S′), written as
S′⊆ S, if S′= ei1ei2 ...eim such that 1≤ i1 < i2 < ... < im ≤ n.
S′ is a substring of S if i j+1 = i j +1 for all 1≤ j < m. For
example, AB is a subsequence of ACBC but BA isn’t, and



CBC is a substring of ACBC.

Definition 2.1 (Max-Prefix) A sequence e1e2e3...en’s max-
prefix is e1e2e3...en−1. The max-prefix is formed by remov-
ing the last item in S.

Example 2.1 ABC is the max-prefix of ABCD while AB
isn’t. According to our definition, a sequence has exactly
one max-prefix.

Definition 2.2 (Subsequence Occurrence) Given a se-
quence S = e1e2e3...en and a subsequence S′ = e′1e′2...e

′
m

of S, a sequence of indices {i1, i2, ..., im} is called an occur-
rence of S′ in S if 1≤ ik ≤ n and e′k = eik for each 1≤ k≤m,
and ik < ik+1 for each 1≤ k < m.

Example 2.2 For the sequence S=ACACBCB and subse-
quence S′=AB, there are 4 occurrences of S′ in S: {1,5},
{1,7}, {3,5} and {3,7}.

We now define the gap constraints, which restrict the
allowed distance between items of subsequences in se-
quences.
Definition 2.3 (Gap constraint and satisfaction) A (max-
imum) gap constraint is specified by a positive integer g.
Given a sequence S = e1e2...en and an occurrence os =
i1i2...im of a subsequence S′, if ik+1 − ik ≤ g + 1 ∀k ∈
{1...m− 1}, then we say the occurrence os fulfills the g-
gap constraint. Otherwise we say os fails the g-gap con-
straint. If there is at least one occurrence of a subsequence
S′ fulfilling the g-gap constraint, we say S′ fulfills the g-gap
constraint. Otherwise S′ fails the g-gap constraint.

Example 2.3 In Example 2.2, only the occurrence {3,5}
fulfills the 1-gap constraint. Thus, the subsequence S′ ful-
fills the 1-gap constraint since at least one of its occurrences
does. No occurrence of S′ fulfills the 0-gap constraint and
so S′ fails the 0-gap constraint.

Given a set of sequences D, a sequential pattern p and a
gap constraint g, the count of p in D with g-gap constraint,
denoted as countD(p,g), is the number of sequences in D
in which p appears as a subsequence fulfilling the g-gap
constraint. The (relative) support of p in D with g-gap con-
straint is defined as suppD(p,g) = countD(p,g)

|D| . Given a posi-
tive threshold δ, if suppD(p,g)≥ δ, we say p is frequent in
D with g-gap constraint. Otherwise p is infrequent.

Definition 2.4 (g-MDS and the g-MDS mining problem)
Given two classes of sequences pos (the positive) and neg
(the negative), two support thresholds δ and α, and a max-
imum gap 1 g, a pattern p is called a Minimal Distinguish-
ing Subsequence with g-gap constraint (g-MDS for short),
if and only if the following conditions are true:

1In ConSGapMiner, the gap constraints for pos and neg do not neces-
sarily have to be the same. In this paper, we use the same gap constraint
for both, to make illustration easier.

Table 1. A sequential database example
Sequence ID Sequence Class label

1 CBAB pos
2 AACCB pos
3 BBAAC pos
4 BCAB neg
5 ABACB neg

1. Frequency condition: supppos(p,g)≥ δ;

2. Infrequency condition: suppneg(p,g)≤ α;

3. Minimality condition: There is no subsequence of p
satisfying 1 and 2.

Given pos, neg, δ, α and g, the g-MDS mining problem is
to find all the g-MDSs.

The minimality condition is very important, because it both
reduces output size and improves performance, as well as
making patterns more succinct.

Similar to JEPs ([8]) we will place special emphasis on
those g-MDSs satisfying α = 0 (never appearing in the neg-
ative class). In the experimental section, we focus on the
g-MDS mining problem with α = 0. Our techniques are of
course applicable for any value of α.

Example 2.4 Given the two sets of sequences shown in Ta-
ble 1, suppose δ = 1/3 (and α = 0) and g = 1. The 1-
MDSs are {BB, CC, BAA, CBA}. Notice that BB is a sub-
sequence of all the negative sequences, if no gap constraint
is used. However all the occurrences of BB in the nega-
tive fail the 1-gap constraint, so BB becomes a distinguish-
ing subsequence when g = 1. Observe that every super se-
quence of an 1-MDS fulfilling the 1-gap constraint and sup-
port threshold is also distinguishing. However, these are
excluded from the MDS set, since they are non-minimal and
contain redundant information.

3. The ConSGapMiner Algorithm
We now introduce our algorithm known as ConSGap-

Miner, for solving the g-MDS mining problem. It operates
in three stages. In the first stage, a candidate c is generated.
In the next stage, its frequency support and gap satisfaction
is computed for both the pos and neg. If supppos(c,g) ≥ δ
and suppneg(c,g) ≤ α, then c is retained. Finally, in the
third stage, post processing is used to remove all the non-
minimal answers and yield the final g-MDS set. We now
discuss each of these stages in turn.

3.1. Candidate generation

ConSGapMiner performs a depth-first search in a lex-
icographic sequence tree, similar to frequent subsequence



Figure 1. The lexicographic tree.

mining techniques such as [1, 15, 11]. In the lexico-
graphic sequence tree, each node contains a sequence s
(we will interchangeably refer to nodes and the sequences
they represent), a value for countpos(s,g) and a value for
countneg(s,g). Each node is the max-prefix of each of its
children. During the depth-first search, we extend the cur-
rent node by a single item from the alphabet, according to
a certain lexicographic order. For (the sequence of) each
newly-generated node n, we calculate its supports from pos
and from neg.

Example 3.1 Part of the lexicographic tree for mining the
database from Table 1 is given in Figure 1. Observe that the
branches of the lexicographic tree terminate at nodes whose
countpos = 0.

Two basic pruning strategies can be applied to reduce the
size of the search space of the tree. These will be applied in
the candidate generation process.

Non-Minimal Distinguishing Pruning: This strategy is
based on the fact that any supersequence of a distinguishing
sequence cannot be a minimal one. Suppose we encounter
a node representing sequence s, where c is the last item in
s and supppos(s,g) ≥ δ and suppneg(s,g) ≤ α. Then i) we
need never extend s and ii) need never extend any of the
sibling nodes of s by the item c. Such an extension would
lead to a supersequence of s and wouldn’t be an MDS.

Example 3.2 In Figure 1, because suppneg(AACC) = 0,
AACC must be distinguishing and we know in the subtree
of its sibling AACB, suppneg(AACBC) must be 0, too. So
AACBC can’t be an MDS.

Max-Prefix Infrequency Pruning: Whenever a candidate
isn’t frequent in pos, then none of its descendants in the tree
can be frequent. Thus, whenever we come across a node s,
where supppos(s,g) < δ, we don’t need to extend this node
any further. For example, in Figure 1, it is not necessary
to extend AAB (which has support zero in pos), since no
frequent sequence can be found in its subtree.

It is worth noting that this technique does not generalise
to full a-priori like pruning - “if a subsequence is infrequent

Procedure 1 Candidate Gen(c,g,I,δ,α): Generate new can-
didates from sequence c
Require: c:sequence, g:maximum gap, I:alphabet, δ: minimal

support in pos, α:maximum support in neg.
Ensure: DS is a global variable containing all candidate distin-

guishing subsequences generated from the tree.
1: ds = /0 {to contain all distinguishing children of c}
2: for all i ∈ I do
3: if c+ i is not a supersequence of any sequence in ds then
4: nc = c+ i
5: supppos=Support Count(nc,g,pos)
6: suppneg=Support Count(nc,g,neg)
7: if supppos ≥ δ AND suppneg ≤ α then
8: ds = ds∪nc {nc is distinguishing}
9: else if supppos ≥ δ then

10: Candidate Gen(nc,g,I,δ,α)
11: end if
12: end if
13: end for
14: DS=DS ∪ ds

in pos, then no supersequence of it can be frequent”. Such a
statement is not true, because the gap constraint is not class
preserved [16]. This means that an infrequent sequence’s
supersequence is not always necessarily infrequent and con-
sequently increases the difficulty of our problem. Indeed,
extending an infrequent subsequence by appending will not
lead to a frequent sequence, but extensions by inserting
items in the middle of the subsequence may lead to a fre-
quent subsequence. An example situation is given next.

Example 3.3 For Figure 1, suppose δ = 1/3 and g =
1. Then AAB is not a frequent pattern because
countpos(AAB,1) = 0. But looking at AAB’s sibling, the
subtree rooted at AAC, we see that countpos(AACB,1) = 1.
So here, a supersequence (AACB) is frequent, but its subse-
quence (AAB) is infrequent.

The algorithm for candidate generation is given in Pro-
cedure 1. Assume MDS is set to empty initially. It is called
at the top level by Candidate Gen({},g, I,δ,α).

3.2. Support Calculation and Gap Checking

For each newly-generated candidate c, countpos(c,g)
and countneg(c,g) must be computed. The main challenge
comes in checking satisfaction of the gap constraint. A can-
didate can occur many times within a single positive se-
quence. A straightforward idea for gap checking would be
to record the occurrences of each candidate in a separate list.
When extending the candidate, a scan of the list determines
whether or not the extension is legal, by checking whether
the gap between the end position and the item being ap-
pended is smaller than the (maximum) gap constraint value
for each occurrence. This idea becomes ineffective in sit-
uations with small alphabet size and support threshold and



many long sequences needing to be checked, since the oc-
currence list becomes unmanageably large. Instead, we use
a new method for gap checking, based on a bitset represen-
tation of subsequences and the use of boolean operations.
This technique is described next.

Definition 3.1 (Bitset) A bitset is a sequence of bits which
each takes the value 0 or 1. An n-bitset X contains n bits,
and X [i] refers to the i-th bit of X.

We use a bitset to describe how a sequence can occur
within another sequence. Suppose we have a sequence
S = e1e2e3...en, and another sequence S′, which is no longer
than S. The occurrence(s) of S′ in S can be represented by
an n-bitset. This n-bitset BS is defined as follows: If both
i) there exists a supersequence of S′ of the form e1e2e3...ei
(i≤ n) and ii) ei is the final item of S′, then BS[i] is set to 1;
otherwise it is set to 0. For example, if S=BACACBCCB, the
9-bitset representing S′ =AB is 000001001. This indicates
how the subsequence AB can occur in BACACBCCB, with a
’1’ being turned on in each final position where the subse-
quence AB could be embedded. If S′ isn’t a subsequence of
S, then the bitset representing the occurrences of S′ consists
of all zeros.

For the special case where S′ is a single item, i.e. S′ = e,
then BS[i] is set to 1 if ei = e. In the last example, the 9-bitset
representing the single item C is 001010110.

It will be necessary to compare a given subsequence
against multiple other sequences. In this case, the subse-
quence will have associated with it an array of bitsets, where
the k-th bitset describes the occurrences of S′ in the k-th se-
quence.

Initial Bitset Construction: Before mining begins, it is
necessary to construct the bitsets that describe how each
item of the alphabet occurs in each sequence from the pos
and neg datasets. So, each item i has associated with it an
array of |pos|+ |neg| bitsets. For a given item, the number
of bitsets in its array which contain one or more 1’s, is equal
to count(i,g).

Example 3.4 Consider the database in Table 1.
A’s array of bitsets contains 5 elements and is
[0010,11000,00110,0010,10100]. Also, countpos(A,g) = 3
and countneg(A,g) = 2.

Bitset Checking: Each candidate node c in the lexico-
graphic tree has a bitset array associated with it, which de-
scribes how the sequence for that node can occur in each
of the |pos|+ |neg| sequences. This bitset array can be
directly used to compute countpos(c,g) and countneg(c,g)
(i.e. countpos(c,g) is just the number of bitsets in the array
not equal to zero, that describe positive sequences). During
mining, we extend a node c to get a new candidate c′, by ap-
pending some item i. Before we can compute countpos(c′,g)
and countneg(c′,g), we first need to compute the bitset array

for c′. The bitset array for c′ is calculated using the bitset
array for c and the bitset array for item i and is done in two
stages.

Stage 1: Using the bitset array for c, we generate another
array of corresponding mask bitsets. Each mask bitset cap-
tures all the valid extensions of c, with respect to the gap
constraint, for a particular sequence in pos∪ neg. Suppose
the maximum gap is g, for a given bitset b in the bitset array
of c. We perform g+1 times of right shift of it by distance
1, with 0s filling the leftmost bits. This results in g + 1
intermediate bitsets, one for each stage of the shift. By OR-
ing together all the intermediate bitsets, we obtain the final
mask bitset m derived from b. The mask bitset array for c
consists of all such mask bitsets.

Example 3.5 Taking the last bitset 10100 in the previous
example and setting g = 1, the process is:

10100 >> 01010
01010 >> 00101

OR 01111
01111 is the mask bitset derived from bitset 10100.

Intuitively, a mask bitset m generated from a bitset b,
closes all 1s in b (by setting them to 0) and opens the fol-
lowing g+1 bits (by setting them to 1). In this way, m can
accept only 1s within a g+1 distance from the 1s in b.

Stage 2: We use the mask bitset array for c and the bitset
array for item i, to calculate the bitset array for c′ which
is the result of appending i to c. Consider a sequence s in
pos∪neg and suppose the mask bitset describing it is m and
the bitset for item i is t. The bitset describing the occurrence
of c′ in s, is equal to m AND t. If the bitset of the new
candidate c′ doesn’t contain any 1, we can conclude that this
candidate is not a subsequence of s with g-gap constraint.

Example 3.6 ANDing 01111 (the mask bitset for sequence
A) from the last example with C’s bitset 00010, gives us AC’s
bitset 00010.

Taking the last sequence in Table 1, ABACB, B’s 5-bitset
is 01001 and its mask 5-bitset is:

01001 >> 00100
00100 >> 00010

OR 00110
So BB’s bitset is: 00110 AND 01001 = 00000. This means
BB is not a subsequence of ABACB with 1-gap constraint.

Example 3.7 Figure 2 shows the process of getting the
bitset array BB from B. From the figure we can see
countpos(BB,1) = 2 and countneg(BB,1) = 0.

The task of computing bitset arrays can be done very
efficiently. Modern computer architectures have very fast
implementations of shift operations and logical operations.
Since the maximum gaps are usually small (e.g. less



Figure 2. The generation of BB’s bitset array (g = 1)

Procedure 2 Support Count(c′,g,D): calculate suppD(c′,g)

Require: g:maximum gap and BARRAYc: the bitset array for
max-prefix c of c′ and IARRAY i, the bitset array for the final
item i of c′.

Ensure: : return suppD(c′,g) and the bitset array for c′

1: count← 0
2: for all s ∈D do
3: p←BARRAYc[s]
4: i←IARRAY i[s]
5: m = m XOR m {bitset m contains all zeros}
6: c← 0 {loop counter}
7: repeat
8: p = (p >> 1)
9: m = m OR p

10: c++
11: until c = g+1
12: m = m AND i
13: if (m 6= 0) then
14: count ++
15: end if
16: BARRAYc′[s] = m
17: end for
18: return count/|D|

than 20), the total number of right shifts and logical op-
erations needed is not too large. Consequently, calculat-
ing supppos(c,g) and suppneg(c,g) can be done extremely
quickly. The algorithm for support counting is given in Pro-
cedure 2.

3.3. Minimization

The patterns returned by Procedure 1 are not necessarily
all minimal. For example, in Figure 1, we will get ACC,
which is a supersequence of the distinguishing sequence
CC. Thus, in order to get the g-MDS set, post-processing
minimization is needed.

A naive idea for removing non-minimal sequences from
a set, is to check each one against all the others, removing
it if it is a supersequence of at least one other. For n se-
quences, this leads to an O(n2) algorithm, which is expen-
sive if n is large. We improve on this basic idea by making
use of two properties of non-minimal sequences.

Theorem 3.1 Let S and S′ be two distinguishing sequences
returned by Procedure 1. If S′ is a subsequence of S, then

Table 2. Sizes of protein families.
Id Pos(num) Neg(num) Avg. Len.(Pos,Neg)
1 DUF1694(16) DUF1695(5) (123,186)
2 SrfB(5) Spheroidin(4) (1025,932)
3 TatC(74) TatD DNase(119) (205,262)

Property 1 |S′| ≤ |S| and

Property 2 S and S′ must share the same final item.

The proof is omitted here for space considerations and
will be provided in a companion full paper.

Property 1 means that it is not necessary to check if a
sequence is a superset of any longer sequence. This prop-
erty is in fact true for any pair of subsequences, not just
the distinguishing ones returned by Procedure 1. Property
2 means that each sequence need only be compared with
those which share a common final item. This property is
only true for the sequences returned by Procedure 1. It
isn’t true for arbitrary sequences. The actual minimization
is performed as follows. We use the well-known prefix tree
structure. For each item i in the alphabet, a prefix tree pti
is built. Sequences having final item i are inserted into pti,
in order of length. At each insertion, the sequence being
inserted is checked to see whether it is a supersequence of
any sequence in the prefix tree and discarded if this is the
case.

4. Performance Study
In this section, we study the performance of ConSGap-

Miner, as well as analysing some of the properties of the
g-MDSs that we mine. No comparison is made against
other systems, since we are not aware of any other work that
is suitable for mining g-MDSs. A number of experiments
on both protein families and Bible books have been carried
out. These two sequence types represent some interesting
real-world applications. On the one hand, protein families
use a relatively small alphabet (20 amino acids), each con-
taining relatively few sequences with long average length.
On the other hand, books of the Bible are built on a large
alphabet (several thousand words), and have thousands of
sentences of small average length. The protein families
were selected from PFam: Protein Family Database
(http://www.sanger.ac.uk/Software/Pfam/)
and the Bible books were downloaded from
http://www.o-bible.com/dlb.html. In all experi-
ments, α (the maximum frequency in threshold for neg)
was set to zero and the experiments were run on a 3.0GHz
Intel Xeon PC, with 4 gigabytes of main memory, running
UNIX.

Protein Families: The protein families that we used are
listed in Table 2. These represent some challenging situa-



Family 1 (a): runtime vs δ, for
g = 5, α = 0.

Family 1 (b): runtime vs g, for
δ = 5(31.25%), α = 0.

Family 2 (a): runtime vs δ, for
g = 4, α = 0.

Family 2 (b): runtime vs g, for
δ = 5(100%), α = 0.

Family 3 (a): runtime vs δ, for
g = 5, α = 0.

Family 3 (b): runtime vs g, for
δ = 20(27%), α = 0. Bible: runtime vs δ for g = 6. Bible: runtime vs g for

δ = 0.13%.

Figure 3. Experimental results.

tions and their sizes are representative for protein families.
In Figure 3, we give the running time for varying frequency
thresholds(refer to a) and (maximum) gap size (refer to b).
We can see that as the maximum gap becomes larger, or
as the frequency threshold δ becomes lower, more time is
required for mining. An important reason for this is that
the MDS output size increases dramatically in both situa-
tions. e.g. Take the final pair of protein families in Table 2.
When g = 5 and δ = 24.3%, there are 20936 5-MDSs out-
put. Changing δ to 5.4%, the output size jumps to 3600822.
For the same dataset with δ = 27% and g = 3, the output
size is 536, whereas for δ = 27% and g = 7, it is 314791.
The smaller the maximum gap is, the earlier a candidate is
likely to become distinguishing (being less likely to appear
in the neg) and so earlier pruning of the search space is pos-
sible. Similarly, earlier pruning is possible for high values
of the frequency constraint δ, since it is more difficult to sat-
isfy for longer (and thus lower) sequence nodes in the tree.
Furthermore, the longer sequences in the pos and neg are,
the more time ConSGapMiner needs, since it has to search
to deeper levels in the lexicographic tree.

We also examined the distribution of the 5-MDS for the
TatC vs. TatD DNase. They are approximately normally
distributed around a mean length (i.e. the number of items
in a pattern) of 7−8. There were some patterns with lengths
11, despite the gap size being 5. This reflects the ability of
g-MDS to capture long patterns. Indeed for these length 11
patterns, it would be permitted for there to be an occurrence
where the first item’s position and last item’s position are
separated by distance of as much as (11−1)∗5 = 50.

Books of the Bible: We conducted experiments using sen-
tences from the books of the Bible as sequences. This
kind of sequential data differs from protein data, due to
its large alphabet size, much smaller sequence length and

larger number of sequences. We used all sentences in the
first four books of the New Testament (Matthew, Mark,
Luke and John) as the positive class and all sentences in the
the first four books of the Old Testament (Genesis, Exodus,
Leviticus and Numbers) as the negative class. In order to
obtain meaningful patterns, we removed all the punctuation
and frequently appearing words such as ”and”, ”the”, ”of”.
Each sentence corresponds to a separate sequence. There
are 3768 sequences in pos, 4893 sequences in neg, and a
total (alphabet size) of 3344 unique words. Average sen-
tence length is 7 words and the maximum is 25. The Exper-
imental results are shown in Figure 3. Looking at these fig-
ures, we can see that ConSGapMiner operates much faster
on this kind of data. The larger alphabet means that non-
minimal distinguishing pruning happens very early in the
lexicographic tree, while the small average length means
the tree cannot become too deep. Table 3 lists some of the
patterns returned when mining the 6-MDS. Both contigu-
ous patterns (substrings) and non-contiguous patterns (sub-
sequences) are shown, with the number of times they oc-
cur. Obviously, for human understanding of the patterns,
the meaning of the substrings is more straightforward than
subsequences. However, subsequence contrasts can some-
times capture combinations of interesting words that are not
found by substrings.

Effect of Pruning: We have seen the effect of vary-
ing the parameters g and δ. We also conducted a number
of other experiments (not shown due to lack of space) to
evaluate the power of the different pruning techniques. As
expected, the Max-Prefix infrequency pruning gives sub-
stantial savings, similar to using the frequency constraint
for frequent subsequence mining. By employing the non-
minimal distinguishing pruning strategy, ConSGapMiner
usually gains a speedup of factor two and the pattern size



Table 3. Some 6-MDSs from the Bible Experiment
substrings(support) subsequences(support)
unclean spirit(13) cakes fishes(10)

eternal life(24) seated hand(10)
good news(23) answer truly(10)

forgiveness sin(22) question saying(13)
chief priests(53) truly kingdom(12)

before minimization shrinks by a factor of four. The time
taken for the minimization post-processing is insignificant.

5. Discussion and Future Work
The results in the previous section are only a snapshot of

the experiments we performed. We also tested ConSGap-
Miner on a number of other protein datasets, with overall
performance being similar.

The performance of ConSGapMiner is very pleasing
overall. However, as mentioned, the number of MDS pat-
terns present for high dimensional datasets can be very
large. Gap size is certainly an important way of reducing
this output size, but it would be useful to employ other con-
straints as well. Using a length constraint (restricting the
maximum number of items in an MDS) is straightforward
within our framework. Using a window size constraint (lim-
iting the maximum gap between the first and last item in
an MDS) is more difficult. Employing bitset operations to
maintain this constraint requires much more information to
be maintained for each node in the lexicographic tree.

This paper has focused on presenting an efficient algo-
rithm for mining g-MDS patterns. There is also the related
question of how such patterns may be used. We believe
these patterns are interesting, due to their intuitive, human
understandable form and ability to capture strong contrasts.
Similar to emerging patterns ([8]), we believe g-MDSs will
be useful for building classifiers. Studying classification
may also allow examination of the tradeoffs between choos-
ing an appropriate pos frequency threshold δ and gap size,
versus the quality of the g-MDS patterns that are mined.

6. Concluding Remarks
We have introduced the problem of minimal distinguish-

ing subsequences. These patterns can capture essential con-
trast information between different classes of sequences.

We studied the efficient mining of minimal distin-
guishing subsequences and made the following major
contributions: (a) A prefix growth framework for mining
g-MDSs, utilising a number of pruning techniques. (b)
A bitset operation based technique for checking gap con-
straints. Analysis and experiments show that our approach
works well for a number of datasets, particularly high
dimensional proteins.
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