
1

Providing Privacy-Aware Incentives in Mobile
Sensing Systems

Qinghua Li∗ and Guohong Cao†
∗ Department of Computer Science and Computer Engineering, University of Arkansas. Email:

qinghual@uark.edu
†Department of Computer Science and Engineering, Pennsylvania State University. Email:

gcao@cse.psu.edu

✦

Abstract—Mobile sensing relies on data contributed by users
through their mobile device (e.g., smart phone) to obtain useful
information about people and their surroundings. However, users
may not want to contribute due to lack of incentives and concerns on
possible privacy leakage. To effectively promote user participation,
both incentive and privacy issues should be addressed. Although
incentive and privacy have been addressed separately in mobile
sensing, it is still an open problem to address them simultaneously.
In this paper, we propose two credit-based privacy-aware incentive
schemes for mobile sensing systems, where the focus is on privacy
protection instead of on the design of incentive mechanisms. Our
schemes enable mobile users to earn credits by contributing data
without leaking which data they have contributed, and ensure that
malicious users cannot abuse the system to earn unlimited credits.
Specifically, the first scheme considers scenarios where an online
trusted third party (TTP) is available, and relies on the TTP to
protect user privacy and prevent abuse attacks. The second scheme
considers scenarios where no online TTP is available. It applies blind
signature, partially blind signature, and a novel extended Merkle tree
technique to protect user privacy and prevent abuse attacks. Security
analysis and cost evaluations show that our schemes are secure and
efficient.

Index Terms - Privacy; Incentive; Mobile Sensing

1 INTRODUCTION

The ever-increasing popularity of mobile devices such as
smart phones and tablets and the rich set of embedded
sensors that usually come with them (e.g., GPS, accelerom-
eter and microphone) have created a huge opportunity of
sensing. Mobile sensing tries to harness this opportunity by
collecting sensing data through mobile devices and utilizing
the data to obtain rich information about people and their
surroundings. It has many applications in healthcare [1],
[2], traffic monitoring [3], and environmental monitoring
[4].

However, the large-scale deployment of mobile sensing
applications is hindered by two obstacles. First, there is a
lack of incentives for mobile device users to participate in
mobile sensing. To participate, a user has to trigger her
sensors to measure data (e.g., to obtain GPS locations),
which may consume much power of her smart phone.
Also, the user needs to upload data to a server which may
consume much of her 3G data quota (e.g., when the data
is photos). Moreover, the user may have to move to a

specific location to sense the required data. Considering
these efforts and resources required from the user, an
incentive scheme is strongly desired for mobile sensing
applications to proliferate. Second, private information may
be derived from a user’s contributed data. Such privacy
concern also prevents users from participating. For instance,
to monitor the propagation of a new flu, a server will collect
information on who have been infected by this flu. How-
ever, a patient may not want to provide such information
since it is very sensitive. To effectively motivate users to
participate, both obstacles should be overcome.

Several privacy-protection schemes [5]–[14] have been
proposed to provide anonymity for users, and many in-
centive schemes [15]–[28] have been designed to promote
participation by paying credits to users. However, they
address privacy and incentive separately.

It is nontrivial to simultaneously address incentive and
privacy. One may consider simply combining a privacy
protection scheme and a credit-based incentive scheme to
provide both privacy and incentive, but such combination is
not easy since those schemes have been designed under dif-
ferent system models and assumptions. More importantly, a
simple combination cannot address the new challenges that
only arise when both incentive and privacy are considered
and were not addressed by the privacy protection scheme
or the incentive scheme. In particular, existing privacy pre-
serving schemes provide anonymity for users. Anonymity
may allow a greedy user to anonymously submit unlimited
data reports for the same sensing task (which is not always
desirable) and earn unlimited credits without being detect-
ed. This will increase the cost of data collection. Moreover,
under the protection of anonymity, a malicious user who has
compromised other users’ mobile devices can steal those
users’ security credentials such as cryptographic keys and
anonymously use the stolen credentials to cheat and earn
as many credits as possible without being detected. Thus,
the key new challenge with designing credit-based privacy-
aware incentive schemes for mobile sensing is how to
prevent various abuse attacks while preserving privacy. This
challenge calls for new designs that integratively address
incentive and privacy.

Our previous work [29] designs a privacy-aware incentive



2

scheme for a special scenario of mobile sensing where
each sensing task requires only one data report from each
user (such a task is referred to as a single-report task).
An example of single-report task is “Report the noise level
around you now,” which only requires each user to submit
a single data report of his measured noise level. In the
real world, however, there are many sensing tasks that
require multiple reports submitted at different times from
each user (such task is referred to as the multiple-report
task)1. An example of multiple-report task is “Report the
noise level around you every 10 minutes in the following
week.” Many other examples can be found in various
mobile sensing systems [3], [4]. Unfortunately, that work
cannot be directly extended to support multiple-report tasks,
since its cryptographic construction only allows each user
to earn credits from one report. Although it is possible
to create one task for each report and then apply that
scheme, this will induce high overhead in computation
and communication, and greatly increase the complexity
of task management. For example, to collect the same
amount of data that the aforementioned multiple-report task
can do, one single-report task should be created every 10
minutes, and one set of cryptographic credentials should be
computed, distributed, and processed for each task.

In this paper, we propose two privacy-aware incentive
schemes for mobile sensing that can support multiple-report
tasks. We adopt a credit-based approach which allows
each user to earn credits by contributing its data without
leaking which data it has contributed. At the same time,
the approach ensures that malicious users cannot abuse the
system to earn unlimited amount of credits. In particular,
the first scheme is designed for scenarios where an online
trusted third party (TTP) is available. It relies on the TTP to
protect privacy and prevent abuse attacks, and has very low
computation cost at each user. The second scheme does not
require any online TTP. It applies blind signature, partially
blind signature, and an extended Merkle tree to protect
privacy and prevent abuse attacks.

The remainder of this paper is organized as follows.
Section 2 presents system models. Section 3 presents an
overview of our solution. Section 4 and Section 5 present
our two incentive schemes. Section 6 presents cost evalua-
tions. Section 7 presents discussions. The last two sections
review related work and conclude the paper.

2 PRELIMINARIES

2.1 System Model

The system has a data collector and a set of mobile nodes
(i.e., mobile devices such as smartphones carried by people
and mounted to vehicles). Mobile nodes communicate with
the collector through 3G/4G, WiFi and other available
networks. The collector collects sensing data from mobile
nodes, and it may use the data to provide services to other
entities for various applications. To promote participation,
the collector pays credits to nodes for their contributed

1. A task that requires multiple sensor readings submitted at the same
time is considered a single-report task here, since these readings can be
encapsulated into one application data unit.

Data Collector Mobile Node

1: Task

3: Data Report/Receipt

4: Receipts/Pseudo-Credits

5: Credit Token

6: Update
2: Task Request/Approval

Credit
Account

Fig. 1. System model.

sensing data. The credits can be converted to real-world
monetary rewards, or used to purchase mobile sensing ser-
vice from the collector. In this way, nodes are incentivized
to contribute data.

The system model is shown in Figure 1. To collect
data, the collector creates sensing tasks and adds them into
an active task queue. A task specifies the type of sensor
readings needed, where and when to sense, number of data
reports needed from each node, number of credits paid to
each node, time of creation, and time of expiration.

At random intervals, each node (using a randomly gen-
erated pseudonym unlinkable to its identity) communicates
with the collector to retrieve active tasks. For example, it
can wait a uniformly random time between two successive
retrievals, and it may also retrieve tasks at a uniformly
random time within each predefined period (e.g., each day).
Retrieval times are randomized to prevent the collector from
linking a sequence of retrievals by the same node.

Among the retrieved tasks, the node determines which
tasks to accept. If it wants to be assigned an acceptable task,
it sends a request to the collector in a new connection using
a new pseudonym. The collector returns an approval if it
approves the node’s request. Then the task is assigned to the
node. For an assigned task, the node collects sensing data
as specified by the task. Then it, using a new pseudonym,
submits the sensing data in a report, and the collector
issues a receipt to it in the same communication session. If
multiple reports at different times or locations are needed by
the task, the node will submit each report using a different
pseudonym in a separate connection to the collector.

When a task has collected enough reports, been assigned
to enough nodes or expired, the collector will delete it from
the active task queue.

After a node finishes submitting reports for a task, it
(using a pseudonym) submits the receipts of this task to
the collector to redeem credits. Since the collector does
not know the node’s identity, it issues pseudo-credits to
the node which are transformed into credit tokens by the
node. The transform between a pseudo-credit and a credit
token relies on a secret only known to the node, and hence
the collector is not able to link the credit token to the
pseudo-credit or know the task from which the credit is
earned. For each credit token, the node waits a random
time and then, using its real identity, deposits the token
to the collector. The collector maintains a credit account
for each node in the system, and it updates the depositing
node’s credit account accordingly.

For different tasks, the number of credits paid to each
reporting node may be different, depending on factors such
as the type of sensing data needed by a task (e.g., a
photo or an accelerometer reading), the number of reports
required from each node, and other requirements of the task
(e.g., if the data is sensed at special times and locations).



3

Generally speaking, the higher cost (e.g., bandwidth, energy
consumption and human attention) is induced for a node to
submit data for a task, the more credits should be paid for
the task. In this paper, we use c to denote the number of
credits paid to each reporting node for a task. The value of
c for a task is set by the collector. Note that a node can
choose not to accept a task if the task is paid at a rate too
low. One interesting question for the collector is how to
set c to minimize the total credits paid for a task, but this
topic is beyond the scope of this paper due to the space
limitation, and we plan to explore it in a separate future
work. Although the value of c for a task is not known until
the task is created, we assume that it has an upper limit
C (a system parameter), since it is not quite possible to
pay unlimited credits for a task. In practice, the collector
can set an initial value for C based on estimation, and then
updates C according to dynamic needs.

One important issue for the collector is to control the
cost of data collection (i.e., the number of credits paid to
nodes). To do so, the collector needs to control the number
of nodes that can submit reports for each task. Such control
is done through the task request and approval step.

2.2 Threat Models

Threats to Privacy The collector wants to know which
reports a node has submitted and which tasks the node has
accepted. It tries to obtain these information by analyzing
the transcripts of our protocol.

Narrow tasking attack (in which the collector crafts a
task that only a narrow set of nodes are able to answer and
hence it is less difficult to identify the nodes answering the
task) and selective tasking attack (in which the collector
distributes a task to only one or a few nodes and thus
makes it easier to link the reports submitted by the same
node) are not the focus of this paper. However, we notice
that these attacks have been addressed by existing work [5],
[6], and those solutions can be easily adapted to our setting.
Specifically, to mitigate narrow tasking, we can introduce
a registration authority (as done in [5]) to ensure that tasks
should not target a narrow set of nodes, and the collector
can only publish those tasks verified and signed by the
authority. The basic idea of the defense against selective
tasking proposed in [6] can also be applied as follows. By
comparing the active tasks retrieved at different times, a
node can estimate the length of time that a task stays in
the active task queue. Then based on the predefined period
within which each node retrieves active tasks once, the
node can estimate the number of nodes that have retrieved
the task, and accept the task only if enough nodes have
retrieved it.

As in [5], [6], the communications between the collector
and nodes are assumed to be anonymized, e.g., by Mix
Networks and IP address recycling techniques.

Threats to Incentive Nodes are greedy and they may
deviate from our protocol to earn as many credits as
possible. For example, a node may submit multiple sets
(instead of one set that it is supposed to submit) of reports
for each task to earn multiple rewards from the task. Also, a

h12

h14

h34

h1 h2 h3 h4

m1 m3m2 m4data items
hash

Fig. 2. An example of Merkle tree.

node may be able to compromise some other nodes, obtain
their secrets, and use these secrets to earn more credits.

As far as incentive is concerned, we assume that the
collector is honest. It will pay credits to nodes for their
data reports and correctly maintain their credit accounts as
specified by our protocol. Because the collector may make
profit by providing services to other entities based on the
collected data, it is of interest for it to pay credits and
encourage participation.

For authentication purposes, the collector and each node
are issued a pair of public and private keys by a possibly
offline certificate authority. To thwart Sybil attacks, the
certificate authority ensures that users cannot forge nodes
and each node can only get one set of authentication keys.
An adversary may compromise a node and know the node’s
keys, but it cannot bind the keys to another arbitrary node.
The binding between key and node can only be done
through a certificate signed by the certificate authority.

Data forgery attacks where malicious nodes submit fake
sensing data are outside the scope of this paper, and
possible solutions are discussed in Section 7.

2.3 Our Goals

With respect to privacy, our goal is to ensure that the
collector cannot link any report to the reporting node, link
multiple reports submitted by the same node, know if a
given node has accepted a given task, or link multiple tasks
accepted by the same node.

With respect to incentive, our goal is to ensure that a
node cannot earn more credits than allowed by our protocol.
Specifically, if a node submits reports for a task, it can earn
c and only c credits (i.e., the rate at which the task is paid)
from the task; if a node is not assigned the task or it does
not submit reports for the task, it earns nothing.

2.4 Cryptographic Primitives

Our scheme mainly uses three cryptographic primitives,
Merkle tree, blind signature, and partially blind signature.

Merkle tree [30] Merkle tree is an efficient and secure
binary tree structure which is usually used to verify that
a set of committed data items have not been altered. It is
built using one-way hash functions. In a Merkle tree, each
leaf node is the hash of one data item, and each inner node
is the hash of its two children. Figure 2 shows an example
Merkle tree built upon four data items. To commit the data
items, the tree root h14 is sent to the verifier. Later, to
prove that a data item, say, m1, has been included in the
tree, h2 and h34 are sent to the verifier. The verifier checks
that h14 = H(H(H(m1)|h2)|h34) and knows that m1 was
indeed committed.



4

Blind Signature Through a blind signature scheme [31],
a user can obtain a signature from a signer on a message
m without revealing m to the signer. Specifically, the user
blinds m with a random blinding factor to obtain a blinded
message m′ and sends m′ to the signer. With a standard
digital signature algorithm (e.g., RSA), the signer signs on
m′ and returns the signature σ ′ to the user. Then the user
can obtain a signature σ on m by removing the blinding
factor from σ′. Blind signature has two properties, blindness
which guarantees that 〈m,σ〉 cannot be linked to m ′ or σ′,
and unforgeability which guarantees that the user cannot get
a valid signature from σ ′ for another message m′′ �= m.

In this paper, blind RSA signature [32] is used due to
its simplicity. It is based on the RSA algorithm. Let 〈e,Q〉
and 〈d,Q〉 denote the signer’s public key and private key
respectively, where Q is the public modulus. If a user wants
to get a blind signature on message m, it computes m ′ =
m · ze mod Q, where z is a random value chosen by the
user and relatively prime to Q. The signer signs on m ′

using the standard RSA algorithm, and returns the signature
σ′ = (m′)d mod Q to the user. Then the user computes
σ = (σ′ · z−1) mod Q which is the signature on m.

Partially Blind Signature Partially blind signature
schemes (e.g., [33]) also enable a user to get a signature
on a message m from a signer without letting the signer
know m. However, the signer can explicitly include some
common information (e.g., date of issue) in the signature.
The signer is not able to link the signature to the message or
to the communication session from which the signature is
obtained, given that the common information is included in
many signatures. The aforementioned unforgeability prop-
erty also holds here. In this paper, we do not assume any
specific partially blind signature scheme. Let PBSK(p,m)
denote a partially blind signature for message m, where p
is the common information and K is the signing key.

3 AN OVERVIEW OF OUR APPROACH

The key challenge with designing a credit-based privacy-
aware incentive scheme for mobile sensing is how to
prevent abuse attacks (in which attacking nodes misbehave
to earn more credits than they should) while preserving
privacy. This problem becomes especially difficult to solve
when an attacker may compromise other nodes and anony-
mously use their credentials to earn credits.

Our schemes innovatively construct and use a set of
tokens to achieve the goals on incentive and privacy. They
include request token which is used to request a task, report
token which is used to submit a data report, receipt which
is issued to a node after it submits a data report, and credit
token which can be deposited to earn credits. To prevent
abuse attacks, each node pre-determines the request token,
receipts, and credit tokens that it will use to process each
future task, and commits that it will use them for this task.
To protect privacy, tokens and commitments are designed
and used in a privacy-preserving way.

To facilitate distribution of tokens, tasks are indexed as
1, 2, 3, ... in the order of their creation time. Tasks are
grouped into task windows of size W (a system parameter,

e.g., W = 1000). The first task window contains tasks 1, 2,
..., W ; the second task window contains tasks W+1, W+2,
..., 2W ; and so on. In our schemes, tokens are generated
and distributed based on task windows. When the system
bootstraps (i.e., before any task is created), the collector and
nodes generate tokens for the first task window. As more
tasks are created, the first task window is populated with
more tasks. When the number of created tasks approaches
W (i.e., when the first task window is nearly full), the
collector and nodes generate tokens for the second task
window; and so on.

Our schemes work independently for each task window
in five phases:

Setup This phase happens before any task in the
task window is created. In this phase, the tokens and
commitments for the task window are precomputed and
appropriately distributed to nodes and the collector.

Task assignment Suppose a node has retrieved a task
i from the collector via an anonymous communication
session. If the node wants to be assigned this task, it sends
a request to the collector which includes its request token.
The collector verifies that the token has been committed
for task i in the setup phase. If the collector approves this
request, it returns an approval message to the node. From
the approval message, the node can compute the report
tokens for task i. However, the node cannot derive any
report token without the approval message.

Report submission After the node generates a report
for task i, it submits the report and its report token for task
i via an anonymous communication session. The collector
verifies that the report token has been committed for task
i, and then issues a receipt to the node.

Receipt submission After submitting all required re-
ports for a task, a node waits for some random time and
then submits the receipts to the collector. The collector
verifies the receipts, and then issues pseudo-credits to the
node. From the pseudo-credits, the node can generate some
credit tokens. It cannot obtain any credit token without the
pseudo-credits.

Credit deposit After a node gets a credit token, it
waits for some random time and then deposits the token
to the collector. The collector verifies that the token has
been committed to it, and increases its credit account.

To prevent abuse attacks, in the setup and credit deposit
phases, each node communicates with the collector using
its real identity and authenticates itself with the keys issued
by the certificate authority.

In spite of sharing the same protocol phases, the two
proposed schemes have different token constructions and
commitment techniques. The first scheme assumes an on-
line trusted third party (TTP), and uses the TTP to generate
tokens for each node and their commitments. It relies on
the TTP to protect privacy and prevent abuse attacks, and
has very low computation cost. The second scheme does not
assume any online TTP. Each node generates its tokens and
commitments in cooperation with the collector using blind
signature, partially blind signature, and extended Merkle
tree. These techniques have higher computation cost, but
they protect each node’s privacy against any third party.



5

TABLE 1
Notations used in this paper

K1,2,3,4 The collector’s private keys to generate partially
blind signature

e, d The collector’s public and private key to generate
blind RSA signature

s1,2,3,4 The secrets of a node
N Num. of nodes in the system
W Num. of tasks in each task window
n Num. of reports that a task needs from each node
c Num. of credits paid for a task to each node
C Max. num. of credits paid for a task to each node
H A cryptographic hash function
τ Request token in the TTP-based scheme;

Request token identifier in the TTP-free scheme
γ Report token identifier
β Receipt identifier
ϕ Credit token in the TTP-based scheme
m Credit token identifier in the TTP-free scheme
m′ Blinded credit token id in the TTP-free scheme

The notations used are summarized in Table 1.

4 A TTP-BASED SCHEME

This scheme assumes an online TTP, but this assumption
can be relaxed as shown in Section 7. The collector uses
two private keys K2 and K3 to generate partially blind
signatures. These keys are issued by a (possibly offline)
certificate authority.

4.1 The Basic Scheme

Without loss of generality, we consider the first task win-
dow when describing our scheme (see Fig. 3).

4.1.1 Setup

The TTP assigns and delivers a secret s to each node and
a secret key sk to the collector. The secrets for different
nodes are different. The TTP also generates a nonce ρ to
identify this set of secrets, and sends it to each node and
the collector. If a new set of secrets are assigned to the
collector and nodes later, a new nonce will be generated.

The TTP computes other credentials using the set of
secrets and the nonce. We first describe how to generate the
tokens and commitments for a single node. Let s denote the
secret of this node. From s and the nonce ρ, the TTP derives
two other secrets s1 = H(s|ρ|1) and s2 = H(s|ρ|2).

Step 1. The TTP computes W request tokens for the
node. Each token will be used for one task. The token
for task i (i ∈ [1,W ]) is τi = H(0|Hi(s1)). Here, the
one-wayness of hash chain is exploited to calculate τ i
(see explanations in Section 4.2). The commitment to τ i
is 〈H(τi), i〉.

Step 2. The TTP computes CW credit tokens for the
node. Since at this time the TTP does not know the number
of credits that the collector will pay for each task, it
generates the maximum possible number of credit tokens
for each task. The tokens for task i are computed as
ϕj = HMACs2(j|i|HMACsk(ρ|i|τi)) for j = 1, ..., c. The
commitment of ϕij is 〈H(ϕij), NID〉, where NID is the
node’s real identity.

commit

receipt credit token

request token

task i

commit

commit

commit

Fig. 3. The basic TTP-based scheme.

Similarly, the TTP can generate tokens and commitments
for other nodes. It randomly shuffles each type of commit-
ments and sends them to the collector.

Finally, each node gets one secret and one nonce. The
collector gets one secret key, one nonce, NW commitments
for request tokens and NCW commitments for credit
tokens. The TTP stores the secret key of the collector, the
secret of each node and the nonce.

4.1.2 Task Assignment

When the collector publishes task i, it also publishes n and
c (see Table 1). Suppose a node has retrieved a task i. If it
decides to accept this task, it anonymously sends a request
to the collector. The request contains its request token for
this task, which is τi = H(0|Hi(s1)) where s1 = H(s|ρ|1).

node → collector: i, τi (1)

The collector verifies that 〈H(τi), i〉 is a valid commitment
and delete this commitment to avoid reuse of this token.
If it approves this request, it tags τ as approved. In this
case, the node can request n report tokens for task i. It
generates n random values γ1, γ2, ..., γn, and obtains a
partially blind signature PBSK2(i, γj) from the collector
for each γj . Conceptually, the signatures are sent in an
approval message:

collector → node: PBSK2(i, γ1), ..., PBSK2(i, γn) (2)

Then the node gets n report tokens for task i, which are
〈γj , i, PBSK2(i, γj)〉 for j = 1, ..., n.

4.1.3 Report Submission

The node can submit one report using each report token.
To submit the jth (j = 1, ..., n) report for task i, it
anonymously sends the following message:

node → collector: i, γj, PBSK2(i, γj), report (3)

The collector verifies the signature PBSK2(i, γj) and ac-
cepts the report. Then it can issue a receipt to the node.
Specifically, the node generates βj = H(τi|i|n|j) and
obtains PBSK3(i, βj) from the collector.

collector → node: PBSK3(i, βj) (4)

Then the node gets a receipt 〈βj , i, PBSK3(i, βj)〉.

4.1.4 Receipts Submission

After submitting n reports for task i, the node can collect n
receipts. After waiting for some random time, it can submit
these receipts to the collector to redeem c credits. It sends:

node → collector: i, τi, [〈βj , PBSK3(i, βj)〉]j=1,...,n (5)



6

The collector checks that τi is an approved request token
identifier for i, which means the node has been assigned
task i. It verifies that the n partially blind signatures are
valid, which means the node has submitted n reports for
task i. It also verifies that βj = H(τi|i|n|j) for j = 1, ..., n.
Then the collector returns c pseudo-credits:

collector → node: [HMACsk(ρ|τi|j)]j=1,...,c (6)

Then the node computes c credit tokens ϕj =
HMACs2(i|HMACsk(ρ|i|τi|j)) for j = 1, ..., c where s2 =
H(s|ρ|2).

4.1.5 Credit Deposit
After the node gets a credit token ϕ, it waits a length of time
randomly selected from (0, T ] to mitigate timing attacks
(see Section 4.3) and then deposits the token using its real
identity NID:

node → collector: NID,ϕ (7)

The collector verifies that 〈H(ϕ), NID〉 is a valid commit-
ment and deletes it to avoid token reuse. Then it increases
the node’s credit account by one.

4.1.6 Commitment Renewal
When the current task window is nearly full, the collector
should communicate with the TTP to obtain another set
of commitments for the next task window. The collector’s
secret key, nodes’ secrets and the nonce are not changed.

4.2 Dealing with Dynamic Joins and Leaves

Join In the setup phase, the TTP assumes the existence
of V (a system parameter) virtual nodes besides the N
real nodes. It generates the tokens and commitments for
both real and virtual nodes. Also, it sends the commitments
for the request tokens of the virtual nodes, mixed with the
commitments for the real nodes, to the collector.

When a new node joins, the TTP maps it to an unused
virtual node and sends the virtual node’s secret r to it. Also,
the TTP generates the credit tokens for the new node (i.e.,
the mapped virtual node) and sends their commitments to
the collector. Afterward, it tags the mapped virtual node as
used. No changes are made to other nodes.

If there is no available unused virtual node when the new
node joins, the TTP reruns the setup phase again in which
a new set of secrets are issued to the collector and all the
current nodes as well as a new set of virtual nodes. Some
nodes may not have network access during the setup phase
and hence cannot receive the new nonce and their new
secrets. To address this problem, whenever a node retrieves
tasks from the collector, it checks if it has the same nonce
ρ with the collector. Note that the collector always has the
latest version of nonce. If the node’s nonce is out of date,
it means that the node has missed the previous setup phase
and its secret is also out of date. In this case, the node
connects to the TTP to update its secret and nonce.

In practice, the value of parameter V can be adjusted
based on churn rate. If the churn rate is high (i.e., new
nodes join frequently), a larger V can be used to reduce

the number of reruns of the expensive setup phase, at the
cost of higher storage at the collector. If the churn rate
is low, a smaller V can be used to reduce the collector’s
storage overhead.

Leave When a node leaves, its request tokens for future
tasks should be invalidated at the collector. Note that if
the request token for a future task is invalidated, the credit
tokens for the same task are also invalidated automatically,
since the the leaving node will not be able to compute them.
Let r denote the leaving node’s secret, ρ denote the current
nonce and s1 = H(s|ρ|1). The TTP releases λ = H i(s1)
to the collector, where i is the next task to be published.
From λ, the collector can compute the request tokens of the
leaving node for future tasks. For example, the token for a
future task i+j is H(0|H j(λ)). The collector will invalidate
these tokens. However, due to the one-way property of H ,
the collector cannot derive the tokens that the leaving node
used in previous tasks. No changes are made to other nodes.

4.3 Addressing Timing Attacks

If a node deposits a credit token earned from a report
immediately after it submits the report, since it uses its
real identity to deposit the token, the collector may be able
to link the report to it via timing analysis. Thus, the node
should wait some time before it deposits the credit token.
Specially, after a node gets a credit token, it waits a length
of time randomly selected from (0, T ] and then deposits the
token. The parameter T is large enough (e.g., one month)
such that, in each time interval T , many tasks can be created
and most nodes have chances to connect to the collector.

4.4 Commitment Removal

The collector removes the commitments to the previous
W tasks as follows. Note that part of commitments are
removed to avoid token reuse immediately after the corre-
sponding tokens are verified. Since not all nodes accept all
tasks, some commitments may remain after the previous W
tasks have been processed. Let texp denote the maximum
time at which each of the previous W tasks will expire.
Note that all reports for the W tasks are submitted before
texp and all credit tokens paid for these reports are sent
to nodes before texp. Thus, the collector can remove the
remaining commitments to request tokens after time texp.
To allow nodes to deposit their earned credit tokens, the
collector stores the remaining commitments to credit tokens
for another time period of T (as discussed in Section
4.3), and removes them after time texp + T . If a node
(e.g., with very infrequent network access) wants to deposit
some credit tokens after their commitments are deleted, the
collector can check the validity of these tokens with the
TTP, and update the node’s credit account accordingly.

4.5 Security Analysis

4.5.1 Attacks on Privacy
Figure 4 shows the linkability between different tokens and
objects in our scheme. It is easy to see that the collector
cannot link a report to the reporting node. Although task



7

credit token

node
ID

request token
( ) X

TTP

Pseudo-
credit

X

in same
session

report

report
token

receipt

X PBS

X
PBS

in same
msg

hash

in same
msg

Fig. 4. The linkability between different components.
Rounded rectangles (rectangles) denote the item-
s transmitted with the node’s real identity (random
pseudonyms). The texts along solid arrows (dashed
lines) explain the reason why the two connected items
are linkable (unlinkable).

index can be linked to its report and request token (as well
as the objects reachable from them via arrows in Figure
7), it cannot be linked to the node’s identity. Thus, the
collector does not know if a node has accepted or submitted
reports for a given task. Since report can only be linked to
report token, and report tokens used by the same node are
generated independently using partially blind signatures,
the collector cannot link multiple reports submitted by the
same node. Since a node’s request tokens are generated
using its secret s1, the collector cannot link multiple tasks
accepted by the same node.

4.5.2 Attacks on Incentive
Without loss of generality, we consider a task i paid at a rate
of c credits, and analyze how the incentive goal is achieved.
Since request tokens and credit tokens are committed in
the setup phase, forgery of such tokens will fail and is not
considered here.

Attacker Acting Alone For an attacker, only one set of
one request token and C credit tokens can be committed to
each task. Also, the attacker cannot use the request token,
report token, and receipts of task j to earn credits from
another task i, since those tokens have been committed to
task j either in the setup phase or through partially blind
signatures. As a result, the attacker can only use the set of
one request token and C credit tokens that it has committed
to task i to earn credits from task i. If the attacker is
not assigned the task, its request token is not tagged as
approved; if it is assigned the task but does not submit
reports, it cannot get receipts. In either case, it cannot obtain
any credit token in the Receipts Submission phase. If the
attacker has been assigned the task and submitted reports,
it can earn c credits as our protocol allows, but no more.

Attacker Controlling Other Nodes Suppose an attacker
has compromised some other nodes. Since each node must
use its real identity in the setup phase, the attacker can
still have only one set of W request tokens and CW
credit tokens committed to its real identity for the task
window. Since the TTP generates different secrets for
different nodes, all credit tokens committed in the setup
phase are different. Thus, the attacker cannot deposit a
credit token which has been committed to another node
to its own account. This means that stealing credit tokens
from compromised nodes does not help the attacker earn

commit

report receipt identifier

commit

credit token identifier

request token identifier

Hash Tree

Hash Tree

task i

credit token
identifiers for
other tasks in
this task window

Fig. 5. The basic TTP-free scheme.

more credits. From the commitment process, it can be seen
that, given a request token, the receipts submitted with
it and the credit tokens obtained are already determined
in the setup phase. Thus, even if the attacker can steal
request tokens and receipts from compromised nodes, these
tokens only lead to credit tokens already committed to those
compromised nodes, and this does not help the attacker earn
more credits either. As a result, compromising other nodes
does not help the attacker earn more credits than when it
acts alone.

5 A TTP-FREE SCHEME

The collector uses a private key d to generate blind RSA
signatures, and it uses four private keys K1, K2, K3 and K4

to generate partially blind signatures. These keys are issued
by a (possibly offline) certificate authority. Each node has
four secrets s1, s2, s3 and s4 which are generated by itself.
The keys and secrets do not have to change for different
task windows. Tokens are summarized in Table 2.

5.1 The Basic Scheme

Without loss of generality, we consider the first task win-
dow when describing our scheme (see Figure 5).

5.1.1 Setup

Before any task in this task window is created, each node
connects to the collector using its real identity to get the
tokens and commitments for the tasks in this window.

For each task i (i = 1, 2, ...,W ) in this window, the node
generates C random credit token identifiers

mij = H(i|Hj(i|s1)) (8)

where j = 1, 2, ..., C. The reason why m is computed in
this way will be explained later. The node will use these
identifiers to construct C credit tokens for processing task
i. Specifically, each credit token consists of an identifier
and the collector’s RSA signature over the identifier, i.e.,
〈mij , SIGd(mij)〉. Note that the node cannot obtain the
signature until it has submitted reports for this task.

In this phase, the node commits to the collector that it
will use these credit tokens for task i. To do this at low
computation cost, the node builds an extended Merkle tree
over mi1, ..., miC (see details in Section 5.2), and then
obtains a partially blind signature from the collector for the
root τ of the hash tree, i.e., PBSK1(i, τ). This signature is



8

TABLE 2
Tokens in the TTP-free Scheme

Request Token 〈τ, taskIndex, PBSK1
(taskIndex, τ)〉

Report Token 〈γ, taskIndex, PBSK2
(taskIndex, γ)〉

Report Receipt 〈β, taskIndex, PBSK3
(taskIndex, β)〉

Credit Token 〈m, SIGd(m)〉

the commitment to the C credit tokens. 〈τ, i, PBSK1(i, τ)〉
will also be used as the node’s request token for task i.

The node also needs to bind these credit tokens to its
identity. To do this with low cost, the node builds an
extended Merkle tree (see Section 5.2) over all the CW
credit token identifiers of the tasks in the task window. Let
α denote the root of this tree. The node, say, Alice, sends
〈α,Alice〉 to the collector.

In total, the node gets W partially blind signatures, one
for each task in the task window. It stores these signatures
to process the tasks in the window later.

5.1.2 Task Request

When the collector publishes task i, it also publishes n and
c (see Table 1). Suppose a node has retrieved task i. If it
wants to accept this task, it uses a random pseudonym to
send a request to the collector which includes its request
token for task i.

node → collector: i, τ, PBSK1(i, τ) (9)

The collector verifies the signature PBSK1(i, τ), and knows
that this is a correct request token for task i. If the collector
does not approve this request, it tags τ as unapproved;
otherwise, it tags τ as approved. In either case, the node
cannot use the request token again. In the case of approval,
the node can request n report tokens for task i. It generates
n random values γ1, γ2, ..., γn, and obtains a partially
blind signature PBSK2(i, γj) from the collector for each
γj . Conceptually, the signatures are sent in a message:

collector → node: PBSK2(i, γ1), ..., PBSK2(i, γn) (10)

Then the node gets n report tokens for task i, which are
〈γj , i, PBSK2(i, γj)〉 for j = 1, ..., n.

5.1.3 Report Submission

The node can submit one report using each report token.
To submit the jth (j = 1, ..., n) report for task i, it uses a
pseudonym to send the following message:

node → collector: i, γj , PBSK2(i, γj), report (11)

The collector verifies the signature PBSK2(i, γj) and ac-
cepts the report. Then it can issue a report receipt to the
node. Specifically, the node generates βj = H(τ |i|n|j) and
obtains PBSK3(i, βj) from the collector.

collector → node: PBSK3(i, βj) (12)

Then the node gets a receipt 〈βj , i, PBSK3(i, βj)〉.

5.1.4 Receipts Submission

After submitting n reports for task i, the node can collect n
receipts. After waiting for some random time, it can submit

these receipts to the collector to redeem c credits. For each
mij (j = 1, ..., c), it computes a random blinding factor

zij = H(i|τ |Hj(i|s2)|y) (13)

where y is the smallest positive integer that makes zij
relatively prime to Q. It then computes

m′
ij = mij · zeij mod Q. (14)

From the hash tree rooted at τ , the node gets the proof τ for
mi(c+1), ..., miC , i.e., the tree elements showing that they
are included in the tree (see Section 5.2). Then it sends:

node →collector: i, τ, [〈βl, PBSK3(i, βl)〉]l=1,...,n,

Hc+1(i|s1), proofτ , [m′
i1, ...,m

′
ic].

(15)

The collector does the following:
• It checks that τ is an approved request token identifier

for i. This means the node has been assigned task i.
• It verifies the n partially blind signatures. This means

the node has submitted n reports for task i.
• It verifies that βl = H(τ |i|n|l) for l = 1, ..., n. This

is to prevent an attack as discussed in Section 5.5.
• For each j ∈ [c + 1, C], it computes mij =

H(i|Hj−c−1(Hc+1(i|s1))). Using proofτ , it verifies
that these C − c credit token identifiers have been
included in the hash tree rooted at τ (see Sec. 5.2).

• It checks that all these mij are different.2 The collector
maintains a dynamic list of credit token identifiers that
have recently been revealed to it, which is denoted by
revealed-list. It also checks that all these mij are
different from those in revealed-list. The collector
adds these mij to revealed-list.

If all these checks succeed, the collector signs on each of
m′

i1, ..., m′
ic using key d, and returns the signatures.

collector → node: SIGd(m
′
i1), ..., SIGd(m

′
ic) (16)

The node removes the blinding factor z e
ij mod Q from

each signature SIGd(m
′
ij) and gets SIGd(mij) which is

the blind signature for mij . In this way, it gets c credit
tokens 〈mij , SIGd(mij)〉 for j = 1, ..., c. Besides, the
collector also issues to the node a partially blind signa-
ture over a random value of the node’s choice, which is
PBSK4(i, random-value).

5.1.5 Credit Deposit
After a node earns a credit token 〈m, SIGd(m)〉, it waits a
random length of time between 0 and T (see T in Section
4.3). Then it uses its identity, say, Alice, to deposit the
token. To show that the token is bound to Alice in the
setup phase, it also sends a proofα showing that m is in
the hash tree rooted at α.

node → collector: m, SIGd(m), α, Alice, proofα (17)

The collector verifies the signature and the proof (see proof
verification in Sec. 5.2), and checks that m is different from
those in revealed-list. Then it adds m to revealed-list,
and increases the node’s credit account by one.

2. Normally, the probability that two m are identical is negligible,
because each m is a result of the hash function H .



9

h12

h14

h34

h1 h2 h3 h4

m1 m3m2 m4

(a) Standard Merkle tree

h12

h14

h34

h1 h2 h3 h4 h5 h6 h7 h8

h18

h56

h58

h78

m1 m4m2 m3 r4r1 r3r2

(b) Our Construction

Fig. 6. The basic idea of our extended Merkle tree.

5.1.6 Token Revealing

Since usually a node does not submit reports for all tasks
and not every task is paid at the rate of C credits, some
of its credit token identifiers that have been committed in
the setup phase are not used in credit tokens. To prevent a
node from reusing these identifiers to earn more credits than
allowed, each node is required to reveal its unused credit
token identifiers. (Note that those credit token identifiers
used in credit tokens can also been as revealed when the
credit tokens are deposited.)

There are two cases of revealing corresponding to as-
signed tasks and unassigned tasks respectively. For a task
assigned to a node, the node reveals the unused m when
submitting report receipts to the collector (see Section
5.1.4), and gets a token-revealing proof for the task, i.e., the
partially blind signature signed with key K4. For those tasks
not assigned to a node, the node maintains an unassigned
list, which records the indices of the tasks not assigned to it.
It reveals the credit token identifiers committed to each task
in this list in an anonymous communication session (one
session for each task). Specifically, the node simply sends to
the collector its random seed used to generate its m for this
task and the commitment for these m. The collector checks
that each of these m is different from those in revealed-list
and then adds it to revealed-list. Upon revealing, the
collector issues a partially blind signature (signed with key
K4) to the node for the task, which serves as a proof that
the node has done token revealing for the task. To ensure
that every node performs token revealing, before a node
is distributed tokens for a new task window, the collector
checks that the node has collected token-revealing proofs
for all the tasks that (i) the node has been distributed tokens
for and (ii) have expired for a certain time T ′. Here T ′ is
a grace period for nodes to reveal token.

The unassigned list is maintained as follows. For a task
that a node has retrieved, the node adds the task into its
unassigned list if it does not want to accept the task, it
wants to accept the task but the task was removed from
the active task queue by the collector before it sends a
request, or it has requested the task but the request was
not approved. For a task index that the node does not see
the corresponding task in the active task queue (e.g., a task
that has been assigned to enough nodes and hence removed
from the queue before the node retrieves it), it also adds
the task index into its unassigned list.

When a node deposits a credit token 〈m, SIGd(m)〉, if
the collector finds that m has been revealed by another node
as an unused credit token identifier, it denies the deposit.

When a node reveals its unused m, if the collector finds
that m has been used by another node in a deposited credit
token, the collector can punish that node, e.g., decreasing
that node’s credit account by one which is equivalent to
reclaiming the credit token.

5.2 Extended Merkle Tree

In the setup phase, a node uses one hash tree rooted at τ to
commit to its C credit token identifiers for each task, and
it uses another hash tree rooted at α to bind the CW credit
token identifers for the task window to its identity. This
section describes how the hash tree is constructed. Without
loss of generality, we only consider the first tree with C
credit token identifiers, and assume C is a power of two3.

Merkle tree [30] is a well-known technique to make effi-
cient commitment, but it is not secure to directly use it here.
Let us look at the example in Figure 6(a). Suppose only one
credit will be paid for a task i (i.e., 〈m1, SIGd(m1)〉). When
a reporting node submits report receipts to redeem the credit
(see Section 5.1.4), it reveals m2, m3, m4 to the collector,
as well as the proof that they are included in the tree. When
the standard Merkle tree is used, the proof includes h1, i.e.,
H(m1). Thus the collector can link h1 to task i. When the
node deposits the credit token 〈m1, SIGd(m1)〉 later using
its real identity, the collector finds that h1 is the hash of
m1. Then it can link m1 to task i, and know that the node
has submitted reports for task i. This may cause privacy
leakage. (Similarly, the tree rooted at α cannot use standard
Merkle tree.)

To address this problem, we propose an extended Merkle
tree (see Figure 6(b)). In our construction, each m j (j =
1, ..., 4) has a sibling rj which is a random value (named
pairing value) generated by the node. m j and rj are
included in the tree in different ways. For instance, in
Figure 6(b), leaf h1 = H(m1) but leaf h2 = H(1|r1). This
is to prevent rj from being used as a credit token identifier.
Inner nodes of the tree are computed in the same way as
the standard Merkle tree. The proof for m2, m3, and m4

include h4, h6, h8 and h12. When the node deposits the
credit token 〈m1, SIGd(m1)〉, the collector cannot link h12

to m1 since it does not know r1. Thus, it does not know
from which task this credit is earned.

To construct the tree for task i, a node uses its secret s3
to generate the pairing values. Specifically, for m ij (j =

3. If C is not a power of two, each node can pad some known values
(e.g., 1) as the right-most leaves of the tree to make the number of leaves
a power of two, and prove that the padding values are included in the tree.



10

1, ..., C) in Eq. 8, the corresponding pairing value r ij is

rij = H(i|Hj(i|s3)). (18)

The proof for mi(c+1), ..., mC in Equation 15 includes
Hc+1(i|s3) (which is used to compute ri(c+1), ..., rC ) and
the appropriate tree elements.

For the tree rooted at α, the credit token identifiers should
be randomly shuffled before constructing the hash tree.
Also, each node uses a different secret s4 to generate the
pairing values.

5.3 Token Removal
For a node, report token, report receipt and credit token
can be discarded after usage. The request token and credit
token identifiers for a task can be discarded after the receipt
submission phase if the node has submitted reports for
the task or after the token revealing phase otherwise. The
collector stores the 〈α, nodeID〉 pair that each node uses
to bind its credit token identifiers of a task window until
a duration of T has passed after the last unexpired task in
the window expires.

5.4 Dealing with Joins and Leaves of Nodes

Suppose at the time of join and leave task i is the most
recently created task, and there exists an integer k such
that kW ≤ i < (k + 1)W . If a node joins, it runs the
setup phase for tasks i+1, ..., (k+1)W . If a node leaves,
it releases its request tokens for task i + 1 and later tasks
so that the collector can invalidate them. In both cases, no
changes are made to other nodes.

5.5 Security Analysis

This section analyzes how the goals on privacy and incen-
tive are achieved.

5.5.1 Attacks on Privacy
Figure 7 shows the linkability between different tokens and
objects in our scheme. From the figure, it is easy to see that
the collector cannot link a report to the reporting node.
Although task index can be linked to its report and request
token (as well as the objects reachable from them via arrows
in Figure 7), it cannot be linked to deposited credit tokens,
tree root α or the node’s identity. Thus, the collector does
not know if a node has accepted or submitted reports for a
given task. Since report can only be linked to report token,
and report tokens used by the same node are generated
independently using partially blind signatures, the collector
cannot link multiple reports submitted by the same node.
Since a node’s request tokens are generated independently
using partially blind signatures, it is impossible to link
multiple tasks requested by the same node.

5.5.2 Attacks on Incentive
Attacker Acting Alone In the setup phase for a task
window, each node (with its real identity) can bind one and
only one τ (and C credit token identifiers that have been
used to compute τ via an extended Merkle tree) to each

deposited credit
token (m)

node
ID

request token
( )

tree root
( )

X

X

PBS

commitment
not revealed

unused credit
token (m)

ext. hash
tree

X
commitment
not revealed

Xblinded credit
token id (m’)

XBS

commitment
revealed

in same msg

report

report
token

report
receipt

X PBS

X
PBS

in same msg

hash

in same msg

revealing
proof

XPBS

Fig. 7. The linkability between different components.
Rounded rectangles (rectangles) denote the item-
s transmitted with the node’s real identity (random
pseudonyms). The texts along solid arrows (dashed
lines) explain the reason why the two connected items
are linkable (unlinkable).

task in the window. The node can also bind CW credit
token identifiers to its identity through another extended
Merkle tree. Since the binding happens before the node
knows any task in the window, the best strategy for the
node is to bind to its identity the credit token identifiers
that it has committed to each task through τ , such that it
has the capability to earn credits from every task. Also, the
node cannot use the request token, report token, and receipts
of task j to earn credits from another task i, since those
tokens have been committed to task j through partially
blind signatures. As a result, the node can only use the set of
one request token and C credit tokens that it has committed
to task i to earn credits from task i. If the attacker is not
assigned the task, it cannot submit reports. If it is assigned
the task but does not submit reports, it cannot get any report
receipt. In both cases, it will not obtain any credit. Thus,
an attacker that acts alone cannot make our scheme fail to
achieve the incentive goal.

Attacker Controlling Other Nodes Suppose an attacker
has compromised some nodes. Since each node must use
its real identity in the setup phase, similar to the analysis
for attackers acting alone, an attacker can only bind one
set of request token and credit token identifiers (m1, ...,
mC ) to each task and to its real identity even if it has
compromised other nodes. Moreover, the token revealing
scheme ensures that all credit token identifiers committed
in the setup phase will be revealed to the collector (because
if the attacker or a compromised node does not reveal
its credit token identifiers, it will not get new tokens for
future task windows), and the collector checks that they
are different. Thus, if a credit token has been committed
to a compromised node, even if the attacker can steal
the token from the node, it cannot deposit the token
to its own account. Given a request token, the receipts
submitted with it and the credit tokens obtained are already
determined in the setup phase due to the use of one-way
hash, extended Merkle tree, and the unforgeability property
of blind signature (see Figure 5). Hence, request tokens
and receipts committed to a compromised node can only
lead to credit tokens committed to the compromised node,



11

TABLE 3
Each node’s computation, communication and storage cost per task

Unassigned task Assigned task Average

Computation TTP-free 2 PBS + 4C H (2 + 2n) PBS + c M.E. + 4C H (2 + 2εn) PBS + εc M.E. + 4C H
TTP-based 2 H 2n PBS + (n+ 2) H + c HMAC 2εn PBS + (2 + εn) H + εc HMAC

Communication TTP-free O(1) O(n+ c+ logC) O(ε logC + εn+ εc)
TTP-based O(1) O(n+ c) O(εn+ εc)

Storage
TTP-free O(C) O(n+ C) O(εn+ C)

TTP-based O(1) O(n+ c) O(εn+ εc)
M.E. stands for modular exponentiation. ε denotes the average fraction of tasks assigned to each node.

and the attacker cannot use them to earn more credits.
Consequently, compromising other nodes does not help the
attacker earn more credits than when it acts alone.

6 COST EVALUATIONS

In this section, we analyze and evaluate the cost of our
incentive schemes. The cost of reading sensors and sub-
mitting data is not analyzed here.

6.1 Cost Analysis

Cost at Each Node Table 3 summarizes the computation,
communication and storage cost of the two schemes. The
cost induced by a task to a node depends on if the node is
assigned the task (i.e., if the node is approved to submit re-
ports for the task). In both schemes, for an unassigned task,
the cost is low; for an assigned task, additional cost comes
from the process of submitting n reports and obtaining c
credits. In both schemes, the cost of an unassigned task is
much lower than that of an assigned task. To evaluate the
average cost per task, we use a parameter ε to denote the
average fraction of tasks assigned to each node out of all
created tasks, and show the average cost in the table. In
a large system with many tasks, we expect that each node
can accept and be assigned only a small portion of tasks
due to its resource limitation. For example, a node living
in Newark may not be able to answer the tasks that require
location-based data from New York. Thus, ε is expected to
be very small, e.g., ε � 1. As a result, the average cost
will be close to the cost for unassigned tasks.

Since hash function runs orders of magnitude faster than
partially blind signature and C can reach a few hundred or
even larger in practice (e.g., a task may be paid from 6 to
220 dollars in Gigwalk [34] which means C > 220), the
TTP-based scheme has much lower computation cost than
the TTP-free scheme especially for unassigned tasks.

As to storage cost, each node stores one secret and one
nonce in the TTP-based scheme, and stores C credit token
identifiers per task for some short time in the TTP-free
scheme (see Section 5.3). Hence the storage cost is low. If a
node has submitted reports for the task, it also stores report
tokens, receipts, and credit tokens for some short time.
Since modern smart phones usually have many gigabytes
of storage, the storage cost is not a big issue.

Cost at the Collector Note that ε can also denote the
average fraction of nodes that each task is assigned to.
The computation, communication and storage cost at the
collector is summarized in Table 4.

We give a rough estimate of the size of storage. In the
TTP-based scheme, the collector mainly stores W (N +

TABLE 4
The collector’s average computation (cmp),

communication (cmm) and storage (sto) cost per task
per node

cmp TTP-free (2 + 2εn)PBS +εc SIG +ε(C − c)M.E. +3C H
TTP-based 2εn PBS + (c+ (n+ 1)ε) H + ε HMAC

cmm
TTP-free O(ε logC + εn+ εc)

TTP-based O(εn+ εc)

sto TTP-free O(εn+ C)
TTP-based O(εn+ C)

V )(C + 1) commitments for the next W tasks. It also
stores C(N + V ) credit token commitments for each task
created in the past time window for T . Let us consider a
simple case. Suppose N = 10000, V = 1000, W = 1000,
C = 256, T = 30 days and 100 tasks are generated per day.
Also, suppose SHA-256 is used as the hash function H , and
each task ID or node ID has 8 bytes. Then the storage at the
collector is about 400GB. We expect that such storage cost
is not an issue for modern servers. In the TTP-free scheme,
the collector mainly stores the credit token identifiers of
recent tasks for some time. Expectedly the storage overhead
is even lower than the TTP-based scheme.

Cost at the TTP In the TTP-based scheme, the TTP
computes C + 3 hashes and 2C HMACs per task per
node. Since hash and HMAC are extremely efficient, the
computation cost is low. The TTP stores the secret keys
of the collector and each node and the nonce. The storage
cost is also low.

6.2 Implementation

We have implemented our schemes in Java. Partially blind
RSA signature [35] is used as the PBS scheme, and SHA-
256 is used as the hash function H .

Based on the implementation, we measure the running
time of PBS, RSA signature, modular exponentiation, hash,
and HMAC on Android Nexus S Phone (Android 4.0.4 OS,
1GHz CPU and 512MB RAM) and a laptop (Windows 7
OS, 2.6GHz CPU and 4GB RAM). The results are shown
in Table 5. Note that, when generating a partially blind
signature, the operations at node and collector are different.
Then we calculate the running time of the two schemes
according to Table 3 and 4. Here, we set C = 256 and
ε = 0.01. For n and c, we consider four extreme cases
which correspond to four typical types of tasks with varying
numbers of reports and credits: n = c = 1 (Type I),
n = 1, c = 256 (Type II), n = 256, c = 256 (Type III),
and n = 256, c = 1 (Type IV). Table 6 shows the results in
running time. We found that in the TTP-free scheme, when
ε is small, hash operations become a significant source of
running time. However, it can be seen that the running time



12

TABLE 5
The running time of cryptographic primitives

PBS SIG M.E. H HMAC
Phone 4.2ms - 1.7ms 0.08ms 0.024ms
Laptop 4.0ms 1.6ms 0.1ms 0.001ms 0.003ms

TABLE 6
The average running time of processing a task

Type I Type II Type III Type IV

Node
TTP-free 90ms 95ms 116ms 112ms

TTP-based 0.25ms 0.31ms 22ms 22ms

Collector* TTP-free 10ms 14ms 37ms 33ms
TTP-based 0.08ms 0.34ms 21ms 21ms

*The time is needed to process a task for each node.

of both schemes is very short in all four types of tasks. The
TTP-based scheme runs at least one order of magnitude
faster than the TTP-free scheme at each node (on the
smartphone), due to the use of more efficient cryptography
primitives such as hash and HMAC. For similar reasons, it
also runs faster at the collector (on the laptop).

To study the feasibility of our schemes, we also measure
the power consumption of the TTP-free scheme on Nexus S
phone using Monsoon Power Monitor. Here, the TTP-free
scheme is measured since it has higher power consumption
than the TTP-based scheme. In this group of experiments,
a Nexus S Phone runs the whole life cycle of one task for
100 tasks. In this process, the smartphone connects to a
laptop (Windows 8.1 OS, 2.4GHz CPU, and 4GB RAM)
with TCP over WiFi, launching a new TCP connection
for each phase. Each data report has 8 bytes, which is of
similar size as an accelerometer, temperature, noise and
GPS reading. The results are shown in Table 7. It can be
seen that the energy consumption of our scheme is very
low. When ε = 0.01, it is only 0.25-0.29 Joules per task
on average. Such low consumption allows a fully-charged
battery (3.7V, 1500 mAh) of Nexus S phone to support
more than 68 thousand of tasks before being depleted.

7 DISCUSSIONS

Relaxing the TTP assumption. In the TTP-based scheme,
the trusted third party can be replaced with an honest-but-
curious third party which does not collude with the collector
or any node. Although following our protocol, such a third
part tries to infer private information from the the proto-
col transcript and through eavesdropping communications.
Under this semi-honest model, the only change to make is
that all communications between the collector and nodes
should be encrypted.

Supporting report-based payment. In the schemes
described above, a node gets paid after it submits all the n
reports for a task. In practice, a node may only be able to

TABLE 7
The TTP-free scheme’s power consumption on phone

Type I Type II Type III Type IV
Unassigned task 0.25J 0.25J 0.25J 0.25J
Assigned task 0.27J 0.5J 4.2J 4.1J

Average (ε = 0.01) 0.25J 0.25J 0.29J 0.29J
#Tasks per battery* 79,920 79,920 68,897 68,897
*Num. of tasks that a fully-charged battery (3.7V, 1500 mAh) for
Nexus S phone can support (calculated from avg. consumption)

generate less than n reports for the task. In such scenarios,
the collector can flexibly determine the number of credits
paid to the node (e.g., based on the number of receipts that
the node has) and issue pseudo-credits accordingly.

Greedy attacks. In our schemes, after a node retrieves a
task, it waits a random time before requesting the collector
to assign the task to it. This is to protect the privacy of the
node. However, a greedy node that does not care about its
privacy may continuously retrieve tasks and request a task
immediately after retrieval, in order to have a better chance
to be assigned the task. Such behavior may prevent other
nodes from earning credits. To mitigate it, the collector can
select each requesting node with a certain probability. Note
that if a node’s request is not approved, its request token is
invalidated and it cannot submit a request again. Since each
node only has one request token for each task, sending the
request early does not give it much privilege.

Isolation attacks. In isolation attacks, the collector is-
sues the commitments for the next task window to only
one node. As a result, when the reports for these tasks are
submitted, the collector knows that these reports must be
submitted by that node. To thwart this attack, one possible
solution is that each node generates a signature for the task
window and sends it to the collector. Each node checks that
the collector has collected signatures from sufficient nodes
before it submits a report for a task.

Credit balance based inference attacks. The collector
may be able to infer if a node has accepted a task from the
number of credits that the node has earned. For instance,
suppose the collector has published 100 tasks, each of
which is paid at a rate of one credit per task. If a participant
Bob has earned 100 credits, the collector can infer that Bob
has submitted reports for every task. If one of the tasks
is “Report the temperature at 10:00 AM in Central Park,”
the collector knows that Bob is in Central Park at 10:00
AM. To launch this attack, the collector may create multiple
tasks that require the node to appear at close-by times (e.g.,
10:01 AM) and locations. In the above example, suppose
51 tasks require a temperature reading near Central Park
around 10:00 AM. If Bob has earned 50 credits, at least
one credit is earned from those 51 tasks. Thus the collector
knows that Bob is near Central Park around 10:00 AM.

To address this attack, each node should carefully select
the tasks that it will accept and limit the number of accepted
tasks. One possible approach is as follows. Among the tasks
that it is able to report for, the node identifies the “similar”
tasks which may reveal the same privacy information about
it (e.g., its location around a certain time). For each group
of similar tasks, it accepts one of them with a certain
probability (e.g., 0.5). This ensures that the number of its
accepted tasks does not exceed the number of similar-task
groups. From the number of credits earned by a node, the
collector does not know which tasks the node has reported
for, and thus cannot infer any private information about
the node. Since each node intentionally omits some tasks,
this approach sacrifices some chances of earning credits for
better privacy. Due to the space limitation, we will explore
this topic in future work.

Data forgery attacks. Malicious nodes may submit



13

fake sensing data to earn credits. To mitigate this attack
without breaking privacy, anonymous reputation schemes
have been proposed in the literature [9], [12] to filter the
data submitted from low-reputation nodes. Another possible
approach is that each user generates a group signature
[36] and attaches it to his data report. If a report is
detected as bad data, the collector can resort to a trusted
authority to recover the identity of the data source from
the group signature. However, these approaches rely on an
online TTP for privacy protection. When online TTP is
not available, how to mitigate data forgery attacks without
violating privacy is still an open research problem and will
be explored in our future work.

8 RELATED WORK

Many solutions [5]–[14] of protecting user privacy have
been proposed in mobile sensing. Among them, Anony-
Sense [5], [6] and PEPSI [8] provide frameworks for
anonymous data collection. Several studies [37]–[41] ad-
dress privacy-aware data aggregation. Christin et al [9]
and Wang et al [12] proposed privacy-aware reputation
schemes that employ reputation to filter incorrect sensor
readings. DeCristofaro et al [42] consider a scenario where
external entities query specific users’ data and study how
to hide which user matches a query. TPM is also used
to protect user data [10]. However, none of these privacy
protection schemes considers incentives. Many incentive
schemes [15]–[28] have been designed for mobile sensing
to pay user credits based on gaming and auction theories,
but they do not consider protection of privacy.

It is nontrivial to simultaneously address incentive and
privacy. Blind signature [31], [32] has been widely used in
anonymous electronic payment systems and digital curren-
cy, and it is natural to use blind signature to implement
privacy-preserving credits. However, direct use of blind
signature does not work either, since a malicious user can
compromise other users, steal their credits, and spend the
credits without being detected. Note that a blind signature
cannot be linked to any specific user. Similar problems
exist for other anonymous credential systems (e.g., [43]–
[45]). Privacy and incentive are studied in an advertisement
system [46], but the scheme cannot be applied to mobile
sensing due to different system settings. Privacy-preserving
mechanism design and auctions (e.g., [47], [48]) aim to
protect participants’ types and valuations of a good, but
they do not protect participants’ interest in the good. Hence
they cannot be directly applied to mobile sensing to protect
users’ interest in sensing tasks.

Our previous work [29] also adopts a token and com-
mitment based approach for providing privacy-aware incen-
tives in mobile sensing, but it only supports single-report
tasks. This paper significantly extends the sensing protocol
and cryptographic constructions to support multiple-report
tasks. Compared with the preliminary conference version
[49], this paper adds a new TTP-based incentive scheme
(see Section 4) and provides evaluation results.

9 CONCLUSIONS

To promote user participation, we proposed two credit-
based privacy-aware incentive schemes for mobile sens-
ing, corresponding to scenarios with and without a TTP
respectively. Mainly based on hash and HMAC functions,
the TTP-based scheme has very low computation cost at
each node. Based on blind signature, partially blind sig-
nature, and extended Merkle tree techniques, the TTP-free
scheme has higher overhead than the TTP-based scheme
but it ensures that no third party can break user privacy.
Both schemes can efficiently support dynamic joins and
leaves. Implementations show that both schemes have short
running time and lower power consumption.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation (NSF) under grants CNS-1320278 and CNS-
1421578.

REFERENCES

[1] J. Hicks, N. Ramanathan, D. Kim, M. Monibi, J. Selsky, M. Hansen,
and D. Estrin, “Andwellness: an open mobile system for activity and
experience sampling,” in Proc. of Wireless Health, 2010, pp. 34–43.

[2] N. D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali,
A. Doryab, E. Berke, T. Choudhury, and A. Campbell, “Bewell: A
smartphone application to monitor, model and promote wellbeing,”
in 5th Intl. ICST Conference on Pervasive Computing Technologies
for Healthcare, 2011.

[3] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakr-
ishnan, S. Toledo, and J. Eriksson, “Vtrack: accurate, energy-aware
road traffic delay estimation using mobile phones,” in Proc. of the
ACM Conference on Embedded Networked Sensor Systems (SenSys),
2009, pp. 85–98.

[4] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin,
M. Hansen, E. Howard, R. West, and P. Boda, “Peir, the personal
environmental impact report, as a platform for participatory sensing
systems research,” in Proc. of the International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2009, pp.
55–68.

[5] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and
N. Triandopoulos, “Anonysense: privacy-aware people-centric sens-
ing,” in Proc. of the International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2008, pp. 211–224.

[6] M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, and
N. Triandopoulos, “Anonysense: A system for anonymous oppor-
tunistic sensing,” Journal of Pervasive and Mobile Computing (PM-
C), vol. 7, no. 1, pp. 16–30, 2011.

[7] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma,
“Prism: Platform for remote sensing using smartphones,” in Proc. of
the International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2010, pp. 63–76.

[8] E. D. Cristofaro and C. Soriente, “Short paper: Pepsi—privacy-
enhanced participatory sensing infrastructure,” in Proc. of the ACM
Conference on Wireless Network Security (WiSec), 2011, pp. 23–28.

[9] D. Christin, C. Rosskopf, M. Hollick, L. A. Martucci, and S. S.
Kanhere, “Incognisense: An anonymity-preserving reputation frame-
work for participatory sensing applications,” in Proc. of IEEE Inter-
national Conference on Pervasive Computing and Communications
(PerCom), 2012, pp. 135–143.

[10] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall, “Toward trustworthy
mobile sensing,” in Proc. of the Workshop on Mobile Computing
Systems and Applications (HotMobile), 2010, pp. 31–36.

[11] K. L. Huang, S. S. Kanhere, and W. Hu, “Towards privacy-sensitive
participatory sensing,” in The 5th Int’l Workshop on Sensor Networks
and Systems for Pervasive Computing, 2009.

[12] X. O. Wang, W. Cheng, P. Mohapatra, and T. Abdelzaher, “Artsense:
Anonymous reputation and trust in participatory sensing,” in Proc. of
IEEE Conference on Computer Communications (INFOCOM), 2013,
pp. 2517 – 2525.



14

[13] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting
worker location privacy in spatial crowdsourcing,” Proc. of the VLDB
Endowment, vol. 7, no. 10, pp. 919–930, 2014.

[14] I. Vergara-Laurens, D. Mendez, and M. Labrador, “Privacy, quality
of information, and energy consumption in participatory sensing
systems,” in Proc. of IEEE International Conference on Pervasive
Computing and Communications (PerCom), 2014, pp. 199–207.

[15] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smart-
phones: Incentive mechanism design for mobile phone sensing,”
in Proc. of International Conference on Mobile Computing and
Networking (MobiCom), 2012, pp. 173–184.

[16] R. Kawajiri, M. Shimosaka, and H. Kashima, “Steered crowdsens-
ing: Incentive design towards quality-oriented place-centric crowd-
sensing,” in Proc. of the International Conference on Ubiquitous
Computing (Ubicomp), 2014, pp. 691–701.

[17] Z. Feng, Y. Zhu, Q. Zhang, L. Ni, and A. Vasilakos, “Trac:
Truthful auction for location-aware collaborative sensing in mobile
crowdsourcing,” in Proc. of IEEE Conference on Computer Commu-
nications (INFOCOM), 2014, pp. 1231–1239.

[18] D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truthfully
without sacrificing utility: Online incentive mechanisms with budget
constraint,” in Proc. of IEEE Conference on Computer Communica-
tions (INFOCOM), 2014, pp. 1213–1221.

[19] T. Luo, H.-P. Tan, and L. Xia, “Profit-maximizing incentive for
participatory sensing,” in Proc. of IEEE Conference on Computer
Communications (INFOCOM), 2014, pp. 127–135.

[20] L. Jaimes, I. Vergara-Laurens, and M. Labrador, “A location-based
incentive mechanism for participatory sensing systems with budget
constraints,” in Proc. of IEEE International Conference on Pervasive
Computing and Communications (PerCom), 2012, pp. 103–108.

[21] J.-S. Lee and B. Hoh, “Sell your experiences: a market mechanism
based incentive for participatory sensing,” in Proc. of IEEE Inter-
national Conference on Pervasive Computing and Communications
(PerCom), 2010, pp. 60–68.

[22] X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li, “Free
market of crowdsourcing: Incentive mechanism design for mobile
sensing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 12, pp. 3190–3200, 2014.

[23] M. H. Cheung, F. Hou, and J. Huang, “Participation and reporting in
participatory sensing,” in Proc. of International Symposium on Mod-
eling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), 2014, pp. 357–364.

[24] I. Koutsopoulos, “Optimal incentive-driven design of participatory
sensing systems,” in Proc. of IEEE Conference on Computer Com-
munications (INFOCOM), 2013, pp. 1402–1410.

[25] J. Rula and F. E. Bustamante, “Crowd (soft) control: Moving beyond
the opportunistic,” in Proc. of the Workshop on Mobile Computing
Systems and Applications (HotMobile), 2012, pp. 3:1–3:6.

[26] K. Tuite, N. Snavely, D.-y. Hsiao, N. Tabing, and Z. Popovic,
“Photocity: Training experts at large-scale image acquisition through
a competitive game,” in proc. of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), 2011, pp. 1383–1392.

[27] B. Hoh, T. Yan, D. Ganesan, K. Tracton, T. Iwuchukwu, and
J.-S. Lee, “Trucentive: A game-theoretic incentive platform for
trustworthy mobile crowdsourcing parking services,” in Proc. of
International IEEE Conference on Intelligent Transportation Systems
(ITSC), 2012, pp. 160–166.

[28] S. Reddy, D. Estrin, and M. Srivastava, “Recruitment framework for
participatory sensing data collections,” in Proc. of the International
Conference on Pervasive Computing (Pervasive), 2010, pp. 138–155.

[29] Q. Li and G. Cao, “Providing privacy-aware incentives for mobile
sensing,” in Proc. of IEEE International Conference on Pervasive
Computing and Communications (PerCom), 2013, pp. 76 – 84.

[30] R. Merkle, “Protocols for public key cryptosystems,” in Proc. of
IEEE Symposium on Security and Privacy (S&P), 1980, pp. 122–
133.

[31] D. Chaum, “Blind signatures for untraceable payments,” in Proc. of
the international conference on Advances in Cryptology (CRYPTO),
1982, pp. 199–203.

[32] ——, “Blind signature system,” in Proc. of the international confer-
ence on Advances in Cryptology (CRYPTO), 1983, p. 153.

[33] M. Abe and T. Okamoto, “Provably secure partially blind signa-
tures,” in Proc. of the international conference on Advances in
Cryptology (CRYPTO), 2000, pp. 271–286.

[34] http://www.gigwalk.com.
[35] M. Abe and E. Fujisaki, “How to date blind signatures,” in Proc.

of the International Conference on the Theory and Application

of Cryptology and Information Security: Advances in Cryptology
(ASIACRYPT), 1996, pp. 244–251.

[36] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,”
in Proc. of the international conference on Advances in Cryptology
(CRYPTO), 2004, pp. 41–55.

[37] R. K. Ganti, N. Pham, Y.-E. Tsai, and T. F. Abdelzaher, “Poolview:
stream privacy for grassroots participatory sensing,” in Proc. of the
ACM Conference on Embedded Networked Sensor Systems (SenSys),
2008, pp. 281–294.

[38] J. Shi, R. Zhang, Y. Liu, and Y. Zhang, “Prisense: privacy-preserving
data aggregation in people-centric urban sensing systems,” in Proc.
of IEEE Conference on Computer Communications (INFOCOM),
2010, pp. 758–766.

[39] Q. Li and G. Cao, “Efficient and privacy-preserving data aggregation
in mobile sensing,” in Proc. of the IEEE International Conference
on Network Protocols (ICNP), 2012, pp. 1 – 10.

[40] ——, “Efficient privacy-preserving stream aggregation in mobile
sensing with low aggregation error,” in Proc. of the Privacy En-
hancing Technologies Symposium (PETS), 2013, pp. 60–81.

[41] Q. Li, G. Cao, and T. F. Porta, “Efficient and privacy-aware data
aggregation in mobile sensing,” IEEE Trans. on Dependable and
Secure Computing, vol. 11, no. 2, pp. 115–129, 2014.

[42] E. De Cristofaro and R. Di Pietro, “Preserving query privacy in
urban sensing systems,” in Proc. of International Conference on
Distributed Computing and Networking (ICDCN), 2012, pp. 218–
233.

[43] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith, “Blacklistable
anonymous credentials: Blocking misbehaving users without ttps,”
in Proc. of the ACM Conference on Computer and Communications
Security (CCS), 2007, pp. 72–81.

[44] C. Garman, M. G. 0001, and I. Miers, “Decentralized anonymous
credentials,” IACR Cryptology ePrint Archive, 2013.

[45] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revo-
cation.” in Proc. of the international conference on Theory and
application of cryptographic techniques (EUROCRYPT), 2001, pp.
93–118.

[46] W. Peng, F. Li, X. Zou, and J. Wu, “A privacy-preserving social-
aware incentive system for word-of-mouth advertisement dissemina-
tion on smart mobile devices,” in Proc. of IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), 2012, pp. 596–604.

[47] K. Nissim, C. Orlandi, and R. Smorodinsky, “Privacy-aware mech-
anism design,” in proc. of the ACM Conference on Electronic
Commerce (EC), 2012, pp. 774–789.

[48] F. Brandt and T. Sandholm, “Efficient privacy-preserving protocols
for multi-unit auctions,” in Proc. of the international conference on
Financial Cryptography and Data Security (FC), 2005, pp. 298–312.

[49] Q. Li and G. Cao, “Providing efficient privacy-aware incentives
for mobile sensing,” in Proc. of IEEE International Conference on
Distributed Computing Systems (ICDCS), 2014, pp. 208–217.

Qinghua Li received the BE degree from X-
ian Jiaotong University, the MS degree from
Tsinghua University, and the PhD degree from
the Pennsylvania State University. In 2013, he
joined the University of Arkansas, where he is
currently an Assistant Professor in the Depart-
ment of Computer Science and Computer Engi-
neering. His research interests include security
and privacy, mobile sensing, mobile systems,
smart grid, and big data. He is a member of
the IEEE.

Guohong Cao received the BS degree in com-
puter science from Xian Jiaotong University and
received the PhD degree in computer science
from the Ohio State University in 1999. Since
then, he has been with the Department of Com-
puter Science and Engineering at the Pennsyl-
vania State University, where he is currently a
Professor. His research interests include wire-
less networks, wireless security, smartphones,
vehicular networks, wireless sensor networks,
and distributed fault tolerant computing. He has
served on the editorial board of IEEE Trans-
actions on Mobile Computing, IEEE Transac-

tions on Wireless Communications, IEEE Transactions on Vehicular
Technology, and has served on the organizing and technical program
committees of many conferences, including the TPC Chair/Co-Chair of
IEEE SRDS’2009, MASS’2010, and INFOCOM’2013. He was a recipient
of the NSF CAREER award in 2001. He is a Fellow of the IEEE.


