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Abstract—Targets of interest in video acquired from imaging
infrared sensors often exhibit profound appearance variaibns
due to a variety of factors including complex target maneuves,
ego-mation of the sensor platform, background clutteretc, mak-
ing it dif cult to maintain a reliable detection process and track
lock over extended time periods. Two key issues in overcongn
this problem are how to represent the target and how to learnts
appearance online. In this work, we adopt a recent appearare
model that estimates the pixel intensity histograms as wells the
distribution of local standard deviations in both the foreground
and background regions for robust target representation. Apear-
ance learning is then cast as an adaptive Kalman ltering (AKF)
problem where the process and measurement noise variancesa
both unknown. We formulate this problem using both covariarce
matching and, for the rst time in a visual tracking applicat ion,
the recent autocovariance least-squares (ALS) method. Albugh
convergence of the ALS algorithm is guaranteed only for the ase
of globally wide sense stationary (WSS) process and measuonent
noises, we demonstrate for the rst time that the technique

can often be applied with great effectiveness under the much

weaker assumption of piecewise stationarity. The performace
advantages of the ALS method relative to classical covariare
matching are illustrated by means of simulated stationary ad
nonstationary systems. Against real data, our results showhat
the ALS-based algorithm outperforms covariance matching a
well as traditional histogram similarity-based methods, @hieving
sub-pixel tracking accuracy against the well-known AMCOM
closure sequences and the recent SENSIAC ATR dataset.
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Fig. 1. Nonstationary target signature evolution in AMCOMVIR run
rngl8_17 . The lead vehicle is barely visible. The second vehicle & th
target of interest. (a) Frame 24. (b) Frame 165. (c)-(d)etlpsviews of the
second target in frames 24 and 165, respectively.

The imagery acquired by such sensors under actual eld
conditions is typically characterized by strong structuckut-
ter, poor SNR, low target-to-clutter ratios, and strong-ego
motion. Particularly for a highly maneuverable targetsthi
implies that the target and background signatures obsetwed
the sensor focal plane array (FPA) may exhibit profound non-
stationary variations over relatively short time scaleaking
it dif cult to maintain both a reliable detection processdan

Index Terms-Appearance learning, histogram-based appearrobust track lock over longer time scales — phenomena that

ance model, infrared tracking, adaptive Kalman lIter

I. INTRODUCTION

have been referred to variously as the “drifting problenm[lil
[2], the “template update problem” in [3]-[6], and a “stale
template condition” in [7]. These challenges are exemgpli e

We consider the problem of tracking maneuvering groursy the well-known AMCOM closure sequenég8]-[15] as
targets in infrared (IR) imagery acquired from airborne angell as the newly released SENSIAC ATR datasedne
ground-based platforms, where the targets of interest amgtance of this kind of nonstationary target signaturdugian

often noncooperative. Such targets frequently exhibitjgem

occurs in AMCOM LWIR sequencengl8 17 . Here, an

unexpected maneuvers that can be both dif cult to model an#VIR sensor is situated on an airborne platform that closes o
dif cult to track given noisy measurements from a passiva pair of maneuvering ground vehicles. Frames 24 and 165 are
sensor. In this paper, we will be thinking primarily in termshown in Fig. 1(a) and (b). The target of interest is the sdcon

of a sensor that operates in the 3-8 midwave IR (MWIR)

vehicle. A closeup view of this target in frame 24 is given in

or 8-12 m longwave IR (LWIR) bands, both of which haveFig. 1(c). A closeup view from frame 165 is given in Fig. 1(d).

been used in production IR systems for a long time.
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While the second vehicle exhibits a strong signature, thd le
vehicle is much dimmer and is in fact barely visible amid the
surrounding clutter, demonstrating that brightness at@mmot

be used as the sole basis for reliable detection and tracking
Rather, more sophisticated techniques are generally netjui
for representing the target appearance and for adapting to

1Available from the Johns Hopkins University Center for IrimagScience
(http://cis.jhu.edu) and elsewhere.

2Available from the Military Sensing Information Analysise@ter (https:
IlIwww.sensiac.org).



(e.g, learning) complex appearance changes that occur opeoposed in [34] for updating the reference histogram which
time. The choice of a particular target representationnoftéreats the observed histogram as a realization of a generati

depends on the problem at hand and there exist severaligarmodel that is a piecewise linear combination of severalspair

strategies for each type of representation. In the remainaé histograms computed from representative key appeasance
of this section we consider the general problem and thefthe target. This approach is suitable when the object®to b

introduce the specic aspects that will be our focus for thi#acked share substantial similaritg.g, in certain face and

rest of the paper. head tracking problems) or when there exists a satisfaetory
priori means for estimating a meaningful set of key appearance
A. Target representation and appearance learning histograms.

Target representations may be broadly categorized as pqra’e‘n extension of the simple histogram-based appearance

. - . . arning strategies that has been used to combat the driftin
metric, where a statistical model is typically assumed tha ; L o
- roblem involves maintaining explicit appearance modets f
captures the key characteristics of the target appearance | .
i L oth the target and the surrounding background. Background
a way that facilitates estimation of the model parameter

continuously online [16], or non-parametric, where theyéar iMormation was explicitly incorporated in [35]-[39] to pe

. . S . resent the target in terms of features capable of enhancing
appearance is characterized by empirically derived featur O
. g ; ackground discrimination performance. In [14], we pragmbs
that can be updated online during tracking [17], [18]. Suc o
) . a dual foreground-background appearance model comprising
features may include kernel-based windows [19]-[21], nop- : . ) . o
. . ) our histograms that characterize the pixel intensity rdist
parametric or semiparametric contours [22], template§, [2

. o . ution and the local distribution of the sample stdev over
shape descriptors [19], or local statistics [20], [23] uttihg, both the target and the surrounding backgropund The local
e.g, intensity histograms and their moments. )

. stdev statistic ampli es signatures of small and dim tasget

Signi cant efforts have been directed towards developin hil C he eff £ unif back d ol
methods for online appearance learning [1], [3], [16] [241? ile minimizing the effect of uniform background clutter.
P i his appearance model will be used by all of the target

[25]. For both parametric and non-parametric approaches, ttracking algorithms considered in this paper. We also found

design of an effective learning strategy is strongly codgite that explicit appearance modeling of background immeljiate

the c_h0|ce of features. Dr!ft correction strategies forl.nEE.[tE 8round the target tends to improve the estimation of theetarg
tracking were proposed in [3], [26]. A more sophisticate S . :
agni cation — a problem that is often under treated in part

model combining stable, wandering, and outlier componen Te to the absence of any universal robust and learnablet tar
in a Gaussian mixture model (GMM) was proposed in [16 y 9

where the model was updated via an expectation maximizatior%)OIeI [23]

(EM) algorithm. GMM-based appearance learning was also ) . . )

applied in [27], where a mean-shift algorithm was used fe- Adaptive Kalman ltering for histogram learning

update the parameters online. These methods rely on eteboraAs an illustrative example, time traces of the normalized
parametric models and are effective for tracking extendgikel intensity histograms for the target and local backigid
targets with large spatial signatures. However, for targegh AMCOM LWIR sequencangl7_01 are given in Fig. 2
such as those shown in Figs. 1 and 2, there may not &leng with several raw video frames. In the early part of the
enough pixels on the target to achieve robust and stafigticasequence the target is dim and is barely distinguishabha fro

signi cant parameter estimation. the background. There is considerable overlap between the
target and background histograms throughout, as is tyfocal
B. Histogram-based appearance learning sequences acquired under practical eld conditions. Aatr

Histograms of the pixel intensities have been widely usehdstogram estimation is critical in such cases, since the ac

. cumulation of small errors can corrupt the target model and
and were adopted in the appearance models of several

r -
cent mean-shift trackers [17], [28]-[30]. Histograms o€ thuf%mately cause the track Iter to lock onto backgroundistr

local standard deviation (stdev) were also used for meéfh-sﬁure a’?d fail. Improved hlstogram estimation was "J!Ch'eWEd b
. . . . modeling the temporal evolution of the reference histogiram
tracking of IR targets in [23]. The popularity of histogram- . . .
. -2 - an adaptive Kalman Itering (AKF) framework in [30]. In [2],

based features results at least in part from their simplici 4 . ;
40], the AKF measurement noise variance was estimated

and ef ciency, as well as their scale and rotation invar@an . .
) . rom the rst frame and was assumed stationary, while the
properties [17], [23], [31]. For histogram-based targgqiree . . . . . .
process noise variance was estimated online using coearian

sentations, appearance learning is generally accomglisize matching [41]. A robust Kalman lter was developed for

iteratively updating a reference histogram [30], [32], ][33 s L
Typically, the new reference histogram at each iteration tlgmplate based appearance learning in [25], where thegsoc

’ . S . . noise was assumed known and covariance matching was used

given by a linear weighting of the previous reference hisioy . . ) .
) S to estimate the innovations variance.

and the most recent observation, where the weighting may
be based on an appropriate measure of histogram similarity. o
While such techniques are often effective for adapting tif¢ Original Contributions
appearance model when the target has a large spatial extenir this paper, we present a new histogram-based appearance
they can be susceptible to drifting problems, particularlgarning algorithm where intensity histograms for both the
when applied to smaller targets. Alternatively, a method waarget and background are updated in each frame by a bank of



Ok = nggbzl ----- N, be the observed normalizBd histogram of

the object co’ﬁ;puted from the franyg, where 'l;':"l ®=1

and the histogram is discretized té, bins. Similarly, let

Frame 1 Frame 50 Frame 100 Frame 275 Frame 325

Foreground Histogram Background Histogram . T . .
“ og g Og an idealized model of the object appearance at time

The objective of histogram learning is to estimate the
present appearance modkl by incorporating the current
observatiorgy into the previous appearance moélel;. This
is typically formulated as a time-varying linear lter

10 " 10 y .
Bin# Bin# fk= ¢ ok+(1 KW feo1 1)
Fig. 2. Nonstationary evolution of target foreground/tgrckind in AMCOM  where 1 is a vector with all entries equal to one and “

sequencengl7_01 . Five raw IR frames are shown above time plots of th
target histogram (left) and the local background histogtzight). %epresents the Hadamard (or Schur) product. The vector

reference modefy ; and the new observatiogx, where

' S ) o b 1is the time dependent lter coef cient for theth
AKF's. Forthe rsttime in an appearance learning applioati pistogram bin. Accurate tuning ofc is the key to effective
the unknown process and measurement noise variances aﬁfﬁearance learning.

estimated simultaneously using the recently developed-aut |, s section we discuss three different learning techey
covariance least-squares (ALS) method [42], [43]. In Ord_%‘iat share the form (1) and differ only in how is com-

to provide robustness, to accommodate strong €go-motigfyted. The rst is the traditional histogram similarity feas
and to provide exibility in dealing with dynamic target 2 method where all bins are updated with the same coef cient
estimation, we adopt a particle Iter-based tracker whére t b= ,:b=1;::Np). We shall refer to this method as HS.
state vector gives the target position and magni cation anker prie y reviewing the basic Kalman lter, we turn our
the likelihood function depends on the adaptive appearanggantion to two AKF methods that use different approaches
model. The proposed algorithm is able to estimate the targgf estimating the process and measurement noise variances
position in challenging IR imagery with an average error ofpe st which we will call AKF ¢y, Uses covariance match-
less than 1.2 and 2 pixels respectively against the AMCOMg \yhere the same coef cient is applied to all bins. The
and SENSIAC datasets, achieving sub-pixel accuracy in Mag¥cond, which we refer to a8KF 4, uses the recent ALS

cases. Estimation of the target magni cation, which is NORschnique [42], [43] and maintains a separate coef cieﬁ‘\t
mally under-treated in infrared tracking, is achieved vath ¢4, a5ch histogram bin.

average error of two to four pixels for both the AMCOM and
SENSIAC sequences. We believe these results are among the . oo
best reported against the AMCOM sequences and among t .ﬁ-hstogram Similarity Method (HS)
best and earliest reported against the SENSIAC data. ~ In the widely used HS method, the coef cient vectoy
The main contributions of this paper include applicatiof (1) is updated based on histogram similarity [33], [44l. A
of the ALS covariance estimation method in visual targéib entries of , share a common value given by the metric
tracking, adaptation of the ALS method to block stationary =1 h(fc 1:0¢); )
system dynamics, development of a robust appearancergarni
algorithm based on a quad of dual foreground-backgroundrereh is a normalized histogram similarity measure such as
histograms, and integration of these techniques to achieae the Bhattacharyya coef cient [17]. In practice, howevel w
sub-pixel tracking accuracy against the AMCOM and SEND that the histogram intersection de ned by [44]

SIAC sequences. The new appearance learning and tracking )
techniques introduced here are distinct from those givga]in h(fk 1;0«) = min(f 1;0k) (3)
[23], [30] in the use of a particle lter as opposed to the mean i=1

shift algorithm and from those in [2], [25], [40] in the useis more useful for quantifying histogram similarity in IR
of histogram-based appearance learning. The experimentsphagery. With (3), if the observed and reference histograms
Section 1l demonstrate that the new ALS-based histogragpe nearly identical them(fy 1;9x) 1 and  is small,
learning outperforms traditional histogram similarity §H jmplying that very little information from the observation
based update methods [32], [33] and the previous AFKyi|| be incorporated into the learning process at time step
based method in [30] where the covariance matching (COK) Alternatively, if the two histograms are almost mutually
technigue was used to estimate unknown noise parameterayclusive thenh(f 1;gx) 0 and 1, implying that
the new reference histogram will be heavily dependent on the
Il. HISTOGRAM-BASED APPEARANCEL EARNING observation and will largely discard the historical infation
Let yx be a sequence of video frames acquired from @ntained infx 1. Thus, the observation is weighted strongly
passive imaging sensor at discrete time instd&n® N. For when there is a sudden change in the object appearance.
simplicity, we assume that there is a single object of irgreNote that the similarity metric (2), (3) depends on hl},
which could be,e.g, a target or a patch of background. Lehistogram bins and is scalar-valued, implying that a common



coefcient  is applied to all bins in the HS method. Asand covariance matching methods relate certain propesties
with many dynamic appearance learning strategies, the Hf Iter residues with the unknown noise processes using
method can potentially over adapt in the presence of stroligear equations, which allows for easy representation and
measurement noise and/or rapidly evolving target sigeaturcomputations using simple matrix operations. For these rea
causing track loss due to the target appearance model becsons, in the following we focus on two different AKF-based
ing corrupted with background information. Explicit oetli appearance learning algorithms that rely on the covariance
rejection algorithms were implemented in [30], [40] to m#tte matching and correlation approaches.

this problem.

C. AKF: Covariance Matching (A
B. Kalman Filtering g (AK&)

To reformulate appearance learning as a Kalman Iterinl%
problem, we model corresponding bifi§ and g? from the
reference and observed histograms in state space acccboding

Covariance matching techniques [41], [47] are based on the
lationship that exists between the process and measnteme
oise variances and the autocorrelation of the innovations
rocess (9). Since the innovations are observable, théx au
fl, = fP+w; (4) correlation can be estimated by an empirical sample vagianc
b — by b 5) under suitable ergodicity assumptions. Thus, if one of e t
Ok kT Vi ®) >
variances 2, (k) and 2,(k) is known, then the other one can
where w{ and v are mutually uncorrelated process an@e estimated by matching the empirically calculated innova
measurement noises, both assumed zero-mean, white, 8®8s autocorrelation to its theoretical value. Here, wepd
Gaussian with variancesj, (k) and 7, (k) that are time- the specic technlque used in [2], [30], [40] wheré, (k) is
varying in general. The Kalman Iter state prediction antnown and 2 2,(K) is obtained by covariance matching.

update equations for the system are given by It follows eaS|Iy from (4)-(11) that the autocorrelation of
State prediction: ftfrk L= ftﬁ’ . ©6) the innovations process is given by [48, Section V.B]
Covariance predlcnon-pkjk 1= 1t Gk (7) E[rErJ—b]=[pE 1t )+ Gk DIk ) (12)
b
Kalman gain: K = _ Pk (8) Where () is the Kronecker delta. With j,(k) known and
pEjk 1t (k) p2 , given by (11), an obvious empirical approach for solving
Innovation: r? = gf ‘quk ) ) Evb_(k 1) from (12) is to approximaté [(rP)?] by com-
puting the sample variance of (9) over the last, frames

State update:fP = £, |+ KPrf

Kool + (1 Kf)itf 1(10) be time varying in general, there is a delicate tradeoff eetw
choosingL .oy large enough to obtain statistically signi cant
estimates while simultaneously choosing,, small enough to
There is a direct correspondence between (1) and (10), whtsgek nonstationary changes irf, (k).
the Kalman gairk £ in (10) may be associated with the coef- In appearance learning for visual target tracking, thisopro
cient P in (1) hence, with the Kalman ltering formulation lem has been addressed previously by assuming identical
we obtain P K statistics across variables in order to increase the sasipde
The Kalman Iter balances the relative contributions tdo larger thanL .o, while still sampling from only thel o,
appearance learning from the reference and observed damst recent frames. In [30], it is assumed thdf (k) is
based on the estimated variances, (k) and 2,(k). When independent of bottb andk and that 2, (k) is independent
2.(k) 2 (k), for example, we havi§ ?  1implying that of b, so that allNy, bins of the histogram in each frame share
the observation will be weighted much more heavily than thidentical noise statistics. The innovations sample vaganay
historical reference data. Under the linearity and Gaungyia then be computed across bins as well as over time. The
assumptions applied here, the state estimates (6) and (@0)same assumptions orf, (k) are made for the template-based
optimal in the minimum mean squared error sense. appearance model of [40], whefe indexes pixels in the
However, computing the Kalman gains (8) requires knowtemplate rather than bins in the histogram. By assuming a
edge of 2,(k) and 2 (k), both of which are usually un- common value 2, (k) for all template pixels in the current
known in practice. Th|s leads to the adaptive Kalman Iteframe, the |nnovat|ons sample variance can be averagedsacro
(AKF), which seeks to estimate the unknown noise variancbeth pixels and time. A similar strategy was employed in [2]
on the y. A brief overview of AKF methods was givenwith the principal difference that2 (k) was assumed time
in [41] and more recent surveys appear in [45], [46]. In [41};arying and estimated by an auxiliary algorithm independen
these techniques were broadly divided into four categorie¥ the covariance matching. Similar covariance matching wa
Bayesian, maximum likelihood (ML), correlation, and cdvar used to estimate the scale matrix in [25].
ance matching methods. The Bayesian method requires th&o formulate this class of covariance matching algorithms
evaluation of several dif cult integrals and the ML methodn our present setup, we assume th(k) is independent of
relies on equations that involve partial derivatives thgre bothk andb and that 2, (k) is independent ob (as in [30],
making them both computationally expensive. The cormahati [40]). Let B be the set of nonzero histogram bins and estimate

Covariance updatep = (1 KQ)ppjy o (11)



E[(rP)?] with the sample variance Iter innovations are obtained from the observations using
suboptimal Kalman gain over an extended period of time. Then

(rE 02 (13) the_ autocoyariance strl_Jcture .Of these innovation§ is uged t
reliably estimate the noise variances. Once the noisencet@
are known, the optimal Kalman gain can be determined and

Under these assumptiops ; is independent ob. Thus, we applied for Itering during run time using the standard Kalm
arbitrarily choosep; ; and use (13) in (12) to obtain the ltering equations (6)-(11).

1 L)Qv 1X
ijLcov

6 (k) =

i=0  b2B

approximate solution For appearance learning, our interest in this paper is pri-
2 2 1. marily in real-time, online scenarios where, for the rst
ko D& 00 P (14) time, we consider application of the ALS method under the
As in [30], [40], the initialization ak = 1 is given by much weaker assumption that the noise variangggk) and

) _ 18 . b_ 1p _ 2,(k) are only block stationary. In order to extend the ALS

w®) = 36(1) 8bk pg=3C(1)8b; (15)  method to this case, we consider the evolution of the target
which implies 2,(0) = 0. We refer to this algorithm as appearance to _b_e a piecew_ise st_ationary process with non-
AKF ¢y and use it in the following as a baseline for comstationary transitions. The piecewise stationarity aggion

parison with theAKF 45 technique given in the next section.c8n be justied by the high frame rate of the imaging
sensor compared to the rate at which the target appearance

] changes. Such assumptions are comnag, in the context

D. AKF: Autocovariance-Based Least Squares (AgF of audio and video compression [54]-[60]. The nonstatignar

The ideal expression (12) for the innovations autocori@tat characteristics of 2, (k) and 2, (k) directly correlate with
holds when there are no modeling errors and the Iter giifis the rate at which the target appearance and sensor noise are
in (8) are optimal. However, if the process and measuremetitanging. The piecewise stationary formulation allows ws t
noise variances are unknown then the gains will be suboptinagply the ALS algorithm to each stationary block individyal
and the innovations process will generally exhibit a nemdti and thereby allows us to adapt to the varying nature of the
correlation structure. The main idea of autocovariancedbagarget appearance histogram over time. In effect, we adiapt t
methods is to exploit any observed nonzero correlations Hér gain P at the end of each stationary block depending on
lags other than zero to obtain solutions for the unknowthe observed variation trend in that block. This raises skae
noise variances and/or the optimal gains. Pioneering work of determining the block boundaries. Most existing methods
this area was given by Mehra in [41], [49] where the residhat determine the block intervals requaepriori knowledge
ual autocorrelation was used for adaptive Kalman Iteringof the observations; since this is not the case in our rez-ti
Mehra's method involves a three-step iterative processravhepplication, we consider equal length blocks. We study the
a Lyapunov-type equation must be solved at every time stegffect of block size by performing experiments using the ALS
Under the assumption that the process and measuremens naisethod on a simulated nonstationary system in Section II-E.
are wide sense stationary (WSS), Carew and Bélanger [50]n this section, we extend the ALS method for application
developed an improved algorithm that estimates the optintala piecewise stationary process in the context of histogra
Kalman gains directly using one matrix inversion and sdverbased appearance learning, which we refer toA&S$ 4
matrix multiplications, eliminating the need to estimake t in this paper. As before, the state model is given by (4)
process and measurement noise variances explicitly and-avand (5). We assume thal andv? are mutually uncorrelated
ing the requirement to iteratively solve the Lyapunov et and that 2, (k) and 2,(k) depend onb and k and are
associated with Mehra's method. Neethling and Young [5pjecewise constant. With this setup, the noise statisties a
introduced a related weighted least squares technique thanerally different for each bin of the histogram and there
improves the statistical ef ciency of the methods in [41]is a separate coef cient? for eachb 2 [1;Ny]. The size of
[49], [50] and incorporates a side constraint to guaranteach piecewise stationary block is assumed tiNgeframes.
positive semi-de nite (PSD) estimates for the unknown roisWe also de ne a block indey, where thepth block contains
variances. framesY (p) = fyxjk 2 K(p)g with

Recently, Odelsoret al., developed a new Autocovariance e i
Least Squares (ALS) method capable of providing PSD esti- K(p) = fki(p Na+1  k  pNqg: (16)
mates for both the process and measurement noise variandsisg this framework, we update the estimated noise vagmnc
simultaneously [42], [43]. In addition, the ALS varianceof the appearance histogram corresponding to each bin at the
estimates are more stable than those delivered by Mehrarsd of every block. In effect, we are adapting the Iter gain
method and converge asymptotically to the optimal valuéis wi(learning rate) for the current block based on the observed
increasing sample size. However, the proof of convergeneariations in the preceding block.
given in [42], [52] depends explicitly on assumptions thett We now briey present the least squares formulation to
system is time invariant and that the process and measutend®termine the system noise variances for a histogram bin. Fo
noises are WSS (extension to a time varying system withe remainder of the section, we drop the bin indexor
WSS noises was given in [53]). The ALS algorithm in [42] idrevity. We assume that the asymptotic Kalman gdin 1
primarily meant for identifying the system noise propestie estimated from the previous block is available. Givep 1,
an of ine learning process under WSS assumptions. First, tthe state estimates in (10) for all framesKiip) are given by



f) = ﬂ?(jk 1+ Ky 1rk: The error in the predicted state (6) is Using the Lyapunov equation to eliminate thg term in
dened by" = fx fx 1. Then, for all framesk 2 K(p), (23), one obtains

this prediction error along with the innovation (9) can be _ @)

formulated together in a state model according to [42], [43—T| —{

B vedR(3)] =
A SN S e 7 i i
o = (1 Kp )"t 1 Kpa v: @ dpJ dpK5 2+ (o p+ lo)vedis) g(FF:) ;
e = "kt Vi (18) (29)

The ALS method aims to observe the Iter innovations anwhereK 1 is scalarRp(3) is9 1,Apis9 2,xpis2 1,
exploit any observed nonzero correlations at differens lag andd, is a9 1 vector de ned by
obtain solutions for the unknown noise variances and/or the oy 1
optimal gains. The autocorrelation of the innovations ie th 9 =( p )@ @) “+( p  p)vedls]:  (26)

pth block at any lag is given by Rp(3) may also be represented in terms of the autocorrelation

terms de ned in (19) according to

Ci(p)= Elrcrk+jl; 0 j<L as (19) 5 .
: _ Co(P) Ci(p) Ca(p)

wherek;k + j 2 K(p) and Lgs < Ny is the order of Rp(3) = vec4 Ci(p) Co(p) Ci(p) 5: (27)
the autocorrelation lags we consider in formulating the ALS C2(p) Ci(p) Co(p)

problem. We assumE["¢] =0 and co{"¢) = o and de ne
Provided that the innovations process is reasonably lpcall

Q, = EWwW, = vzv(gNd) E(SNd) . (20) ergodic, the quantitie€; (p) in (27) may be estimated by
B - 0 1 PN
o = E[Mwl= o (21) RP = Fifie) (28)
v d | i=(p 1)Ng+1

for k 2 K(p). Note in (21) that althouglft [Wv«] contains

the time indexk, this expectation is constant ovei(p) due by replacing the theoretical correlatioGs(p) in (27) with the

to the piecewise stationarity assumption. i . . . .
In the interest of clarity and to illustrate the form of theemplrlcal estlmateé,)(p) given by (28). From this de nition

relevant relations, we assunhgis = 3 in the following; gen- and (25), we write
era_llzat!on to othelL_a.S is stralghtforward. The least squares ApXp = Fbp(3): (29)
estimation problem is formulated in terms of an autocovera

matrix Rp(Las) that, forLas=3 andk;k+1;k+2 2 K(p),  The expression (29) forms the core of the ALS method:

We de ne an estimated vectorized correlation maﬁ%(S)

is given by it relates the observed correlations containeddip(3) and
2 ) 3 de ned in (28) to the desired variances, (p) and 2(p)
4 (o) rkrk+12 Milics2 5 contained inx,,. Also note thatA, is dependent only on the
Rp@)= E® Nfker (Mke)® Tt Mk = (22)  asymptotic Kalman gaiK, ; from the previous block. Thus,
MkMks2 Tket Tz (Mke2) the least squares problem for the unknown noise variances

2 2
The individual elements ofR,(3) are functions of w(p) and ;(p) can be expressed as

0; ap;gp;ﬁp and™ . Let “vec” be the vectorization operator _ 2 (p) 2
that transforms a matrix into a vector by stacking the colsmn P, (m)|_nz( ) Ap "ﬁ'(p) R, (3) (30)
upon one another. The vectorization®{(3) is given by Wb vip v
subject to 2(p); 2(p) 0. The positive semi-de nite re-
vedRp3) = ( p) 0 - quirements on 2 (p) and 2(p) are enforced by appending a
+ ) pvedls]vedg, ngpT] logarithmic barrier function to (30), resulting in
+( p  p+ lg)vedis] J(p); (23) » 2
_ ; w(p) Fb
. . . P 2 mmz AP 2( ) P(3)
where |, denotes then n identity matrix, denotes & () §(p) viP
the Kronecker product, denotes Kronecker sum, and the log[ vzv(p) g(p)]; (31)
matrices p; p and |, are given by . )
> 3 > 3 where is the barrier parameter. The least squares prob-
1 0 0 O lem (31) has been shown to be convex and can be solved
p = 4 3 5: p = 41 0 05; p= Kp 1 pla using a Newton recursion [42]. Pseudo-code to implemeast thi
ag a, 1 0 AKF 45 algorithm for a single bin of the histogram is given

(24) in Table I.



TABLE |
PSEUDO-CODE TO IMPLEMENTAKF 35 FOR A SINGLE BIN OF THE
APPEARANCE HISTOGRAM DURING THEDTH TIME BLOCK. e

Fork =(p 1)Ng+1 topNg
1. Predict bin valud*?(jk 1 = 1*?( 1. Ry Ry Ry
2. Acquire observatiorg based on tracker output.

3. Compute innovatiomy = gk Rjk 1:
4. Update bin valudd = 8, , + Ky 1rk.

End

5. Find B, (L z9) from & (p) for 0 j Lgs 1 using (28)

675' get;armintio\p Uf_ing (%_5) to sgtl”i’ thitA_';fS probl§m2(29). AKF o, AKFas (1) estimates both process and observation

L e s, a0 el noise parameters simulaneousy, (2) formulates & eastes

noise variances for use in the next block. problem based on multiple constraints obtained by conisiger
the autocorrelation of the innovations at different lags] &3)
enforces PSD constraints on the estimates. The use of teultip
E. Numerical simulations constraints in the least squares solution greatly dimesshe
effect of erroneous initial values.

Having extended the ALS method to the piecewise stationi- . . .
3{) Piecewise treatment of non-stationary systems by

Fig. 3. Diagonal elements of the noise covariance matri@eand R as
estimated by AKEov and AKF,ig for WSS system dynamics.

ary case, we perform two numerical experiments on simulat . )
Y b P F as: Here, we examine the performance of AlgFand its

data. The rst one compares the noise variance estimati . . ; i .
inherent block stationarity assumptions against the tiségte

capability of AKFR,,, and AKF,s on a system with WSS noise . .
characteristics. 'Is(r)]ve secondagxamines the performanceeof ‘Pﬂ"de' (32), (33) for the case of nonstationary noise praxss
k 1 and vy with diagonal covariance matrix entries that

proposed piecewise stationary ALS method against pieeewY¥

stationary and more general nonstationary system dynamicesxhlblt j;mp transitions aand I|nea2r ramps. Let 3
1) Comparison betweeAKF 55 and AKF o, : The ob- 09 0 07 1 01 02
jective of this experiment is to estimate the unknown noisep =4 o 095 0 5:C=4 02 1 0 5:

covariance matrices from simulated data using AdsFand 0 0 o7 0 04 1

AKF 4. Consider a system of the form - ) )
and letwy andvy be zero mean, iid Gaussian noise processes

Xk = AXi 1+ Wi g5 (32) with time varying diagonal covariance matric€s and R
Y CXk + Vi (33) having main diagonal entries given by the dotted (blue)sline
. _ ) in Fig. 4. As indicated in the gure, the noise covariances ar
Wherewk andv._( are zero mean, iid Ga‘ﬂss'a” NOISE ProCesshRy ek stationary during the rst portion of each simulatiand
with xed covarlance% andR, res;ectlvely. Let increase or decrease linearly with small-scale additiviseno

01 0 01 1 01 02 during the second portion. The transition times betweesghe
A=4 0 02 o0 5; c=4 02 1 0 5: characteristics for all six diagonal covariance matrixriest
0 0 03 0 04 1 are mutually independent.
2 3 2 3 The objective is to estimate the six unknown covariances
Q=4 0(‘)5 035 8 5. R =4 005 025 8 5 using the AKFRys aIgorith_ﬂ developed in Section II-D_._In
' the absence of ang priori knowledge about the transition
0 0 025 0 0 075

times between piecewise stationary and linear charattsris
During the estimation process, the diagonal elements of timethe noise variances, we set the block length in the
estimates ofQ and R were initialized with random values AKF 4 algorithm to a constant. Choosimdy small results in
uniformly distributed between zero and one. The asymptoticpaucity of data points being available to perform statidiy

Iter gain for the initialized noise covariances was themeo signi cant least squares estimation, whereas chooligtarge
puted. This gain was used for ltering against 5000 data fsoinlimits the ability of the algorithm to adapt to the nonstatoy

to obtain innovations that were used, along with the initimhanges. The experiment is designed to study the perfonanc
estimates ofQ and R, by the AKR,, and AKF,s methods of AKF4s as a function of the chosen block sikk.

to estimate the unknown noise covariances. Results fromThe estimates of the diagonal elements@fand R are
repeating the simulation 200 times are shown in Fig. 3, wherétialized with random values distributed uniformly beten
each point corresponds to the estimate from a single ttial.zZero and one. The asymptotic Kalman gain corresponding
is observed that AKEs produces estimates that are PSD an this initialization is used for Itering over the rst blgk
more precise than those delivered by AKF The estimates of length Ny to obtain innovations. These innovations are
produced by AKE,, seem to depend on the initial values of théhen used to formulate the least squares problem (31), the
unknowns. Since AKf, assumes that at least one of the noissolution of which yields esimates for the six unknown noise
covariances is knowa priori, an erroneous initial value cancovariances and an asymptotic Kalman gdin In an of ine
greatly distort the estimation. Further, there is no gug@n application, this Kalman gain could be used to re-process
that the estimates (14) are PSD, as seen by the occasidhal rst block. For a real-time implementation, however, we
negative estimates of the AK§ method in Fig. 3. Unlike instead use the asymptotic gality obtained from the rst



F. Dual foreground-background appearance model

We present a target model that involves the local statistics
of both the target and its surrounding background, as shown
in Fig. 5. The use of background for tracking was discussed
previously in [35]-[38]. In these methods, target trackiag
performed on an intermediate classication image called a
con dence map [35], a likelihood image [36], or a weighted
image [37] where each pixel is assigned a probability of
belonging to background or foreground. Here we have a differ
ent point of view using background for target modeling. Our
target model is motivated by the “hit-and-miss” morphotadi
transform that uses both foreground and background forcobje
detection. In practice, the background information is fun
to be of great utility in localizing the target and determini
its size. Speci cally, the proposed target model involvesrf
histograms to represent local statistics.

5k 10k 15k 20k 25k 5k 10k 15k 20k 25k
Time Time
—» Background area

NB(Xk)

Kernel placed on
Foreground area

Ne (X)

Fig. 4. Simulation of AKF5 against nonstationary noise statistics for three
different block sizes. The dotted (blue) lines give the tusues of the
main diagonal entries of the process noise covariance x@trfleft column)
and measurement noise covariance maRix(right column). The AKREg
covariance estimates are shown as solid (red) lines folN@)= 15, (b)

Ng =45, and (c)Ng = 135.

—» Image plane

Fig. 5. Foreground regioN g (xk) with overlappeyd kernel and background
block to process the data in the second block. This appr@acf@EaNe (xk) de ned based ok =[xy yi: si: Scl-
effective for achieving real-time performance provideatttine
jump transitions are not too large qnd the ramp chara_otemst. Let X, =[Xk;yi; S¢; S!] be the state to be estimated during
are not too steep. The procedure is repeated recursively V\fﬁrget tracking

the gainKp, 1 being used to process the data in bIOCKP) (1o jeft corner) and size of the target area in pixels. Asvsh
and generate innovations. in Fig.5, the target appearance, denoted®fx), is com-
Since the number of constraints in the least squares Pmblﬁﬂ‘sed of four histograms: the foreground/background sitgn
should be larger than the number of unknowns (six in thg, (x,)/gg (x,) and foreground/background local standard
case), we set the number of autocorrelation lags considBredjeyiation (stdevige (xk)/go (xk), which are extracted from
the AKFys algorithm tol s = 10. We performed simulations y, py using the kernel-based method in [14], [15], [61]. Given

against the covariances shown in Fig. 4 with block sizg&(, the candidate region is characterized®gxy) de ned by
Ng4 = 15, 45, and135, where 100 trials with different random

initializations were run for each block size. The average G (xk) = fga(Xk);9s (Xk);9c (Xk);9p (Xk)O: (34)

estimated covariance values for the three different bldaoéss ] .
are shown as solid (red) lines in Fig.4(a), (b), and (c). A reference target model learned from previous frames @ als

is shown that a small block sizeN§ = 15) affords the available that is composed of fou_r histogrames,, F 1=
opportunity to adapt quickly to abrupt nonstationary cremgf fax 1:fex 1ifck 1:fox 19. This reference model is up-
in the dynamics, but the estimation errors are generalgelardatEd online and used to evaluate any given candidate area in
due to limited observations in each block. With the largefigmek represented bﬁ)gxk) as

block size Ng = 135), the algorithm is slower in adapting ) _ ) )

to nonstationary changes, especially those that occureén th DGX)iFx 1) = vz d(@z(Xk)ifaic 1); (35)
middle of a block, but the estimation errors are generally 222
much smaller than with the small block size. Additionallg, awhereZ = fA;B; C; D g andd is de ned in (3);v; is used to
the block size increases, the median error decreases andatth@st the signi cance of the four histograms. Here, allrfou
probability of a large estimation error diminishes. Ovenak  histograms are given equal importance. We develop a particl
nd that AKF s can cope reasonably well with both the jumplter-based target tracking algorithm that uses this appeee
and ramp nonstationarities depending on the block sizes&henodel in conjunction with AKF-based appearance learning
results show that the block-based ALS method that makegigen in Table | as well as two dynamic models, one each
piecewise stationary assumption can estimate the systesa néor the position and size. The detailed tracking algoritham c
covariances without manual Iter tuning. be found in [15].

wheréx; y«) and (s§;sy) are the position



TABLE Il . . . . e
LIST OF SEQUENCES USED IN EXPERIMENT.STOP; AMCOM DATASET in (1). HS determines ¢ according to histogram similarity,

AND BOTTOM: SENSIACDATASET while AKF ¢, and AKF 45 use the Kalman gain. Detailed
parameterizations of the three algorithms are listed inleTab
_ Frame —Size lll. In practice, AKF-based appearance learning algorghm
Sequences | Starting | Ending | Length | Stating | Ending were applied only to the two intensity histograrfis andfg ).
LW-15-NS 21 270 250 5x8 | 16x16 Because the dynamics of the stdev histograms do not have a
LW-17-01 1 350 350 | 5x8 | 16x29 i} i ;
LW.2115 236 635 200 3xa | 10x10 well-de ned structure, the stdev histogranis (@ndfp ) in all
LW-14-15 1 225 225 4x5 | 23x19 cases were updated using tH8 method. We also compare the
LW-22-08 51 300 250 5x8 17 x 24 o P i
LW-20.18 i 420 300 av7 | l0xiz perfor.mance of an alternative target representgnon utsing
LW-18-17 1 190 190 5x9 | 11x25 covariance descriptor [62] that also supports online agrez
LW-19-06 a4l 260 | 220} 3x4 | 6x1l updates. In addition to the tracking errors, we adopt anlaper
MW-14-10 1 450 450 6 x11 12 x 28 ) ' . A !
LW-20-04 11 360 350 3x4 | 12x15 metric proposed in [63] to quantify the degree of overlap
iggg-ggg; Sgo ggg igg ﬁ X 4215 ig X 4313 between the track gate and the actual target areaAlahd
1025-0006 499 698 200 | 14x24 | 19 x4 B represent the track gate and th.e. ground-truth bounding box
1925-0009 150 549 400 | 18x54 | 18x32 respectively; then the overlap ratiois de ned as
1925-0012 0 199 200 16 x 46 | 18 x 38
1927-0001 100 499 400 | 10x22 | 8x30
1927-0002 0 399 400 | 10x20 | 10x 22 = M; (36)
1927-0005 0 499 500 | 12x26 | 12x36 #(A)+#( B)
1927-0009 100 499 300 14 x 38 | 14 x 22
1927-0011 0 499 500 | 12x32| 12x34 where# is the number of pixels.
TABLE Il B E . | Analvsi
DESCRIPTION AND VALUE OF THE EXPERIMENTAL PARAMETERS - Experimental Analysis
The three algorithms (50 Monte Carlo runs each) were
A _ evaluated on 20 IR sequences from the AMCOM and SEN-
Varigbles | Description ___ AMCOM | SENSIAC | SIAC datasets and compared numerically in terms of their
N? bin number of the intensity histogram 32 32 | . £ Fi 6). th lapi t
NG bin number of the stdev histogram 16 16 appearance learning per ormance.( ig. 6), the overlapienetr
Lcov | number of frames used for Aksoy in (13) 3 10 (Fig.7) and the tracking error (Fig. 8 and Table V).
Ny block size in frames 7 7 . . .
Las | number of autocorrelation lags 5 2 . 1) Appearancellearnlngﬁg. 6 shows the h|stogr§m learn-
Np number of particles used for tracking 200 100 ing results for six AMCOM sequences, where it can be

observed that the results 8KF 45 closely match the ground
truth. Closer examination reveals thas and AKF ., result
lIl. EXPERIMENTAL RESULTS in histograms that slowly deviate or “drift” from the ground

We tested the th hist | ing techni | truth. This is clearly evident in Fig.6(c), where the intins
e tested the three histogram 1earning techniques alohigations in the latter part of the sequence (around fra@ig 3
with the tracking algorithm presented in Section Il agaitst

. are not captured b¥lS and AKF ., . Therefore, the tracker
sequences in each of the AMCOM and SENSIAC .dataseﬁ?czludes a large portion of the background in the track gate a
The In order to represent the target appearance with a r

bl b ¢ hist bi ‘ q t &8en in frames 320, 360 of the third sequence in Fig. 8 (a).
sonable numbuer of histogram bins, We performed contras ) Overlap metric: Improvements in appearance learning

enhancement on the images from the SENSIAC dat_a_lset aarb inst three AMCOM sequences are further demonstrated
down-sampled them to 8 bits. Further, the foreground mllyens{k%y the overlap metric in Fig. 7(a),(b), which compargs
histogram for the SENS_IAC_ dataset on!y includes pixe o and ns pairwise. For example, the improvement of
greater than 100 to maintain a good histogram structurg, a5 Over AKF co, Or HS is demonstrated by observing

The metadata associated with both datasets provides gro W} most data points are above the diagonal lines. Comlgarab

truth for the target position, size and type, which are used iits for AKE s and AKF oy against sequence LW-22-
to evaluate performance of the three appearance learn are also shown by the similar appearance learning per-

algorithms, HSAKF co, andAKF ais. The sequences selecte rmance in Fig.6(e), where the histogram-based appearanc

for experiments from both datasets are enumerated in Ta @ del lacks strong modes and has widespread and small bin

Il. These sequences exemplify many of the important typ|c\9 lues. Average values of corresponding to the different

C.h"?‘”_?“ges of practical I.R sequences, mclud_mg poor targae1\gorithms against the two datasets are given in Table IV.
V'S'.b"!ty’ strong_egomqtpn, small targets, signi canbge AKF 45 has the largest values, indicating its superior target
variations and slz€ variations, dust clouds, strong aftte tracking performance compared to the other two algorithms.
background noisestc 3) Tracking error: Table V provides quantitative track-
. ing performance results against the AMCOM and SENSIAC
A. Experimental setup datasets. In most casesKF 4s achieves the smallest errors
Three appearance learning algorithms, namidly [33], in terms of both position and size. TS approach loses the
[44], AKF ¢, [30] and the proposedKF 4, are integrated target track in sequencésV-20-18 (6 runs) and LW-19-06
with the same tracking algorithm for a fair comparison. Al{2 runs), as indicated by the large errdk&F o, also loses the
of them share the same linear histogram Itering form de nethrget tracks in sequend&V-20-18 (1 run) due to the high
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Original histogram Histog.ram learnt Histqgram learnt Histqgram learnt TABLE IV
¢ ¢ using HS using AKFeoy using AKFas OVERLAP METRIC VALUES OF THE THREE TRACKING ALGORITHMS
o o i o
& & & & Sequences HS | AKF cov | AKF as
LW-15-NS 0.669 | 0.707 0.714
Bin# Bin#  (a) Bin# Bin# LW-17-01 0.547 | 0.596 0.720
N N N N LW-21-15 0.601| 0.578 0.620
e e e e LW-14-15 0.676 | 0.682 0.708
g g g g LW-22-08 0.751| 0.770 0.758
LW-20-18 0.689 | 0.753 0.758
Bin# Bin# (b Bin# Bin# LW-18-17 0.704 | 0.702 0.703
. . . « LW-19-06 0.670 | 0.685 0.713
e g g g MW-14-10 0.802 | 0.797 0.799
g g g g LW-20-04 0.715| o0.711 0.720
_ ) _ _ AMCOM Average | 0.682 | 0.698 0.721
B st @ En B 1927-0001 0776 0777 | 0.799
= e = = 1927-0002 0.727| 0.813 0.845
g 2 g 2 1927-0005 0.750 | 0.751 0.787
i i i i 1927-0009 0.816 | 0.849 0.855
sing snd () sing s 1927-0011 0.858 | 0.829 0.852
1925-0001 0.866 | 0.836 0.872
® * ® ® 1925-0002 0.797 | 0.790 0.824
g g g g 1925-0006 0.875| 0.879 0.886
= = = = 1925-0009 0.801| 0.843 0.860
Bing B (o) Bin# Bin 1925-0012 0.943 | 0.943 0.946
SENSIAC Average| 0.821 | 0.831 0.852
I#* I+ I* H*
w w w w
Bin# Bin# (f) Bin# Bin#

C. Tracking performance of covariance descriptor

Fig. 6. Comparison of appearance learning for six AMCOM seges using  \We also tested the covariance descriptor for IR tracking.
t(Z;eEV\T;g-]ggSa;rfg)(flivxi\:b\?-ll\i‘fl((?.) LW-17-01 () LW-21-15 (d) M-15 and - g covariance descriptor was found to be robust and eftect
for object tracking in optical images. It was rst proposed
in [62] for object detection with signi cant advantages ttha
histogram-based appearance models, and extended tonacki
by augmenting with manifold learning-based model update
[64], [65]. In IR tracking, the covariance descriptor inves
local intensity, stdev, gradient, orientation and Lagdadnfor-
mation of the target area. Like the other three histograseta
appearance learning algorithms, this descriptor was coeabi
with the particle lter-based tracking algorithm [15]. Taking
results obtained using the covariance descriptor are shown
in Fig. 9, where no learning was involved. We observe that

N 1 1 1 o 1 1 1 N 1 1 1
62 04 06 08 1 62 04 06 08 1 62 04 06 08 1

Zus the covariance tracker is able to maintain reasonable track
(@Lw-ar-on (Y Lw-21-15 (©) Lw-22:08 lock against the target ihW-17-01 , but fails to track the
dim target in LW-15-NS. In both sequences, the tracker

Fig. 7. Pairwise overlap comparisop s VS. cov (top) and a.s Vs. - . . . ;
s (bottom) forLW-17-01 (a), LW-21-15 (b) andLW-22-08 (c). encountered dif culty in estimating the target size. Theaim

target size, weak texture, and absence of color signi gantl
reduced the effectiveness of the covariance descriptor for
tracking small targets in IR imagery.
similarity between foreground and background. More visual
comparisons are shown in Fig. 8(a). We see HKi€F s offers
the best position and size estimation except in the AMCO
sequencd.W-22-08 , where AKF .o, is slightly better due

against the SENSIAC data as shown in Fig. 8(b), where th
AKF s tracker outperforms the other two algorithms in mo
cases (except fot927-0011 ), and can effectively adapt to
varying poses and sizes for long sequences (200-500 fram
The performance oAKF 45 slightly deteriorates against the — Frame1
SENSAIC sequenc#927-0011 , especially towards the end,

due to the presence of a dust cloud that greatly affects @%kz}.
appearance learning process due to occlusion of the target.

Frame 65 Frame220 Frame 271 Frame350

Tracking results for two AMCOM sequences using theadance
Top:LW-15-NS and Bottom:LW-17-01 .



11

Frame 65 Frame 150 Frame 230 Frame 250 Frame 50 Frame 180 Frame 325 Frame 395
Frame 150 Frame 220 Frame 271 Frame 350 Frame 105 Frame 140 Frame 350 Frame 400
Frame 68 Frame 220 Frame 320 Frame 400 Frame 80 Frame 160 Frame 375 Frame 400
Frame 45 Frame 125 Frame 190 Frame 225 Frame 65 Frame 145 Frame 330 Frame 480
4.7162 in.
Frame 50 Frame 150 Frame 200 Frame 250 Frame 100 Frame 250 Frame 335 Frame 400
(a) Results on five AMCOM sequences. (b) Results on five SENSIAC sequences.

Fig. 8. Tracking results against ve AMCOM sequences (adrtirtop to bottom1W-15-NS, LW-17-01 , LW-21-15 , LW-14-15 andLW-22-08 ) and
ve SENSIAC sequences (b)1025-0009 , 1927-0001 , 1927-0002 , 1927-0011 and1925-0002 ). The top row of each image shows the observed
frame and the bottom row depicts the track gates correspgridithe Ground truth (top-leftHS (top-right), AKF oy (bottom-left), AKF 45 (bottom-right).

D. Further Discussion and has widespread and small bin values, such as in the two
B@MCOM sequenced W-22-08 and MW-14-10, or when

lem during incremental learnind\KF oy, which assumes the the r_nstogram is not well-structured due to backgroundetut
same noise statistics for all histogram bins and estimatis 0("]lS in SENSAIC sequenck927-0011 ), all three methods

the process noise without considering PSD conditions Jteesif® comparable. This is mainly because the poor structure

in a suboptimal Kalman gain. Its performance is marginalfyf the histogram evolution may invalidate the Kalman lter
better than that oHS. AKF s, which estimates both pro- ssumptions, whil&lS remains effective by incorporating the

cess and observation noises with PSD conditions for ea'a‘?St rece_nt observation for gppearance_ Ief_;\rni_ng when the
histogram bin, is able to follow the modes and variationsef t histogram is poorly de ned. This observation justi es theeu

histogram during tracking and supports effective appemarpf HS for_learning the stdev histograms, which are normally
learning. However, when the histogram lacks strong modgRaracterized by weak structure.

The HS method is usually encumbered by the drifting pro



We have presented a new IR target tracking algorithm

ALGORITHMS FOR THEAMCOM (THE FIRST10 SEQUENCEY AND SENSIAC (THE SECOND10 SEQUENCES DATASETS.

TABLE V
MEAN ERROR OF THE STATE VARIABLES AVERAGED OVER THE LENGTH OFHE SEQUENCE FROM60 MONTE CARLO RUNS USING THREE DIFFERENT

Algorithms HS AKF cov AKF s
Tracking errors X y s¥ sv X y s¥ sv X y s¥ sY
LW-15-NS 1.019 | 1.817 | 1.906 | 2.732 0.860 | 1.511 | 1.644 | 2.396 || 0.801 | 1.461 | 1.423 | 2.339
LW-17-01 2.406 | 3.415 | 2.104 | 3.016 || 2.145 | 3.005 | 2.101 | 3.163 1.213 | 2.110 | 1.376 | 3.033
LW-21-15 0.970 | 1.653 | 2.624 | 2.941 1.135 | 1.812 | 2.799 | 3.113 || 0.893 | 1.300 | 2.786 | 2.575
LW-14-15 0.889 | 0.815 | 3.160 | 2.137 0.932 | 0.787 | 2.981 | 2.157 1.099 | 0.801 | 2.660 | 1.787
LW-22-08 1.167 | 0.868 | 1.684 | 2.049 1.202 | 0.843 | 1.070 | 2.232 1.200 | 0.839 | 1.363 | 2.175
LW-20-18 3.230 | 1.831 | 1.657 | 1.953 0.901 | 1.095 | 1.307 | 1.766 0.599 | 1.084 | 1.439 | 1.754
LW-18-17 1.269 | 1.722 | 0.733 | 2.949 1.303 | 1.838 | 0.859 | 2.611 1.425 | 1.679 | 1.087 | 2.252
LW-19-06 1.977 | 1.545| 1566 | 1.544 || 0.797 | 0.764 | 1.681 | 1.454 || 0.694 | 0.709 | 1.536 | 1.279
MW-14-10 0.628 | 0.789 | 1.648 | 1.691 0.756 | 0.806 | 1.638 | 1.789 || 0.775 | 0.778 | 1.629 | 1.607
LW-20-04 0.702 | 0.954 | 0.940 | 1.528 || 0.697 | 0.937 | 1.071 | 1.614 || 0.688 | 0.907 | 1.006 | 1.357
AMCOM Average 1426 | 1.541 | 1.802 | 2.254 1.073 | 1.340 | 1.715 | 2.230 || 0.939 | 1.167 | 1.630 | 2.016
1927-0001 0.504 | 1.162 | 1.965 | 5.830 || 0.629 | 0.902 | 1.915 | 5.258 || 0.473 | 0.853 | 1.901 | 4.443
1927-0002 1.835 | 2.276 | 0.001 | 6.024 || 0.897 | 2.147 | 0.000 | 5.571 0.528 | 2.139 | 0.000 | 5.580
1927-0005 2.335| 1.325 | 0.000 | 4.728 || 2.188 | 2.092 | 0.000 | 4.864 1.928 | 1.622 | 0.000 | 3.694
1927-0009 1.686 | 1.556 | 0.089 | 2.721 1.421 | 1.317 | 0.000 | 1.979 1.344 | 1.289 | 0.003 | 1.898
1927-0011 0.514 | 2.384 | 0.004 | 4.969 1.065 | 2.163 | 0.018 | 4.484 0.702 | 2.425 | 0.000 | 4.129
1925-0001 0.848 | 2.116 | 0.000 | 2.639 1.204 | 1.890 | 0.000 | 3.669 0.794 | 1.621 | 0.000 | 3.733
1925-0002 0.859 | 3.057 | 1.750 | 3.958 || 0.521 | 3.780 | 1.750 | 3.197 0.526 | 2.614 | 1.750 | 2.998
1925-0006 0.572 | 3.359 | 0.000 | 1.053 || 0.700 | 2.629 | 0.000 | 1.589 || 0.616 | 2.618 | 0.000 | 1.449
1925-0009 1.376 | 5.177 | 0.039 | 5.021 1.337 | 2.355 | 0.000 | 5.427 1.121 | 2.044 | 0.000 | 5.210
1925-0012 0.379 | 0.781 | 0.070 | 2.459 || 0.385 | 0.834 | 0.070 | 2.312 0.385 | 0.822 | 0.070 | 2.119
SENSIAC Average || 1.090 | 2.319 | 0.392 | 3.940 1.035 | 2.011 | 0.375 | 3.835 0.842 | 1.805 | 0.372 | 3.525

IV. CONCLUSION

that achieves state-of-the-art performance against raeise

challenging infrared imagery. To the best of our knowledge,
this is the rst work reporting both near sub-pixel tracking, ,
accuracy and low size estimation error (1-2 pixels) against
the challenging AMCOM IR closure sequences and the newly
released SENSIAC MWIR sequences. The proposed appro&dh
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[8] J. Khan and M. Alam, “Efcient target detection in cluted FLIR

imagery,” in Optical Pattern Recog. XYker. Proc. SPIE, D. Casasent
and T.-H. Chao, Eds., vol. 5816, 2005, pp. 39-53.

[9] S.Yiand L. Zhang, “A novel multiple tracking system forAM plat-

forms,” in ISR Systems and Applications, Ifler. Proc. SPIE, D. Henry,
Ed., vol. 6209, 2006, 8 pp.

A. Dawoud, M. Alam, A. Bal, and C. Loo, “Decision fusiongarithm
for target tracking in infrared imageryOptical Eng, vol. 44, pp.
026 401-1-8, Feb. 2005.
A. Yilmaz, O. Javed, and M. Shah, “Object tracking: Asy,” ACM

encapsulates several recent innovations in target trgckn [12
Itering in a joint tracking and learning
framework. Speci cally, the dual foreground-backgrouad-t
get model is shown to be effective for enhancing the tracker

well as Kalman

Comput. Sury.vol. 38, no. 4, p. 13, 2006.

] C. del Blanco, F. Jaureguizar, N. Garca, and L. SabgatRobust

automatic target tracking based on a Bayesian ego-motioipensation
framework for airborne FLIR imagery,” ifPolarimetric and Infrared
Infrared Processing for ATRser. Proc. SPIE, F. Sadjadi and A. Maha-
lanobis, Eds., vol. 7335, 2009, 12 pp.

sensitivity and robustness. Moreover, the m&F 5s appear- [13] N. Mould, C. Nguyen, C. Johnston, and J. Havlicek, “@aliconsis-

ance learning method outperforms two existing histogram-

based appearance learning techniqwés, HS and AKF ¢,

tency checking for AM-FM target tracks,” iProc. SPIE/IS&T Conf.
Computational Imaging Vlser. Proc. SPIE, C. Bouman, E. Miller, and
I. Pollak, Eds., vol. 6814, 2008, 12 pp.

as well as the recent covariance tracker that is often US| v. venkataraman, G. Fan, and X. Fan, “Target trackinghwonline

against optical imagery.
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