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Abstract. We prove the following facts about the language recognition
power of quantum Turing machines (QTMs) in the unbounded error
setting: QTMs are strictly more powerful than probabilistic Turing ma-
chines for any common space bound s satisfying s(n) = o(log log n). For
“one-way” Turing machines, where the input tape head is not allowed
to move left, the above result holds for s(n) = o(log n). We also give a
characterization for the class of languages recognized with unbounded
error by real-time quantum finite automata (QFAs) with restricted mea-
surements. It turns out that these automata are equal in power to their
probabilistic counterparts, and this fact does not change when the QFA
model is augmented to allow general measurements and mixed states.
Unlike the case with classical finite automata, when the QFA tape head
is allowed to remain stationary in some steps, more languages become
recognizable. We define and use a QTM model that generalizes the other
variants introduced earlier in the study of quantum space complexity.

1 Introduction

The investigation of the power of space-bounded quantum computers was
initiated byWatrous [32–34], who defined several machine models suitable
for the analysis of this problem, and proved that those quantum machines
are equivalent to probabilistic Turing machines (PTMs) for any common
space-constructible bound s(n) ∈ Ω(log n) in the unbounded error case.
Together with Kondacs, Watrous also examined the case of constant space
bounds, defining [16] a quantum finite automaton (QFA) variant, which
inspired a fruitful line of research [2–5,9, 11,14,21,23,37,40].
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ternational Computer Science Symposium in Russia, pages 356–367, 2009.
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(TÜBİTAK) with grant 108E142.
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In this paper, we answer two open questions posed in the previous
study of space-bounded quantum complexity regarding sublogarithmic
space bounds. We first show that unbounded-error quantum Turing ma-
chines are strictly more powerful than PTMs for any common space bound
s satisfying s(n) = o(log log n). For “one-way” Turing machines, where
the input tape head is not allowed to move left, the above result holds
for s(n) = o(log n). We then give a full characterization of the class of
languages recognized with unbounded error by real-time QFAs with re-
stricted measurements. It turns out that these automata have the same
power as their classical counterparts, and this fact does not change when
the QFA definition is generalized in accordance with the modern ap-
proach [6, 14]. Unlike the case with classical finite automata, when the
QFA tape head is allowed two-way movement, or even just the option of
remaining stationary during some steps, more languages become recog-
nizable.

As hinted above, early models of QTMs and QFAs [16, 19, 33] were
unduly restricted in their definitions, and did not reflect the full poten-
tial of quantum mechanics in their computational power. This problem
was later addressed [5, 14, 34] by the incorporation of general quantum
operations and mixed states into the models. Aiming to provide the most
general reasonable machine model for the study of quantum space com-
plexity, while taking into account the peculiarities of small space bounds,
we define a QTM variant of our own. The other QTM models are shown
to be specializations of our variant. We conjecture that our model is more
powerful than the other variants, at least for some space bounds.

The rest of this paper is structured as follows: Section 2 contains
relevant background information. The machine models we use, including
our new variant, are defined in Section 3. The superiority of QTMs over
PTMs for a range of small space bounds is established in Section 4. In
Section 5, we characterize the languages recognized with unbounded error
by all QFAs that are at least as powerful as the “Kondacs-Watrous”
model. Section 6 is a conclusion. Some technical details about our various
quantum models are covered in the Appendices.

2 Preliminaries

We start by introducing some notation and terminology that will be used
frequently in the remainder of the paper.



2.1 Basic notation

The following is a list of notational items that appear throughout the
paper:

– Σ is the input alphabet, not containing the end markers ¢ and $, and
Σ̃ = Σ ∪ {¢, $}.

– Γ is the work tape alphabet, containing a distinguished blank symbol
denoted #.

– ∆ denotes the finite set of measurement outcomes.
– Q is the set of internal states, where q1 is the initial state.
– δ is the transition function, which determines the behaviour of the

machine.
– ⊳⊲ is the set {←, ↓,→}, where ← means that the (corresponding)

head moves one square to the left, ↓ means that the head stays on the
same square, and → means that the head moves one square to the
right.

– fM(w) is the acceptance probability (or, in one context, the accep-
tance value) associated by machineM to input string w .

– ε is the empty string.
– For a given string w, |w| is the length of w, wi is the i

th symbol of w,
and w̃ represents the string ¢w$.

– N is the set of nonnegative integers.
– Z+ is the set of positive integers.
– For a given (row or column) vector v, v[i] is the ith entry of v.
– For a given matrix A, A[i, j] is the (i, j)th entry of A.
– Some fundamental conventions in Hilbert space are as follows:
• v and its conjugate transpose are denoted |v〉 and 〈v|, respectively;
• the multiplication of 〈v1| and |v2〉 is shortly written as 〈v1|v2〉;
• the tensor product of |v1〉 and |v2〉 can also be written as |v1〉|v2〉

instead of |v1〉 ⊗ |v2〉,
where v, v1, and v2 are vectors.

2.2 Language recognition

The language L ⊂ Σ∗ recognized by machine M with (strict) cutpoint
λ ∈ R is defined as

L = {w ∈ Σ∗ | fM(w) > λ}. (1)

The language L ⊂ Σ∗ recognized by machineM with nonstrict cutpoint
λ ∈ R is defined [10] as

L = {w ∈ Σ∗ | fM(w) ≥ λ}. (2)



The language L ⊂ Σ∗ is said to be recognized by machine M with un-
bounded error if there exists a cutpoint λ ∈ R such that L is recognized
byM with strict or nonstrict cutpoint λ.

3 Space-bounded Turing machines

The Turing machine (TM) models we use in this paper consist of a read-
only input tape with a two-way tape head, a read/write work tape with a
two-way tape head, and a finite state control. (The quantum versions also
have a finite register that plays a part in the implementation of general
quantum operations, and is used to determine whether the computation
has halted, and if so, with which decision. For reasons of simplicity, this
register is not included in the definition of the probabilistic machines,
since its functionality can be emulated by a suitable partition of the set
of internal states without any loss of computational power.) Both tapes
are assumed to be two-way infinite and indexed by Z.

Let w be an input string. On the input tape, w̃ = ¢w1 . . . w|w|$ is
placed in the squares indexed by 1, . . . , |w̃|, and all remaining squares
contain #. When the computation starts, the internal state is q1, and
both heads are placed on the squares indexed by 1. Additionally, we
assume that the input tape head never visits the squares indexed by 0 or
|w̃|+ 1.

The internal state and the symbols scanned on the input and work
tapes determine the transitions of the machine. After each of these tran-
sitions, the internal state is updated, the symbol on the work tape is
overwritten, and the positions of the input and work tape heads are up-
dated with respect to ⊳⊲. (In the quantum case, the content of the finite
register is overwritten, too.)

A TM is said to be unidirectional if the movements of input and work
tape heads are fixed for each internal state to be entered in any transition.
That is, for a unidirectional TM, we have two functions Di : Q → ⊳⊲

and Dw : Q→ ⊳⊲, determining respectively the movements of the input
and work tape heads.

A configuration of a TM is the collection of

– the internal state of the machine,

– the position of the input tape head,
– the contents of the work tape, and the position of the work tape head.

Cw, or shortly C, denotes the set of all configurations, which is a finite
set in our case of space bounded computations. Let ci and cj be two



configurations. The probability (or amplitude) of the transition from ci
to cj is given by the transition function δ if ci is reachable from cj in
one step, and is zero otherwise. (Note that, in probabilistic and quantum
computation, more than one outgoing transition can be defined for a
single configuration.) A configuration matrix is a square matrix whose
rows and columns are indexed by the configurations. The (j, i)th entry of
the matrix denotes the value of the transition from ci to cj .

We say that [32] a TMM runs in space s, for s a function of the form
s : N → Z+, if the following holds for each input w: There exist s(|w|)
contiguous tape squares on the work tape of M such that there is zero
probability that the work tape head of M leaves these tape squares at
any point in its computation on input w.

By restricting the movement of the input tape head to the set {↓,→},
we obtain a one-way machine.

3.1 Probabilistic Turing machines

A probabilistic Turing machine (PTM) is a 7-tuple1

P = (Q,Σ, Γ, δ, q1, Qa, Qr), (3)

whereQa and Qr, disjoint subsets ofQ not including q1, are the collections
of accepting and rejecting internal states, respectively. Additionally, Qn =
Q \ {Qa ∪Qr}.

The transition function δ is specified so that

δ(q, σ, γ, q′, γ′) ∈ R̃ (4)

is the probability that the PTM will change its internal state to q′, write
γ′ on the work tape, and update the positions of the input and work tape
heads with respect to Di(q

′) and Dw(q
′), respectively,2 if it scans σ and

γ on the input and work tapes, respectively, when originally in internal
state q. R̃ is the set consisting of p ∈ R such that there is a deterministic
algorithm that computes p to within 2−n in time polynomial in n. We
choose R̃∩ [0, 1] as our set of possible transition probabilities, rather than
the familiar “coin-flipping” set {0, 12 , 1}, or the set of rational numbers,
since these possibilities are not known to be equivalent from the point

1 Recall that some notation and terminology which will be used multiple times in this
and the following definitions were introduced in Section 2.1.

2 We define PTMs as unidirectional machines. This causes no loss of computational
power, and increases the number of internal states in our machines at most by a
factor of 9.



of view of computational power under the small space bounds that we
consider, and we wish to use the most powerful yet “reasonable” models
in our analysis.

For each input string w ∈ Σ∗, the transition function defines a unique
configuration matrix, Aw, or shortly A. A PTM is well-formed (i.e. fulfills
the commonsense requirement that the probabilities of alternative transi-
tions always add up to 1) if all columns of A are stochastic vectors. This
constraint defines the following local conditions for PTM well-formedness
that δ must obey: For each q ∈ Q, σ ∈ Σ̃, and γ ∈ Γ ,

∑

q′,γ′
δ(q, σ, γ, q′, γ′) = 1, (5)

where q′ ∈ Q and γ′ ∈ Γ . A well-formed PTM can be described relatively
easily by specifying δ by presenting, for each σ ∈ Σ̃, a (left) stochastic
transition matrix Aσ, whose rows and columns are indexed by (state,
work tape symbol) pairs, and the entry indexed by ((q′, γ′), (q, γ)) equals
δ(q, σ, γ, q′, γ′).

The computation halts and the input is accepted (or rejected) when-
ever the machine enters an internal state belonging to the set of accepting
(or rejecting) states. PrSPACE(s) is the class of the languages that are
recognized by a PTM running in space O(s) with unbounded error.

The case of constant space bounds will be given special attention: By
removing the work tape of the PTM,3 we obtain the two-way probabilistic
finite state automaton (2PFA), which is formally a 6-tuple

P = (Q,Σ, δ, q1, Qa, Qr). (6)

In this case, a well-formed machine can be specified by providing a (left)
stochastic matrix Aσ, whose rows and columns are indexed only by inter-
nal states, for each σ ∈ Σ̃.

In both probabilistic and quantum finite automata [16, 24, 25], the
transition probabilities are traditionally allowed to be uncomputable num-
bers, and therefore the classes of recognized languages include undecid-
able ones [25]. TMs, however, are restricted to use computable transition
probabilities, as seen in the definition above. Note that the simulation
results in this paper do not change when we disallow finite automata to
have uncomputable numbers as transition probabilities, since none of our
constructions involve such numbers.

3 One only needs the single “direction” function Di in this case.



If we restrict the range of Di in 2PFAs with {→}, we obtain the real-
time probabilistic finite automaton (RT-PFA) model. A RT-PFA can scan
the input only once. Traditionally, RT-PFAs are defined to be able to
decide on acceptance or rejection only after the last symbol is read, and
just specifying the set of accepting states in their description is therefore
sufficient, yielding a 5-tuple

P = (Q,Σ, {Aσ | σ ∈ Σ̃}, q1, Qa). (7)

The computation of a RT-PFA can be traced by a stochastic state vector,
say v, such that v[i] corresponds to state qi. For a given input string
w ∈ Σ∗, (w̃ = ¢w$ is placed on the tape)

vi = Aw̃i
vi−1, (8)

where 1 ≤ i ≤ |w̃|; w̃i is the i
th symbol of w̃; v0 is the initial state vector

whose first entry is equal to 1. The transition matrices of a RT-PFA can
be extended for any string as

Awσ = AσAw, (9)

where w ∈ Σ∗, σ ∈ Σ̃, and Aε = I. The probability that w will be
accepted by RT-PFA P is

fP(w) =
∑

qi∈Qa

(Aw̃v0)[i] =
∑

qi∈Qa

v|w̃|[i]. (10)

A generalization of the RT-PFA is the generalized finite automaton
(GFA), which is formally a 5-tuple

G = (Q,Σ, {Aσ | σ ∈ Σ}, v0, f), (11)

where

1. Aσ’s are |Q| × |Q|-dimensional real valued transition matrices;

2. v0 and f are real valued initial (column) and final (row) vectors,
respectively.

Similar to what we had for RT-PFAs, the transition matrices of a GFA
can be extended for any string. For a given input string, w ∈ Σ∗, the
acceptance value associated by GFA G to string w is

fG(w) = fAw|w| · · ·Aw1
v0 = fAwv0. (12)



RT-PFAs, GFAs [30], and 2PFAs [15] recognize the same class of lan-
guages with cutpoint. This is the class of stochastic languages, denoted by
S. The class of languages recognized by these machines with nonstrict cut-
point is denoted by coS. The class of languages recognized by RT-PFAs,
GFAs, and 2PFAs with unbounded error is therefore S ∪ coS, and is de-
noted by uS. Note that PrSPACE(1) ( uS, since uS contains undecidable
languages.

3.2 Quantum Turing machines

We define a quantum Turing machine (QTM)M to be a 7-tuple

M = (Q,Σ, Γ,Ω, δ, q1,∆), (13)

which is distinguished from the PTM by the presence of the items Ω,
the finite register alphabet, containing the special initial symbol ω1, and
∆ = {τ1, . . . , τk}, the set of possible outcomes associated with the mea-
surements of the finite register. Ω is partitioned into |∆| = k subsets
Ωτ1 , . . . , Ωτk .

In accordance with quantum theory, a QTM can be in a superposition
of more than one configuration at the same time. The “weight” of each
configuration in such a superposition is called its amplitude. Unlike the
case with PTMs, these amplitudes are not restricted to being positive
real numbers, and that is what gives quantum computers their interesting
features. A superposition of configurations

|ψ〉 = α1|c1〉+ α2|c2〉+ · · ·+ αn|cn〉 (14)

can be represented by a column vector |ψ〉 with a row for each possible
configuration, where the ith row contains the amplitude of the correspond-
ing configuration in |ψ〉.

If our knowledge that the quantum system under consideration is
in superposition |ψ〉 is certain, then |ψ〉 is called a pure state, and the
vector notation described above is a suitable way of manipulating this
information. However, in some cases (e.g. during classical probabilistic
computation), we only know that the system is in state |ψl〉 with prob-
ability pl for an ensemble of pure states {(pl, |ψl〉)},where

∑

l pl = 1. A
convenient representation tool for describing quantum systems in such
mixed states is the density matrix. The density matrix 4 representation of

4 Density matrices are Hermitian positive semidefinite matrices of trace 1.



{(pl, |ψl〉) | 1 ≤ l ≤M <∞} is

ρ =
∑

l

pl|ψl〉〈ψl|. (15)

We will use both these representations for quantum states in this paper.
We refer the reader to [22] for further details.

The initial density matrix of the QTM is represented by ρ0 = |c1〉〈c1|,
where c1 is the initial configuration corresponding to the given input
string.

The transition function of a QTM is specified so that

δ(q, σ, γ, q′, di, γ
′, dw, ω) ∈ C̃ (16)

is the amplitude with which the QTM will change its internal state to
q′, write γ′ on the work tape and ω in the finite register, and update the
positions of the input and work tape heads with respect to di and dw,
respectively, where di, dw ∈ ⊳⊲, if it scans σ and γ on the input and work
tapes, respectively, when originally in internal state q. C̃ [7] is the set of
complex numbers whose real and imaginary parts are in R̃.

After each transition, the finite register is measured [22] as described
by the set of operators

P =

{

Pτ | Pτ =
∑

ω∈Ωτ

|ω〉〈ω|, τ ∈ ∆
}

. (17)

In its standard usage, ∆ is the set {a, n, r}, and the following actions are
associated with the measurement outcomes:

– “n”: the computation continues;
– “a”: the computation halts, and the input is accepted;
– “r”: the computation halts, and the input is rejected.

The finite register is reinitialized to ω1, irreversibly erasing its previous
content, before the next transition of the machine.

Since we do not consider the register content as part of the config-
uration, the register can be seen as the “environment” interacting with
the “principal system” that is the rest of the QTM [22]. The transition
function δ therefore induces a set of configuration transition matrices,
{Eω | ω ∈ Ω}, where the (i, j)th entry of Eω, the amplitude of the
transition from cj to ci by writing ω ∈ Ω on the register, is defined
by δ whenever cj is reachable from ci in one step, and is zero other-
wise. The {Eω | ω ∈ Ω} form an operator E , with operation elements
Eτ1 ∪ Eτ2 ∪ · · · ∪ Eτk , where for each τ ∈ ∆, Eτ = {Eω | ω ∈ Ωτ}.



According to the modern understanding of quantum computation [1],
a QTM is said to be well-formed5 if E is a superoperator (selective quan-
tum operator), i.e.

∑

ω∈Ω
E†

ωEω = I. (18)

E can be represented by a |C||Ω| × |C|-dimensional matrix E (Figure 1)
by concatenating each Eω one under the other, where ω ∈ Ω. It can be
verified that E is a superoperator if and only if the columns of E form an
orthonormal set.

c1 c2 . . . c|C|
c1
c2
... Eω1

c|C|
c1
c2
... Eω2

c|C|
c1
c2
...

...
c|C|
c1
c2
... Eω|Ω|

c|C|

Fig. 1. Matrix E

Let cj1 and cj2 be two configurations with corresponding columns vj1
and vj2 in E. For an orthonormal set to be formed, we must have

v†j1 · vj2 =
{

1 j1 = j2
0 j1 6= j2

(19)

5 We also refer the reader to [7] for a detailed discussion of the well-formedness of
QTMs that evolve unitarily.



for all such pairs. This constraint imposes some easily checkable restric-
tions on δ. The (quite long) list of these local conditions for QTM well-
formedness can be found in [36].

PrQSPACE(s) is the class of languages that are recognized by QTMs
running in space O(s) with unbounded error. (Note that this complexity
class has been defined and used by Watrous in references [33, 34]. As we
will demonstrate shortly, our QTM model is at least as powerful as the
models used in those papers, and it may well be strictly more powerful
than them. Since the aim is to understand the full power of space-bounded
quantum computation, we suggest it would make sense to adopt our def-
inition of PrQSPACE as the standard.)

It is a well-established fact [35] that any quantum computational
model defined using superoperators can efficiently simulate its classical
counterpart, and so PrSPACE(s) ⊆ PrQSPACE(s) for all s. Some early
models used in the study of space-bounded quantum computation, which
do not make full use of the capabilities allowed by quantum mechanics,
can fail to achieve some tasks that are possible for the corresponding
classical machines [16,19].

The two-way quantum finite automaton (2QFA) is obtained by re-
moving the work tape of the QTM:

M = (Q,Σ,Ω, δ, q1,∆). (20)

The transition function of a 2QFA is therefore specified so that

δ(q, σ, q′, di, ω) ∈ C (21)

is the amplitude with which the machine enters state q′, writes ω on
the register, and updates the position of the input tape with respect to
di ∈ ⊳⊲, if it reads σ on the input tape when originally in state q. See Ap-
pendix A for a list of easily checkable local conditions for wellformedness
of 2QFAs.

In the remainder of this section, we will examine some specializations
of the QTM model that have appeared in the literature.

QTMs with classical heads Although our definition of space usage as
the number of work tape squares used during the computation is standard
in the study of small as well as large space bounds [13, 28, 29], some
researchers prefer to utilize QTM models where the tape head locations
are classical (i.e. the heads do not enter quantum superpositions) to avoid
the possibility of using quantum resources that increase with input size



for the implementation of the heads. For details of this specialization of
our model, which we call the QTM with classical heads (CQTM), see
Appendix B, which also includes a demonstration of the fact that all
quantum machines can simulate their probabilistic counterparts easily.

Watrous’ QTMmodel in [34], which we call Wa03-QTM for ease of ref-
erence, is a CQTM variant that has an additional classical work tape and
classical internal states. Every Wa03-QTM can be simulated exactly (i.e.
preserving the same acceptance probability for every input) by CQTMs
with only some time overhead.6 Note that Wa03-QTMs allow only alge-
braic transition amplitudes by definition.

Let us consider real-time versions of 2QFAs, whose tape heads are
forced by definition to have classical locations [23]. If the quantum ma-
chine model used is sufficiently general, then the intermediate measure-
ments can be postponed easily to the end of the algorithm in real-time
computation. That final measurement can be performed on the set of in-
ternal states, rather than the finite register. Therefore, as with RT-PFAs,
we specify a subset of the internal states of the machine as the collection
of accepting states, denoted Qa.

A real-time quantum finite automaton (RT-QFA) [14] is a 5-tuple

M = (Q,Σ, {Eσ | σ ∈ Σ̃}, q1, Qa), (22)

where each Eσ is an operator having elements {Eσ,1, . . . , Eσ,k} for some
k ∈ Z+ satisfying

k
∑

i=1

E†
σ,iEσ,i = I. (23)

Additionally, we define the projector

Pa =
∑

q∈Qa

|q〉〈q| (24)

in order to check for acceptance. For any given input string w ∈ Σ∗,
w̃ is placed on the tape, and the computation can be traced by density
matrices

ρj = Ew̃j
(ρj−1) =

k
∑

i=1

Ew̃j ,iρj−1E
†
w̃j ,i

, (25)

6 We omit the proof here, but it is not hard to show how to simulate the classical
components of a Wa03-QTM within a CQTM.



where 1 ≤ j ≤ |w̃|, and ρ0 = |q1〉〈q1| is the initial density matrix. This is
how density matrices evolve according to superoperators [22]. The tran-
sition operators can be extended easily for any string as

Ewσ = Eσ ◦ Ew, (26)

where w ∈ Σ∗ and Eε = I. Note that, if E = {Ei | 1 ≤ i ≤ k} and
E ′ = {E′

j | 1 ≤ j ≤ k′}, then

E ′ ◦ E = {E′
jEi | 1 ≤ i ≤ k, 1 ≤ j ≤ k′}. (27)

The probability that RT-QFAM will accept w is

fM(w) = tr(PaEw̃(ρ0)) = tr(Paρ|w̃|). (28)

The class of languages recognized by RT-QFAs with cutpoint is de-
noted by QAL. The class of languages recognized by these machines with
nonstrict cutpoint is denoted by coQAL. QAL ∪ coQAL is denoted by
uQAL.

Lemma 1. For any RT-QFA M with n internal states, there exists a
GFA G with n2 internal states such that fM(w) = fG(w) for all w ∈ Σ∗.

Proof. Let M = (Q1, Σ, {Eσ | σ ∈ Σ̃}, q1, Qa) be the RT-QFA with n
internal states, and let each Eσ have k elements, without loss of generality.
We will construct GFA G = (Q2, Σ, {Aσ | σ ∈ Σ}, v0, f) with n2 internal
states. We start by building an intermediate GFA G′ = (Q3, Σ, {A′

σ | σ ∈
Σ}, v′0, f ′) with the required simulation property but with 2n2 states. We
will use the mapping vec described in Figure 2 in order to linearize the
computation ofM, so that it can be traced by G′.

We define
v′′0 = vec(ρ1), (32)

where

ρ1 = E¢(ρ0) =
k

∑

i=1

E¢,iρ0E
†
¢,i
. (33)

For each σ ∈ Σ, we define

A′′
σ =

k
∑

i=1

Eσ,i ⊗ E∗
σ,i, (34)

and so we obtain (by Equations 25 and 30)

vec(Eσ(ρ)) = A′′
σvec(ρ) (35)



Let A, B, and C be n× n dimensional matrices. vec is a linear mapping from
n× n matrices to n2 dimensional (column) vectors defined as

vec(A)[(i− 1)n+ j] = A[i, j], (29)

where 1 ≤ i, j ≤ N . One can verify the following properties:

vec(ABC) = (A⊗C
T )vec(B) (30)

and
tr(AT

B) = vec(A)T vec(B). (31)

Fig. 2. The definition and properties of vec (see Page 73 in [34])

for any density matrix ρ. Finally, we define

f ′′ = vec(Pa)
T

k
∑

i=1

E$,i ⊗ E∗
$,i. (36)

It can be verified by using Equation 31 that for any input string w ∈ Σ∗,

f ′′A′′
w|w| · · ·A

′′
w1
v′′0 = tr(PaE$ ◦ Ew ◦ E¢(ρ0)) = fM(w). (37)

The complex entries of v′′0 , {A′′
σ | σ ∈ Σ}, and f ′′ can be replaced [19]

with 2× 2 dimensional real matrices,7 and so we obtain the equations

(

fM(w) 0
0 fM(w)

)

= f ′′′A′′′
w|w| · · ·A

′′′
w1
v′′′0 , (38)

where the terms with triple primes are obtained from the corresponding
terms with double primes. We finish the construction of G′ by stating that

1. v′0 is the first column of v′′′0 ,
2. A′

σ is equal to A′′′
σ , for each σ ∈ Σ, and

3. f ′ is the first row of f ′′′.

We refer the reader to [18, 19, 38], that present similar constructions for
other types of real-time QFAs. The remainder of this proof is an improve-
ment over these constructions regarding the number of states, and was
kindly suggested to us by one of the anonymous referees of this paper, to
whom we are indebted.

7 a+ bi is replaced with

(

a b

−b a

)

.



Since density matrices are Hermitian, all entries on the main diag-
onal are real, and the entries on the opposite sides of the diagonal are
complex conjugates of each other, meaning that one actually needs only
n2 distinct real numbers to represent the n × n density matrices of M.
So the information in the vector v′0 in the definition of G′ can in fact fit
in an n2-dimensional vector. To perform conversions between these two
representations, we can define two linear operators, denoted L and L′,
such that

– L, an n2 × 2n2-dimensional matrix containing entries from the set
{−1, 0, 1}, transforms 2n2-dimensional vectors in the format of ma-
chine G′ to equivalent n2-dimensional vectors, and

– L′, a 2n2 × n2-dimensional matrix, performs the reverse transforma-
tion.

Hence, the state-efficient GFA G is constructed by setting

1. v0 = Lv′0,
2. Aσ = LA′

σL
′, for each σ ∈ Σ, and

3. f = f ′L′.
⊓⊔

Corollary 1. QAL = S.

We therefore have that real-time unbounded-error probabilistic and quan-
tum finite automata are equivalent in power. We will show in Sections 4
and 5 that this equivalence does not carry over to the two-way case.

QTMs with restricted measurements In another specialization of
the QTM model, the QTM with restricted measurements, the machine is
unidirectional, the heads can enter quantum superpositions,∆ = {n, a, r},
and |Ωn| = |Ωa| = |Ωr| = 1. The first family of QTMs that was formu-
lated for the analysis of space complexity issues [32, 33], which we call
the Wa98-QTM, corresponds to such a model, with the added restriction
that the transition amplitudes are only allowed to be rational numbers.
The finite automaton versions of QTMs with restricted measurements8

are known as Kondacs-Watrous quantum finite automata, and abbrevi-
ated as 2KWQFAs, 1KWQFAs, or RT-KWQFAs, depending on the set
of allowed directions of movement for the input head. These are pure

8 These models, which also allow unrestricted transition amplitudes by the convention
in automata theory, are introduced in the paper written by Kondacs and Watrous
[16].



state models, since the non-halting part of the computation is always
represented by a single quantum state. Therefore, configuration or state
vectors, rather than the density matrix formalism, can be used in order
to trace the computation easily. To be consistent with the literature on
2KWQFAs, we specialize the 2QFA model by the following process:

1. The finite register does not need to be refreshed, since the computation
continues if and only if the initial symbol is observed.

2. In fact, 2KWQFAs do not need to have the finite register at all, in-
stead, similarly to 2PFAs, the set of internal states of the 2KWQFA
is partitioned to sets of nonhalting, accepting, and rejecting states,
denoted Qn, Qa, and Qr, respectively, which can be obtained easily
by taking the tensor product of the internal states of the 2QFA and
the set {n, a, r}.

3. A configuration is designated as nonhalting (resp. accepting or re-
jecting), if its internal state is a member of Qn (resp. Qa or Qr).
Nonhalting (resp. accepting or rejecting) configurations form the set
Cn (resp. Ca or Cr) (for a given input string).

4. The evolution of the configuration sets can be represented by a unitary
matrix.

5. The measurement is done on the configuration set with projectors Pn,
Pa, and Pr, defined as

Pτ =
∑

c∈Cw
τ

|c〉〈c| (39)

for a given input string w ∈ Σ∗, where τ ∈ {n, a, r} and the standard
actions are associated with the outcomes “n”, “a”, and “r”.

Formally, a 2KWQFA is a 6-tuple

M = {Q,Σ, δ, q1, Qa, Qr}, (40)

where Qn = Q \ {Qa ∪ Qr} and q1 ∈ Qn. δ induces a unitary matrix
Uσ, whose rows and columns are indexed by internal states for each input
symbol σ. Since all 2KWQFAs are unidirectional, we will use the notations
←−q , ↓ q, and −→q for internal state q in order to represent the value of Di(q)
as ←, ↓, and →, respectively.

A RT-KWQFA is a 6-tuple

M = {Q,Σ, {Uσ | σ ∈ Σ̃}, q1, Qa, Qr}, (41)

where {Uσ | σ ∈ Σ̃} are unitary transition matrices. In contrast to the
other kinds of real-time finite automata, a RT-KWQFA is measured at



each step during computation after the unitary transformation is applied.
The projectors are defined as

Pτ =
∑

q∈Qτ

|q〉〈q|, (42)

where τ ∈ ∆. The nonhalting portion of the computation of a RT-
KWQFA can be traced by a state vector, say |u〉, such that 〈i|u〉 cor-
responds to state qi. The computation begins with |u0〉 = |q1〉. For a
given input string w ∈ Σ∗, at step j (1 ≤ j ≤ |w̃|):

|uj〉 = PnUw̃j
|uj−1〉, (43)

the input is accepted with probability

||PaUw̃j
|uj−1〉||2, (44)

and rejected with probability

||PrUw̃j
|uj−1〉||2. (45)

The overall acceptance and rejection probabilities are accumulated by
summing up these values at each step. Note that, the state vector repre-
senting the nonhalting portion is not normalized in the description given
above.

Brodsky and Pippenger [11], who studied various properties of some
early models of quantum finite automata, defined the class of languages
recognized by RT-KWQFAs with unbounded error, denoted UMM , in a
way that is slightly different than our approach in this paper: L ∈ UMM
if and only if there exists a RT-KWQFAM such that

– fM(w) > λ when w ∈ L and
– fM(w) < λ when w /∈ L,
for some λ ∈ [0, 1].

For descriptions of several other QTM variants, we refer the reader
to [31] and [17].

4 Probabilistic vs. quantum computation with

sublogarithmic space

Watrous compared the unbounded-error probabilistic space complexity
classes (PrSPACE(s)) with the corresponding classes for both Wa98-
QTMs [32, 33] and Wa03-QTMs [34] for space bounds s = Ω(log n), es-
tablishing the identity of the associated quantum space complexity classes



with each other, and also with the corresponding probabilistic ones. The
case of s = o(log n) was left as an open question [33]. In this section, we
provide an answer to that question.

We already know that QTMs allowing superoperators are at least as
powerful as PTMs for any common space bound. We will now exhibit a
1KWQFA which performs a task that is impossible for PTMs with small
space bounds.

Consider the nonstochastic context-free language [20]

LNH = {axbay1bay2b · · · aytb | x, t, y1, · · · , yt ∈ Z+ and ∃k (1 ≤ k ≤ t), x =
∑k

i=1
yi}

over the alphabet {a, b}. Freivalds and Karpinski [13] have proven the
following facts about LNH :

Fact 1 No PTM using space o(log log n) can recognize LNH with un-
bounded error.

Fact 2 No 1PTM using space o(log n) can recognize LNH with unbounded
error.

There exists a one-way deterministic TM that recognizes LNH within
the optimal space bound O(log n) [13]. No (two-way) PTM which recog-
nizes LNH using o(log n) space is known as of the time of writing.

Theorem 1. There exists a 1KWQFA that recognizes LNH with un-
bounded error.

Proof. Consider the 1KWQFA M = (Q,Σ, δ, q0, Qa, Qr), where Σ =
{a, b}, and the state sets are as follows:

Qn = {−→q0} ∪ {−→qi | 1 ≤ i ≤ 6} ∪ {−→pi | 1 ≤ i ≤ 6} ∪ {−→ai | 1 ≤ i ≤ 4}
∪ {−→ri | 1 ≤ i ≤ 4} ∪ {↓wi | 1 ≤ i ≤ 6},

Qa = {↓Ai | 1 ≤ i ≤ 18}, Qr = {↓Ri | 1 ≤ i ≤ 18}.

Let each Uσ induced by δ act as indicated in Figures 3 and 4, and extend
each to be unitary.

Machine M starts computation on symbol ¢ by branching into two
paths, path1 and path2, with equal probability. Each path and their sub-
paths, to be described later, check whether the input is of the form
(aa∗b)(aa∗b)(aa∗b)∗. The different stages of the program indicated in Fig-
ures 3 and 4 correspond to the subtasks of this regular expression check.
Stage I ends successfully if the input begins with (aa∗b). Stage II checks
the second (aa∗b). Finally, Stage III controls whether the input ends with
(aa∗b)∗.



Stages U¢, Ua U$

U¢|
−→q0〉 =

1√
2
|−→q1 〉+

1√
2
|−→p1〉

I

(path1)

Ua|
−→q1〉 =

1√
2
|−→q2〉+

1

2
|↓A1〉+

1

2
|↓R1〉

Ua|
−→q2〉 =

1√
2
|−→q2〉 −

1

2
|↓A1〉 −

1

2
|↓R1〉

U$|
−→q1〉 =

1√
2
|↓A1〉+

1√
2
|↓R1〉

U$|
−→q2〉 =

1√
2
|↓A2〉+

1√
2
|↓R2〉

U$|
−→q3〉 =

1√
2
|↓A3〉+

1√
2
|↓R3〉

I

(path2)

Ua|
−→p1〉 = |↓w1〉

Ua|↓w1〉 =
1√
2
|−→p2〉+

1

2
|↓A2〉+

1

2
|↓R2〉

Ua|
−→p2〉 = |↓w2〉

Ua|↓w2〉 =
1√
2
|−→p2〉 −

1

2
|↓A2〉 −

1

2
|↓R2〉

U$|
−→p1〉 =

1√
2
|↓A4〉+

1√
2
|↓R4〉

U$|
−→p2〉 =

1√
2
|↓A5〉+

1√
2
|↓R5〉

U$|
−→p3〉 =

1√
2
|↓A6〉+

1√
2
|↓R6〉

II

(path1)

Ua|
−→q3〉 = |↓w3〉

Ua|↓w3〉 =
1√
2
|−→q4〉+

1

2
|↓A3〉+

1

2
|↓R3〉

Ua|
−→q4〉 = |↓w4〉

Ua|↓w4〉 =
1√
2
|−→q4〉 −

1

2
|↓A3〉 −

1

2
|↓R3〉

U$|
−→q4〉 =

1√
2
|↓A7〉+

1√
2
|↓R7〉

U$|
−→q5〉 =

1√
2
|↓A8〉+

1√
2
|↓R8〉

II

(path2)

Ua|
−→p3〉 =

1√
2
|−→p4〉+

1

2
|↓A4〉+

1

2
|↓R4〉

Ua|
−→p4〉 =

1√
2
|−→p4〉 −

1

2
|↓A4〉 −

1

2
|↓R4〉

U$|
−→p4〉 =

1√
2
|↓A9〉+

1√
2
|↓R9〉

U$|
−→p5〉 =

1√
2
|↓A10〉+

1√
2
|↓R10〉

III

(path1)

Ua|
−→q5〉 = |↓w5〉

Ua|↓w5〉 =
1√
2
|−→q6〉+

1

2
|↓A5〉+

1

2
|↓R5〉

Ua|
−→q6〉 = |↓w6〉

Ua|↓w6〉 =
1√
2
|−→q6〉 −

1

2
|↓A5〉 −

1

2
|↓R5〉

U$|
−→q6〉 =

1√
2
|↓A11〉+

1√
2
|↓R11〉

III

(path2)

Ua|
−→p5〉 =

1√
2
|−→p6〉+

1

2
|↓A6〉+

1

2
|↓R6〉

Ua|
−→p6〉 =

1√
2
|−→p6〉 −

1

2
|↓A6〉 −

1

2
|↓R6〉

U$|
−→p6〉 =

1√
2
|↓A12〉+

1√
2
|↓R12〉

III

(pathaccept)

Ua|
−→a1〉 =

1√
2
|−→a2〉+

1

2
|↓A7〉+

1

2
|↓R7〉

Ua|
−→a2〉 =

1√
2
|−→a2〉 −

1

2
|↓A7〉 −

1

2
|↓R7〉

Ua|
−→a3〉 =

1√
2
|−→a4〉+

1

2
|↓A8〉+

1

2
|↓R8〉

Ua|
−→a4〉 =

1√
2
|−→a4〉 −

1

2
|↓A8〉 −

1

2
|↓R8〉

U$|
−→a1〉 = |↓A17〉

U$|
−→a3〉 = |↓A18〉

U$|
−→a2〉 =

1√
2
|↓A13〉+

1√
2
|↓R13〉

U$|
−→a4〉 =

1√
2
|↓A14〉+

1√
2
|↓R14〉

III

(pathreject)

Ua|
−→r1〉 =

1√
2
|−→r2〉+

1

2
|↓A9〉+

1

2
|↓R9〉

Ua|
−→r2〉 =

1√
2
|−→r2〉 −

1

2
|↓A9〉 −

1

2
|↓R9〉

Ua|
−→r3〉 =

1√
2
|−→r4〉+

1

2
|↓A10〉+

1

2
|↓R10〉

Ua|
−→r4〉 =

1√
2
|−→r4〉 −

1

2
|↓A10〉 −

1

2
|↓R10〉

U$|
−→r1〉 = |↓R17〉

U$|
−→r3〉 = |↓R18〉

U$|
−→r2〉 =

1√
2
|↓A15〉+

1√
2
|↓R15〉

U$|
−→r4〉 =

1√
2
|↓A16〉+

1√
2
|↓R16〉

Fig. 3. Specification of the transition function of the 1KWQFA for LNH (part 1)

The reader will note that many transitions in the machine are of the
form

Uσ|qi〉 = |ψ〉+ α|Ak〉+ α|Rk〉,
where |ψ〉 is a superposition of configurations such that 〈ψ|ψ〉 = 1− 2α2,
Ak ∈ Qa, Rk ∈ Qr. The equal-probability transitions to the “twin halting
states” Ak and Rk are included to ensure that the matrices are unitary,
without upsetting the “accept/reject balance” until a final decision about
the membership of the input in LNH is reached. If the regular expression
check mentioned above fails, each path in question splits equiprobably to



Stages Ub

I

(path1)

Ub|
−→q1〉 =

1√
2
|↓A1〉+

1√
2
|↓R1〉

Ub|
−→q2〉 = |

−→q3〉

Ub|
−→q3〉 =

1√
2
|↓A2〉+

1√
2
|↓R2〉

I

(path2)

Ub|
−→p1〉 =

1√
2
|↓A3〉+

1√
2
|↓R3〉

Ub|
−→p2〉 = |

−→p3〉

Ub|
−→p3〉 =

1√
2
|↓A4〉+

1√
2
|↓R4〉

II

(path1)

Ub|
−→q4〉 =

1

2
|−→q5〉+

1

2
√

2
|−→a1〉+

1

2
√

2
|−→r1〉+

1

2
|↓A11〉+

1

2
|↓R11〉

Ub|
−→q5〉 =

1√
2
|↓A5〉+

1√
2
|↓R5〉

II

(path2)

Ub|
−→p4〉 =

1

2
|−→p5〉+

1

2
√

2
|−→a1〉 −

1

2
√

2
|−→r1〉+

1

2
|↓A12〉+

1

2
|↓R12〉

Ub|
−→p5〉 =

1√
2
|↓A6〉+

1√
2
|↓R6〉

III

(path1)
Ub|
−→q6〉 =

1

2
|−→q5〉+

1

2
√

2
|−→a1〉+

1

2
√

2
|−→r1〉 −

1

2
|↓A11〉 −

1

2
|↓R11〉

III

(path2)
Ub|
−→p6〉 =

1

2
|−→p5〉+

1

2
√

2
|−→a1〉 −

1

2
√

2
|−→r1〉 −

1

2
|↓A12〉 −

1

2
|↓R12〉

III

(pathaccept)

Ub|
−→a2〉 =

1√
2
|−→a3〉+

1

2
|↓A13〉+

1

2
|↓R13〉

Ub|
−→a1〉 =

1√
2
|↓A7〉+

1√
2
|↓R7〉

Ub|
−→a4〉 =

1√
2
|−→a3〉 −

1

2
|↓A13〉 −

1

2
|↓R13〉

Ub|
−→a3〉 =

1√
2
|↓A8〉+

1√
2
|↓R8〉

III

(pathreject)

Ub|
−→r2〉 =

1√
2
|−→r3〉+

1

2
|↓A14〉+

1

2
|↓R14〉

Ub|
−→r1〉 =

1√
2
|↓A9〉+

1√
2
|↓R9〉

Ub|
−→r4〉 =

1√
2
|−→r3〉 −

1

2
|↓A14〉 −

1

2
|↓R14〉

Ub|
−→r3〉 =

1√
2
|↓A10〉+

1√
2
|↓R10〉

Fig. 4. Specification of the transition function of the 1KWQFA for LNH (part 2)

one rejecting and one accepting configuration, and the overall probability
of acceptance of the machine turns out to be precisely 1

2 . If the input is in-
deed of the form (aa∗b)(aa∗b)(aa∗b)∗, whether the acceptance probability
will exceed 1

2 or not depends on the following additional tasks performed
by the computation paths in order to test for the equality mentioned in
the definition of LNH :

1. path1 walks over the a’s at the speed of one tape square per step until
reading the first b. After that point, path1 pauses for one step over
each a before moving on to the next symbol.

2. path2 pauses for one step over each a until reading the first b. After
that point, path2 walks over each a at the speed of one square per
step.

3. On each b except the first one, path1 and path2 split to take the fol-
lowing two courses of action with equal probability:



(a) In the first alternative, path1 and path2 perform a two-way quan-
tum Fourier transform (QFT) [16]:
i. The targets of the QFT are two new computational paths,

i.e., pathaccept and pathreject. Disregarding the equal-probability
transitions to the twin halting states mentioned above, the
QFT is realized as:

path1 →
1√
2
pathaccept +

1√
2
pathreject

path2 →
1√
2
pathaccept −

1√
2
pathreject

ii. pathaccept and pathreject continue computation at the speed of
path2, walking over the b’s without performing the QFT any
more.

(b) In the second alternative, path1 and path2 continue computation
without performing the QFT.

4. On symbol $, pathaccept enters an accepting state, pathreject enters a
rejecting state, path1 and path2 enter accepting and rejecting states
with equal probability.

Suppose that the input is of the form

w = axbay1bay2b · · · aytb,

where x, t, y1, · · · , yt ∈ Z+.
path1 reaches the first b earlier than path2. Once it has passed the

first b, path2 becomes faster, and may or may not catch up with path1,
depending on the number of a’s in the input after the first b. The two
paths can meet on the symbol following the xth a after the first b, since at
that point path1 will have paused for the same number of steps as path2.
Only if that symbol is a b, the two paths will perform a QFT in the same
place and at the same time. To paraphrase, if there exists a k (1 ≤ k ≤ t)
such that x =

∑k
i=1 yi , path1 and path2 meet over the (k + 1)th b, and

perform the QFT at the same step. If there is no such k, the paths either
never meet, or meet over an a without a QFT.

The pathaccept and pathrejects that are offshoots of path1 continue their
traversal of the string faster than path1. On the other hand, the offshoots
of path2 continue their traversal at the same speed as path2.

By definition, the twin halting states reached during the computation
contribute equal amounts to the acceptance and rejection probabilities.
path1 and path2 accept and reject equiprobably when they reach the end



of the string. If path1 and path2 never perform the QFT at the same time
and in the same position, every QFT produces two equal-probability paths
which perform identical tasks, except that one accepts and the other one
rejects at the end.

The overall acceptance and rejection probabilities are equal, 1
2 , unless

a pathreject with positive amplitude and a pathreject with negative am-
plitude can meet and therefore cancel each other. In such a case, the
surviving pathaccept’s will contribute the additional acceptance probabil-
ity that will tip the balance. As described above, such a cancellation is
only possible when path1 and path2 perform the QFT together.

Therefore, if w ∈ LNH , the overall acceptance probability is greater
than 1

2 . If w /∈ LNH , the overall acceptance probability equals 1
2 . ⊓⊔

Corollary 2. For any space bound s satisfying s(n) = o(log log n),

PrSPACE(s) ( PrQSPACE(s).

Corollary 3. For any space bound s satisfying s(n) = o(log n), the class
of languages recognized with unbounded error by 1PTMs is a proper sub-
class of the class of languages recognized with unbounded error by 1QTMs.

In the next section, we will prove a fact which will allow us to state a
similar inclusion relationship between the classes of languages recognized
by QTMs with restricted measurements and PTMs using constant space.

Theorem 2. The language

LY S = {an−1bakn | n > 1, k > 0}

is nonstochastic, and can be recognized by a 2KWQFA with unbounded
error.

Proof. Suppose that LY S is stochastic. Then, it is not hard to show that
{a}·LY S is stochastic, too. However, as stated on page 88 of [26], {a}·LY S

is nonstochastic.
We construct a 2KWQFA M = (Q,Σ, δ, q0, Qa, Qr), where Σ =

{a, b}, and the state sets are

Qn = {q0, q1, w1, w2, p1, p2, r1, r2, r3},
Qa = {Ai | 1 ≤ i ≤ 5}, Qr = {Ri | 1 ≤ i ≤ 5}.

Let each Uσ induced by δ act as indicated in Figure 5, and extend each
to be unitary.



Stages U¢, Ua Ub, U$

I

U¢|
−→q0 〉 = |

−→q0〉

Ua|
−→q0〉 =

1√
2
|−→q1〉+

1

2
|↓A1〉+

1

2
|↓R1〉

Ua|
−→q1〉 =

1√
2
|−→q1〉 −

1

2
|↓A1〉 −

1

2
|↓R1〉

Ub|
−→q0〉 =

1√
2
|↓A1〉+

1√
2
|↓R1〉

Ub|
−→q1〉 =

1√
2
|↓w1〉+

1√
2
|−→r1〉

U$|
−→q0〉 =

1√
2
|↓A1〉+

1√
2
|↓R1〉

U$|
−→q1〉 =

1√
2
|↓A2〉+

1√
2
|↓R2〉

U¢, Ua, Ub

II

(pathleft)

U¢|
←−p1〉 =|−→p2〉

Ua|
←−p1〉 =|←−p1〉

Ua|
−→p2〉 =|−→p2〉

Ub|↓w1〉=|↓w2〉

Ub|↓w2〉=
1√
2
|←−p1〉 −

1

2
√

2
|↓A2〉 −

1

2
√

2
|↓R2〉 −

1

2
√

2
|↓A3〉 −

1

2
√

2
|↓R3〉

Ub|
−→p2〉 = 1√

2
|←−p1〉+

1

2
√

2
|↓A2〉+

1

2
√

2
|↓R2〉+

1

2
√

2
|↓A3〉+

1

2
√

2
|↓R3〉

Ua, Ub, U$

II

(pathright)

Ua|
−→r1〉=

1√
2
|−→r2〉+

1

2
|↓A2〉+

1

2
|↓R2〉

Ua|
−→r2〉=

1√
2
|−→r2〉 −

1

2
|↓A2〉 −

1

2
|↓R2〉

Ua|
←−r3〉=|

←−r3〉

Ub|
−→r1〉=

1√
2
|↓A4〉+

1√
2
|↓R4〉

Ub|
−→r2〉=

1√
2
|↓A5〉+

1√
2
|↓R5〉

Ub|
←−r3〉=

1√
2
|↓A2〉 −

1√
2
|↓R2〉

U$|
−→r1〉=

1√
2
|↓A3〉+

1√
2
|↓R3〉

U$|
−→r2〉=|

←−r3〉

Fig. 5. Specification of the transition function of the 2KWQFA for LY S

If the input string does not begin with an a, or if it contains no
b’s, the machine halts, and the input is accepted with probability just
1
2 . Otherwise, the head moves to the right until it scans the first b, on
which the computation splits to two equiprobable paths, say, pathleft and
pathright. Let the number of a’s before the first b be n− 1 > 0.

pathleft starts with two dummy stationary moves, and then enters an
infinite loop. In each iteration of this loop, the head goes to the left
end-marker and then comes back to the b at the speed of one step per
symbol. At the end of the kth iteration, exactly 2nk + n + 3 steps after
the start of computation, the head scans the b again, and pathleft splits
to the superposition of configurations

αk|p1, n〉+
αk

2
|A2, n+1〉+ αk

2
|R2, n+1〉+ αk

2
|A3, n+1〉+ αk

2
|R3, n+1〉,

where αk =
(

1√
2

)n+k+1
, and |s, h〉 denotes the configuration with state s

and head position h.



pathright checks whether the postfix of the input after the first b is of
the form a+. If not, the machine halts, and the input is accepted with
probability 1

2 . Otherwise, the head walks to the right end-marker and
then comes back to the b at the speed of one step per symbol. Let the
number of a’s after the b be m > 0. At the (2m+ n+3)th step, the head
scans the b, and pathright splits to the superposition of configurations

(

1√
2

)m+n+1

|A2, n + 1〉 −
(

1√
2

)m+n+1

|R2, n+ 1〉.

The two paths can meet and interfere with each other only if

2nk + n+ 3 = n+ 2m+ 3

or

nk = m.

This is the case precisely for the members of LY S, where the acceptance
probability exceeds the rejection probability, similarly to what we had in
the proof of Theorem 1. ⊓⊔

We do not know of a one-way QFA for LY S . Note that the some-
what simpler language Lfre = {anban | n ∈ Z+} can be recognized with
bounded error by a 2PFA [12].

The class C=SPACE(s) is defined [33] as follows: A language L is
in C=SPACE(s) if there exists a PTM that runs in space O(s), halts
absolutely,9 and accepts each input w with probability precisely equal to
1
2 if and only if x ∈ L. We define the analogous family of quantum classes.

Definition 1. A language L is in C=QSPACE(s) if there exists a QTM
that runs in space O(s), halts absolutely, and accepts each input w with
probability precisely equal to 1

2 if and only if x ∈ L.

Corollary 4. coC=SPACE(1) ( coC=QSPACE(1).

Proof. Since coC=SPACE(1) is a proper subset of S [24], LNH is not a
member of coC=SPACE(1). On the other hand, as shown in Theorem 1,
LNH is also a member of coC=QSPACE(1). ⊓⊔
9 That is, for every input w, there exists an integer k(w), such that the PTM halts
with probability 1 within k(w) steps.



5 Languages recognized by RT-KWQFAs with

unbounded error

In this section, we settle an open problem of Brodsky and Pippenger [11],
giving a complete characterization of the class of languages recognized
with unbounded error by RT-KWQFAs. It turns out that these restricted
RT-QFAs, which are known to be inferior to RT-PFAs in the bounded
error case, are equivalent to them in the unbounded error setting.

Lemma 2. Any language recognized with cutpoint (or nonstrict cutpoint)
1
2 by a RT-PFA with n internal states can be recognized with cutpoint (or
nonstrict cutpoint) 1

2 by a RT-KWQFA with O(n) internal states.

Proof. Let L be a language recognized by an n-state RT-PFA

P = (Q,Σ, {Aσ | σ ∈ Σ̃}, q1, Qa)

with (nonstrict) cutpoint 1
2 . We will construct a RT-KWQFA

M = (R,Σ, {Uσ | σ ∈ Σ̃}, r1, Ra, Rr)

which has 3n + 6 internal states, and recognizes L with (nonstrict) cut-
point 1

2 . The idea is to “embed” the (not necessarily unitary) matrices Aσ

of the RT-PFA within the larger unitary matrices Uσ of the RT-KWQFA.

We define Q′, v′0, and {A′
σ | σ ∈ Σ̃} as follows:

1. Q′ = Q ∪ {qn+1, qn+2};
2. v′0 = (1, 0, . . . , 0)T is an (n + 2)-dimensional column vector;

3. Each A′
σ is a (n+2)×(n+2)-dimensional matrix: for each σ ∈ Σ∪{¢},

A′
σ =

(

Aσ 0n×2

02×n I2×2

)

and

A′
$ =

(

0n×n 02×n

T2×n I2×2

)(

A$ 0n×2

02×n I2×2

)

,

where T (1, i) = 1 and T (2, i) = 0 when qi ∈ Qa, and T (1, i) = 0 and
T (2, i) = 1 when qi /∈ Qa, for 1 ≤ i ≤ n.

For a given input w ∈ Σ∗,

v′|w̃| = A′
$A

′
w|w| · · ·A

′
w1
A′

¢v
′
0. (46)



It can easily be verified that

v′|w̃| = (01×n | fP(w), 1 − fP(w))T .

For each A′
σ, we will construct a (n + 2) × (n + 2)-dimensional upper

triangular matrix Bσ so that the columns of

1

l

(

A′
σ

Bσ

)

(47)

form an orthonormal set, where l will be defined later. For this purpose,
the entries of Bσ, say bi,j representing Bσ[i, j] for 1 ≤ i, j ≤ n+2, can be
computed iteratively using the following procedure:

1. Initialize all entries of Bσ to 0.

2. Update the entries of Bσ to make the length of each column of

(

A′
σ

Bσ

)

equal to l and also to make the columns of

(

A′
σ

Bσ

)

pairwise orthogo-

nal, by executing the following loop:

i. for i = 1 to n+ 2
ii. set li to the current length of the ith column

iii. set bi,i to −
√

l2 − l2i
iv. for j = i+ 1 to n+ 2
v. set bi,j to some nonnegative value so that the ith and jth

columns can become orthogonal

The loop does not work properly if the value of li, calculated at the (ii)nd

step, is greater than l. Therefore, the value of l should be set carefully.
For instance, by setting l to 2n + 7, the following bounds can be easily
verified for each iteration of the loop:

– li < 2 at the (ii)nd step;
– 2n+ 6 < |bi,i| < 2n+ 7 at the (iii)rd step;
– 0 ≤ bj,i < 1

n+3 at the (v)th step.

We define

Uσ =





A′′
σ

B′
σ

B′′
σ

Dσ



 , (48)

where A′′
σ = 1

l
A′

σ, B
′
σ = B′′

σ = 1√
2l
Bσ, and the entries of Dσ are selected

to make Uσ a unitary matrix.
The state set R = Rn ∪Ra ∪Rr is specified as:



1. rn+1 ∈ Ra corresponds to state qn+1;

2. rn+2 ∈ Rr corresponds to state qn+2;
3. {r1, . . . , rn} ∈ Rn correspond to the states of Q, where r1 is the start

state;

4. All the states defined for the rows of B′
σ and B′′

σ are respectively
accepting and rejecting states.

M simulates the computation of P for the input string w by multiply-
ing the amplitude of each non-halting state with 1

l
in each step. Hence,

the top n+ 2 entries of the state vector ofM equal

(

1

l

)|w|+2

(01×n | fP(w), 1 − fP(w))T

just before the last measurement on the right end-marker. Note that, the
halting states, except qn+1 and qn+2, will come in accept/reject pairs, so
that transitions to them during the computation will add equal amounts
to the overall acceptance and rejection probabilities, and therefore will
not affect the decision on the membership of the input in L. We conclude
that

fM(w) >
1

2
if and only if fP(w) >

1

2
, (49)

and

fM(w) ≥ 1

2
if and only if fP(w) ≥

1

2
. (50)

⊓⊔

Theorem 3. The class of languages recognized by RT-KWQFAs with un-
bounded error is uS (uQAL).

Proof. Follows from Lemma 2, Lemma 1 and [30]. ⊓⊔

Corollary 5. UMM = QAL ∩ coQAL = S ∩ coS.

Proof. It is obvious that UMM ⊆ QAL ∩ coQAL. Let L ∈ QAL ∩ coQAL.
Then, there exist two RT-KWQFAsM1 andM2 such that for all w ∈ L,
fM1

(w) > 1
2 and fM2

(w) ≥ 1
2 , and for all w /∈ L, fM1

(w) ≤ 1
2 and

fM2
(w) < 1

2 . LetM3 be a RT-KWQFA runningM1 andM2 with equal
probability. Thus, we obtain that for all w ∈ L, fM3

(w) > 1
2 , and for all

w /∈ L, fM3
(w) < 1

2 . Therefore, L ∈ UMM. ⊓⊔

Considering this result together with Theorem 1, we conclude that,
unlike classical deterministic and probabilistic finite automata, allowing



the tape head to “stay put” for some steps during its left-to-right traversal
of the input increases the language recognition power of quantum finite
automata in the unbounded error case.

Since unbounded-error RT-PFAs and 2PFAs are equivalent in com-
putational power [15], we are now able to state the following corollary to
Theorem 1:

Corollary 6. The class of languages recognized with unbounded error by
constant-space PTMs is a proper subclass of the respective class for QTMs
with restricted measurements.

Also note that, since the algorithm described in the proof of Theorem 1
is presented for a 1KWQFA, Corollary 4 is still valid when coC=QSPACE(1)
is defined for QTMs with restricted measurements.

6 Concluding remarks

In this paper, we examined the capabilities of quantum Turing machines
operating under small space bounds in the unbounded error setting. We
proved that QTMs are strictly superior to PTMs for all common space
bounds that are o(log log n), and this superiority extends to all subloga-
rithmic bounds when the machines are allowed only one-way input head
movement. We also gave a full characterization of the class of languages
recognized by real-time QFAs employing restricted measurements; they
turn out to be equivalent to their probabilistic counterparts. It was also
shown that allowing the tape head to “stay put” for some steps during
its left-to-right traversal of the input increases the language recognition
power of quantum finite automata in the unbounded error case, allowing
them to recognize some nonstochastic languages. This means that two-
way (and even one-way) QFAs are strictly more powerful than RT-QFAs;
whereas 2DFAs and unbounded-error 2PFAs are known to be equivalent
in power to their real-time versions [15,27].

While we have established some new results relating to the relation-
ship of probabilistic and quantum complexity classes in this paper, the
work reported here also gives rise to some new open questions. As already
mentioned, Watrous proved the equality PrQSPACE(s)=PrSPACE(s)
(s ∈ Ω(log n)) for the cases where PrQSPACE is defined in terms of
Wa98-QTMs [32, 33], and Wa03-QTMs [34]. We do not know how to
prove these results for our more general QTMs, and so the most that we
can say about the relationship among these classes now is PrSPACE(s)
( PrQSPACE(s) (s ∈ o(log log n)), and PrSPACE(s) ⊆ PrQSPACE(s)



for all s. The only efficient simulation technique of a quantum machine
by a probabilistic machine that remains valid for our definitions is that
of Lemma 1.

The reader may wonder why we did not present QTMs to be unidi-
rectional by definition. The reason is that the known techniques [7] for
converting QTMs with arbitrary head movements to unidirectional QTMs
do not work for the space-bounded case when the stationary “move” (↓)
is included in the set of allowed head directions, and we stuck to the
general definition to avoid any possibility of an unnecessary limitation of
computational power.

After it was discovered in the context of this research, the simulation
method presented in Lemma 2 has been modified and used in several
contexts [39–41] to help establish relationships between many different
machine models.

Several real-time QFA variants have appeared in the literature. Our
results show that all of these which are at least as general as the RT-
KWQFA ( [9, 14, 21, 23], and the real-time version of the machines of
[5]) have the same computational power in the unbounded error case.
The class of languages recognized with unbounded error by the weakest
variant, the Moore-Crutchfield QFA [19], is known [8] to be a proper
subset of uS. One important model for which no such characterization
is yet known is the Latvian QFA [3]. Another question left open in this
work is the relationship between the computational powers of 1QFAs and
2QFAs.

Acknowledgements

We are grateful to Andris Ambainis and John Watrous for their help-
ful comments on earlier versions of this paper. We also thank Rūsiņš
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A Wellformedness conditions

A.1 Local conditions for 2QFA wellformedness

Let cj1 and cj2 be two configurations, and vj1 and vj2 be the correspond-
ing columns of E (See Figure 1). The value of vj1 [i] is determined by δ if



the ith entry of vj1 corresponds to a configuration to which cj1 can evolve
in one step, and it is zero otherwise. Let x1 and x2 be the positions of the
input tape head for the configurations cj1 and cj2 , respectively. In order
to evolve to the same configuration in one step, the difference between x1
and x2 must be at most 2. Therefore, we obtain a total of three different
cases, listed below, that completely define the restrictions on the transi-
tion function. Note that, by taking the conjugates of each summation, we
handle the symmetric cases that are shown in the parentheses.

For all q1, q2 ∈ Q;σ ∈ Σ̃; (the summations are taken over q′ ∈ Q;
d ∈ ⊳⊲; and ω ∈ Ω),
1. x1 = x2:

∑

q′∈Q,d∈⊳⊲,ω∈Ω

δ(q1, σ, q′, d, ω)δ(q2, σ, q
′
, d, ω) =

{

1 q1 = q2
0 otherwise

(51)

2. x1 = x2 − 1 (x1 = x2 + 1):

∑

q′∈Q,ω∈Ω

δ(q1, σ, q′,→, ω)δ(q2, σ, q
′
, ↓, ω) + δ(q1, σ, q′, ↓, ω)δ(q2, σ, q

′
,←, ω) = 0. (52)

3. x1 = x2 − 2 (x1 = x2 + 2):

∑

q′∈Q,ω∈Ω

δ(q1, σ, q′,→, ω)δ(q2, σ, q
′
,←, ω) = 0. (53)

A.2 Unidirectional machines

The wellformedness of unidirectional QTMs can be checked using the sim-
ple conditions in Figure 6. Removing the reference to worktape symbols,
we obtain the analogous constraints for unidirectional 2QFAs as shown
in Figure 7.

For q1, q2 ∈ Q;σ ∈ Σ̃; γ1, γ2 ∈ Γ ,

∑

q′∈Q,γ′∈Γ,ω∈Ω

δ(q1, σ, γ1, q′, γ′, ω)δ(q2, σ, γ2, q
′
, γ

′
, ω) =

{

1 q1 = q2 and γ1 = γ2
0 otherwise

.

(54)

Fig. 6. The local conditions for unidirectional QTM wellformedness

As is the case with PTMs, the transition function of a unidirectional
QTM can be specified easily by transition matrices of the form {Eσ,ω},
whose rows and columns are indexed by (internal state, work tape symbol)



For q1, q2 ∈ Q;σ ∈ Σ̃,

∑

q′∈Q,ω∈Ω

δ(q1, σ, q′, ω)δ(q2, σ, q
′
, ω) =

{

1 q1 = q2
0 otherwise

. (55)

Fig. 7. The local conditions for unidirectional 2QFA wellformedness

pairs for each σ ∈ Σ̃ and ω ∈ Ω. It can be verified that the wellformedness
condition is then equivalent to the requirement that, for each σ ∈ Σ̃,

∑

ω∈Ω
E†

σ,ωEσ,ω = I. (56)

Similarly, for each σ ∈ Σ̃ and ω ∈ Ω, well-formed unidirectional
2QFAs can be described by transition matrices of the form {Eσ,ω}, whose
rows and columns are indexed by internal states, such that for each σ ∈ Σ̃,

∑

ω∈Ω
E†

σ,ωEσ,ω = I. (57)

B CQTMs

To specialize our general QTM model in order to ensure that the head
positions are classical, we associate combinations of head movements with
measurement outcomes. There are 9 different pairs of possible movement
directions (⊳⊲2 = {←, ↓,→} × {←, ↓,→}) for the input and work tape
heads, and so we can classify register symbols with the function

Dr : Ω → ⊳⊲
2. (58)

We have Dr(ω) = (↓, ↓) if ω ∈ Ωa ∪Ωr. We split Ωn into 9 parts, i.e.

Ωn =
⋃

di,dw∈⊳⊲
Ωn,di,dw , (59)

where
Ωn,di,dw = {ω ∈ Ωn | Dr(ω) = (di, dw)}. (60)

Therefore, the outcome set will have 11 elements, represented as triples,
specified as follows:

1. “(n, di, dw)”: the computation continues and the positions of the input
and work tape heads are updated with respect to di and dw, respec-
tively;



2. “(a, ↓, ↓)”: the computation halts and the input is accepted with no
head movement;

3. “(r, ↓, ↓)”: the computation halts and the input is rejected with no
head movement.

The transition function of CQTMs will be specified so that when the
CQTM is in state q and reads σ and γ respectively on the input and work
tapes, it will enter state q′, and write γ′ and ω respectively on the work
tape and the finite register with the amplitude

δ(q, σ, γ, q′, γ′, ω) ∈ C̃. (61)

Since the update of the positions of the input and work tape heads is
performed classically, it is no longer a part of the transitions. Note that the
transition function of 2QFAs with classical head (2CQFAs) [5] is obtained
by removing the mention of the work tape from the above description.

Moreover, as with unidirectional QTMs (resp. unidirectional 2QFAs),
for each σ ∈ Σ̃ and ω ∈ Ω, CQTMs (2CQFAs) can be described by
transition matrices {Eσ,ω} satisfying the same properties. (See Appendix
A.)

As also argued in [34], CQTMs are sufficiently general for simulating
any classical TM. We will present a trivial simulation.

Lemma 3. CQTMs can simulate any PTM exactly.

Proof. Let P = (Q,Σ, Γ, δP , q1, Qa, Qr) be a PTM. We build a CQTM
M = (Q,Σ, Γ,Ω, δM, q1,∆). For each (q, γ, q′, γ′) ∈ Q× Γ × Q× Γ , we
define a register symbol ω(q,γ,q′,γ′) such that

1. if q′ ∈ Qa: ω(q,γ,q′,γ′) ∈ Ω(a,↓,↓);
2. if q′ ∈ Qr: ω(q,γ,q′,γ′) ∈ Ω(r,↓,↓);
3. if q′ ∈ Qn: ω(q,γ,q′,γ′) ∈ Ω(n,Di(q′),Dw(q′)).

We conclude with setting

δM(q, σ, γ, q′, γ′, ω(q,γ,q′,γ′)) =
√

δP(q, σ, γ, q′, γ′) (62)

for each σ ∈ Σ, and setting the values of δM that are still undefined to
zero. ⊓⊔

This result is also valid for two-way and real-time finite automata:

Corollary 7. 2CQFAs (RT-QFAs) can simulate any 2PFA (RT-PFA)
exactly.
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4. Andris Ambainis and Rūsiņš Freivalds. 1-way quantum finite automata: strengths,
weaknesses and generalizations. In FOCS’98: Proceedings of the 39th Annual Sym-
posium on Foundations of Computer Science, pages 332–341, 1998.

5. Andris Ambainis and John Watrous. Two–way finite automata with quantum and
classical states. Theoretical Computer Science, 287(1):299–311, 2002.

6. Andris Ambainis and Abuzer Yakaryılmaz. Automata: from Mathematics to Ap-
plications, chapter Automata and quantum computing. (In preparation).

7. Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal
on Computing, 26(5):1411–1473, 1997.

8. Alberto Bertoni and Marco Carpentieri. Analogies and differences between quan-
tum and stochastic automata. Theoretical Computer Science, 262(1-2):69–81, 2001.

9. Alberto Bertoni, Carlo Mereghetti, and Beatrice Palano. Quantum computing: 1-
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