
Innodata Isogen White Paper

Innodata Isogen Page 1 of 14

SNAPCM

By John D. Heintz, Consultant, Innodata Isogen

By Joshua Reynolds, Consultant, Innodata Isogen

SnapCM is an abstract model for a Configuration Management and Version Control
system which supports both time-based management of versioned resources and version--
aware references. The management of versioned resources and versioned references can
be very simple, or scale to arbitrary complexity by predefined extension points.

SnapCM provides the necessary support for systems that manage the lifecycle of linked
resources. Examples include hyper-document lifecycle management, parts database,
workflow and literate programming systems.

SnapCM describes the individual Versions of a set of Resources over time. Version-to-
Version associations must be handled by versioning-aware References objects that can
resolve (via extensible policy) the correct target Version. Versions that exist at the same
time and are used in the same context are effective together this is referred to as a
Snapshot of those Versions. A consecutive sequence of Snapshots forms a Branch. A
Branch also represents the context for effective Versions, allowing multiple Versions (of
the same Resource) to be effective at the same time in parallel Branches. Finally, a Sync
exposes Versions (effective and historical) from one Snapshot (and contextual Branch) to
another.

1.1 Introduction and Goals
This paper defines a number of abstract data types that together form a foundation for
describing versioning systems. As an abstract model only those characteristics that are
essential are described (specified) and everything else is left unsaid (unspecified). This
guideline means that the resulting model is small, precise, and uncluttered with
implementation details.

A useful versioning system needs to:

• Enable capturing as much information about versioning actions as possible. That
is, one purpose of a configuration management system is to remember what was
done and by whom.

• Enable sets of versions to be manipulated within atomic transactions.

• Enable management of local working spaces ("sandboxes").

• Enable both pessimistic and optimistic locking.

• Enable hyperdocuments[Literary Machines] and Referent Tracking
Documents[RTD] to be implemented with the SnapCM model with minimum
overhead.

Other versioning systems like [CVS] and [WebDAV] exists but don’t meet some or all of
the outlined goals.

Note: The designs specified in this document are defined using the [UML], and
particularly using OCL

1
. The OCL specifications, while provided inline, are also

informally described in the text so readers can safely skip over the OCL
invariants without losing information.

Uppercase names, like "Version", refer to types defined in this paper.
Lowercase names, like "version", refer to common usage of the name
(based on context).

1.2 SnapCM Model

1.2.1. Resources and Versions
Figure 1. Resource-Version relationships

The relationships between Resources and Versions is one to many. Versions are related to
other Versions through many next and many previous properties.

2

All Versions that share next/previous relations must share the same Resource object. In
OCL:
context Version

inv same_resource :

self.previous>notEmpty implies

self.previous>forAll(resource = self.resource) and

self.next>notEmpty implies

self.next>forAll(resource = self.resource)

Figure 2. Versions Object Model.

Figure 2 shows an example object model for Versions. We see that individual Versions
can have 0..* next and previous associations.
Note: As specified in the Versions same_resource invariant, these Versions must all share the same Resource
instance.

Innodata Isogen Page 2 of 14

1.2.2. Branches and Snapshots
Figure 3. BranchSnapshot relationships.

One Branch is related to an ordered list of Snapshots.
3
Snapshots are related to each other

through optional single next and previous properties.

All Snapshots that share next/previous relations must share the same Branch object. In
OCL:
context Snapshot

inv same_branch :

self.previous>notEmpty implies

self.previous.branch = self.branch and

self.next>notEmpty implies

self.next.branch = self.branch

The snapshotSequence association does not exhibit the multiplicity that the nextPrevious
(see Figure 2) association does. This means that Snapshots are only directly related to
each other as a sequence and doesn’t explain how merging or branching behavior is
accomplished. This is explained later in the description of the Sync structure.

Figure 4. Snapshots Object Model.

Figure 4 shows a single Branch with three Snapshots.

Innodata Isogen White Paper Page 3 of 14

1.2.3. Snapshots, Versions, and Resources
Figure 5. Snapshot-Version-Resource relationships.

Snapshots have several important relationships with Versions and Resources. These
relationships are used to expose both which Versions (and therefore Resources) are
present on a given Snapshot as well as which Versions could be present on the "next"
Snapshot.

createdVersions
The "createdVersions" association identifies all Versions that were

created on this Snapshot. This is the first place in the model that
a new Version instance becomes available for use only Versions
with a "snapshot" property may have associations between Snapshots
and Versions.

effectiveVersions

The "effectiveVersions" association identifies all Versions that are visible on this
Snapshot.

4
This association is constrained to only include Versions that are also

accessible on this Snapshot and not otherwise hidden. In OCL:

context Snapshot

inv limit_effectiveVersions :

self.accessibleVersions>includesAll(self.effectiveVersions) and

self.effectiveVersions.resource>excludesAll(self.hiddenResources)

Additionally, effectiveVersions may only contain one Version for a given
Resource. In OCL:
context Snapshot

inv one_version_effective :

--for each effectiveVersion.resource

self.effectiveVersions.resource

Innodata Isogen Page 4 of 14

->forAll(r |

self.effectiveVersions->select(v |

v.resource = r)->size < 2)

effectiveVersion
This qualified association provides a simple means of navigating from a

Resource to a Version on a particular Snapshot. The navigation is
defined in terms of the effectiveVersions property of a Snapshot.
In OCL:

context Snapshot

inv define_effectiveVersion :

self.effectiveVersion = self.effectiveVersions>select(v |

v.resource = resource)

accessibleVersions
The "accessibleVersions" association defines accessiblity in terms of

history (self.previous.accessibleVersions), creation
(self.createdVersions), and syncing
(self.syncSources.accessibleVersions). In OCL:

context Snapshot

inv define_accessibleVersions :

self.accessibleVersions =

self.previous.accessibleVersions

->union(self.createdVersions)

->union(self.syncSources.accessibleVersions)

There is no restriction on accessibleVersions like the
one_version_effective invariant for effectiveVersions;
accessibleVersions can contain many Versions from a single
Resource.

hiddenResource
the "hiddenResource" association exists to identify those Versions by

Resource that are not allowed to be present in the
effectiveVersions property of Snapshots. This property has no
effect on which Versions are accessible, and there is no effect on
previous Snapshots effectiveVersions.

A Resource may be present on the hiddenResources property only if one or
more of its Versions are accessible on the Snapshot. In OCL:

context Snapshot

inv limit_hiddenResources :

self.accessibleVersions.resource>includesAll(self.hiddenResources)

Figure 6. Snapshot-Resource-Version Grid.

Innodata Isogen White Paper Page 5 of 14

Figure 6 shows an instance-like diagram of Snapshots, Resources, and Versions.
Horizontal lines represent Versions of a single Resource. Vertical lines represent
effective Versions on a Snapshot. Note that the sets of effectiveVersions,
accessibleVersions, and createdVersions are listed under each Snapshot.

Versions instances are shown under Snapshots with two different graphic border styles to
show how they are related to the Snapshot.

Solid
Versions with solid line borders are created on the Snapshot vertically

above them.

Dotted
Versions with dotted line borders represent Versions that are effective

on the Snapshot vertically above them, but not created on that
Snapshot.

Innodata Isogen Page 6 of 14

1.2.4. Syncing Versions between Snapshots
Figure 7. Sync-Snapshot-Resource relationships.

The concepts of branching and merging are reified in the Sync type. Branching and
merging are accomplished by expanding the accessible Versions available on some target
Snapshot (and therefore the owning Branch). Examples of how to accomplish branching,
merging and publishing with Syncs are given after descriptions of the associations
between Syncs and Snapshots, Resources, and Versions.

syncSource
The "syncSource" association identifies by Snapshot the accessible

Versions (and therefore Resources) that can participate in the
Syncing.

syncTarget
The "syncTarget" association identifies the Snapshot whose accessible

Versions set is expanded as a result of Syncing.

syncedResources
The "syncedResources" associations identifies for the Sync the total set

of Resources that contribute accessible Versions from the source
Snapshot to the target Snapshot. A Resource may be a member of the
Sync resources property only if a Version for that Resource is
accessible on the source Snapshot. In OCL:

context Sync

inv limit_resources : self.source.accessibleVersions.resource
->includesAll(self.resources)

accessibleVersions
The "accessibleVersions" association is derived from the source and

resources properties as all Versions accessible from the source
Snapshots whose Resource is a member of the Sync’s resources
property. In OCL:

context Sync

inv define_accessibleVersions :

self.accessibleVersions =self.source.accessibleVersions

->select(v:Version | self.resources>includes(v.resource))

Innodata Isogen White Paper Page 7 of 14

Common Syncing Forms

Branching
Branching is a forking of some set of Versions (accessible from the source Snapshot).
This is typified by a Sync from some source Snapshots to a new Branch.

Figure 8. Sync Branching.

Figure 8 shows an example of Syncing to achieve a branch. Notice that the source
Snapshot (main:snap2) exists on a Branch with some history (here only main:snap1)
while the target Snapshot (branch:snap1) is the first Snapshot on its Branch.

With this structure further modifications can occur on branch:Branch without disturbing
the Versions on main:Branch.

Merging
Merging is reintegrating parallel changes back into some original Branch. This is typefied
by a Sync with transposed source.branch and target.branch properties and shared
Resources from any other Sync.

Figure 9. Sync Merging.

Figure 9 shows an example of Syncing to achieve a merge. Notice that the two Syncs
have inverse source.branch and target.branch properties. Assuming that at least some of
the Resources from sync1:Sync are also present on sync2:Sync this merges previously
branched Resources back into main:Branch.

 Sync Masking
Sync Masking provides a controlled exposure of effective Versions from a given Branch.
This is typefied by a list of Syncs with the same source.branch and target.branch
properties, with the further condition that no Snapshots are created on the target Branch
except by Syncs from the list.

Innodata Isogen Page 8 of 14

Figure 9. Sync Merging.

Figure 10 shows a stereotypical Sync Masking example. Note that the target Snapshot
(release:snap1) effectiveVersions is a subset of the source Snapshot (draft:snap2)
effectiveVersions, and that the target Snapshot (release:snap2) effectiveVersions is a
subset of source Snapshot (draft:snap4) effectiveVersions. Also, notice that no Snapshots
exist on release:Branch except for those Synced from draft:Branch.

Sync Example

Figure 11. Syncing Example.

Innodata Isogen White Paper Page 9 of 14

Figure 11 shows a detailed example of Syncing which builds on the diagram from Figure
7. Note that:

• Resources r1 and r2 were not accessible on br:Branch before the Sync occurred
at br:snap2.

• r2v3 is not accessible on base:Branch, only on br:Branch.

• r1v1 and r2v2 are not copied into br:Branch, but rather are shared references by
both Branches.

References from Versions to Resources
Figure 12. References

Figure 12 shows how Versions use References to navigate from Resource to Versions
given a resolution Snapshot. References are essentially version-aware pointers.

references
The "references" association identifies the set of References owned by a

given Version.

targetResource
The "targetResource" association identifies the target of the Reference.

The Resource identified may not be the owner Version’s Resource. In
OCL:

context Reference

inv no_self_references :

elf.owner.resource <> self.resource

referenceTargets
The "referenceTargets" association identifies the resolved Versions of the

targetResource. Resolution is always qualified by a Snapshot.

Figure 13. Reference Resolution Policy.

Innodata Isogen Page 10 of 14

Figure 13 shows that a Reference has a ResolutionPolicy. The ResolutionPolicy specifies
the logic for resolving the Reference.targets property using the Reference.targetResource
property and the snapshot:Snapshot qualifier.

resolutionPolicy

The "resolutionPolicy" assiociation identifies the ResolutionPolicy for a
Reference which is used to calculate the Reference.targets property.

There are two predefined types of ResolutionPolicies that specify very common
resolution behavior.

OnSnapshotResolutionPolicy
This policy defines the Reference.targets property to be equal to the

Version that is effective on the qualifying Snapshot. In OCL:

context OnSnapshotResolutionPolicy

inv targets_inv :

let snapshot = self.reference.referenceTargets.snapshot in

self.reference.targets =

snapshot.effectiveVersion(self.reference.resource)

FixedVersionsResolutionPolicy

This policy defines the Reference.targets property to be equal to some arbitrary
set of Versions. In OCL:
context FixedVersionsResolutionPolicy

inv targets_inv :

self.reference.targets = self.versions

Figure 14. Reference Example.

Figure 14 shows an example use of a Reference with an OnSnapshotResolutionPolicy.
Note that the resolved d1.targets property is listed under each Snapshot.

Innodata Isogen White Paper Page 11 of 14

Organizers for Resources
Figure 15. Organizer Model.

Figure 15 shows built-in subtypes of Version and Reference useful for logical
organization of Versions. By using OrganizerReferences, the resultant structure is
inherently version-aware. Using a Reference subtype enables easier Version.referrers
management.

Figure 16. Organizer Example.

Figure 16 shows an example of using Organizer to model a directory structure. Note that
the diagram looks exactly like Figure 14 except for the subtypes Organizer and Organizer
Reference are used.

Innodata Isogen Page 12 of 14

1.3 Conclusion
SnapCM defines a coherent model for describing version control and configuration
management problems and solutions. Sequences of Snapshots stases version history
needs, Synchronized Branches satisfy parallel evolution needs, and References with
ResolutionPolicies satisfy version-aware linking needs. Further work includes refining for
specific problem domains.

1.4 Bibliography
[UML], Online from http://www.uml.org

[Literary Machines] Nelson, Theodor H. 1987. Literary Machines. South Bend, Indiana:
The Distributors.

[RTD] W. Eliot Kimber, Peter Newcomb, Steve Newcomb. “Version Management as
Hypertext Application: Referent Tracking Documents.” Online from
http://www.isogen.com/papers/ref-track-docs-paper.pdf

[CVS], Online from http://www.cvshome.org

[WebDAV], Online from http://www.webdav.org

1.5 Notes
The models in this paper use several UML diagrams and figure types. The types of
diagrams found in this paper are the Class diagram, the Instance diagram, and a modified
(grid shaped) Instance diagram optimized for presentation of Versions on Snapshots.

The Class diagram is used to describe types (or classifications) of objects. The
Generalization relationship (with an open triangle on top) is used to specify subtypes.
The Association relationship is used to specify properties and navigation. Sometimes
an Association has a black diamond to represent a composite relationship to signify
ownership/containment. Additionally, Associations can have a qualifier (type) at one
end to specify qualified properties. An example of qualification is User associating to
Account qualified by AccountID.

The Instance diagram is used to show example objects from the Class diagrams.
Instances are named and typed.

Finally, the Grid Instance diagrams are like Instance diagrams except they imply
addition instance relationships based on vertical alignment with a Snapshot instance
and box type. Version instances lined up vertically on a Snapshot instance are all in
the Snapshot’s effectiveVersions property set. Additionally, Version instances that
have solid box lines (instead of dotted) are in the Snapshot’s createdVersions
property.

2. A Resource could be described as a set of Versions (those related by next/previous
properties) that is set exclusive with all other Resource sets.

3. A Branch could be described as a sliding temporal view over the intersections of
Resources and Snapshots.

4. A Snapshot could be describes as a set of effective Versions.

Innodata Isogen White Paper Page 13 of 14

http://www.uml.org/
http://www.isogen.com/papers/ref-track-docs-paper.pdf
http://www.cvshome.org/
http://www.webdav.org/

About Innodata Isogen
Innodata Isogen (www.innodata-isogen.com) optimizes content supply chains, helping
clients realize significant cost savings and productivity gains from operations, achieve
better outcomes and compete more effectively in demanding global markets.

Our solutions encompass virtually every activity necessary to create, use and distribute
information products. Clients can choose from an array of integrated point solutions or
simply outsource their entire content supply chain to us.

The company, based in metro New York, has seven content solution centers and satellites
in North America and Europe, six certified content production facilities and a dedicated
tools and technology center in Asia, together employing more than 7,000 content
specialists worldwide.

Among our extensive roster of blue-chip clients are the world’s leading commercial
publishers, Global 2000 enterprises, government agencies, and major archives, libraries
and museums.

In 2001, Fortune and Business Week each rated the company as one of the 100 top-
performing public companies in the U.S.

Contact Innodata Isogen today to find out how we can help you more
effectively manage your organization’s information assets:

Corporate Headquarters
Innodata Isogen
Three University Plaza
Hackensack, NJ 07601
U.S.A.
T (201) 488-1200
T (800) 567 4784 – (toll free)
F (201) 488-9099

solutions@innodata-isogen.com
http://www.innodata-isogen.com

Innodata Isogen Page 14 of 14

http://www.innodata-isogen.com/
mailto:solutions@innodata-isogen.com

	Introduction and Goals
	SnapCM Model
	1.2.1. Resources and Versions
	1.2.2. Branches and Snapshots
	1.2.3. Snapshots, Versions, and Resources
	1.2.4. Syncing Versions between Snapshots
	Common Syncing Forms
	Branching
	Merging
	Sync Masking

	Sync Example

	References from Versions to Resources
	Organizers for Resources

	Conclusion
	Bibliography
	Notes
	About Innodata Isogen

