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Abstract—The considered problem is that of maximizing the
degrees of freedom (DoF) in cellular downlink, under abackhaul
load constraint that limits the number of messages that can
be delivered from a centralized controller to the base station
transmitters. A linear interference channel model is considered,
where each transmitter is connected to the receiver having the
same index as well as one succeeding receiver. The backhaul
load is defined as the sum of all the messages available at all
the transmitters normalized by the number of users. When the
backhaul load is constrained to an integer levelB, the asymptotic
per user DoF is shown to equal4B−1

4B
, and it is shown that the

optimal assignment of messages to transmitters is asymmetric
and satisfies a local cooperation constraint and that the optimal
coding scheme relies only on zero-forcing transmit beamforming.
Finally, an extension of the presented coding scheme for thecase
whereB = 1 is shown to apply for more general locally connected
and two-dimensional networks.

I. I NTRODUCTION

Managing wireless interference through infrastructural en-
hancements is a major consideration for next generation cel-
lular networks. One example of such an enhancement is in
cellular downlink through the assignment of one receiver’s
message to multiple base station transmitters and managing
interference through a Coordinated Multi-Point Transmission
(CoMP) scheme. The cost of delivering messages to multiple
transmitters over a backhaul link is highlighted in this work.

In [2], the degrees of freedom (DoF) gain offered by CoMP
transmission in Wyner’s linear interference networks [1] was
studied, under a cooperation constraint that limits the number
of transmitters at which each message can be available by
a numberM . The asymptotic limit of the per user DoF as
the number of users goes to infinity was shown to be2M2M+1 ,
and was shown to be achieved by a simple coding scheme
that relies only on zero-forcing transmit beamforming. It is
to be noted that the maximum transmit set size constraint
of M is not met tightly for all messages in the optimal
message assignment scheme presented in [2]. In this work, we
therefore consider a cooperation constraint that is more general
and relevant to many scenarios of practical significance. In
particular, we define thebackhaul load constraintB as the
ratio between the sum of the transmit set sizes for all the
messages and the number of users. In other words, we allow
the transmit set size constraints to vary across the messages,
while maintaining a constraint on the average transmit set size
of B. We establish in this paper that the asymptotic per user
DoF in this new setting is4B−1

4B , which is larger than the

per user DoF of 2B
2B+1 obtained with the more stringent per

message transmit set size constraint ofB.
Furthermore, we show that the scheme that achieves the

optimal DoF of 4B−1
4B uses only zero-forcing beamforming at

the transmitters, and assigns messages non-uniformly across
the transmitters, with some messages being assigned to more
thanB transmitters and others being assigned to fewer than
B transmitters. We show that these insights can apply to
more general channel models than the simple linear model
considered in this work.

We describe the system model in Section II. We then
provide an illustrative example for the considered problemin
Section III. The main result is proved in Section IV. We then
discuss the result and its generalizations in Section V. Finally,
we provide concluding remarks in Section VI.

II. SYSTEM MODEL AND NOTATION

We use the standard model for theK−user interference
channel with single-antenna transmitters and receivers,

Yi(t) =
K
∑

j=1

Hi,j(t)Xj(t) + Zi(t), (1)

wheret is the time index,Xj(t) is the transmitted signal of
transmitterj, Yi(t) is the received signal at receiveri, Zi(t) is
the zero mean unit variance Gaussian noise at receiveri, and
Hi,j(t) is the channel coefficient from transmitterj to receiver
i over the time slott. We remove the time index in the rest
of the paper for brevity unless it is needed. For any setA ⊆
[K], we use the abbreviationsXA, YA, andZA to denote the
sets{Xi, i ∈ A}, {Yi, i ∈ A}, and{Zi, i ∈ A}, respectively.
Finally, we use[K] to denote the set{1, 2, . . . ,K}, and use
φ to denote the empty set.

A. Channel Model

Each transmitter is connected to its corresponding receiver
as well as one following receiver, and the last transmitter is
only connected to its corresponding receiver. More precisely,

Hi,j = 0 iff i /∈ {j, j + 1}, ∀i, j ∈ [K], (2)

and all non-zero channel coefficients are drawn independently
from a continuous joint distribution. Finally, we assume that
global channel state information is available at all transmitters
and receivers. The channel model is illustrated forK = 3 in
Figure 1.
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Fig. 1: Wyner’s linear asymmetric model forK = 3. In the
figure, a solid line connects a transmitter-receiver pair ifand
only if the channel coefficient between them is non-zero.

B. Message Assignment

For eachi ∈ [K], let Wi be the message intended for
receiveri, andTi ⊆ [K] be the transmit set of receiveri, i.e.,
those transmitters with the knowledge ofWi. The transmitters
in Ti cooperatively transmit the messageWi to the receiveri.
The average transmit set size is upper bounded by an integer
valued backhaul load constraintB,

∑K
i=1 |Ti|
K

≤ B. (3)

C. Message Assignment Strategy

A message assignment strategy is defined by a sequence
of supersets. Thekth element in the sequence consists of the
transmit sets for ak−user channel. We use message assign-
ment strategies to define a pattern for assigning messages to
transmitters in large networks.

D. Local Cooperation

We say that a message assignment strategy satisfies the local
cooperation constraint, if and only if there exists a function
r(K) such thatr(K) = o(K), and for everyK ∈ Z

+, the
transmit sets defined by the strategy for aK−user channel
satisfies the following,

Ti ⊆ {i− r(K), i− r(K) + 1, . . . , i+ r(K)}, ∀i ∈ [K]. (4)

E. Degrees of Freedom

Let P be the average transmit power constraint at each
transmitter, and letWi denote the alphabet for messageWi.
Then the ratesRi(P ) = log |Wi|

n are achievable if the decoding
error probabilities of all messages can be simultaneously made
arbitrarily small for a large enough coding block lengthn, and
this holds for almost all channel realizations. The degreesof
freedomdi, i ∈ [K], are defined asdi = limP→∞

Ri(P )
logP .

The DoF regionD is the closure of the set of all achievable
DoF tuples. The total number of degrees of freedom (η) is
the maximum value of the sum of the achievable degrees of
freedom,η = maxD

∑

i∈[K] di.
For aK-user channel, we defineη(K,B) as the best achiev-

ableη over all choices of transmit sets satisfying the backhaul
load constraint in (3). In order to simplify our analysis, we
define the asymptotic per user DoFτ(B) to measure how
η(K,B) scales withK while all other parameters are fixed,

τ(B) = lim
K→∞

η(K,B)

K
, (5)

We call a message assignment strategyoptimal for a se-
quence ofK−user channels,K ∈ {1, 2, . . .}, if and only if
there exists a sequence of coding schemes achievingτ(B)
using the transmit sets defined by the message assignment
strategy.

III. E XAMPLE : B = 1

Before introducing the main result, we illustrate through a
simple example that the potential flexibility in the backhaul
design according to the constraint in (3) can offer DoF gains
over a traditional design where all messages are assigned to
the same number of transmitters. We know from [2] that any
asymptotic per user DoF greater than23 cannot be achieved
through assigning each message to one transmitter. We now
show thatτ(B = 1) ≥ 3

4 , by allowing few messages to be
available at more than one transmitter at the cost of not trans-
mitting other messages. Consider the following assignmentof
the first four messages,T1 = {1, 2}, T2 = {2}, T3 = φ,
andT4 = {3}. MessageW1 is transmitted throughX1 to Y1

without interference. Since the channel state informationis
known at the second transmitter, the transmit beam forW1

at X2 can be designed to cancel the interference caused by
W1 at Y2, and thenW2 can be transmitted throughX2 to Y2

without interference. Finally,W4 is transmitted throughX3 to
Y4 without interference. It follows that the sum DoF for the
first four messages

∑4
i=1 di ≥ 3. Since the fourth transmitter

is inactive, the subnetwork consisting of the first four users
does not interfere with the rest of the network, and hence, we
can see thatτ(B = 1) ≥ 3

4 through similar assignment of
messages in each consecutive4-user subnetwork.

IV. M AIN RESULT

We now characterize the asymptotic per user DoFτ(B) for
any integer value of the backhaul load constraint.

Theorem 1: The asymptotic per user DoFτ(B) is given by,

τ(B) =
4B − 1

4B
, ∀B ∈ Z

+. (6)

Proof: We provide the proof for the inner and outer
bounds in Section IV-A and Section IV-B, respectively.

A. Coding Scheme

We treat the network as a set of subnetworks, each con-
sisting of consecutive4B transceivers. The last transmitter of
each subnetwork is deactivated to eliminateinter-subnetwork
interference. It then suffices to show that4B − 1 DoF can
be achieved in each subnetwork. Without loss of generality,
consider the cluster of users with indices in the set[4B]. We
define the following subsets of[4B],

S1 = [2B]

S2 = {2B + 2, 2B + 3, . . . , 4B}

We next show that each user inS1 ∪ S2 achieves one degree
of freedom, while messageW2B+1 is not transmitted. Let the
message assignments be as follows,

Ti =
{

{i, i+ 1, . . . , 2B}, ∀i ∈ S1,

{i− 1, i− 2, . . . , 2B + 1}, ∀i ∈ S2,

and note that
∑

4B
i=1

|Ti|
4B = B, and hence, the constraint

in (3) is satisfied. Now, due to the availability of channel
state information at the transmitters, the transmit beams for



messageWi can be designed to cancel its effect at receivers
with indices in the setCi, where,

Ci =
{

{i+ 1, i+ 2, . . . , 2B}, ∀i ∈ S1

{i− 1, i− 2, . . . , 2B + 2}, ∀i ∈ S2

Note that bothC2B and C2B+2 equal the empty set, as
bothW2B andW2B+2 do not contribute to interfering signals
at receivers in the setYS1

∪ YS2
. The above scheme for

B = 2 is illustrated in Figure 2. We conclude that each
receiver whose index is in the setS1 ∪ S2 suffers only from
Gaussian noise, thereby enjoying one degree of freedom. Since
|S1 ∪ S2| = 4B − 1, it follows that

∑4B
i=1 di ≥ 4B − 1.

Using a similar argument for each following subnetwork, we
establish thatτ(B) ≥ 4B−1

4B , thereby proving the lower bound
of Theorem 1.

Fig. 2: Achieving7/8 per user DoF with a backhaul constraint
B = 2. The figure shows only signals corresponding to the
first subnetwork in a generalK−user network. The signals in
the dashed boxes are deactivated. Note that the deactivation
of X8 splits this part of the network from the rest.

We note that the illustrated message assignment strategy
satisfies the local cooperation constraint of (4). In other words,
the network can be split into subnetworks, each of size4B,
and the messages corresponding to users in a subnetwork
can only be assigned to transmitters with indices in the same
subnetwork.

B. Upper Bound

We prove the converse of Theorem 1 in two steps. First,
we provide an information theoretic argument in Lemma 2 to
prove an upper bound on the DoF of any network that has
a subset of messages whose transmit set sizes are bounded.
We then finalize the proof with a combinatorial argument
that shows the existence of such a subset of messages in
any assignment of messages satisfying the backhaul constraint
of (3).

In order to prove the information theoretic argument in
Lemma 2, we use Lemma4 from [2], which we restate below.
For any set of receiver indicesA ⊆ [K], defineUA as the set
of indices of transmitters that exclusively carry the messages

for the receivers inA, and its complement̄UA. More precisely,
ŪA = ∪i/∈ATi.

Lemma 1 ([2]): If there exists a setA ⊆ [K], a function
f1, and a functionf2 whose definition does not depend on
the transmit power constraintP , andf1 (YA, XUA) = XŪA +
f2(ZA), then the sum DoFη ≤ |A|.

We also need [2, Corollary3] in the proof of Lemma 2; we
restate it for the considered system model.

Corollary 1 ([2]): For any K−user linear interference
channel, if the size of the transmit set|Ti| ≤ M, i ∈ [K], then
any elementk ∈ Ti such thatk /∈ {i−M, i−M +1, . . . , i+
M − 1} can be removed fromTi, without decreasing the sum
rate.

We now make the following definition to use in the proof
of the following lemma. For any setS ⊆ [K], let gS : S →
{1, 2, . . . , |S|} be a function that returns the ascending order
of any element in the setS, e.g.,gS (min {i : i ∈ S}) = 1 and
gS (max {i : i ∈ S}) = |S|

Lemma 2: For anyK−user linear interference channel with
DoF η, if there exists a subset of messagesS ⊆ [K] such
that each message inS is available at a maximum ofM
transmitters, i.e.,|Ti| ≤ M, ∀i ∈ S, then the DoF is bounded
by,

η ≤ K − |S|
2M + 1

+ CK , (7)

wherelimK→∞
CK

K = 0.
Proof: We use Lemma 1 with a setA such that the size of

the complement set|Ā| = |S|
2M+1 −o(K). We define the setA

such thatĀ = {i : i ∈ S, gS(i) = (2M+1)(j−1)+M+1, j ∈
Z

+}.
Now, we lets1, s2 be the smallest two indices in̄A. We see

thatgS(s1) = M+1, gS(s2) = 3M+2. Note thatX1+
Z1

H1,1
=

Y1

H1,1
, and

X2 +
Z2 − H2,1

H1,1
Z1

H2,2
=

Y2 − H2,1

H1,1
Y1

H2,2
.

Similarly, it is clear how the firsts1 − 1 transmit signals
X[s1−1] can be recovered from the received signalsY[s1−1]

and linear combinations of the noise signalsZ[s1−1]. In what
follows, we show how to reconstruct a noisy version of the
signals {Xs1 , Xs1+1, . . . , Xs2−1}, where the reconstruction
noise is a linear combination of the signalsZA. Then it will
be clear by symmetry how the remaining transmit signals can
be reconstructed.

We now notice that it follows from Corollary 1 that message
Ws1 can be removed from any transmitter inTs1 whose
index is greater thans1 +M − 1, without affecting the sum
rate. Similarly, there is no loss in generality in assuming that
∀si ∈ S, si 6= s1, Tsi does not have an element with index
less thansi−M . Sincesi− s1 ≥ gS(si)− gS(s1) ≥ 2M +1,
it follows that Xs1+M ∈ XUA . The signalXs1+M+1 +

Zs1+M+1

Hs1+M+1,s1+M+1
can be reconstructed fromYs1+M+1 and

Xs1+M . Then, it can be seen that the transmit sig-
nals{Xs1+M+2, Xs1+M+3, . . . , Xs2−1} can be reconstructed



from {Ys1+M+1, Ys1+M+2, . . . , Ys2−1}, and linear combina-
tions of the noise signals{Zs1+M+1, Zs1+M+2, . . . , Zs2−1}.
Similarly, since Xs1+M is known, the transmit signals
{Xs1+M−1, Xs1+M−2, . . . , Xs1} can be reconstructed from
{Ys1+M , Ys1+M−1, . . . , Ys1+1}, and linear combinations of
the noise signals{Zs1+M , Zs1+M−1, . . . , Zs1+1}. By follow-
ing a similar argument to reconstruct all transmit signals from
the signalsYA, XUA , and linear combinations of the noise
signalsZA, we can show the existence of functionsf1 andf2
of Lemma 1 to complete the proof.

We now explain how Lemma 2 can be used to prove that
τ(B = 1) ≤ 3

4 . For any message assignment satisfying (3)
for a K−user channel, letRj be defined as follows for every
j ∈ {0, 1, . . . ,K},

Rj =
| {i : i ∈ [K], |Ti| = j} |

K
. (8)

Rj is the fraction of users whose messages are available at
exactlyj transmitters. Now, ifR0+R1 ≥ 3

4 , then Lemma 2 can
be used directly to show thatη ≤ 3K

4 +o(K). Otherwise, more
than K

4 users have their messages at two or more transmitters,
and it follows from (3) thatR0 ≥ ∑K

j=2 Rj ≥ 1
4 , and hence,

η ≤ (1−R0)K ≤ 3K
4 .

We generalize the above argument in the proof of the fol-
lowing lemma to complete the proof thatτ(B) ≤ 4B−1

4B , ∀B ∈
Z

+.
Lemma 3: For any message assignment satisfying (3) for a

K−user channel with an average transmit set size constraint
B, there exists an integerM ∈ {0, 1, . . . ,K}, and a subset
S ⊆ [K] whose size|S| ≥ 2M+1

4B K, such that each message
in S is available at a maximum ofM transmitters, i.e.,|Ti| ≤
M, ∀i ∈ S.

Proof: Fix any message assignment satisfying (3) for a
K−user channel with backhaul constraintB, and letRj , j ∈
{0, 1, . . . ,K} be defined as in (8). If

∑K
j=2B Rj ≤ 1

4B , then
more than4B−1

4B K users have a transmit set whose size is at
most 2B − 1, and the lemma follows withM = 2B − 1. It
then suffices to assume that

∑K
j=2B Rj >

1
4B in the rest of the

proof. We show in the following that there exists an integer
M ∈ {0, . . . , 2B − 2} such that

∑M
j=0 Rj > 2M+1

4B , thereby
completing the proof of the lemma.

DefineR∗
j , j ∈ {0, 1, . . . , 2B} such thatR∗

0 = R∗
2B = 1

4B ,
and R∗

j = 1
2B , ∀j ∈ {1, . . . , 2B − 1}. Now, note that

∑2B
j=0 R

∗
j = 1, and

∑2B
j=0 jR

∗
j = B. It follows that if

Rj = R∗
j , ∀j ∈ {0, . . . , 2B}, and Rj = 0, ∀j ≥ 2B + 1,

then the constraint in (3) is tightly met, i.e.,
∑

K
i=1

|Ti|
K = B.

We will use this fact in the rest of the proof.
We prove the statement by contradiction. Assume that

∑K
j=2B Rj > R∗

2B = 1
4B , and that∀M ∈ {0, 1, . . . , 2B −

2},∑M
j=0 Rj ≤ ∑M

j=0 R
∗
j = 2M+1

4B . We know from (3) that
∑K

j=0 jRj ≤
∑2B

j=0 jR
∗
j = B. Also, since

∑K
j=0 Rj =

∑2B
j=0 R

∗
j = 1 and

∑K
j=2B Rj > R∗

2B, it follows that
there exists an integerM ∈ {0, 1, . . . , 2B − 1} such that
RM > R∗

M ; let m be the smallest such integer. Since
∑m

j=0 Rj ≤
∑m

j=0 R
∗
j , and∀j ∈ {0, 1, . . . ,m− 1}, Rj ≤ R∗

j ,

we can construct another message assignment by removing
elements from some transmit sets whose size ism, such that
the new assignment satisfies (3), and has transmit setsT ∗

i

where∀j ∈ {0, 1, . . . ,m}, |{i : i ∈ [K], |T ∗
i | = j}| ≤ R∗

j . By
successive application of the above argument, we can construct
a message assignment that satisfies (3), and has transmit sets
T ∗
i where∀j ∈ {0, 1, . . . , 2B−1}, |{i : i ∈ [K], |T ∗

i | = j}| ≤
R∗

j and |{i : i ∈ [K], |T ∗
i | ≥ 2B}| ≥ R∗

2B. Note that the new
assignment has to violate (3) since

∑2B
j=0 jR

∗
j = B, and we

reach a contradiction.
We now know from lemmas 2 and 3 that under the backhaul

load constraint of (3), the DoF for anyK−user channel
is upper bounded by4B−1

4B K + o(K). It follows that the
asymptotic per user DoFτ(B) ≤ 4B−1

4B , thereby proving the
upper bound of Theorem 1.

V. D ISCUSSION ANDGENERALIZATIONS

A. Maximum Transmit Set Size Constraint

In [2], we considered the problem where each transmit
set size is bounded by a cooperation constraintM , i.e.,
|Ti| ≤ M, ∀i ∈ [K]. The DoF achieving coding scheme was
then characterized for every value ofM . We note that in the
considered problem with an average transmit set size constraint
B, the per user DoFτ(B) can be achieved using a combination
of the schemes that are characterized as optimal in [2] for the
cases ofM = 2B−1 andM = 2B. We note that even though
the maximum transmit set size constraint may not reflect a
physical constraint, the solutions in [2] provide a useful toolset
that can be used to achieve the optimal per user DoF value
under the more natural constraint on the total backhaul load
that is considered in this work.

B. Locally Connected Networks

Using a convex combination of the schemes that are optimal
under the maximum transmit set size constraint can also
provide good coding schemes for the more general locally
connected channel model that is considered in [2], where each
receiver can see interference fromL neighbouring transmitters.
More precisely, for the following channel model,

Hi,j is not identically0,

if and only if i ∈
[

j −
⌊

L

2

⌋

, j +

⌈

L

2

⌉]

. (9)

Let τL(B) be the asymptotic per user DoF for a locally
connected channel defined in (9) with connectivity parameter
L. Then we can use a convex combination of the schemes that
are characterized as optimal in [2] to achieve the inner bounds
stated in Table I for the case whereB = 1.

L = 2 L = 3 L = 4 L = 5 L = 6

τL(B = 1) ≥ 2

3

3

5

5

9

11

21

1

2

TABLE I: Achievable per user DoF values for locally con-
nected channels with a backhaul constraint

∑K
i=1 |Ti| ≤ K.



Now, we note that the inner bounds stated in Table I can
be achieved through the use of only zero-forcing transmit
beamforming. In other words, there is no need for the symbol
extension idea required by the asymptotic interference align-
ment scheme of [3]. In [2, Theorem8], it was shown that
for L ≥ 2, by allowing each message to be available at one
transmitter, the asymptotic per user DoF is12 ; it was also
shown in [2, Theorem6] that the1

2 per user DoF value cannot
be achieved through zero-forcing transmit forming forL ≥ 3.
In contrast, in Table I it can be seen that forL ≤ 6, the
1
2 per user DoF value can be achieved through zero-forcing
transmit beamforming and a flexible design of the backhaul
links, without incurring additional overall load on the backhaul
(B = 1).

C. Two-Dimensional Networks

The insights we have in this work on the backhaul design
for linear interference networks, may apply in denser networks
by treating the denser network as a set of interfering linear
networks. For example, consider the two-dimensional network
depicted in Figure 3a where each transmitter is connected
to four cell edge receivers. The precise channel model for
a K−user channel is as follows,

Hi,j is not identically0, if and only if

i ∈
{

j, j + 1, j +
⌊√

K
⌋

, j +
⌊√

K
⌋

+ 1
}

.

(10)

For this channel model, we can show that by assigning each
message to one transmitter, i.e., imposing the constraint|Ti| ≤
1, ∀i ∈ [K], the asymptotic per user DoF is at most1

2 , and
the use of only zero-forcing transmit beamforming can lead
to at most49 per user DoF. However, under the backhaul load

constraint
∑

K
i=1

|Ti|
K ≤ 1, a per user DoF value of59 can be

achieved using only zero-forcing transmit beamforming. This
can be done by deactivating every third row of transmitters,

(a) (b)

Fig. 3: Two dimensional interference network. In(a), we plot
the channel model, with each transmitter being connected to
four surrounding cell edge receivers. In(b), we show an exam-
ple coding scheme where dashed red boxes and lines represent
inactive nodes and edges. The signals{X1, . . . , X√

K} and
{Y1, . . . , Y√

K} form a linear subnetwork. Similarly, the sig-
nals{X√

K+1, . . . , X2
√
K} and{Y2

√
K+1, . . . , Y3

√
K} form a

linear subnetwork
.

and splitting the rest of the network into non-interfering linear
subnetworks (see Figure 3b). In each subnetwork, a backhaul
load constraint of32 is imposed. For example, the following

constraint is imposed on the first row of users,
∑⌊√K⌋

i=1
|Ti|

⌊√K⌋ ≤ 3
2 .

A convex combination of the schemes that are characterized
as optimal in [2] for the cases of maximum transmit set size
constraintsM = 2 and M = 3 is then used to achieve56
per user DoF in each active subnetwork while satisfying a
backhaul load constraint of32 . Since 2

3 of the subnetworks
are active, a per user DoF of59 is achieved while satisfying a
backhaul load constraint of unity.

VI. CONCLUSION

We studied the potential gains offered by CoMP trans-
mission in linear interference networks, through a backhaul
load constraint that limits the average transmit set size across
the users. We characterized the asymptotic per user DoF,
and showed that the optimal coding scheme relies only on
zero-forcing transmit beamforming. The backhaul constraint
is satisfied in the optimal scheme by assigning some messages
to more thanB transmitters and others to fewer thanB
transmitters, whereB is the average transmit set size. We
showed that local cooperation is sufficient to achieve the DoF
in large linear interference networks. We also noted that the
characterized asymptotic per user DoF for linear interference
networks can be achieved by using a convex combination of
the coding schemes that are identified as optimal in [2] under
a cooperation constraint that limits the maximum size of a
transmit set, as opposed to the average as we considered in
this work. We then illustrated that these results hold in more
general networks of practical relevance to achieve rate gains
and simplify existing coding schemes.
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