
A Novel Approach to Ball Detection for

Humanoid Robot Soccer

David Budden, Shannon Fenn, Josiah Walker and Alexandre Mendes

School of Electrical Engineering and Computer Science
Faculty of Engineering and Built Environment

The University of Newcastle, Callaghan, NSW, 2308, Australia.
{david.budden,shannon.fenn,josiah.walker}@uon.edu.au

alexandre.mendes@newcastle.edu.au

Abstract. The ability to accurately track a ball is a critical issue in
humanoid robot soccer, made difficult by processor limitations and re-
sultant inability to process all available data from a high-definition im-
age. This paper proposes a computationally efficient method of deter-
mining position and size of balls in a RoboCup environment, and com-
pares the performance to two common methods: one utilising Levenberg-
Marquardt least squares circle fitting, and the other utilising a circular
Hough transform. The proposed method is able to determine the position
of a non-occluded tennis ball with less than 10% error at a distance of 5
meters, and a half-occluded ball with less than 20% error, overall outper-
forming both compared methods whilst executing 300 times faster than
the circular Hough transform method. The proposed method is described
fully in the context of a colour based vision system, with an explanation
of how it may be implemented independent of system paradigm. An ex-
tension to allow tracking of multiple balls utilising unsupervised learning
and internal cluster validation is described.

Keywords: Robotics, robotic soccer, computer vision, feature extrac-
tion, object recognition, clustering

1 Introduction

The problem of developing a team of humanoid robots capable of defeating the
FIFA World Cup champion team, coined “The Millennium Challenge” [9], has
been a milestone that has driven research in the fields of artificial intelligence,
robotics and computer vision for over a decade. One crucial skill of soccer, the
accurate, robust and efficient determination and tracking of ball size and loca-
tion, has proven to be a challenging subset of this task and the focus of much
research [11–13, 16]. With the evolution of robot platforms and subsequent ad-
vances in processor performance over the last decade, from the 384 MHz RISC-
based processors of the Sony AIBO ERS-210 (2002) to the 1.6 GHz Intel Atom
processors of the Robotis DARwIn-OP [7] platform (2012), the temporal and
spatial complexity of feature extraction algorithms to solve this task has grown
accordingly.

With past research suggesting that colour-based algorithms are suboptimal
for object recognition in a RoboCup environment [12, 13], particularly in the
presence of varying lighting conditions, a paradigm shift from colour-based to
shape-based feature extraction has been evident amongst RoboCup teams [12].
This shift has been amplified as a result of the evolution of RoboCup rules,
with “colour-coded” objects, such as landmark beacons and uniquely-coloured
goals, being phased out entirely from the Standard Platform League to facilitate
convergence with the FIFA rules of human soccer [2, 9].

Despite this trend, it is important to note that the paradigm-shift from
colour-based to shape-based feature extraction is not universal, with many Robo-
Cup teams, including the University of Newcastle’s NUbots and 2012 kid-sized
humanoid league champions Team DARwIn, depending primarily on colour look-
up tables (LUTs) to facilitate the process of feature extraction. With this in
mind, this paper presents a method of ball detection which can be implemented
independently of the adopted paradigm, requiring only a set of points marking
the edges of potential salient features. The algorithm is very efficient, imple-
menting only basic geometric operations, and yet effective at locating the ball
from the opposite side of a SPL RoboCup field (up to 5 meters). This method,
which was effectively utilised by the NUbots team at RoboCup 2012 (Mexico
City), is demonstrated to be robust against both considerable levels of noise and
occlusion, and can readily be extended to cater for a non-RoboCup environment
with multiple present balls.

The remainder of this paper, firstly, presents a description of how a ball
candidate can be determined in the context of a colour-based vision system.
Extensions of this method to a shape-based system are described, in addition
to detailing a method by which multiple candidates can be generated to facili-
tate tracking of multiple balls. The refinement of these candidates to calculate
exact ball position and size is then described, for both ideal and occluded ball
scenarios. Finally, the accuracy and efficiency of the algorithm is compared to
previous ball detection approaches, including the previous NUbots system [1],
implementing Levenberg-Marquardt least squares circle fitting [10]; and a circu-
lar Hough transform based method [16], similar to those implemented by many
RoboCup teams [11, 15].

2 Ball Detection in Context

In computer vision, a mapping from an arbitrary 3-component colour space C to
a set of colours M assigns a class label mi ∈ M to every point cj ∈ C [5]. If each
channel is represented by an n-bit value and k = |M | represents the number of
defined class labels, then

C → M,

where

C = {0, 1, . . . , 2n − 1}3 and M = {m0,m1, . . . ,mk−1} .

Where computational resources are limited, the colour segmentation process
is performed off-line, with the resultant mapping represented in the form of a
2n × 2n × 2n look-up table (LUT). This LUT can then be used for efficient,
real-time colour classification [5], and as such colour-based vision systems util-
ising LUTs are still commonplace amongst RoboCup teams [1]. Specifically, the
NUbots vision system, for which this ball detection method was initially devel-
oped, adopts the following methodology:

1. Generate scan lines: As current processor limitations do not allow complex
operations over every pixel of a 2-megapixel image without significant frame-
rate reduction, only the pixels along a set of vertical and horizontal scan lines

are considered for candidate determination. This method is preferred over
reduced camera resolution, as it provides the same performance increase (i.e.
the same number of pixels are considered) whilst still allowing for small, high
resolution portions of the image to be processed to resolve finer detail. Scan
lines may be either equidistant on the image plane, or spaced in such as way
as to be equidistant on the field plane (requires robot kinematics data).

2. Determine field border: Determination of the field border, or green horizon,
allows for specific knowledge of the RoboCup environment to be applied to
reduce the required image processing. For example, a ball and field lines
should only ever be found beneath the horizon, whereas the majority of
the goal post area will be found above. Starting at the top of the image,
each pixel along each vertical scan line is inspected until a certain threshold
of consecutive green pixels is exceeded, at which stage the top green pixel
coordinates are added to a list of points. The green horizon then becomes the
upper convex hull of these points, determined by a modified implementation
of Andrew’s monotone chain algorithm [3].

3. Generate colour transitions: Processing of the image to locate potential field
object candidates is a colour transition level operation. To generate colour
transitions, each pixel along each scan line is considered, and wherever the
colour class label of a pixel differs from that of the previous adjacent pixel,
a transition is generated. The information stored in each transition includes
its (x, y) image coordinate, start colour class label and end colour class label.

4. Determine candidates: Colour transitions are considered to determine poten-
tial field object candidates. This process may or may not consider transitions
of opposite direction or orthogonal orientation as equivalent (e.g. ball detec-
tion does, but goal detection does not).

5. Refine candidates: The area surrounding each candidate is processed at a
pixel level to determine the exact location, dimensions and confidence of a
particular field object.

Steps 1-3 simply describe one method by which a series of points, representing
the positions of edges of various image features, may be generated. Any system
capable of returning equivalent information, whether it be primarily colour, in-
tensity gradient or shape-based, may be implemented as a substitute. As such,
the ball detection method described may be implemented somewhat indepen-
dently of the adopted paradigm.

Sect. 3 and 4 describe how steps 4 and 5 of the above list above are realised
for the proposed ball detection method.

3 Determining Candidates

As outlined in Sect. 2, given a set of points corresponding approximately with
edges of image features (herein assumed to be colour transitions, consistent with
the NUbots vision system), the next step of ball detection is to determine the
(x, y) image coordinates of potential ball candidates. The remainder of this sec-
tion, firstly, describes a simple and computationally efficient method by which a
single candidate may be determined. Finally, a generalised method is proposed,
which utilises unsupervised learning to allow for the determination of any num-
ber of ball candidates.

3.1 Single Ball

Given a set of colour transitions, the first step of determining the ball candidate
is to ignore all transitions which do not fulfill the following criteria:

– Must have a start or end colour class label consistent with the ball colour
(typically orange).

– Must be located beneath the green horizon.

Transitions are considered independent of their direction, i.e. an orange-white
transition is equivalent to a white-orange transition. Following this, the candi-
date position is calculated as the geometric mean of the transition coordinates.
Concretely, given a set of transitions {t1 = (x1, y1), . . . , tn = (xn, yn)},

pcand =





(

n
∏

i=1

xi

)1/n

,

(

n
∏

i=1

yi

)1/n


 .

To prevent arithmetic overflow in a noisy image, in which several hundred tran-
sitions may be present, the following observation is utilised:

(

n
∏

i=1

xi

)1/n

=

(

k
∏

i=1

xi

)1/n

×

(

2k
∏

i=k+1

xi

)1/n

× · · · ×

(

n
∏

i=n−k+1

xi

)1/n

.

Maximum computational efficiency is obtained by determining the largest value
of k for which the data type chosen to store the intermediate value is guaranteed
not to overflow. Concretely, for an image of width w pixels and a data type of
length n bits,

k = ⌊logw (2n)⌋.

As an example, given a full HD image (1920 × 1080 resolution) and a C++
unsigned long long data type1 (n = 64 bits), k is calculated to be 5.

1 Increasing k will also reduce the average rounding error for integer data types.

3.2 Multiple Balls

Given a non-RoboCup environment with multiple balls, the process of ball de-
tection can be extended simply by replacing the determine candidates module
(see Sect. 2) by a generalised module capable of determining multiple candidate
points. In an environment where the maximum number of balls is known a pri-
ori, this is accomplished via k-means clustering [8, 14]. Concretely, given a set
of m data points P = {x(1), . . . , x(N)} (x(i) ∈ R

m), k-means clustering attempts
to partition P into K sets (known as clusters) S = {S1, . . . , SK} such that the
following objective function J is minimised.

J(c(1), . . . , c(m), µ1, . . . , µK) =
1

m

m
∑

i=1

‖x(i) − µc(i)‖
2,

where ci is the index of the cluster (1, . . . ,K) to which data point x(i) is currently
assigned, µk is the cluster centroid of Sk (µk ∈ R

n), and therefore µc(i) is the cen-
troid of the cluster to which x(i) has been assigned [8, 14]. This is accomplished
via the repeating the following two-step algorithm until convergence.

Step 1: Assignment step:

S
(t)
i = {x(p) : ‖x(p) − µ

(t)
i ‖ ≤ ‖x(p) − µ

(t)
j ‖ ∀ 1 ≤ j ≤ k}.

Step 2: Update step:

µ
(t+1)
i =

1

|S
(t)
i |

∑

x(j)∈S
(t)
i

x(j).

The resultant cluster centroids form the ball candidates. The benefits of utilising
k-means clustering for determining candidates are twofold. Firstly, compared to
other common clustering techniques such as mean shift and expectation maximi-
sation, k-means is computationally efficient, with time complexity O(Km) [4]. In
addition, as clustering only takes place over the set of colour transitions and very
few iterations are required, this method is able to be executed in real time on the
DARwIn-OP platform [7]. Secondly, k-means utilises an implicit representation
of the underlying probability distribution as a superposition of spherically sym-
metric distributions [14], which performs well given a set of colour transitions
positioned approximately on the circular border of a ball.

For an image where the number of balls, b, is known a priori, the number of
clusters, K, may simply be set to equal the number of balls. In general, for an
environment where the number of balls is known but with no guarantee every
ball is present in a given image, an internal cluster validation criteria (such as
the Dunn’s based index [5, 6]) is applied to the each cluster for K = {1, . . . , b},
with the K value yielding the best results indicating the number of balls in the
current image.

4 Determining Location and Size

As outlined in Sect. 2, once the ball candidate(s) have been determined, the
final step in ball detection is to inspect each candidate point to calculate the
exact location, dimensions and confidence of the ball itself. The remainder of
this section, firstly, describes a computationally efficient method by which the
position and size may be determined, assuming an occlusion-free ball. Next, a
generalised version of this method is explained, which extends the functionality
to deal with balls suffering from up to 50% occlusion, either from a direction
parallel to the x or y-axes (4-point occlusion detection) or an arbitrary direction
(n-point occlusion detection). Finally, systems of verifying the correctness of
the ball detection results are described; this is particularly vital in a multiple
candidate scenario.

4.1 Occlusion-Free

Fig. 1. Center update method for determining center of a non-occluded ball.

Given a candidate point pcand, as determined by one of the two methods de-
scribed in Sect. 3, the process of calculating the exact dimensions of an occlusion-
free ball is a straightforward process that operates at a pixel level to maximise
the detail which can be resolved. Concretely, given an image where each possi-
ble pixel value maps to some colour class label via a look-up table (LUT), each
pixel along the x and y-axes (relative to origin pcand) is inspected until a certain
threshold, ϑ, of consecutive “non-ball” pixels is exceeded2, at which time the
last-considered pixel belonging to the ball is stored. The four resultant points,
p1, . . . , p4 (see Fig. 1), therefore correspond ideally with four points on the edge
of circle.

As balls in images are rarely perfect circles (due to motion blur and pixel
quantization) and LUT mappings are often noisy (due to variations in ambient il-
lumination), the ball location and dimensions are not determined by substituting

2 In the NUbots vision system, “non-ball” pixels are simply those which do not map
to the orange colour class label.

the above points into the equation of a circle. Instead, a single-iteration center

update method is applied to find the exact center of the ball. For a non-occluded
ball, the center update consists of two steps:

1. Determine center: Considering the points p1 = (x1, y1), . . . , p4 = (x4, y4)
(see Fig. 1), the center of the ball, pcent, is calculated as

pcent =

(

x3 + x4

2
,
y1 + y2

2

)

.

2. Determine diameter: Considering pcent as the origin, each pixel along the x

and y-axes is inspected until a certain threshold, ϑ, of consecutive “non-ball”
pixels is exceeded, at which time the last-considered pixel belonging to the
ball is stored. Considering the resultant points, p′1, . . . , p′4 (labeled in the
same orientation as p1, . . . , p4, see Fig. 1), the diameter of the ball, d, is
calculated as

d = max {||p′1 − p′2||, ||p
′

3 − p′4||} .

It can be demonstrated that, given a candidate point pcand within some ideal
circle C, this method is guaranteed to yield correct results3. An example is
illustrated in Fig. 2a.

4.2 4-Point Occlusion Detection

(a) (b)

Fig. 2. Error in applying initial center update method to occluded ball (a), and the
corrected result of applying 4-point occlusion compensation (b).

Although the threshold parameter ϑ may be tuned to compensate for classi-
fication noise, the method presented in Sect. 4.1 is unable to deal with any ball
occlusion. This is illustrated in Fig. 2a; any occlusion from any side of the ball

3 Proof omitted. Available at: http://www.davidbudden.com/research/ball-detection/

will result in a shift of the ball center pcent and reduction of diameter d. For-
tunately, the process of 4-point occlusion detection may be used to compensate
for occlusion of the ball from a single direction, as illustrated in Fig. 2b. This
method requires the addition of the following three steps to those presented in
Sect. 4.1:

1. Detect occlusion: Consider a ray, r1, with initial point pcent and passing
through p1. Starting at p1, inspect ϕ pixels in the direction of r1, where ϕ is
the occlusion sensitivity parameter. If none of these are “field”4 pixels, mark
p1 as occluded. Repeat for p2, . . . , p4.

2. Determine if correction is required: If none of the points p1, . . . , p4 are
marked as occluded, no ball occlusion is detected, and the method of updat-
ing center and diameter reduces to that of Sect. 4.1. Likewise, if more than
one point is marked as occluded, the ball is occluded from multiple direc-
tions; this is a scenario unable to be corrected by 4-point occlusion detection,
so the method also reduced to that of Sect. 4.1 (with error).

3. Correct points: Assume p3 is marked as occluded. The position of p3 is up-
dated such that its distance from p4 becomes exactly max{||p1 − p2||, ||p3 −
p4||}, as illustrated in Fig. 4.2b. An equivalent method is applied for all
possible occluded points.

Although not guaranteeing correctness, this method presents allows for fast ex-
ecution, whilst maintaining high accuracy in position determination. To func-
tion correctly, 4-point occlusion detection requires the direction of the occlusion
source be parallel to either the x or y-axes. This limitation can be reduced by
extending the method to n-point occlusion detection, where n points about the
circle C are utilised, p1, . . . , pn. Ignoring pixel quantisation and assuming an
ideal ball, n-point occlusion detection yields accurate results for 50% occlusion
as n → ∞, independent of the direction and nature of the occlusion. The process
of 4-point occlusion detection is illustrated in Fig. 2b.

4.3 Ball Verification

Although the proposed method is robust against both noise and ball occlusion, it
does not inherently deal well with images where no ball is present; specifically, in
an image with no ball, the algorithm will attempt to locate a ball in any appro-
priate transitions caused by noise or over-classification, such as in a shadowed
yellow goalpost. This is corrected by the addition of a ball verification stage,
where the distance to the potential ball is calculated by two different metrics:

– Distance by width: The distance between the robot and the ball is calculated
directly from determined ball width:

dw =

√

(

rcm

tan (γxrpx)

)2

− h2
cam , γx =

θx

wimg
(1)

4 In the NUbots vision system, “field” pixels are simply those which map to the green
colour class label.

(a) (b)

Fig. 3. Correct ball detection for a LUT-classified RoboCup image, for both non-
occluded (a) and 50% occluded (b) ball scenarios (calculated ball represented by cyan
circle).

where rcm is the actual radius of the ball (cm), rpx is the radius of the ball
located in the image (pixels) and hcam is the current height of the camera
from the ground (calculated from kinematics data). The pixel angular width,
γx, is a conversion factor that approximates the relationship between the
horizontal field of view of the camera, θx, and the pixel width of the image,
wimg . This approximation is most accurate at the center of the frame.

– Distance to point: This method utilises a ground-plane projection to cal-
culate the distance to any point on the field, knowing only the (x, y) pixel
coordinates, pixel angular width γx and height γy, and the kinematics data
of the robot5:

dp =
hcam tan(θhead + β)

cosα
,

where θhead is the robot head elevation and α and β, the point bearing and
elevation, are defined as

α = γx

(wimg

2
− x
)

, β = γy

(

himg

2
− y

)

.

If the absolute difference between the two calculated distances exceeds a certain
error threshold value, the ball is disregarded. This process prevents the detection
of false balls, except in the scenario that the offending object is actually ball-
sized. Additional checks, such as maximum ball distance and minimum orange
pixel density, may also be applied such that false positives can only result from
ball-sized, ball-coloured objects positioned on the field of play.

5 Computational Results

The performance of the proposed ball detection method was evaluated by cal-
culating the distance to the ball from its pixel width, as described in Sect. 4.3

5 γy is defined as per γx in (1), in terms of θy and himg , the image pixel height.

(1). This distance was calculated at 0.5 meter intervals, from a distance of 0.5
to 5.0 meters, for non-occluded, 25% and 50% occluded balls6. The accuracy of
the algorithm is compared to previous ball detection approaches, including the
previous NUbots system [1], implementing Levenberg-Marquardt least squares
circle fitting [10]; and a circular Hough transform based method [16] similar to
those implemented by many RoboCup teams [11, 15].

Fig. 4 illustrates the experimental results, with the proposed ball detection
method indicated by blue, the previous NUbots method by magenta and the
Hough transform based method by red. It can be seen from Fig. 4a that, for
a non-occluded ball, the proposed method yields the most accurate results for
balls greater than 1.5 meters away. For closer balls, the Hough transform method
performs best, although the error in both instances is very small. Increasing the
level of occlusion from to 25% and 50% increases the distance for which the
Hough method is most accurate, to 2.0 m and 3.5 m respectively. Overall, the
proposed method produces the most consistently accurate results; the error is
consistently less than 10% for non-occluded and 25% occluded balls, and less
than 20% for 50% occluded balls. The previous NUbots method performed worst
in all cases, and was incapable of detecting balls at a distance greater than 3.5,
3.0 and 2.5 meters for 0%, 25% and 50% occlusion respectively.

The dashed lines in Fig. 4 represent the mean calculated distance error over
100 frames of a stationary robot. To minimise error introduced by the approxi-
mated pixel angular width (see Sect. 4.3), all images were captured with the ball
positioned in the center of the frame. As pixels are an inherently quantised unit,
it follows that, for a fixed camera height, certain distances will be less susceptible
to error than others. For example, at a distance of 4 meters, the optimal ball
width is 4.94 pixels, whereas for 3.5 meters the optimal width is 5.64. As 4.94
is much closer to an integer value than 5.64, it is reasonable that some methods
perform better at 4.0 meters than 3.5 (see the blue dashed line in Fig. 4a and
c). As this pixel quantization error is a function of camera height, which varies
as the robot walks, the solid lines (representing the current maximum error) are
introduced to Fig. 4 to provide a better indication of the expected error at a
given distance.

As robots in humanoid soccer typically suffer from significant processor con-
straints due to power consumption requirements, it is vital that any implemented
algorithm is as computationally efficient as possible. Table 5 contains the execu-
tion times for the refine candidates module of the proposed ball detection system
(see Sect. 2) and equivalent sections of the compared methods, as measured on
the DARwIn-OP platform [7]. Results demonstrate that the proposed system
executes 1.5 times faster than the previous NUbots system, and over 300 times
faster than the Hough transform based system7.

6 The official kid size league match ball was utilised for all experiments.
7 Performance overhead may have been introduced by the OpenCV C++ Hough trans-
form implementation.

Fig. 4. Comparison of ball distance er-
rors for the proposed ball detection method
(blue), previous NUbots method (ma-
genta) and Hough transform based method
(red), for occlusion levels of 0% (a), 25%
(b) and 50% (c). Dashed lines represent
average distance error over 100 frames. As
noise is introduced by pixel quantisation,
the solid lines represent expected error, in-
dependent of varying camera height (see
Sect. 5). (a)

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

C
al

cu
la

te
d

ba
ll

di
st

an
ce

 e
rr

or
 (

cm
)

Actual ball distance (cm)

(b)
50 100 150 200 250 300 350 400 450 500

0

10

20

30

40

50

60

Actual ball distance (cm)

C
al

cu
la

te
d

ba
ll

di
st

an
ce

 e
rr

or
 (

cm
)

(c)
50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100

120

140

Actual ball distance (cm)

C
al

cu
la

te
d

ba
ll

di
st

an
ce

 e
rr

or
 (

cm
)

Method µ (ms) σ (ms)

Center update w/ 4-point occlusion detection 0.395 0.088
Previous NUbots (least squares circle fitting) 0.615 0.103

Circular Hough transform 128 18.4

Table 1. Execution time mean µ and standard deviation σ for the proposed ball
detection method, previous NUbots method and Hough transform based method.

6 Conclusion

The proposed ball detection method overall demonstrated the most accurate
results, maintaining an error in calculated ball distance of less than 10% for
non-occluded and 25% occluded balls, and less than 20% for 50% occluded balls,
over a range of distances from 0.5 to 5.0 meters. The compared Hough transform
method performed slightly better for balls closer than a certain distance, which
increased from 1.5 to 3.5 meters as occlusion levels were raised. The previous
NUbots ball detection method, which implemented Levenberg-Marquardt least
squares circle fitting, performed worst for all distances and occlusion levels.

In addition to accurate performance, the proposed method executed over
300 times faster than the Hough transform based method on the DARwIn-OP

platform [7]. Much of this performance gain was leveraged by utilising specific
knowledge of the RoboCup environment, such as the ball size and quantity known
a priori, in addition to the green field border. Future research will focus on
dynamically identifying these salient features in real time, such that similar
performance advantages may be leveraged in an arbitrary environment.

References

1. The 2009 NUbots team report (2009), http://www.robots.newcastle.edu.au/

publications/

2. Robocup standard platform league (nao) rule book (online) (2012), http://www.
tzi.de/spl/pub/Website/Downloads/Rules2012.pdf

3. Andrew, A.: Another efficient algorithm for convex hulls in two dimensions. Infor-
mation Processing Letters 9(5), 216–219 (1979)

4. Bishop, C., en ligne), S.S.: Pattern recognition and machine learning, vol. 4.
springer New York (2006)

5. Budden, D., Fenn, S., Mendes, A., Chalup, S.: Evaluation of colour models for
computer vision using cluster validation techniques. In: (Accepted) RoboCup 2012:
Robot Soccer World Cup XVI (LNAI). Springer (2013)

6. Dunn, J.: Well-separated clusters and optimal fuzzy partitions. Journal of cyber-
netics 4(1), 95–104 (1974)

7. Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.: Development of open humanoid
platform DARwIn-OP. In: SICE Annual Conference (SICE), 2011 Proceedings of.
pp. 2178–2181. IEEE (2011)

8. Hartigan, J., Wong, M.: Algorithm as 136: A k-means clustering algorithm. Journal
of the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100–108 (1979)

9. Kitano, H., Asada, M.: The robocup humanoid challenge as the millennium chal-
lenge for advanced robotics. Advanced Robotics 13(8), 723–736 (1998)

10. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parame-
ters. Journal of the society for Industrial and Applied Mathematics 11(2), 431–441
(1963)

11. Martins, D., Neves, A., Pinho, A.: Real-time generic ball recognition in robocup
domain. In: Proc. of the 3rd International Workshop on Intelligent Robotics,
IROBOT. pp. 37–48 (2008)

12. Murch, C., Chalup, S.: Combining edge detection and colour segmentation in the
four-legged league. In: Proceedings of the Australasian Conference on Robotics and
Automation 2004 (2004)

13. Seysener, C., Murch, C., Middleton, R.: Extensions to object recognition in the
four-legged league. RoboCup 2004: Robot Soccer World Cup VIII pp. 274–285
(2005)

14. Szeliski, R.: Computer vision: algorithms and applications. Springer-Verlag New
York Inc (2010)

15. Velthuis, D., Verschoor, C., Wiggers, A., Cabot, M., Keune, A., Nugteren, S.,
Egmond, H., Rossum, T., Molen, H., Rozeboom, R., Becht, I., Jonge, M., Prong,
R., Kooijman, C., Slaap, R., Visser, A.: Dutch nao team, team description paper
for robocup 2012 (2009)

16. Yuen, H., Princen, J., Illingworth, J., Kittler, J.: Comparative study of hough
transform methods for circle finding. Image and Vision Computing 8(1), 71–77
(1990)

