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tThis paper 
onsiders distributed 
lustering of high dimensional heterogeneous data using a distributedPrin
ipal Component Analysis (PCA) te
hnique 
alled the Colle
tive PCA. It presents the Colle
tivePCA te
hnique that 
an be used independent of the 
lustering appli
ation. It shows a way to inte-grate the Colle
tive PCA with a given o�-the-shelf 
lustering algorithm in order to develop a distributed
lustering te
hnique. It also presents experimental results using di�erent test data sets in
luding anappli
ation for web mining.1 Introdu
tionClustering of large data sets is a 
ommon pra
ti
e in data mining appli
ations. The su

ess of a 
lusteringappli
ation usually depends 
riti
ally on the representation of the data. Clustering without proper featuresele
tion and feature 
onstru
tion may not produ
e desirable data 
lusters. Moreover, this is importantfor the s
alability of the 
lustering algorithms. Prin
ipal 
omponent analysis (PCA) [27, 28℄ is a popularte
hnique to 
onstru
t a representation of the data that 
apture maximally variant dimensions of the data.It 
omputes a representation with a set of basis ve
tors that are the dominant eigenve
tors of the 
ovarian
ematrix generated by the data. Clustering algorithms equipped with PCA-based representation are quiteuseful in many appli
ations in
luding knowledge dis
overy from databases (KDD) [6℄.Both PCA and PCA-based 
lustering algorithms are reasonably well understood when the data sets are
entrally lo
ated. However, the emergen
e of network-based 
omputation has o�ered a new 
hallenge to thistraditional pra
ti
e. This has introdu
ed a new important dimension to both PCA and PCA-based 
lustering| distributed sour
es of data. This involves two diÆ
ult problems: (1) performing distributed PCA and(2) 
lustering distributed data using the prin
ipal 
omponents (PCs) 
omputed during the previous step.To the best of our knowledge, there does not exist any te
hnique that 
an perform distributed PCA fromheterogeneous data sets (with di�erent tables storing data for di�erent features) with limited 
ommuni
ationof raw data. This paper presents the Colle
tive PCA (CPCA) that o�ers one solution to this problem. It alsoo�ers a distributed 
lustering te
hnique that integrates the CPCA algorithm. It do
uments the performan
eof the proposed te
hniques for di�erent data sets in
luding a web-mining appli
ation.1



Table 1: Homogeneous 
ase: Site A with a table for 
redit 
ard transa
tion re
ords.A

ount Amount Lo
ation Previous UnusualNumber re
ord transa
tion11992346 -42.84 Seattle Poor Yes12993339 2613.33 Seattle Good No45633341 432.42 Portland Okay No55564999 128.32 Spokane Okay YesTable 2: Homogeneous 
ase: Site B with a table for 
redit 
ard transa
tion re
ords.A

ount Amount Lo
ation Previous UnusualNumber re
ord transa
tion87992364 446.32 Berkeley Good No67845921 978.24 Orinda Good Yes85621341 719.42 Walnut Okay No95345998 -256.40 Fran
is
o Bad YesSe
tion 2 o�ers a brief review of PCA te
hniques and dis
usses the relevan
e to existing work on par-allel/distributed PCA. Se
tion 3 presents the Colle
tive PCA (CPCA) algorithm and the error analysis ofthe proposed te
hnique. Se
tion 4 do
uments the performan
e of the CPCA algorithm for di�erent test
ases. Se
tion 5 presents the distributed 
lustering te
hnique that integrates the CPCA. Se
tion 6 presentsexperimental results for the distributed 
lustering algorithm. Se
tion 7 dis
usses the future work. FinallySe
tion 8 
on
ludes this paper.2 Ba
kgroundThe �eld of KDD emerged in the re
ent past as a result of the dramati
 evolution of the te
hnology forinformation storage, a

ess, and analysis. The ability of various organizations to 
olle
t, store, and retrievehuge amounts of data has ne
essitated the development of algorithms that 
an extra
t useful informationfrom these databases. KDD addresses this issue.Distributed knowledge dis
overy (DKD) [10, 13, 20, 22, 25, 32, 46, 37, 51, 56℄ takes KDD to a newplatform. It embra
es the growing trend of merging 
omputation with 
ommuni
ation and explores all fa
etsof the KDD pro
ess in the 
ontext of the emerging distributed 
omputing environments. DKD a

epts thefa
t that data may be inherently distributed among di�erent loosely 
oupled sites 
onne
ted by a network andthe sites may have heterogeneous data. It o�ers te
hniques to dis
over new knowledge through distributeddata analysis and modeling using minimal 
ommuni
ation of data. DKD must deal with di�erent possibilitiesof data distribution. Di�erent sites may 
ontain data for a 
ommon set of features of the problem domain.In 
ase of relational data this would mean a 
onsistent database s
hema a
ross all the sites. This is thehomogeneous 
ase. Tables 1 and 2 illustrate this 
ase using an example from a hypotheti
al 
redit 
ardtransa
tion domain.1 There are two data sites A and B, 
onne
ted by a network. The KDD-obje
tive insu
h a domain may be to �nd patterns of fraudulent transa
tions. Note that both the tables have the sames
hema. The underlying distribution of the data may or may not be identi
al a
ross di�erent data sites.In the general 
ase the data sites may be heterogeneous. In other words, sites may 
ontain tables withdi�erent s
hemata. Di�erent features are observed at di�erent sites. Let us illustrate this 
ase with relationaldata. Table 3 shows two data-tables at site X. The upper table 
ontains weather-related data and the lowerone 
ontains demographi
 data. Table 4 shows the 
ontent of site Y, whi
h 
ontains holiday toy sales data.The obje
tive of the KDD pro
ess may be dete
ting relations between the toy sales, the demographi
 andweather related features. In the general heterogeneous 
ase the tables may be related through di�erent setsof key indi
es. For example, Tables 3(upper) and (lower) are related through the key feature City; on theother hand Table 3 (lower) and Table 4 are related through key feature State.1Please note that the 
redit 
ard domain may not always have 
onsistent s
hema. The domain is used just for illustration.2



Table 3: Heterogeneous 
ase: Site X with two tables, one for weather and the other for demography.City Temp. Humidity WindChillBoise 20 24% 10Spokane 32 48% 12Seattle 63 88% 4Portland 51 86% 4Van
ouver 47 52% 6
City State Size Average Proportionearning of smallbusinessesBoise ID Small Low 0.041Spokane WA Medium Medium 0.022Seattle WA Large High 0.014Portland OR Large High 0.017Van
ouver BC Medium Medium 0.031Table 4: Heterogeneous 
ase: Site Y with one table 
ontaining holiday toy sales data.State Best Selling Pri
e Number Items SoldItem ($) (In thousands)WA Snar
 A
tion Figure 47.99 23ID Power Toads 23.50 2BC Light Saber 19.99 5OR Super Squirter 24.99 142CA Super Fun Ball 9.99 24When the data sets are large, possibly embedded within some DBMS, downloading the data sets fromdi�erent sites for 
onstru
ting a single table may be diÆ
ult if not impossible from a logisti
 point of view. Itmay also demand large bandwidth for better response time. If the data is sensitive, se
urity is also a majorissue in downloading large data sets. Clearly, for large distributed environments, data analysis te
hniquesthat require minimal 
ommuni
ation of raw data are preferable over te
hniques that require 
entral 
olle
tionof data sets. Parti
ularly, the role of DKD be
omes even more 
riti
al in the emerging wireless 
omputingdomain where the bandwidth is very limited.This paper 
onsiders the PCA and distributed PCA-based 
lustering of heterogeneous and distributeddata. Earlier e�orts on 
lassi�er and hierar
hi
al 
luster learning from heterogeneous distributed data 
anbe found elsewhere [25, 30, 32, 51℄. We will not assume any restri
tion on the number of data sites. Byde�nition, we will assume that there exists at least one key feature (e.g. the feature \City" in Tables3 & 4) asso
iated with the tables that 
an be used to link the information a
ross di�erent tables. Thispaper 
onsiders unsupervised analysis of data. Therefore, we will not require the data to 
ome with any
lassi�
ation label. The following se
tion presents a brief review of PCA.2.1 PCA: A Brief ReviewPrin
ipal Component Analysis (PCA) is a statisti
al te
hnique for analyzing multivariate data [47, 27, 28℄.It involves linear transformation of a 
olle
tion of related (statisti
ally 
orrelated) variables into a set oftransformed variables | usually referred to as prin
ipal 
omponents. All the prin
ipal 
omponents arestatisti
ally un
orrelated and individual prin
ipal 
omponents are ordered with respe
t to the statisti
alvarian
e of that 
omponent. In the following, we provide a brief derivation of prin
ipal 
omponents, mainlyto establish our notation and 
onventions. A number of ex
ellent referen
es maybe 
onsulted for a thoroughexposition [28℄.Consider the random ve
tor X = (X1; X2; : : : ; Xn)2 with mean E[X℄ = 0 (if the data has non-zero mean,we �rst \
enter" the data by subtra
ting the mean) and (a symmetri
 and positive semi-de�nite) 
ovarian
ematrix Cov[X℄ = E[X0X℄ = �x.3The ith prin
ipal 
omponent of X is a linear 
ombination Yi = Xa0i, where ai = [ai1; ai2; : : : ; ain℄, that isun
orrelated with the previous prin
ipal 
omponents (Y1;Y2; : : : ;Yi�1) and has maximum varian
e. The2We denote our ve
tors as row ve
tors.3A0 denotes the transpose of ve
tor/matrix A. 3




oeÆ
ient ve
tor ai is usually 
onstrained to be of unit length. A solution to this optimization problem:maxfai�xa0ig; subje
t to aia0i = 1; andai�xa0j = 0; j = 1; 2; : : : ; i� 1;is obtained by 
hoosing ai to be a unit eigenve
tor of �x 
orresponding to the ith largest eigenvalue �i of�x.The n prin
ipal 
omponents Y = [Y1;Y2; : : : ;Yn℄ may be 
ompa
tly represented as Y = XA. Herethe 
olumns of matrix A 
onsist of the unit eigenve
tors of �x, arranged in des
ending order based onthe 
orresponding eigenvalues. In general, we are interested in representing X by means of a small set ofprin
ipal 
omponents (dimensionality redu
tion). Let Ŷ = [Y1; : : : ;Yk℄ be the �rst k prin
ipal 
omponentsof X, where k << n. These prin
ipal 
omponents 
an be used to obtain a reasonable approximation of theoriginal data as follows: X̂ = ŶÂ0 (1)where Â is the sub-matrix 
onsisting of the �rst k 
olumns of A. The relative mean-squared error (RMSE)between X and X̂ 
an be expressed in terms of the eigenvalues of �x as follows:E[(X� X̂)(X� X̂)0℄E[XX0℄ = Pnj=k+1 �jPnj=1 �j : (2)If the eigenvalues of �x are \spread-out" in the sense that �max=�min is large, the data X maybe represented(with a small RMSE) by a small number of prin
ipal 
omponents.In pra
ti
e, the 
ovarian
e of the random ve
tor X is not given and has to be estimated from availabledata. Let X be am�n data matrix, where ea
h row of X represents a sample (or observation) of the randomve
tor X. We shall use the sample 
ovarian
e 1mX 0X of the data to obtain the transformation matrix A forPCA [3℄.4In re
ent years, the QR algorithm has been the most widely used algorithm for 
al
ulating the 
ompleteset of eigenvalues of a matrix [52, 18℄. Cy
li
 Ja
obi methods are parti
ularly suited for implementation in aparallel 
omputer [52, 18℄. The divide-and 
onquer method of Cuppen is a relatively new method for 
al
u-lating the 
omplete eigensystem of a symmetri
, tridiagonal matrix [52℄. The singular value de
omposition(SVD) of a real, symmetri
, positive semi-de�nite matrix (the matrix �x in our 
ase), is equivalent to theorthogonal de
omposition in terms of eigenvalues/eigenve
tors [26℄. Therefore, algorithms for 
omputing theSVD 
an also be used for PCA. The power method and its variants are some of the simplest te
hniques for�nding a few of the dominant eigenvalue/eigenve
tor of �x [40, 41℄. Be
ause of its ease of implementation,we have adopted this method in our experiments.2.2 PCA and Data AnalysisPrin
ipal 
omponent analysis has found wide appli
ations in various dis
iplines like psy
hology [43, 5℄,geneti
s [23℄, pattern re
ognition [55℄, remote sensing [35℄, and seismi
 data analysis [24, 29℄, among others.PCA is also a popular 
hoi
e for data mining appli
ations. PCA has been used for dete
ting linearasso
iative rules [17℄. Appli
ation of PCA-based te
hniques for large s
ale text 
an be found in [6℄. PCAhas also found appli
ations in ensemble learning and aggregation of multiple models. Merz and Pazzani[42℄ have reported a PCA-based te
hnique for 
ombining regression estimates. A maximum-likelihood-basedframework for 
onstru
ting mixture models of PCA is proposed by Tipping and Bishop [50℄. The te
hniquedeveloped by Tippin and Bishop develops a 
olle
tion of PCA models by analyzing di�erent horizontalpartitions of the data. The obje
tive is to a generate better quality model that is only lo
ally linear,unlike the single PCA model whi
h is globally linear. Their approa
h o�ers a te
hnique to 
ombine su
hPCA models generated on di�erent partitions of the data. Although this is related to our work in the
urrent paper, there is a major di�eren
e. In our 
ase the data sets are heterogeneous; in other words data4The normalization fa
tor m is not 
ru
ial to our further dis
ussion. In the sequel, for simpli
ity, we shall drop that fa
tor.4



partitions may not share the same feature set. Another approa
h for aggregating multiple data partitions intoa single hierar
hi
al PCA model is developed by Westerhuis, Kourti, and Ma
gregor [53℄. This te
hnique wasprimarily developed for pro
ess 
ontrol appli
ations in 
hemi
al engineering where data sets are 
olle
tedperiodi
ally. This approa
h iteratively extra
ts one dominant eigenve
tor at a time and assumes 
entralstorage of data sets. In a distributed environment with limited bandwidth this algorithm requires heavy
ommuni
ation.The following se
tion presents the overall algorithm of Colle
tive PCA (CPCA) and error analysis.3 The Colle
tive PCAThis se
tion presents the Colle
tive PCA (CPCA) te
hnique for 
onstru
ting global PCA model from dis-tributed heterogeneous data with minimal 
ommuni
ation overhead. It also presents the error analysis ofthe proposed te
hnique.3.1 Overall AlgorithmThis subse
tion presents the CPCA algorithm from an abstra
t algorithmi
 perspe
tive. For the sake ofsimpli
ity we 
onsider only one table per site. However, the te
hnique 
an be generalized to problems withmultiple number of tables at ea
h site.In a distributed and heterogenous environment, the entire data matrix X is 
omprised of di�erent smallertables stored at di�erent sites. In parti
ular, ea
h site has data regarding a parti
ular subset of the n features.Let us assume that the data is distributed among s sites and the entire data matrix X 
an be partitionedas X = [X1; X2; : : : ; Xs℄, where Xi is a m � ni submatrix of X that is available at site i. A PCA of thisdistributed data in a 
entralized fashion would involve moving data to one 
entral site and 
al
ulating theeigenvalues/eigenve
tors of the 
ovarian
e matrix X 0X of the global data matrix X . The amount of data tobe moved is O(mn), where m is the number of data samples (rows of the global data table X) and n is thetotal number of features (
olumns of the global data table X). For typi
al DKD-appli
ations this amount ofdata 
ommuni
ation is either prohibitive be
ause of the limited bandwidth or impra
ti
al be
ause of logisti
sand/or se
urity related reasons.Given the distributed nature of the data, it would be advantageous to perform the 
omputations for PCA(to the extent possible) lo
ally, thereby minimizing the amount of data 
ommuni
ation and the 
omputationat the 
entral site. In the following, we des
ribe the CPCA approa
h to this problem.First we perform a PCA, lo
ally, on the data partition Xi at site i. Let Ai be the ni � ki matrix whose
olumns are the ki eigenve
tors 
orresponding to the ki largest eigenvalues of X 0iXi. Matrix Ak is 
omputedbased on the data partition Xi and we retain only the �rst ki prin
ipal 
omponents at site i. LetYi = XiAi (3)be the prin
ipal 
omponents 
omputed at site i. The 
hoi
e of ki will depend on the eigenvalues of thelo
al 
ovarian
e X 0iXi and would be di
tated by our error toleran
e. It is a tradeo� between dimensionalityredu
tion and a

ura
y. In all our experiments, we 
hose an error toleran
e (i.e. RMSE, see eq. (2)) of 0:1.The matrix Yi is representative of the data Xi. Sin
e typi
ally the number of rows in large tables (m) isvery large, we sele
t a subset of 
 samples (rows) (where 
 << m), with uniform probability. With someabuse of notation, we will denote by Yi the 
 � ki matrix 
onsisting of the prin
ipal 
omponents and only
 sele
ted samples. The individual Yi and Ai from ea
h site are then transmitted to a 
entral site (this
ould be just one of the lo
al sites or a di�erent site fa
ilitating the CPCA pro
ess). At the 
entral site, anew 
� k data matrix Y = [Y1; Y2; : : : ; Ys℄ is formed by putting together the data from the individual sites,where k =Psi=1 ki. The data 
ommuni
ation involved here is O(
k) for the Yi's and O(Pi niki) for the Ai's(
ompare with O(mn) for the 
entralized PCA 
ase, where 
 << m and k =Psi=1 ki << n). Typi
ally, thenumber of samples 
 that are sele
ted is mu
h larger than the number of features ni at site i. Therefore, theoverhead involved in transmitting Ai would be negligible 
ompared to the overall data transmission involved.At the 
entral site, in prin
iple, we need to re
onstru
t the original data X , from the Yi's and Ai's (seeeq. (1)). We then have to perform a PCA based on this re
onstru
ted data. Re
all that Y is a simple linear5



transformation of X ; indeed from eq. (3)Y = XA; where A = 26664 A1 0 � � � 00 A2 � � � 0... ... . . . ...0 0 � � � As 37775is a blo
k diagonal matrix. However, sin
e the PCA is invariant to linear transformations [28℄, we 
an workwith the Y data instead of X . The primary advantage is that the size of Y is mu
h smaller than that of X .In other words, we 
an exploit the dimensionality redu
tion already a
hieved at ea
h of the lo
al sites. Letvi, i = 1; 2; : : : ; p be the eigenve
tors, 
orresponding to the p largest eigenvalues of the 
ovarian
e matrix ofY . Then wi = Avi are the required eigenve
tors of the 
ovarian
e X 0X of the original data X .The overall CPCA algorithm is summarized in the following:1. Perform lo
al PCA at ea
h site; sele
t dominant eigenve
tors and proje
t the data along them.2. Send a sample of the proje
ted data along with the eigenve
tors.3. Combine the proje
ted data from all the sites.4. Perform PCA on the global data set and identify the dominant eigenve
tors and transform them ba
kto the original spa
e.The following subse
tion presents an analysis of the approximation errors involved in our proposed CPCA.3.2 Error Analysis of the proposed CPCAThe Colle
tive PCA te
hnique introdu
es approximations at two steps. These steps 
ontribute to the overallerror in the estimated 
ovarian
e matrix at the 
entral site, whi
h a�e
ts the subsequent 
omputation ofeigenve
tors and the 
lustering steps. Both fa
tors are dis
ussed below in some detail.1. Sele
tion of only the �rst few dominant prin
ipal 
omponents at ea
h of the lo
al sites: The error
ontributed by this step 
an be quanti�ed as follows.Consider the random ve
torX = (X1; X2; : : : ; Xn) with mean E[X℄ = � and (a symmetri
 and positivede�nite) 
ovarian
e matrix Cov[X℄ = E[(X � �)0(X � �)℄ = �x. Let Y = [Y1; : : : ;Yk℄ be the �rstk prin
ipal 
omponents of X, where k << n. These prin
ipal 
omponents 
an be used to obtain areasonable approximation to the original data | X̂ = YÂ0 | where Â is the submatrix 
onsistingof the �rst k 
olumns of A. The mean-squared error (MSE) between X and X̂ 
an be expressedin terms of the eigenvalues of �x as follows: E[(X � X̂)(X � X̂)0℄ = Pnj=k+1 �j . This 
apturesthe error introdu
ed by negle
ting the \insigni�
ant" eigenve
tors. Equivalently, we 
an 
onsider theproje
ted and re
onstru
ted data at the 
entral site to be a \perturbed" version of the a
tual data,where the amount of perturbation is exa
tly quanti�ed by the eigenvalues asso
iated with the prin
ipal
omponents that were not transmitted.2. Transmitting only a subset of the (proje
ted) observations to the 
entral site: The error 
ontributedby this step 
an be quanti�ed statisti
ally. In parti
ular, we assume that all the observations arestatisti
ally independent and are drawn from a 
ommon underlying probability distribution. It thenfollows from the law of large numbers and the 
entral limit theorem [3, 4℄ that the 
ovarian
e matrix�̂x estimated from data is related to the true 
ovarian
e matrix �x byVar[k�̂x ��k℄ = O� 1m�;where m is the number of observations transmitted to the 
entral site. In simple words, transmittingonly a fra
tion � of the total number of observations results in an in
rease by a fa
tor � in errorasso
iated with estimating the 
ovarian
e matrix.5 If the total number of available observations islarge, whi
h is usually the 
ase, this in
rease in estimation error may not be signi�
ant.5We are ignoring the error 
ontributed by the �rst step here.6



Table 5: Size of data set, number of sites, and number of sele
ted lo
al prin
ipal 
omponents.Data No. of No. of No. of Total No. ofrows features sites sele
ted lo
al PCsBodyfat 252 15 2 4Bodyfat 252 15 3 7Housing 506 14 2 4Move 6129 36 2 9Move 6129 36 6 11Quest 60000 200 2 161Quest 60000 200 10 164The following se
tion presents experimental results 
omparing performan
e of the CPCA and the 
entralizedPCA performed after downloading all the tables to a single site.4 Experiments with the CPCAThe CPCA te
hnique is applied to analyze di�erent data sets. This se
tion presents results of the appli
ationof CPCA to three experimental test suites. The �rst experimental suite is 
omprised of several publi
lyavailable relatively small data sets frequently used in ma
hine learning literature. The suite is used to provethe feasibility of the CPCA. The se
ond suite tests the s
alability of CPCA to large data sets. The �nalexperimental suite 
onsiders the appli
ation of CPCA in a real-life appli
ation s
enario.4.1 Experiment Suite: IIn this se
tion we apply the CPCA te
hnique to three di�erent data sets, in order to demonstrate themethod and 
ompare the results with those of 
entralized prin
ipal 
omponent analysis. We show thatCPCA a
hieves highly a

urate result 
ompared to the 
entralized approa
h and it does so with little
ommuni
ation overhead.4.1.1 Bodyfat data:This data set6 is 
omprised of 252 observations and 15 features. We verti
ally partitioned the data set intotwo subsets with one set 
ontaining the �rst seven data 
olumns and the other set 
ontaining the rest (eight)of the data 
olumns. Next we 
onstru
t two data sites with ea
h of them storing only one of the two datasets. The row indi
es are used as the key linking the rows from di�erent sites.Following the CPCA approa
h, we perform PCA in ea
h of these two sites, setting the prin
ipal 
ompo-nent sele
tion threshold as 0.90 (i.e., an error of at most 0.10). For these data sets only two lo
al prin
ipal
omponents are suÆ
ient to satisfy the 
hosen sele
tion threshold at ea
h of the sites. Then the data sets areproje
ted to these lo
ally 
omputed prin
ipal 
omponents. The proje
tion for ea
h of these partitions 
an beviewed as a 252� 2 data matrix. Then the rows are sampled from the proje
ted data. Rows 
orrespondingto the same keys are sampled from ea
h site. The sampled rows and the lo
al prin
ipal 
omponent for ea
hpartition are then sent to a 
entral site. Next global PCA is performed on the aggregated data at the 
entralsite in order to produ
e the global prin
ipal 
omponents.Figure 1 (left) shows the variation of the angles (in radians) between the approximation of the �rst twodominant prin
ipal 
omponents generated by CPCA and the 
orresponding ones obtained by a 
entralizedPCA with respe
t to the number of rows that are sampled from lo
al proje
tions. The results show that forthese data sets sampling about 20% of the rows in the proje
ted spa
e is suÆ
ient for highly a

urate result.Figure 1 (right) shows the result of CPCA on the same data set when partitioned among three data sites.6http: ==lib.stat.
mu.edu=datasets=bodyfat
7
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Figure 1: (Left)Performan
e of CPCA for the bodyfat data distributed among two sites.(Right)Performan
eof CPCA for the bodyfat data distributed among three sites. The graphs are averages of �ve independentruns.
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Figure 2: Performan
e of CPCA for the Housing data distributed among two sites. This is an average of�ve independent runs.4.1.2 Boston Housing data and Robot Movement data:Similar experiments were performed on Boston Housing data7 (Figure 2) and Robot Move data8 (Figure 3)(only numeri
 features are used). The size of the data sets, number of partitions, and the total number ofsele
ted lo
al prin
ipal 
omponents for all the experiments are listed in Table 5.4.2 Experiment Suite: IIThis se
tion tests the overall performan
e in
luding the s
alability of the CPCA. We used the Quest Syntheti
Data Generation Code 9 to generate a data set with 60,000 observations and 200 features. Although this
ode generates labeled data, we did not use the 
lass-label for the unsupervised CPCA approa
h.We partitioned the data set into two subsets, ea
h 
ontaining 100 features. The PC sele
tion threshold isset to 0.90 (i.e., we sele
t the set of PCs that gives a RMSE of 0.1). Next we present the results 
omparingthe two dominant prin
iple 
omponents obtained using the 
entralized approa
h and the CPCA. Figure 4(left) shows two 
urves, ea
h representing the variation of the angle (in radian) between a CPCA-generateddominant prin
ipal 
omponent and the 
orresponding prin
ipal dire
tion generated from the 
entralizeddata. Note that the angle between two unit ve
tors represents the distan
e between them and therefore it isa good measure of the a

ura
y of the estimated PCs.7ftp:==ftp.i
s.u
i.edu=pub=ma
hine-learning-databases/housing/8http: ==kdd.i
s.u
i.edu=databases=pioneer=pioneer.html9http: ==www.almaden.ibm.
om=
s=quest=syndata.html 8
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Figure 3: (Left)Performan
e of CPCA for the robot move data distributed among two sites. (Right) Per-forman
e of CPCA for the robot move data distributed among six sites. The graphs are averages of �veindependent runs.
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Figure 4: (Left)Performan
e of CPCA for the Quest Syntheti
 data with two data sites.(Right)Performan
eof CPCA for the Quest Syntheti
 data with ten data sites. The graphs are averages of �ve independent runs.
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Figure 4 (right) shows similar performan
e when the data set is distributed among ten sites. Table 5shows the size of the global data set and the total number of sele
ted lo
al prin
ipal 
omponents from allthe sites.We see from the �gures that the CPCA a
hieves good 
ompression. Suppose our global data set is mby n, and is distributed among s sites, su
h that ea
h site 
ontains ni features. Number of sele
ted lo
alprin
ipal 
omponent is ki, and the total number of sele
ted lo
al prin
ipal 
omponents is k = Psi=1 ki.Usually when the PC sele
tion threshold is set to 0.90 or 0.95, k is quite small 
ompared to n. Let us denotethe number of sampled rows by 
; for our experiments we 
hose a value of 
 su
h that 
 < 0:2m. The total
ommuni
ation 
ost is O(
k +Psi=1 niki), whi
h is very small 
ompared to O(mn), the 
ost to move thewhole data set to one site. The following se
tion des
ribes a distributed 
lustering algorithm that makes useof the CPCA.5 Distributed Clustering Using the CPCAClustering is an important te
hnique that is often used in data mining appli
ations [8, 21, 44, 57℄. Cluster-ing high dimensional data often requires appli
ation of PCA-like te
hniques for 
onstru
ting features that
apture the maximum varian
e in the data in a small number of 
omponents. When the data is 
entralized,appli
ation of PCA followed by 
lustering is a normal pra
ti
e. However, doing that in a distributed environ-ment with minimal 
ommuni
ation of raw data is a 
hallenge. The previous se
tions presented the CPCAte
hnique for performing PCA from distributed and heterogeneous data. This se
tion demonstrates thatthe CPCA 
an be easily integrated with standard o�-the-shelve 
lustering algorithms in order to generate adistributed 
lustering te
hnique.There are numerous re
ent e�orts dire
ted towards s
aling up 
lustering algorithms. In [45℄, the authorshows an adaptation of the SLINK [48℄ and other agglomerative hierar
hi
al 
lustering algorithms to a mul-tipro
essor environment to parallelize the 
lustering pro
ess. The PADMA system [31℄ o�ers a distributed
lustering system for homogeneous text data. In [15℄, the authors adapt the K-Means algorithm to run in aparallel/distributed environment. The Colle
tive Hierar
hi
al Clustering algorithm was proposed elsewhere[30℄ for generating hierar
hi
al 
lusters from distributed and heterogeneous data. To the best of our knowl-edge there does not exist any known te
hnique for PCA-based 
lustering of distributed, heterogeneous data.The following dis
ussion presents a te
hnique to do that.5.1 CPCA-based Distributed ClusteringThe proposed distributed 
lustering approa
h respe
ts the user's 
hoi
e of any spe
i�
 lo
al 
lustering al-gorithm and works using a given module of 
entralized 
lustering algorithm C. It exe
utes the followingsteps:1. Performs lo
al PCA at ea
h site.2. Proje
ts the lo
al data on the lo
al PCs and applies the given 
lustering algorithm C at ea
h site.3. Sele
ts a set of representative points from ea
h 
luster at every site. Let Si be the set of indi
es at sitei 
orresponding to the 
hosen representative points.4. All sites 
ommuni
ate the proje
ted data rows 
orresponding to all indi
es in [iSi to the 
entral site.5. The 
entral site performs the global PCA on this 
olle
ted data set and broad
asts the global PCs toea
h site.6. Ea
h site proje
ts the lo
al data on the global PCs and performs 
lustering using the given algorithmC.7. Ea
h site 
ommuni
ates a des
ription of the lo
ally 
onstru
ted 
lusters (using a graph stru
ture) tothe 
entral site. 10



8. The 
entral site 
ombines the di�erent graphs obtained from the lo
al sites. The 
ombination methodsmay vary. Here we present one method: sin
e we have already obtained the information about rep-resentative points, we 
an have ea
h site send every point's \nearest neighbor" index to 
entral site,i.e., the 
entral site will know that in ea
h lo
al site, whi
h representative point is the 
losest to ea
hpoint. If there are n data points in the global data set, it will take O(n) 
ommuni
ations to send theindi
es information. Then we 
ould use that representative point's lo
al information to approximatethe point's lo
al information, so as to approximate the global information and get the global 
lusters.We will dis
uss this approximation in detail in next se
tion.The foundation of this algorithm is dis
ussed in the following se
tion.5.2 Theoreti
al FoundationThe rationale behind this algorithm is explained in the following. The lo
al PCs are 
omputed for 
ompressingthe lo
al data|the same reason that we had for the initial step in the plain vanilla 
avored CPCA. In 
aseof CPCA the next step was the uniform sampling of the lo
al data rows. In 
ase of the distributed 
lusteringwe take advantage of the given lo
al 
lustering te
hnique in order to sele
t representatives of all the di�erent
lusters. This redu
es the possibility of 
hoosing a sample set that 
ompletely negle
ts some 
lusters presentin the data set. The idea of using representative points in 
lustering is not new. Centroids and otherstatisti
al entities have long been used for representing 
lusters. However, this approa
h may not workwhen 
lusters are of di�erent shapes and sizes. Alternate 
hoi
es for representative points have also beenproposed. For example, the CURE algorithm [21℄ sele
ts a set of data points for ea
h 
luster as representativepoints, so that 
lusters of arbitrary shapes 
an be dis
overed. The algorithm proposed here shares the latterperspe
tive.Next the global site 
omputes the global PCs and broad
asts them to ea
h site. This step is needed sin
ewe would like to 
onstru
t the �nal 
lusters based on the global PCs. Note that the lo
al PCs are usefulonly in the lo
al 
ontext. They may not have any impli
ation in the global sense.Step six of the proposed 
lustering algorithm involves proje
tion of the lo
al data along the globaleigenve
tors. In steps 7 and 8, we perform global 
lustering by de
omposing it into lo
al 
ite 
lusteringsand 
ombining them at the 
entral site. In other words, we are 
laiming that the global distan
e10 betweenany two points x and y 
an be a

urately approximated by adding the lo
al distan
es between these twopoints. The following dis
ussion justi�es this approa
h for the 
ase of Eu
lidean distan
e metri
, sin
e theunderlying representation is orthogonal.Let V be an n � p matrix su
h that its 
olumns are the global PCs, i.e., the p global eigenve
tors
orresponding to the p dominant eigenvalues (
omputed in step 5). The proje
tion of the 
omplete data setXalong V is XV . Unfortunately, the data set X is distributed among di�erent sites, i.e. X = [X1; X2; : : : ; Xs℄.Note thatXi (the data set at site i) hasm rows and ni 
olumns. Moreover, we 
an write V = [V 01 ; V 02 ; : : : ; V 0s ℄0,where Vi is an ni � p sub-matrix. Therefore, XV = [X1V1 + X2V2 � � � + XsVs℄ and the i-th site 
omputesonly XiVi.Let us 
onsider two data points x = [x1;x2; : : : ;xs℄ and y = [y1;y2; : : : ;ys℄, where xi and yi are 1� nidimensional row matri
es. Computing the distan
e between x and y requires 
entral 
olle
tion of the x1V1,x2V2, and xsVs. However in the following we show that sum of the distan
es between xiVi and yiVi for alli is a good approximation of the overall distan
e between x and y.De�ne x � y = z = [z1; z2; : : : ; zs℄. Let U = [U 01; U 02; : : : ; U 0s℄0, where Ui is an ni � (n � p) sub-matrixwhose 
olumns 
orrespond to the (n � p) global eigenve
tors 
orresponding to the (n � p) smallest globaleigenvalues. Re
all that, in pra
ti
e, these eigenve
tors are not 
omputed and 
orrespond to the (n�p) PCsthat are ignored. It is well known that the n�n matrix [V U ℄ is orthogonal. In parti
ular, its rows form anorthonormal basis.For notational simpli
ity, we will 
onsider a two site 
ase (i.e., s = 2). The extension to the general 
aseis straight-forward. Using all the global eigenve
tors, the proje
tion of z 
an be written as10assuming that the 
lustering algorithm makes use of a distan
e metri
.
11



� ẑ ŵ � = z � V U � = � z1 z2 � � V1 U1V2 U2 �= � ẑ1 ŵ1 �+ � ẑ2 ŵ2 � :The ve
tors ẑ1 = z1V1 and ẑ2 = z2V2 are the lo
al PCs 
omputed at sites 1 and 2, respe
tively, whereasthe ve
tors ŵ1 = z1U1 and ŵ2 = z2U2 are the PCs that are ignored. Sin
e the rows of matrix [V U ℄ forman orthogonal basis, ve
tors [ẑ1 ŵ1℄ and [ẑ2 ŵ2℄ are orthogonal. Therefore,kx� yk2 = kzk2 = 

� ẑ ŵ �

2= 

� ẑ1 ŵ1 �

2 + 

� ẑ2 ŵ2 �

2= kẑ1k2 + kŵ1k2 + kẑ2k2 + kŵ2k2:It follows that kzk2 � (kẑ1k2 + kẑ2k2) = kŵ1k2 + kŵ2k2;where ẑi = x̂i � ŷi = xiVi � yiVi, for i = 1; 2.It is now easy to see that the error in approximating the (squared) distan
e between data points x andy by the sum of the (squared) distan
es between the appropriate lo
al PCs is relatively small. Indeed, itis dire
tly related to the norm of the prin
ipal 
omponents that have been ignored, whi
h is usually quitesmall.This gives us a simple way to approximate the global distan
e among a pair of points by 
omputing thelo
al distan
es and adding them a

ordingly in order to get the global distan
e. Ea
h site runs the 
lusteringalgorithm C on XiVi and sends the lo
al distan
e information among the representative points of the 
lustersto the global site. The global site sums up the pair-wise distan
es between any two points 
omputed by ea
hsite. As noted earlier, this serves as a good approximation to the global pair-wise Eu
lidean distan
e betweenthe two points. As a result the generated global 
lusters o�er good approximation of the 
lusters that 
anbe obtained by the 
orresponding 
entralized te
hnique. The following se
tion presents some experimentalresults do
umenting the performan
e of the CPCA-based distributed 
lustering algorithm.6 Experiments with CPCA-Based Distributed ClusteringThis se
tion presents the experimental results with CPCA-based 
lustering te
hnique for two experimentaltest suites. In our experiments we use K-means 
lustering algorithm [16℄ as the 
lustering module. We
ompare the results of 
entralized 
lustering with those of the CPCA-based distributed 
lustering. In the
entralized 
ase, we also use PCA to extra
t the features and perform 
lustering on the proje
tions. Sin
ethe result of K-means 
lustering algorithm depends heavily on the sele
tion of starting points, we randomly
hoose a set of starting points and use them for both the 
entralized and distributed algorithms. Ourexperiments follow the general steps of the algorithm presented in se
tion 5. However, the implementationof some of the steps depends on the 
lustering algorithm module, as we explain below.1. In the third step, when we sele
t the representative points, we make sure that the starting points aresele
ted, so that �nally we 
ould use the same set of starting points to 
ombine the lo
al 
lusters in
entral site.2. In the sixth step, ea
h site proje
ts the lo
al data on the global PCs. Sin
e the data are heterogeneous,the lo
al data are a
tually proje
ted to a horizontal partition of the global PCs. Let's 
all the proje
tion\partial proje
tion". We perform a \single-iteration K-means" 
lustering on the partial proje
tions.In other words, ea
h site uses the partial proje
tions of the representative points as 
entroids and
omputes the distan
e between the proje
ted data points and these 
entroids. We label ea
h pointwith the index of the 
losest 
entroid, i.e. the index of a representative point whi
h has the 
losestpartial proje
tion to it. 12
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Figure 5: (Left) Performan
e of 
entralized 
lustering for the Quest Syntheti
 data . (Right) Performan
e ofCPCA-based distributed 
lustering for the Quest Syntheti
 data with two data sites. The plots are averagesof �ve independent runs.3. In the seventh step, we represent the lo
ally 
onstru
ted 
lusters with the labels asso
iated with thedata points. These labels are 
ommuni
ated to the 
entral site.4. In the last step, the 
entral site 
ombines the lo
al 
luster results. As dis
ussed in se
tion 5.2, weapproximate the proje
tions of the global data on the global prin
ipal dire
tions by adding the partialproje
tions obtained from lo
al sites. Our previous analyti
al result shows that this is indeed a goodapproximation. Then we run the K-means algorithm on the proje
tions of the global data to get the�nal 
lusters.The following se
tions des
ribe the performan
e of the above algorithm for two experimental suites.6.1 Experiment Suite: IThis suite uses a data set with 10,000 observations and 100 features, generated by the Quest Syntheti
 DataGeneration Code. As in se
tion 4, we did not use the 
lass labels.We partitioned the data set into two subsets, ea
h 
ontaining 50 features. Threshold is set to 0.90 and thedesired number of 
lusters is set to 8. 10% of points are sampled as representative points. After obtainingthe 
lusters from both 
entralized and distributed te
hniques, we randomly sampled 50 points from the dataset and 
onstru
ted an adja
en
y matrix (if the ith point and the jth point are in the same 
luster, thenthe entry (i,j) of the matrix is set to one, otherwise it is set to zero). Then we draw density plot based onthe adja
en
y matrix. Figure 5 (left) shows the density plot obtained by the 
entralized algorithm. Figure5 (right) shows performan
e of our CPCA-based 
lustering algorithm. Sin
e we use random sampling in thealgorithm, here we present the average of �ve independent runs as the result of the distributed algorithm.We take the average of the �ve adja
en
y matri
es obtained by �ve runs and 
onvert the numeri
 values inthe average matrix into boolean values by rounding o� the 
oating point numbers to the nearest integers.We also tested the performan
e of the algorithm with di�erent number of sites. Figure 6 shows the
omparison of the sampled results of 
entralized and distributed algorithm when the data set is equallydistributed among ten sites. Figure 7 shows the di�eren
e, i.e., mis
lassi�
ations in the CPCA-based 
lus-tering as 
ompared to the 
entralized PCA-based 
lustering. The per
entage of mis
lassi�
ations (i.e., theper
entage of \white dots" in the density plots) for two-site experiment is 7.44%, while the one for ten-siteexperiment is 7.60%. We also noti
ed that with this data set,we didn't get mu
h 
ompression in the CPCAphase (for two-site experiment, we sele
ted 71% of lo
al PCs, and for the ten-site experiment, we sele
ted83%. This was ne
essary for the required RMSE of 0.1). We will see that in the next experiment suite, we
an get more 
ompression and the a

ura
y is higher.
13
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Figure 6: (Left) Performan
e of 
entralized 
lustering for the Quest Syntheti
 data with ten data sites.(Right) Performan
e of CPCA-based distributed 
lustering for the Quest Syntheti
 data with ten data sites.The plots are averages of �ve independent runs.
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Figure 7: Di�eren
e between results of 
entralized 
lustering algorithm and CPCA-based distributed 
lus-tering algorithm for Quest data with ten data sites.
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Figure 8: (Left) Performan
e of Centralized 
lustering for 3-site web data . (Right) Performan
e of CPCA-based distributed 
lustering for 3-site web data when 10% points are sampled as representative points. Theplots are averages of �ve independent runs. 14
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Figure 9: Di�eren
e between the results of 
entralized algorithm and CPCA-based 
lustering algorithm when20% points are sampled as representative points .6.2 Experiment Suite: IIThe main purpose of this se
tion is to illustrate an appli
ation s
enario for the CPCA-based 
lusteringte
hnique. PCA is frequently used for high-dimensional text-analysis appli
ations. Therefore text analysisshould be an ideal 
andidate for applying the CPCA. However, in a distributed environment, appli
ationsmay be
ome more interesting and 
hallenging when relevant data sets involve text, numeri
, and othernon-numeri
 features. In the following we des
ribe one su
h 
ase.Consider the 
ase of �nan
ial news stories regularly posted on the Internet. These news stories are oftenvery useful for investors, portfolio managers, and others. Typi
ally many of these stories are asso
iated withsome 
ompanies. Announ
ements regarding new produ
ts, quarterly revenue, legal battles, mergers, andpartnerships of 
ompanies often dominate su
h business news. On the other hand, there exist many sitesin the Internet (for example, Yahoo �nan
e and CNN �nan
e) that o�er valuable information about theba
kground and 
urrent �nan
ial pro�le about almost all major 
ompanies.The website of a 
ompany itselfalso provides quite useful information su
h as new developments, produ
ts, and others. Another importantinformation sour
e will be the sto
k quotes. We 
ould easily a

ess the real-time sto
k quotes (or quoteswith short delay) online.The experiment performed in this se
tion 
onsiders su
h real-life appli
ations. We 
olle
ted two data sets(named as 3-site web data and 4-site web data respe
tively) from �nan
ial websites and did experiments.First data set (3-site web data) 
ontains three data tables. One table 
orresponds to news 
orpora. Ea
hdo
ument in this 
orpora 
orresponds to a key, and thus asso
iated with a 
ompany. For our appli
ationwe used the abbreviated symbol (ti
ker symbol) of the 
orresponding 
ompany as the key. A se
ond tableis 
onstru
ted that stores the �nan
ial and ba
kground feature values of a 
ompany, again indexed by the
ompany symbol. A third data table is 
onstru
ted using the data about the se
tor the 
ompany belongsto. This table is also indexed by the 
ompany symbol. We 
onsidered a data set involving 1027 
ompaniesand the three tables are lo
ated at three di�erent sites. The CPCA te
hnique is applied on this three datasets. The PC sele
tion threshold is set to 0.90. Table 6 shows the number of features at ea
h site and
orresponding number of 
hosen PCs. As we see, the CPCA te
hnique o�ers a big 
ompression fa
tor. Wevaried the number of representative points to 
ompare the a

ura
y of our algorithm. Figure 8 (left) showsthe density plot for 
entralized 
lustering result and �gure 8 (right) shows that for distributed 
lusteringresult when 10% of points are sampled as representative points. Figure 9 shows the the density plot ofthe di�eren
e between 
entralized result and distributed result when 20% of points are sampled. Whenthe number of representative points in
reases, the a

ura
y is better. The per
entages of mis
lassi�
ations
orresponding to 10% and 20% 
ommuni
ation of data are 3.28% and 0.8% respe
tively, a

ording to the 50points we randomly 
hosen to display. We sele
ted 24% of lo
al PCs in the CPCA phase.We also studied the performan
e with di�erent sample sizes using the 3-site web data. For ea
h samplesize, we run our algorithm 5 times and 
ompute the average of the adja
en
y matrix generated from the
lusters. The adja
en
y matrix is generated for all the data points, in this 
ase it is 1027 by 1027. Thenwe 
ompare the average adja
en
y matrix with the one obtained by 
entralized algorithm and 
ompute the15
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Figure 10: Mis
lassi�
ations (%) vs. sample size (%): average performan
e for 3-site web dataTable 6: 3-site web data: data subsets, number of features and number of sele
ted lo
al PCs.Data subset Number of Number offeatures sele
ted lo
al PCsPro�le information 73 2Se
tor data 15 4News stories 793 204per
entage of the di�erent entries. Figure 10 shows the per
entages of mis
lassi�
ations when sample sizevaries from 5% to 60%.We also tested our algorithm on another data set (
alled 4-site web data). It involves 4811 
ompanies,and the data are distributed among four sites. Besides the three data sour
es mentioned above, we 
olle
teda fourth data subset, whi
h is the quotes data set. We use the sto
k quotes on a 
ertain day to simulatethe real-time data. The data are time series, i.e., for ea
h 
ompany, we re
ord one quote every 15 minutes.For the news stories site, we 
olle
ted the latest three pie
es of news after O
t.1, 2000 for ea
h 
ompany.However, some 
ompanies may only have one or two news stories in this period. Besides these two subsets,the data set still 
ontains a pro�le data subset (63 features) and a se
tor data subset(13 features). The PCsele
tion threshold is set to 0.90, whi
h results in 53.86% of lo
al PCs in the CPCA phase. We sampled10% of the points as representative points. The per
entages of mis
lassi�
ations among the displayed data is7.44%. Figure 11 shows the di�eren
e between 
entralized result and distributed result. As in other �gures,50 points are randomly 
hosen to display the density plots.

0 10 20 30 40 50
0

10

20

30

40

50

Figure 11: Di�eren
e between results of 
entralized 
lustering algorithm and CPCA-based distributed 
lus-tering algorithm for 4-site web data when 10% points are sampled as representative points.16



7 Future WorkThis paper do
uments our initial e�ort to perform distributed PCA-based 
lustering. It answers few ques-tions. However, it raises even more questions. Several fundamental and applied issues need to be answeredbefore this approa
h 
an be adopted in pra
ti
e. Some of them are dis
ussed below.The problem of quantifying error in CPCA is one su
h issue. A natural 
hoi
e is to 
ompute the angle
os�1(u0ivi) between the ith eigenve
tors ui; vi, i = 1; 2; : : : ; k, 
omputed by means of CPCA and the globalPCA, respe
tively. This paper adopts this approa
h (see Figures 1, 2, 3, 4). However, this may not be thebest way to do so.A more appropriate way to quantify the error in CPCA is to 
ompute the \distan
e" between thesubspa
es spanned by fu1; : : : ; ukg and fv1; : : : ; vkg. In fa
t, for some 
ases with repeated eigenvalues, theformer error maybe large even when the subspa
es are 
lose in some appropriate metri
. To quote fromStewart [49℄:\... one 
annot expe
t the eigenve
tors of nearby matri
es to lie near one another when their
orresponding eigenvalues belong to 
lusters of poorly separated eigenvalues."\Although the eigenve
tors 
orresponding to a 
luster of eigenvalues of a Hermitian matrixare sensitive to perturbations in the elements in the matrix, the subspa
e spanned by them isrelatively insensitive."Sin
e we ultimately use the 
omputed eigenve
tors to proje
t our data onto the subspa
e spanned bythem, the distan
e between the subspa
es is more relevant than the distan
e between the basis ve
tors(
omputed eigenve
tors) of an orthonormal basis for these subspa
es.A detailed analysis of this error measure based on distan
e between subspa
es is important. Indeed, letU ;V � Rn be two subspa
es. The gap between U and V is de�ned as [49, 33℄
(U ;V) = maxf supkuk=1;u2U infv2V ku� vk; supkvk=1;v2V infu2U ku� vkg;where k:k is a norm on Rn. The gap fun
tion is a metri
 for the important spe
ial 
ase where k:k is theEu
lidean norm. The gap fun
tion has many useful properties:
(U ;V) < 1) dim(U) = dim(V); and 
(U ;V) = kPU � PVkwhere PU , PV denote orthogonal proje
tion operators onto subspa
es U , V , respe
tively.The relation between two subspa
es U , V 
an also be 
hara
terized by a set of suitably 
onstru
tedorthonormal basis ve
tors for the respe
tive subspa
es. The angle �i between the i-th basis ve
tors of Uand V is de�ned as the i-th 
anoni
al angle between the subspa
es [14℄. In this 
ase, the sine of the largest
anoni
al angle is the gap 
(U ;V) between the subspa
es.We are a
tively investigating the idea of 
hara
terizing the CPCA error in terms of the relation betweeninvariant subspa
es and will report our results in a future publi
ation.Another important issue is the relian
e of our proposed te
hnique on Eu
lidean distan
e metri
. Whilethe de
omposed evaluation of Eu
lidean distan
e works out �ne, the same 
annot be said for any general non-Eu
lidean metri
. There are several pra
ti
al domains (e.g. DNA sequen
es, web-log data) where Eu
lideandistan
e may not make sense. One possible way to handle this 
ase is to eÆ
iently 
onstru
t an embeddingof the given data in a non-Eu
lidean spa
e to an Eu
lidean spa
e. There exist several interesting results thatsupport this possibility. Appre
iating these results require a geometri
al perspe
tive of graphs.Let (�x) be a metri
 that de�nes the distan
e between any two points in the given domain (Xn) that
ontains the data sets. An isometry is a mapping 
 from the metri
 spa
e (Xn; �x) to another metri
 spa
e(Ym; �y) su
h that �x(x1; x2) = �y(
(x1); 
(x2)). In other words 
 preserves the distan
e between points inthe two spa
es. We say that the mapping 
 is �-nearly isometri
, if �x(x1;x2)�y(
(x1);
(x2)) � �. In this 
ase we maysay that the mapping has an � distortion.The following theorem developed elsewhere [7℄ provide an interesting result about near isometri
 mappingsof a metri
 spa
e to a Hilbert spa
e.Theorem 1 ([7℄) Every n-point metri
 spa
e of dimension n 
an be mapped to a O(logn) Hilbert spa
ewith an O(logn) distortion. 17



This result was further explored elsewhere [38℄ whi
h produ
ed the following theorem.Theorem 2 ([39℄) In random polynomial time, every n-point metri
 spa
e of n dimensions 
an be embeddedin `O(logn)p (for any p � 1), with distortion O(logn), where `mp is a norm in the Eu
lidean spa
e <m de�nedby k(x1; x2; � � � ; xn)kp = (P jxijp)1=p.The randomized algorithm proposed by Linial et al. [39℄ works by randomly 
hoosing O(logn) number ofsubsets of the data and 
omputing the minimum distan
e between the point being proje
ted and the subsets.Related work for 
onstru
ting proje
tions of n points in Eu
lidean spa
e 
an be found elsewhere [9, 12℄. Weare 
urrently exploring this possibility.The assignment of the representative points to every member of the data set 
an be made more eÆ
ientby storing the data set using similarity preserving indi
es [54℄. We are 
urrently integrating su
h te
hniqueswith the distributed 
lustering te
hnique.8 Con
lusionsDistributed data analysis is playing an in
reasingly important role in KDD appli
ations from databases
onne
ted through large networks. Parti
ularly, the growing popularity of mobile 
omputing devi
es andwireless networks with limited bandwidth is fostering rapid development of this area. Unsupervised dataanalysis is an important part of data analysis and PCA plays a 
riti
al role in su
h analysis of high dimensionaldata. Development of distributed PCA algorithm is therefore important. This paper presented the Colle
tivePCA te
hnique whi
h o�ers one solution to this problem. The experimental results demonstrated that theCPCA 
an be e�e
tively used for analyzing high dimensional voluminous data with limited 
ommuni
ationoverhead.This paper also showed that the CPCA algorithm 
an be integrated with o�-the-shelf 
lustering modulesfor developing distributed 
lustering algorithms. In fa
t the integrated approa
h is likely to improve theperforman
e of the CPCA te
hnique itself. This is be
ause sele
tion of representative samples from data
lusters is likely to perform better than the uniform sampling of data. This paper do
uments the result ofour early e�ort in distributed 
lustering from heterogeneous data. We do need to pursue the resear
h issuesidenti�ed in the previous se
tion in order to establish the proposed te
hnique in pra
ti
e. Nevertheless,it opens up several new possibilities for distributed data mining appli
ations. Distributed web mining,identifying emerging patterns from a large network of sensors, ex
hange of \signi�
ant" a
tivities amongmobile devi
es through wireless networks are only a few s
enarios where distributed PCA-based 
lustering
an be useful. We hope that this work brings the �eld of DKD one more step 
loser to the ultimate obje
tive| ubiquitous KDD.A
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