
Boosting Lazy Decision TreesXiaoli Zhang Fern xz@ecn.purdue.eduCarla E. Brodley brodley@ecn.purdue.eduSchool of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907AbstractThis paper explores the problem of how toconstruct lazy decision tree ensembles. Wepresent and empirically evaluate a relevance-based boosting-style algorithm that builds alazy decision tree ensemble customized foreach test instance. From the experimentalresults, we conclude that our boosting-stylealgorithm signi�cantly improves the perfor-mance of the base learner. An empiricalcomparison to boosted regular decision treesshows that ensembles of lazy decision treesachieve comparable accuracy and better com-prehensibility. We also introduce a noveldistance-based pruning strategy for the lazydecision tree algorithm to address the prob-lem of over-�tting. Our experiments showthat the pruning strategy improves the ac-curacy and comprehensibility of both singlelazy decision trees and boosted ensembles.1. IntroductionBoosting (Freund & Schapire, 1997) has been shown tobe extremely e�ective at increasing the performance ofvarious learning algorithms, among which decision treealgorithms have been extensively investigated (Quin-lan, 1996; Freund & Schapire, 1996; Bauer & Ko-havi, 1999; Dietterich, 2000). Interestingly, the lazydecision tree (LazyDT) algorithm (Friedman et al.,1996), a lazy learning variation of the C4.5 decisiontree algorithm (Quinlan, 1993), has not been exploredin the context of boosting research. Previous work(Margineantu & Dietterich, 2002) has used the lazyoption tree algorithm, a variant of LazyDT, in a bag-ging approach (Breiman, 1996) to perform probabilityestimation. However, to our knowledge, no boosting-style algorithm has been proposed. A possible rea-son is that, as explained in Section 2, an e�ective andstraightforward method of applying existing boostingalgorithms to LazyDT is not readily apparent.We chose to explore the topic of boosting lazy decision

trees because LazyDT has some strengths in compar-ison with regular decision tree algorithms (Friedmanet al., 1996). First, the decision paths built by LazyDTare often shorter and therefore more comprehensiblethan paths of regular decision trees. Second, it is wellknown that given limited training data, regular deci-sion tree algorithms can su�er from the data fragmen-tation problem (Pagallo & Haussler, 1990). Regulardecision tree algorithms select a test for the root ofeach sub-tree based on the average improvement of thetest selection criterion (such as entropy). Because thechoice is based on average improvement, a particularchild branch of the test may see a decrease in the valueof the criterion or remain the same. For instances tak-ing such a branch, the test may be detrimental sinceit fragments the data unnecessarily. This may causethe resulting path to be less accurate because the re-maining tests are selected based on fewer training in-stances. In contrast, LazyDT constructs a customized\tree" for each test instance, which consists of only asingle path from the root to a labeled leaf node. Givena test instance, LazyDT selects a test by focusing onthe branch that will be taken by the test instance. Bydoing so it avoids unnecessary data fragmentation andmay produce a more accurate classi�er for the speci�cinstance. Given the above strengths of LazyDT, weare interested in further improving LazyDT by apply-ing boosting-style ensemble construction techniques.In this paper, we propose a relevance-based boosting-style algorithm1 to build a customized LazyDT ensem-ble for each test instance. We show that our methodsigni�cantly improves the performance over the baselearner LazyDT and produces signi�cantly (on aver-age 50%) less complex ensembles than AdaBoost whilemaintaining comparable accuracy. To ameliorate the1Technically a boosting algorithm is one that transformsa weak learning algorithm into a strong learning algorithm.Our algorithm does not have this property but it uses aboosting-style weight changing process. Thus, we refer toour algorithm as a boosting-style algorithm and use theterm boosted LazyDT for the resulting ensemble to distin-guish it from other ensembles such as bagged LazyDT.



Table 1. A generic lazy decision tree algorithmInputs: S is the training sety is the test instance to be classi�edOutput: class label for the test instance y1. If all instances in S are from a single class l, return l.2. Otherwise, select a test T and let t be the value of thetest on instance y. Let S0 be the set of training instancessatisfying T = t and apply the algorithm to S0 and y.over-�tting problem for LazyDT, we also propose anew distance-based pruning technique to generate sim-pler and more accurate lazy decision trees. Currentlythis technique is implemented and tested only on datasets with numerical features. In our experiments, theproposed pruning method improves the accuracy andcomprehensibility for both single lazy decision treesand LazyDT ensembles.The rest of the paper is organized as follows. InSection 2 we briey introduce the LazyDT algorithmand explain the di�culties of applying existing boost-ing algorithms to LazyDT. Section 3 describes ourboosting-style algorithm for LazyDT. In Section 4, weempirically evaluate our boosted LazyDT ensembleson ten data sets and compare their performance withthe base learner LazyDT, bagged LazyDT ensemblesand boosted regular decision tree ensembles. Section5 introduces the distance-based pruning technique forLazyDT and illustrates its e�ectiveness with prelimi-nary experimental results. Section 6 concludes with adiscussion of related issues and the future work.2. The Di�culties of Applying ExistingBoosting Algorithms to LazyDTIn Table 1 we briey describe the general steps of theLazyDT algorithm. The core part of the algorithmis how to select a test { LazyDT chooses a test that\optimizes" the resulting branch taken by the giventest instance. Once a test is selected, only instancesthat take the same branch as the test instance are keptto build the remaining part of the lazy decision tree.We omit the details of the algorithm and refer readersto the original paper (Friedman et al., 1996) for anexact description of the LazyDT algorithm.2Commonly used boosting algorithms, such asAdaBoost (Freund & Schapire, 1997), iteratively apply2Our implementation slightly di�ers from the originalalgorithm in its handling of numeric features. We useC4.5's approach rather than discretizing the features be-fore the tree construction.

a base learner to di�erent distributions of the trainingdata. Typically it is assumed that the produced baseclassi�ers can be applied to classify the entire instancespace. In each iteration, AdaBoost adjusts the weightsof training instances according to the classi�cation de-cisions made by the previously learned classi�ers. Mis-classi�ed instances will be assigned larger weights inthe successive iteration to make the base learner focuson the \hard" instances.When LazyDT is used as the base learner, it di�ersfrom regular decision algorithms in two ways. First,LazyDT generates a single decision path for a giventest instance. This path can only be used to give pre-dictions to instances that satisfy all of its tests. Forthose instances that fail to satisfy the tests, no clas-si�cation information is available. Without completeclassi�cation information, the weight changing processin the above framework can not be directly applied.Second, the LazyDT algorithm has a rather specialgoal { building a decision path that correctly classi�esa given test instance. If a training instance contributeslittle information to correctly classifying the given testinstance, even it is a \hard" instance for the currentclassi�er, not much leverage can be gained by increas-ing its weight in subsequent iterations.A tentative solution to the �rst of these two prob-lems is to use the con�dence-rated boosting algorithm(Schapire & Singer, 1999), which is capable of han-dling incomplete classi�cation information. However,it does not address the second problem. Moreover,despite the fact that it has been used in SLIPPER(Cohen & Singer, 1999) to boost decision rules, thecon�dence-rated boosting algorithm is not an idealchoice for our task. In SLIPPER, a rule makes pre-dictions for the training instances that satisfy all of itstests with a positive con�dence and abstains on theothers by making a prediction with a zero con�dence.The boosting process changes the weight of a traininginstance only if it is given a classi�cation with non-zero con�dence. Our investigation of this method didnot give promising results, which we conjecture wasdue to the lack of diversity in the resulting ensembles.LazyDT grows a decision rule (path) until all the in-stances that are covered by the rule are from the sameclass. Typically, only a small part of the training setwill be predicted with non-zero con�dence and be as-signed di�erent weights. Given only small changes ofthe distribution, LazyDT tends to produce very sim-ilar if not identical decision paths for each iteration,resulting in an ensemble that lacks diversity.In summary, we believe that in order to successfullyboost the performance of LazyDT, we need our algo-



rithm to 1) work with incomplete classi�cation infor-mation; 2) produce diverse lazy decision paths; and3) take into account the special goal of classifying thegiven test instance. To our knowledge none of theexisting boosting algorithms successfully satis�es allthree requirements.3. A Relevance-Based Boosting-StyleAlgorithm for LazyDTBased on the observations made in Section 2, wepropose a relevance-based boosting-style algorithm togenerate a customized lazy decision tree ensemble foreach test instance. Given a test instance, a trainingset and an ensemble size T , our algorithm iterativelyconstructs T decision paths. In each iteration, a de-cision path customized for the given test instance isproduced by applying LazyDT to the training set witha given distribution represented by instance weights.In the initial distribution all the training instances areequally weighted. The instance weights are then ad-justed according to the learned decision path to forma new distribution for the next iteration. This pro-cess repeats for T iterations and the majority vote ofthe resulting T decision paths is used to give the �nalprediction for the given test instance. Our algorithmadjusts the weight of a training instance according tohow relevant this instance is to classifying the giventest instance and whether its class label is predictedby the current decision path. The remainder of thissection �rst de�nes what we mean by relevant andthen presents the details of the weight modi�cationprocedure.To understand how relevant a training instance is toclassifying a test instance, we shall look at how train-ing instances are used by LazyDT in the path build-ing process. Given a training set and a test instance,LazyDT starts by selecting a test for the root node us-ing all the training instances. Once the test is selectedthe training set will be partitioned according to resultsof the selected test. Because LazyDT only extendsthe branch that is taken by the test instance, thoseinstances that take other branches will be \discarded"and not used any further in the learning process forthe given test instance. The remaining instances willthen be used to select the next test for the path. Thisprocess repeats until all remaining instances belong tothe same class, at which point a leaf node is generatedand labeled with that class. The later an instance is\discarded" in this process the more relevant we con-sider it is to classifying the given test instance. This isbecause it was used to select more tests for the deci-sion path and hence contributed more information to

at the leaf node
r=3 for instances

discarded at C
r=2 for instances

discarded at B
r=1 for instances

discarded at A
r=0 for instances

A

C

B

Figure 1. A decision path with three test nodes. The train-ing instances are divided into four groups, each of whichhas a di�erent relevance level.the classi�cation decision.Given a test instance y and a decision path gener-ated for y, We de�ne the relevance level, r, of a train-ing instance x to be the depth of the node at whichthe training instance is \discarded" when building thegiven decision path. Figure 1 shows an example of adecision path with three test nodes. This path dividesthe training instances into four groups each with a dif-ferent relevance level. Note that the relevance level ofa training instance is de�ned with respect to a speci�ctest instance and decision path. In each iteration ofour algorithm, after a decision path is built the rele-vance level of each training instance is used to regulateby what magnitude to change its weight for the nextiteration. A higher relevance level results in a moredramatic weight change for an instance.In addition to the magnitude, we also need to decidethe direction of the weight change. Recall that Ad-aBoost increases the weight of incorrectly classi�edtraining instances and decreases the weight of correctlyclassi�ed instances. For LazyDT only a small subsetof the training instances are classi�ed by the decisionpath and in most cases all of these are classi�ed cor-rectly (because the path is grown until purity). Toapply the above idea, we assume the decision path\classi�es" all the training instances as the class ofthe leaf node. Therefore, if a training instance hasthe same class label as the leaf node, its weight willbe decreased and vice versa. Obviously our assump-tion could be erroneous for some training instances.However, for a particular instance, the higher the rel-evance level, the more \reasonable" our assumption isto that particular instance because it shows more con-sistency with the decision path. Recall that we controlthe magnitude of the weight change according to theinstance's relevance level.



Table 2. Comparing LazyDT, boosted LazyDT(BO-LazyDT) and bagged LazyDT(BA-LazyDT)Data set Insts Attrs Classes LazyDT BO-LazyDT BA-LazyDTCleveland 303 13 2 71.95�2.19 76.73�1.06 � 74.59�1.15 �Crx 541 15 2 86.32�1.18 85.84�0.69 85.84�0.47German 1000 20 2 72.05�0.89 73.88�0.92 � 74.40�0.37 �Hepatitis 155 19 2 85.87�1.10 85.42�0.72 84.65�0.99 	Lympho 148 18 4 81.35�1.82 80.61�1.01 79.12�2.04 	Monk2 601 6 2 86.99�1.29 91.40�0.93 � 76.74�1.11 	Pima 768 8 2 72.04�0.70 73.13�0.74 � 74.61�0.74 �Road 2056 7 9 78.52�0.26 79.86�0.45 � 80.25�0.27 �Tahoe 2237 6 5 72.31�0.41 74.31�0.37 � 75.07�0.37 �Yeast 1484 8 10 49.44�0.47 51.72�0.78 � 53.20�0.78 �Speci�cally, the weight changing process works as fol-lows. Given a decision path R, we �rst calculate foreach training instance x its relevance level r as thedepth of the node where x is \discarded" when build-ing R. Then we compare x's class label with R's leafnode class. If x has the same class label, its weightis multiplied by a factor �r , otherwise it is multipliedby a factor �r , where � < 1 and � > 1. After allindividual updates, the instance weights are normal-ized to form a valid distribution for the next iteration.Consider the example shown in Figure 1, the weightupdate factor for instances that are located at the leafnode will be �3 or �3 based on whether the instancehas the same class label as the leaf node.3 Note thatthe weight update factor will be one for those instancesthat have zero relevance level (i.e., those discarded atnode A), but the normalization step will adjust theweights of those instances.In implementing the algorithm, we need to specify thevalues for � and �. In our experiments we arbitrarilyselected a basic setting � = 0:98 and � = 1:15. Howto optimize the choice of � and � is an open prob-lem. Fortunately within a reasonable range the per-formance of the algorithm appeared to be rather ro-bust { in the tests of other settings we did not observesigni�cant performance changes when the parametersare within range 0.85 < � < 1 and 1 < � < 1:15.When values outside of this range were used, the per-formance started to decrease. This is possibly becausethe weight change magnitude increases exponentiallyas the relevance level increases. When extreme param-eter values are used, the weight change magnitude canbe so big that a few training instances may have mostof the weight and the resulting distribution may fail3LazyDT stops growing a decision path when only onetraining instance remains. Our implementation of LazyDTwith weighted instances stops if the total weight of all re-maining instances is less than one, making it possible toproduce leaf nodes with instances frommore than one class.

to retain su�cient information to build an accuratedecision path for the given test instance.4. ExperimentsIn this section we compare boosted LazyDT with itsbase learner LazyDT, bagged LazyDT and boostedregular decision trees. Ten well-known benchmarkdata sets from the UCI data collection (Blake & Merz,1998) are used in the comparison. The characteristicsof these data sets are summarized in columns 1-4 ofTable 2. For each data set, ten runs of a strati�ed ten-fold cross-validation are conducted and the reportedresults are averaged over ten runs. An ensemble sizeof ten is used for all ensemble methods. Experimentswith an ensemble size of twenty show similar trends asthose of size ten and are thus omitted from the resulttables.Comparison of boosted LazyDT, LazyDT, andbagged LazyDT: The base learner LazyDT wasimplemented based on MLC++ library (Kohavi et al.,1994). Bagging was implemented as follows. Given atest instance and the training set, bagging generates Tbootstrap samples of the original training set, whereT is the ensemble size. Each sample is generated byuniformly sampling m instances from the training setwith replacement, where m is set to be the size of theoriginal training set. On average, each sample con-tains about 63.2% distinct instances from the originaltraining set. Each bootstrap sample is then used asthe training set to build a lazy decision tree to clas-sify the given test instance. A majority vote amongthe resulting T lazy decision trees is used as the �naloutput of the bagged LazyDT ensemble.Table 2 presents the accuracies of LazyDT, boostedLazyDT and bagged LazyDT in columns 5, 6 and 7respectively. A paired t-test with 0.05-level is used tocompare each ensemble method to their base method



Table 3. Comparing boosted LazyDT(BO-LazyDT) and AdaBoost applied to C4.5(ADAC45)Accuracy Decision path lengthData set BO-LazyDT ADAC45 BO-LazyDT ADAC45Cleveland 76.73�1.06 78.95�0.87 2.87�0.67 4.78�0.78Crx 85.84�0.69 85.42�0.98 2.91�0.69 4.17�0.72German 73.88�0.92 70.44�1.24 3.21�0.65 6.20�1.23Hepatitis 85.42�0.72 82.45�1.83 3.01�1.33 3.35�0.76Lympho 80.61�1.01 78.65�1.82 2.25�0.77 2.42�0.61Monk2 91.40�0.93 64.11�1.45 5.12�0.98 1.28�0.46Pima 73.13�0.74 72.45�1.02 2.89�0.63 5.64�1.37Road 79.86�0.45 83.03�0.36 2.87�0.72 7.69�1.37Tahoe 74.31�0.37 74.71�0.31 3.07�0.88 8.41�2.01Yeast 51.72�0.78 56.48�0.87 3.39�0.92 10.31�2.54LazyDT. In Table 2, \�" is used to indicate a sig-ni�cantly better performance than LazyDT and \	"is used to indicate a signi�cantly worse performancethan LazyDT.Among the ten data sets, boosted lazy decision treesperform signi�cantly better than the base learner forseven data sets and never signi�cantly worse. Baggedlazy decision trees show similar performance improve-ment over LazyDT for most of the data sets but be-have less consistently. For three data sets, Hepatitis,Lympho and Monk2, bagging signi�cantly degradesthe performance of the base learner. This is possiblycaused by the sub-sampling procedure used by baggingto generate di�erent distributions, which may lose im-portant information in the training set. In contrast,our boosting-style algorithm generates an ensembleof classi�ers through adjusting instance weights andavoids such detrimental information loss.Comparison of boosted LazyDT and AdaBoost:To compare the performance of our algorithm toboosted regular decision trees, we implemented theAdaBoost algorithm based on MLC++ (Kohavi et al.,1994) and the C4.5 source code. Note that C4.5 wasrun in its default mode with pruning enabled.Table 3 presents the accuracy and the average deci-sion path length of the resulting ensembles of the twoalgorithms. The average decision path length is calcu-lated as follows. For each test instance, we calculatethe decision path length averaged over all classi�ers inthe ensemble and then take the average across all testinstances. For a regular decision tree, the path that istaken by the test instance is used as its decision path.We observe from Table 3 that boosted LazyDT givescomparable performance to boosted regular decisiontrees. There is no strong evidence for superiority of

either algorithm. However, we observe that the aver-age decision path length of the boosted lazy decisiontrees is signi�cantly (on average 41.77%) shorter thanboosted regular decision trees. The Monk2 data set isan interesting outlier in the results. It contains an ar-ti�cial concept that can not be represented by the C4.5decision tree. In this case, the path length of the regu-lar decision tree ensemble is extremely short but suchsimplicity comes with a large sacri�ce of accuracy { itfails to capture the underlying concept and performspoorly as opposed to the LazyDT ensemble. Excludingthe Monk2 data set, the average decision path lengthof boosted lazy decision trees is 50% shorter than thatof boosted regular decision trees.5. Further Improvement with PruningA drawback of LazyDT is that it is highly prone toover-�tting. This is because LazyDT grows a deci-sion path until a pure node is reached. We believean e�ective pruning strategy will reduce over-�ttingand improve the performance of LazyDT|in fact, lackof pruning is considered \the weakest point" of theLazyDT algorithm in the original paper (Friedmanet al., 1996). In this section we introduce our distance-based pruning strategy for LazyDT.As the decision path generated by LazyDT has theform of a decision rule, LazyDT pruning is closely re-lated to rule pruning. Traditional rule pruning tech-niques (Quinlan, 1993; Cohen, 1995; Cohen & Singer,1999) prune an overly-speci�c rule by deleting testsfrom the rule and evaluating the resulting rules with ahold-out pruning set or the original training set. Typ-ically the goal of such pruning is to produce a moregeneral rule for the particular class that is covered bythe rule. For LazyDT, a decision rule is generated toclassify a given test instance. A proper pruning heuris-



20 25 30 35 40 45 50 55
0

20

40

60

80

100

120

140

Test instance 
Rule boundary 

Class x 

Class o 

(a) Original decision rule 20 25 30 35 40 45 50 55
0

20

40

60

80

100

120

140

Test instance 

Class o 

Class x 

Rule boundary (b) Pruned decision ruleFigure 2. An example of LazyDT pruning from Tahoe datasettic should evaluate a rule's e�ectiveness in classifyingthe given test instance. However, traditional rule prun-ing heuristics such as the class coverage over a pruningset or the training set can not ful�ll this task. A morefundamental problem is that applying traditional rulepruning techniques to LazyDT will not correct anyclassi�cation mistakes since these techniques alwaysassociate the rule with the same class label through-out the pruning process.Visually a lazy decision rule de�nes a region containingthe test instance in the instance space and labels thetest instance based on the majority class within thisregion. Intuitively we would like the test instance tobe at the center of the de�ned region, which ideallyis homogeneous, compact and far away from the otherclasses. We designed our pruning heuristic based onthis intuition.Let S = f< xi; yi >: i = 1; 2; :::; ng be the trainingset, where xi is the feature vector of instance i andyi is its class label that takes a value from the setY = f1; 2; :::;mg. Let Ci represent the set of traininginstances belonging to class i. A rule R partitions Sinto two disjoint sets < and �<, where < contains all theinstances that are covered by the rule and �< containsthe rest. To evaluate the goodness of R with respect toclassifying test instance x, we calculate the <-distanceand �<-distance of R with respect to x as follows.De�nition 1: Df (x;A), the distance between an in-stance x and an instance set A, is de�ned as the av-erage Euclidean distance between x and its k-nearestneighbors in set A where the Euclidean distance is cal-culated on feature set f .

Assume rule R predicts class j and let fr be the featureset that is used by R, we de�ne:De�nition 2:<-distance = Df r(x;Cj \ <)i.e., the distance between x and the instance set Cj\<calculated on the feature set fr.De�nition 3:�<-distance = miny2Y�fjgDf r(x;Cy)The above distance measurements are both de�ned ina subspace formed with the set of features used by therule R. <-distance measures the distance between thetest instance and the majority class in the set < and�<-distance measures the distance between the test in-stance and the closest cluster of instances from otherclasses. A rule with a small <-distance and a large �<-distance for the test instance is considered good sinceit has the properties we described above. In light ofthe fact that for di�erent rules di�erent numbers offeatures are used to calculate the distance, the ratio�<�distance<�distance is used to remove the inuence of dimen-sionality. A larger heuristic value indicates a betterrule. Currently our heuristic is limited to data setswith only numeric features and k in De�nition 1 isarbitrarily set to be ten.Our pruning algorithm works iteratively. In each iter-ation, the algorithm performs a greedy search to selecta deletion of test from the rule conditions. Each possi-ble deletion produces a candidate rule, whose goodnessis evaluated using the heuristic de�ned above. Thedeletion that results in the largest heuristic improve-ment will be performed|resulting in a new rule. This



Table 4. Accuracy of LazyDT and boosted LazyDT with and without pruningDataset Cleveland Pima Road TahoeLazyDT 71.95�2.19 72.04�0.70 78.52�0.26 72.31�0.41Pruned LazyDT 73.01�2.15 74.27�1.14 79.84�0.21 74.95�0.52BO-LazyDT 76.73�1.06 73.13�0.74 79.86�0.45 74.31�0.37Pruned BO-LazyDT 78.25�1.09 76.00�0.61 80.58�0.28 75.66�0.20process repeats until no further improvement can beachieved. Note that a pruned rule will give a di�erentprediction if the new region it de�nes has a di�erentmajority class. This is fundamentally di�erent fromregular rule pruning techniques { making it possiblefor the proposed pruning strategy to correct a classi�-cation mistake made by an original rule.Figure 2 shows a pruning example from the Tahoe dataset. This data set has �ve classes, among which twoare shown in the �gure as \o" and \x". The othersare omitted because they are either not present nearthe region de�ned by the rule or are too rare to be no-ticed. The original rule, shown in Figure 2(a), consistsof three tests on two features. It de�nes a region con-taining only class \x"instances and classi�es the testinstance as class \x". However, the test instance isclose to the region boundary and is visually closer toclass \o" than to the predicted class \x". The prunedrule, shown in Figure 2(b), de�nes a new region with adi�erent majority class and classi�es the test instanceas class \o"|the real class of the test instance in thiscase. Our pruning strategy successfully corrected themistake made by the original rule. Note that the pro-posed pruning strategy is built on an intuitive heuristicwithout a certain guarantee, therefore it may also re-verse a correct classi�cation in some cases. However,we hypothesize that on average this strategy will im-prove the classi�cation accuracy and our preliminaryexperiments support this hypothesis.We applied the proposed pruning strategy to LazyDTand boosted LazyDT with an ensemble size of ten. InTable 4 we report the accuracy of LazyDT and boostedLazyDT with and without pruning on four data sets.Only four data sets are used here because our currentimplementation of the pruning method can not handlenon-numeric features or missing values. On average,pruning improves the accuracy of LazyDT by 1.81%.For boosted LazyDT, pruning also improves the accu-racy by an average of 1.61%. In addition, pruning sig-ni�cantly reduces the complexity of the resulting rules{ on average we observe a 22% size reduction for reg-ular LazyDT and 25% reduction for boosted LazyDT.The average length of pruned LazyDT and LazyDT

ensemble is 2.13 and 2.19 respectively. This indicatesthat most resulting rules use only two or three features,forming a low dimensional feature space in which wecan easily visualize the rules. We believe this cangreatly enhance the comprehensibility of the resultingdecision rules.Because the experiments are somewhat limited, we cannot conclusively comment on the e�ectiveness of ourpruning algorithm in general. However, the prelimi-nary results do indicate that the pruning algorithm ispotentially useful for handling the over-�tting problemfor the LazyDT algorithm and it merits more thoroughexamination. The ensemble performance gain inducedby pruning is rather interesting because previous work(Bauer & Kohavi, 1999; Dietterich, 2000) has indi-cated that pruning often has no signi�cant impact onthe performance of boosted decision tree ensembles.Here we provide two possible explanations. First, ourexperiments set the ensemble size to be ten, the ef-fect of pruning may become negligible if larger ensem-bles are used. Second, this is also possibly due to thefact that our \boosting" algorithm is only a \boosting-style" algorithm { pruning may have a di�erent impactin this case.A drawback of our pruning heuristic is that it is biasedtoward the majority class, thus minority class perfor-mance may degrade. For example, the Tahoe dataset has two minority classes - class 2 and 4, togethercovering only 4.74% of the whole data set. Pruning de-creased the accuracy of LazyDT on these two classesfrom 14.34% to 9.06%. We conjecture that this is be-cause on average a test instance is more likely to becloser to majority class instances because there aremany more of them in the instance space. Future workwill address how to incorporate a cost function into ourpruning process to alleviate this problem for data setswhere the misclassi�cation cost of a minority class isgreater than that of a majority class.6. ConclusionsIn this paper, we presented and empirically evaluated arelevance-based boosting-style algorithm to build lazy



decision tree ensembles. Given a test instance, thealgorithm builds an ensemble of lazy decision treesby adjusting training instance weights and then usesmajority vote to make the �nal classi�cation. Thetraining instance weights are adjusted according totheir relevance to classifying the given test instance.Experimental results show that our boosted lazy de-cision trees signi�cantly outperform the base learnerLazyDT. Compared to bagged LazyDT, our algorithmshows more consistent performance improvement overLazyDT. In comparison with boosted regular decisiontrees, boosted LazyDT achieves better comprehensibil-ity while maintaining comparable accuracy. A problemof the proposed algorithm is that it is time-ine�cient.We see its best use in situations where the number oftest instances is limited and the classi�er's accuracyand comprehensibility are both important for individ-ual test instances.A second contribution of this paper is a novel distance-based pruning technique for LazyDT. Di�erent fromtraditional rule pruning methods, our method is capa-ble of correcting classi�cation mistakes for the giventest instance. Demonstrated by preliminary experi-mental results, our pruning method produces simplerlazy decision trees with improved classi�cation perfor-mance. As explained in Section 5, our pruning methodis biased against minority classes, thus should not beused when minority class accuracy is more importantthan overall accuracy. Indeed an open question is howto incorporate misclassi�cation costs into LazyDT andour pruning technique.In boosting algorithms such as AdaBoost, when a baselearner fails to generate a classi�er with an accuracyover 50%, the boosting process will stop or be reset andthe \bad" classi�er will be discarded. Such a stoppingcriterion is missing in our relevance-based LazyDT en-semble algorithm. In our future work we will investi-gate using the distance-based heuristic to weight therules to avoid strong detrimental inuence of \bad"rules.AcknowledgmentThe authors were supported by NASA under Awardnumber NCC2-1245. Many thanks to the anonymousreviewers for their valuable comments that helped im-prove this paper.ReferencesBauer, E., & Kohavi, R. (1999). An empirical com-parison of voting classi�cation algorithms: Bagging,boosting, and variants. Machine Learning, 36, 105{

139.Blake, C. L., & Merz, C. J. (1998). UCI repository ofmachine learning databases.Breiman, L. (1996). Bagging predictors. MachineLearning, 24, 123{140.Cohen, W. W. (1995). Fast e�ective rule induction.Proceedings of the Twelfth International Conferenceon Machine Learning (pp. 115{123).Cohen, W. W., & Singer, Y. (1999). A simple, fast, ande�ective rule learner. Proceedings of the SixteenthNational Conference on Arti�cial Intelligence (pp.335{342).Dietterich, T. G. (2000). An experimental comparisonof three methods for constructing ensembles of de-cision trees: Bagging, boosting, and randomization.Machine Learning, 40, 139{157.Freund, Y., & Schapire, R. E. (1996). Experimentswith a new boosting algorithm. Proceedings ofthe Thirteenth International Conference on MachineLearning (pp. 148{156). Morgan Kaufmann.Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and anapplication to boosting. Journal of Computer andSystem Science, 55, 119{139.Friedman, J. H., Kohavi, R., & Yun, Y. (1996). Lazydecision trees. Proceedings of the Thirteenth Na-tional Conference on Arti�cial Intelligence (pp. 717{724). AAAI Press.Kohavi, R., John, G., Long, R., Manley, D., & Peger,K. (1994). MLC++: A machine learning library inC++.Margineantu, D. D., & Dietterich, T. G. (2002). Im-proved class probability estimates from decision treemodels. Nonlinear Estimation and Classi�cation;Lecture Notes in Statistics (pp. 169{184).Pagallo, G., & Haussler, D. (1990). Boolean featurediscovery in empirical learning. Machine Learning,5, 71{99.Quinlan, R. J. (1993). C4.5: Programs for machinelearning. Morgan Kaufmann.Quinlan, R. J. (1996). Bagging, boosting, and C4.5.Proceedings of the Thirteenth National Conferenceon Arti�cial Intelligence (pp. 725{730).Schapire, R. E., & Singer, Y. (1999). Improved boost-ing algorithms using con�dence-rated predictions.Machine Learning, 37, 297{336.


