
Distributed Clustering Using Colletive Prinipal ComponentAnalysisHillol KarguptaComputer Siene and Eletrial Engineering DepartmentUniversity of Maryland Baltimore CountyBaltimore, MD 21250hillol�s.umb.eduWeiyun Huang, Krishnamoorthy Sivakumar, Erik JohnsonShool of Eletrial Engineering and Computer SieneWashington State UniversityPullman, WA 99164-2752fwhuang1, siva, erikjg�ees.wsu.edu30 July 1999AbstratThis paper onsiders distributed lustering of high dimensional heterogeneous data using a distributedPrinipal Component Analysis (PCA) tehnique alled the Colletive PCA. It presents the ColletivePCA tehnique that an be used independent of the lustering appliation. It shows a way to inte-grate the Colletive PCA with a given o�-the-shelf lustering algorithm in order to develop a distributedlustering tehnique. It also presents experimental results using di�erent test data sets inluding anappliation for web mining.1 IntrodutionClustering of large data sets is a ommon pratie in data mining appliations. The suess of a lusteringappliation usually depends ritially on the representation of the data. Clustering without proper featureseletion and feature onstrution may not produe desirable data lusters. Moreover, this is importantfor the salability of the lustering algorithms. Prinipal omponent analysis (PCA) [27, 28℄ is a populartehnique to onstrut a representation of the data that apture maximally variant dimensions of the data.It omputes a representation with a set of basis vetors that are the dominant eigenvetors of the ovarianematrix generated by the data. Clustering algorithms equipped with PCA-based representation are quiteuseful in many appliations inluding knowledge disovery from databases (KDD) [6℄.Both PCA and PCA-based lustering algorithms are reasonably well understood when the data sets areentrally loated. However, the emergene of network-based omputation has o�ered a new hallenge to thistraditional pratie. This has introdued a new important dimension to both PCA and PCA-based lustering| distributed soures of data. This involves two diÆult problems: (1) performing distributed PCA and(2) lustering distributed data using the prinipal omponents (PCs) omputed during the previous step.To the best of our knowledge, there does not exist any tehnique that an perform distributed PCA fromheterogeneous data sets (with di�erent tables storing data for di�erent features) with limited ommuniationof raw data. This paper presents the Colletive PCA (CPCA) that o�ers one solution to this problem. It alsoo�ers a distributed lustering tehnique that integrates the CPCA algorithm. It douments the performaneof the proposed tehniques for di�erent data sets inluding a web-mining appliation.1



Table 1: Homogeneous ase: Site A with a table for redit ard transation reords.Aount Amount Loation Previous UnusualNumber reord transation11992346 -42.84 Seattle Poor Yes12993339 2613.33 Seattle Good No45633341 432.42 Portland Okay No55564999 128.32 Spokane Okay YesTable 2: Homogeneous ase: Site B with a table for redit ard transation reords.Aount Amount Loation Previous UnusualNumber reord transation87992364 446.32 Berkeley Good No67845921 978.24 Orinda Good Yes85621341 719.42 Walnut Okay No95345998 -256.40 Franiso Bad YesSetion 2 o�ers a brief review of PCA tehniques and disusses the relevane to existing work on par-allel/distributed PCA. Setion 3 presents the Colletive PCA (CPCA) algorithm and the error analysis ofthe proposed tehnique. Setion 4 douments the performane of the CPCA algorithm for di�erent testases. Setion 5 presents the distributed lustering tehnique that integrates the CPCA. Setion 6 presentsexperimental results for the distributed lustering algorithm. Setion 7 disusses the future work. FinallySetion 8 onludes this paper.2 BakgroundThe �eld of KDD emerged in the reent past as a result of the dramati evolution of the tehnology forinformation storage, aess, and analysis. The ability of various organizations to ollet, store, and retrievehuge amounts of data has neessitated the development of algorithms that an extrat useful informationfrom these databases. KDD addresses this issue.Distributed knowledge disovery (DKD) [10, 13, 20, 22, 25, 32, 46, 37, 51, 56℄ takes KDD to a newplatform. It embraes the growing trend of merging omputation with ommuniation and explores all faetsof the KDD proess in the ontext of the emerging distributed omputing environments. DKD aepts thefat that data may be inherently distributed among di�erent loosely oupled sites onneted by a network andthe sites may have heterogeneous data. It o�ers tehniques to disover new knowledge through distributeddata analysis and modeling using minimal ommuniation of data. DKD must deal with di�erent possibilitiesof data distribution. Di�erent sites may ontain data for a ommon set of features of the problem domain.In ase of relational data this would mean a onsistent database shema aross all the sites. This is thehomogeneous ase. Tables 1 and 2 illustrate this ase using an example from a hypothetial redit ardtransation domain.1 There are two data sites A and B, onneted by a network. The KDD-objetive insuh a domain may be to �nd patterns of fraudulent transations. Note that both the tables have the sameshema. The underlying distribution of the data may or may not be idential aross di�erent data sites.In the general ase the data sites may be heterogeneous. In other words, sites may ontain tables withdi�erent shemata. Di�erent features are observed at di�erent sites. Let us illustrate this ase with relationaldata. Table 3 shows two data-tables at site X. The upper table ontains weather-related data and the lowerone ontains demographi data. Table 4 shows the ontent of site Y, whih ontains holiday toy sales data.The objetive of the KDD proess may be deteting relations between the toy sales, the demographi andweather related features. In the general heterogeneous ase the tables may be related through di�erent setsof key indies. For example, Tables 3(upper) and (lower) are related through the key feature City; on theother hand Table 3 (lower) and Table 4 are related through key feature State.1Please note that the redit ard domain may not always have onsistent shema. The domain is used just for illustration.2



Table 3: Heterogeneous ase: Site X with two tables, one for weather and the other for demography.City Temp. Humidity WindChillBoise 20 24% 10Spokane 32 48% 12Seattle 63 88% 4Portland 51 86% 4Vanouver 47 52% 6
City State Size Average Proportionearning of smallbusinessesBoise ID Small Low 0.041Spokane WA Medium Medium 0.022Seattle WA Large High 0.014Portland OR Large High 0.017Vanouver BC Medium Medium 0.031Table 4: Heterogeneous ase: Site Y with one table ontaining holiday toy sales data.State Best Selling Prie Number Items SoldItem ($) (In thousands)WA Snar Ation Figure 47.99 23ID Power Toads 23.50 2BC Light Saber 19.99 5OR Super Squirter 24.99 142CA Super Fun Ball 9.99 24When the data sets are large, possibly embedded within some DBMS, downloading the data sets fromdi�erent sites for onstruting a single table may be diÆult if not impossible from a logisti point of view. Itmay also demand large bandwidth for better response time. If the data is sensitive, seurity is also a majorissue in downloading large data sets. Clearly, for large distributed environments, data analysis tehniquesthat require minimal ommuniation of raw data are preferable over tehniques that require entral olletionof data sets. Partiularly, the role of DKD beomes even more ritial in the emerging wireless omputingdomain where the bandwidth is very limited.This paper onsiders the PCA and distributed PCA-based lustering of heterogeneous and distributeddata. Earlier e�orts on lassi�er and hierarhial luster learning from heterogeneous distributed data anbe found elsewhere [25, 30, 32, 51℄. We will not assume any restrition on the number of data sites. Byde�nition, we will assume that there exists at least one key feature (e.g. the feature \City" in Tables3 & 4) assoiated with the tables that an be used to link the information aross di�erent tables. Thispaper onsiders unsupervised analysis of data. Therefore, we will not require the data to ome with anylassi�ation label. The following setion presents a brief review of PCA.2.1 PCA: A Brief ReviewPrinipal Component Analysis (PCA) is a statistial tehnique for analyzing multivariate data [47, 27, 28℄.It involves linear transformation of a olletion of related (statistially orrelated) variables into a set oftransformed variables | usually referred to as prinipal omponents. All the prinipal omponents arestatistially unorrelated and individual prinipal omponents are ordered with respet to the statistialvariane of that omponent. In the following, we provide a brief derivation of prinipal omponents, mainlyto establish our notation and onventions. A number of exellent referenes maybe onsulted for a thoroughexposition [28℄.Consider the random vetor X = (X1; X2; : : : ; Xn)2 with mean E[X℄ = 0 (if the data has non-zero mean,we �rst \enter" the data by subtrating the mean) and (a symmetri and positive semi-de�nite) ovarianematrix Cov[X℄ = E[X0X℄ = �x.3The ith prinipal omponent of X is a linear ombination Yi = Xa0i, where ai = [ai1; ai2; : : : ; ain℄, that isunorrelated with the previous prinipal omponents (Y1;Y2; : : : ;Yi�1) and has maximum variane. The2We denote our vetors as row vetors.3A0 denotes the transpose of vetor/matrix A. 3



oeÆient vetor ai is usually onstrained to be of unit length. A solution to this optimization problem:maxfai�xa0ig; subjet to aia0i = 1; andai�xa0j = 0; j = 1; 2; : : : ; i� 1;is obtained by hoosing ai to be a unit eigenvetor of �x orresponding to the ith largest eigenvalue �i of�x.The n prinipal omponents Y = [Y1;Y2; : : : ;Yn℄ may be ompatly represented as Y = XA. Herethe olumns of matrix A onsist of the unit eigenvetors of �x, arranged in desending order based onthe orresponding eigenvalues. In general, we are interested in representing X by means of a small set ofprinipal omponents (dimensionality redution). Let Ŷ = [Y1; : : : ;Yk℄ be the �rst k prinipal omponentsof X, where k << n. These prinipal omponents an be used to obtain a reasonable approximation of theoriginal data as follows: X̂ = ŶÂ0 (1)where Â is the sub-matrix onsisting of the �rst k olumns of A. The relative mean-squared error (RMSE)between X and X̂ an be expressed in terms of the eigenvalues of �x as follows:E[(X� X̂)(X� X̂)0℄E[XX0℄ = Pnj=k+1 �jPnj=1 �j : (2)If the eigenvalues of �x are \spread-out" in the sense that �max=�min is large, the data X maybe represented(with a small RMSE) by a small number of prinipal omponents.In pratie, the ovariane of the random vetor X is not given and has to be estimated from availabledata. Let X be am�n data matrix, where eah row of X represents a sample (or observation) of the randomvetor X. We shall use the sample ovariane 1mX 0X of the data to obtain the transformation matrix A forPCA [3℄.4In reent years, the QR algorithm has been the most widely used algorithm for alulating the ompleteset of eigenvalues of a matrix [52, 18℄. Cyli Jaobi methods are partiularly suited for implementation in aparallel omputer [52, 18℄. The divide-and onquer method of Cuppen is a relatively new method for alu-lating the omplete eigensystem of a symmetri, tridiagonal matrix [52℄. The singular value deomposition(SVD) of a real, symmetri, positive semi-de�nite matrix (the matrix �x in our ase), is equivalent to theorthogonal deomposition in terms of eigenvalues/eigenvetors [26℄. Therefore, algorithms for omputing theSVD an also be used for PCA. The power method and its variants are some of the simplest tehniques for�nding a few of the dominant eigenvalue/eigenvetor of �x [40, 41℄. Beause of its ease of implementation,we have adopted this method in our experiments.2.2 PCA and Data AnalysisPrinipal omponent analysis has found wide appliations in various disiplines like psyhology [43, 5℄,genetis [23℄, pattern reognition [55℄, remote sensing [35℄, and seismi data analysis [24, 29℄, among others.PCA is also a popular hoie for data mining appliations. PCA has been used for deteting linearassoiative rules [17℄. Appliation of PCA-based tehniques for large sale text an be found in [6℄. PCAhas also found appliations in ensemble learning and aggregation of multiple models. Merz and Pazzani[42℄ have reported a PCA-based tehnique for ombining regression estimates. A maximum-likelihood-basedframework for onstruting mixture models of PCA is proposed by Tipping and Bishop [50℄. The tehniquedeveloped by Tippin and Bishop develops a olletion of PCA models by analyzing di�erent horizontalpartitions of the data. The objetive is to a generate better quality model that is only loally linear,unlike the single PCA model whih is globally linear. Their approah o�ers a tehnique to ombine suhPCA models generated on di�erent partitions of the data. Although this is related to our work in theurrent paper, there is a major di�erene. In our ase the data sets are heterogeneous; in other words data4The normalization fator m is not ruial to our further disussion. In the sequel, for simpliity, we shall drop that fator.4



partitions may not share the same feature set. Another approah for aggregating multiple data partitions intoa single hierarhial PCA model is developed by Westerhuis, Kourti, and Magregor [53℄. This tehnique wasprimarily developed for proess ontrol appliations in hemial engineering where data sets are olletedperiodially. This approah iteratively extrats one dominant eigenvetor at a time and assumes entralstorage of data sets. In a distributed environment with limited bandwidth this algorithm requires heavyommuniation.The following setion presents the overall algorithm of Colletive PCA (CPCA) and error analysis.3 The Colletive PCAThis setion presents the Colletive PCA (CPCA) tehnique for onstruting global PCA model from dis-tributed heterogeneous data with minimal ommuniation overhead. It also presents the error analysis ofthe proposed tehnique.3.1 Overall AlgorithmThis subsetion presents the CPCA algorithm from an abstrat algorithmi perspetive. For the sake ofsimpliity we onsider only one table per site. However, the tehnique an be generalized to problems withmultiple number of tables at eah site.In a distributed and heterogenous environment, the entire data matrix X is omprised of di�erent smallertables stored at di�erent sites. In partiular, eah site has data regarding a partiular subset of the n features.Let us assume that the data is distributed among s sites and the entire data matrix X an be partitionedas X = [X1; X2; : : : ; Xs℄, where Xi is a m � ni submatrix of X that is available at site i. A PCA of thisdistributed data in a entralized fashion would involve moving data to one entral site and alulating theeigenvalues/eigenvetors of the ovariane matrix X 0X of the global data matrix X . The amount of data tobe moved is O(mn), where m is the number of data samples (rows of the global data table X) and n is thetotal number of features (olumns of the global data table X). For typial DKD-appliations this amount ofdata ommuniation is either prohibitive beause of the limited bandwidth or impratial beause of logistisand/or seurity related reasons.Given the distributed nature of the data, it would be advantageous to perform the omputations for PCA(to the extent possible) loally, thereby minimizing the amount of data ommuniation and the omputationat the entral site. In the following, we desribe the CPCA approah to this problem.First we perform a PCA, loally, on the data partition Xi at site i. Let Ai be the ni � ki matrix whoseolumns are the ki eigenvetors orresponding to the ki largest eigenvalues of X 0iXi. Matrix Ak is omputedbased on the data partition Xi and we retain only the �rst ki prinipal omponents at site i. LetYi = XiAi (3)be the prinipal omponents omputed at site i. The hoie of ki will depend on the eigenvalues of theloal ovariane X 0iXi and would be ditated by our error tolerane. It is a tradeo� between dimensionalityredution and auray. In all our experiments, we hose an error tolerane (i.e. RMSE, see eq. (2)) of 0:1.The matrix Yi is representative of the data Xi. Sine typially the number of rows in large tables (m) isvery large, we selet a subset of  samples (rows) (where  << m), with uniform probability. With someabuse of notation, we will denote by Yi the  � ki matrix onsisting of the prinipal omponents and only seleted samples. The individual Yi and Ai from eah site are then transmitted to a entral site (thisould be just one of the loal sites or a di�erent site failitating the CPCA proess). At the entral site, anew � k data matrix Y = [Y1; Y2; : : : ; Ys℄ is formed by putting together the data from the individual sites,where k =Psi=1 ki. The data ommuniation involved here is O(k) for the Yi's and O(Pi niki) for the Ai's(ompare with O(mn) for the entralized PCA ase, where  << m and k =Psi=1 ki << n). Typially, thenumber of samples  that are seleted is muh larger than the number of features ni at site i. Therefore, theoverhead involved in transmitting Ai would be negligible ompared to the overall data transmission involved.At the entral site, in priniple, we need to reonstrut the original data X , from the Yi's and Ai's (seeeq. (1)). We then have to perform a PCA based on this reonstruted data. Reall that Y is a simple linear5



transformation of X ; indeed from eq. (3)Y = XA; where A = 26664 A1 0 � � � 00 A2 � � � 0... ... . . . ...0 0 � � � As 37775is a blok diagonal matrix. However, sine the PCA is invariant to linear transformations [28℄, we an workwith the Y data instead of X . The primary advantage is that the size of Y is muh smaller than that of X .In other words, we an exploit the dimensionality redution already ahieved at eah of the loal sites. Letvi, i = 1; 2; : : : ; p be the eigenvetors, orresponding to the p largest eigenvalues of the ovariane matrix ofY . Then wi = Avi are the required eigenvetors of the ovariane X 0X of the original data X .The overall CPCA algorithm is summarized in the following:1. Perform loal PCA at eah site; selet dominant eigenvetors and projet the data along them.2. Send a sample of the projeted data along with the eigenvetors.3. Combine the projeted data from all the sites.4. Perform PCA on the global data set and identify the dominant eigenvetors and transform them bakto the original spae.The following subsetion presents an analysis of the approximation errors involved in our proposed CPCA.3.2 Error Analysis of the proposed CPCAThe Colletive PCA tehnique introdues approximations at two steps. These steps ontribute to the overallerror in the estimated ovariane matrix at the entral site, whih a�ets the subsequent omputation ofeigenvetors and the lustering steps. Both fators are disussed below in some detail.1. Seletion of only the �rst few dominant prinipal omponents at eah of the loal sites: The errorontributed by this step an be quanti�ed as follows.Consider the random vetorX = (X1; X2; : : : ; Xn) with mean E[X℄ = � and (a symmetri and positivede�nite) ovariane matrix Cov[X℄ = E[(X � �)0(X � �)℄ = �x. Let Y = [Y1; : : : ;Yk℄ be the �rstk prinipal omponents of X, where k << n. These prinipal omponents an be used to obtain areasonable approximation to the original data | X̂ = YÂ0 | where Â is the submatrix onsistingof the �rst k olumns of A. The mean-squared error (MSE) between X and X̂ an be expressedin terms of the eigenvalues of �x as follows: E[(X � X̂)(X � X̂)0℄ = Pnj=k+1 �j . This apturesthe error introdued by negleting the \insigni�ant" eigenvetors. Equivalently, we an onsider theprojeted and reonstruted data at the entral site to be a \perturbed" version of the atual data,where the amount of perturbation is exatly quanti�ed by the eigenvalues assoiated with the prinipalomponents that were not transmitted.2. Transmitting only a subset of the (projeted) observations to the entral site: The error ontributedby this step an be quanti�ed statistially. In partiular, we assume that all the observations arestatistially independent and are drawn from a ommon underlying probability distribution. It thenfollows from the law of large numbers and the entral limit theorem [3, 4℄ that the ovariane matrix�̂x estimated from data is related to the true ovariane matrix �x byVar[k�̂x ��k℄ = O� 1m�;where m is the number of observations transmitted to the entral site. In simple words, transmittingonly a fration � of the total number of observations results in an inrease by a fator � in errorassoiated with estimating the ovariane matrix.5 If the total number of available observations islarge, whih is usually the ase, this inrease in estimation error may not be signi�ant.5We are ignoring the error ontributed by the �rst step here.6



Table 5: Size of data set, number of sites, and number of seleted loal prinipal omponents.Data No. of No. of No. of Total No. ofrows features sites seleted loal PCsBodyfat 252 15 2 4Bodyfat 252 15 3 7Housing 506 14 2 4Move 6129 36 2 9Move 6129 36 6 11Quest 60000 200 2 161Quest 60000 200 10 164The following setion presents experimental results omparing performane of the CPCA and the entralizedPCA performed after downloading all the tables to a single site.4 Experiments with the CPCAThe CPCA tehnique is applied to analyze di�erent data sets. This setion presents results of the appliationof CPCA to three experimental test suites. The �rst experimental suite is omprised of several publilyavailable relatively small data sets frequently used in mahine learning literature. The suite is used to provethe feasibility of the CPCA. The seond suite tests the salability of CPCA to large data sets. The �nalexperimental suite onsiders the appliation of CPCA in a real-life appliation senario.4.1 Experiment Suite: IIn this setion we apply the CPCA tehnique to three di�erent data sets, in order to demonstrate themethod and ompare the results with those of entralized prinipal omponent analysis. We show thatCPCA ahieves highly aurate result ompared to the entralized approah and it does so with littleommuniation overhead.4.1.1 Bodyfat data:This data set6 is omprised of 252 observations and 15 features. We vertially partitioned the data set intotwo subsets with one set ontaining the �rst seven data olumns and the other set ontaining the rest (eight)of the data olumns. Next we onstrut two data sites with eah of them storing only one of the two datasets. The row indies are used as the key linking the rows from di�erent sites.Following the CPCA approah, we perform PCA in eah of these two sites, setting the prinipal ompo-nent seletion threshold as 0.90 (i.e., an error of at most 0.10). For these data sets only two loal prinipalomponents are suÆient to satisfy the hosen seletion threshold at eah of the sites. Then the data sets areprojeted to these loally omputed prinipal omponents. The projetion for eah of these partitions an beviewed as a 252� 2 data matrix. Then the rows are sampled from the projeted data. Rows orrespondingto the same keys are sampled from eah site. The sampled rows and the loal prinipal omponent for eahpartition are then sent to a entral site. Next global PCA is performed on the aggregated data at the entralsite in order to produe the global prinipal omponents.Figure 1 (left) shows the variation of the angles (in radians) between the approximation of the �rst twodominant prinipal omponents generated by CPCA and the orresponding ones obtained by a entralizedPCA with respet to the number of rows that are sampled from loal projetions. The results show that forthese data sets sampling about 20% of the rows in the projeted spae is suÆient for highly aurate result.Figure 1 (right) shows the result of CPCA on the same data set when partitioned among three data sites.6http: ==lib.stat.mu.edu=datasets=bodyfat
7
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Figure 1: (Left)Performane of CPCA for the bodyfat data distributed among two sites.(Right)Performaneof CPCA for the bodyfat data distributed among three sites. The graphs are averages of �ve independentruns.
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Figure 2: Performane of CPCA for the Housing data distributed among two sites. This is an average of�ve independent runs.4.1.2 Boston Housing data and Robot Movement data:Similar experiments were performed on Boston Housing data7 (Figure 2) and Robot Move data8 (Figure 3)(only numeri features are used). The size of the data sets, number of partitions, and the total number ofseleted loal prinipal omponents for all the experiments are listed in Table 5.4.2 Experiment Suite: IIThis setion tests the overall performane inluding the salability of the CPCA. We used the Quest SynthetiData Generation Code 9 to generate a data set with 60,000 observations and 200 features. Although thisode generates labeled data, we did not use the lass-label for the unsupervised CPCA approah.We partitioned the data set into two subsets, eah ontaining 100 features. The PC seletion threshold isset to 0.90 (i.e., we selet the set of PCs that gives a RMSE of 0.1). Next we present the results omparingthe two dominant priniple omponents obtained using the entralized approah and the CPCA. Figure 4(left) shows two urves, eah representing the variation of the angle (in radian) between a CPCA-generateddominant prinipal omponent and the orresponding prinipal diretion generated from the entralizeddata. Note that the angle between two unit vetors represents the distane between them and therefore it isa good measure of the auray of the estimated PCs.7ftp:==ftp.is.ui.edu=pub=mahine-learning-databases/housing/8http: ==kdd.is.ui.edu=databases=pioneer=pioneer.html9http: ==www.almaden.ibm.om=s=quest=syndata.html 8
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Figure 3: (Left)Performane of CPCA for the robot move data distributed among two sites. (Right) Per-formane of CPCA for the robot move data distributed among six sites. The graphs are averages of �veindependent runs.
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Figure 4: (Left)Performane of CPCA for the Quest Syntheti data with two data sites.(Right)Performaneof CPCA for the Quest Syntheti data with ten data sites. The graphs are averages of �ve independent runs.
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Figure 4 (right) shows similar performane when the data set is distributed among ten sites. Table 5shows the size of the global data set and the total number of seleted loal prinipal omponents from allthe sites.We see from the �gures that the CPCA ahieves good ompression. Suppose our global data set is mby n, and is distributed among s sites, suh that eah site ontains ni features. Number of seleted loalprinipal omponent is ki, and the total number of seleted loal prinipal omponents is k = Psi=1 ki.Usually when the PC seletion threshold is set to 0.90 or 0.95, k is quite small ompared to n. Let us denotethe number of sampled rows by ; for our experiments we hose a value of  suh that  < 0:2m. The totalommuniation ost is O(k +Psi=1 niki), whih is very small ompared to O(mn), the ost to move thewhole data set to one site. The following setion desribes a distributed lustering algorithm that makes useof the CPCA.5 Distributed Clustering Using the CPCAClustering is an important tehnique that is often used in data mining appliations [8, 21, 44, 57℄. Cluster-ing high dimensional data often requires appliation of PCA-like tehniques for onstruting features thatapture the maximum variane in the data in a small number of omponents. When the data is entralized,appliation of PCA followed by lustering is a normal pratie. However, doing that in a distributed environ-ment with minimal ommuniation of raw data is a hallenge. The previous setions presented the CPCAtehnique for performing PCA from distributed and heterogeneous data. This setion demonstrates thatthe CPCA an be easily integrated with standard o�-the-shelve lustering algorithms in order to generate adistributed lustering tehnique.There are numerous reent e�orts direted towards saling up lustering algorithms. In [45℄, the authorshows an adaptation of the SLINK [48℄ and other agglomerative hierarhial lustering algorithms to a mul-tiproessor environment to parallelize the lustering proess. The PADMA system [31℄ o�ers a distributedlustering system for homogeneous text data. In [15℄, the authors adapt the K-Means algorithm to run in aparallel/distributed environment. The Colletive Hierarhial Clustering algorithm was proposed elsewhere[30℄ for generating hierarhial lusters from distributed and heterogeneous data. To the best of our knowl-edge there does not exist any known tehnique for PCA-based lustering of distributed, heterogeneous data.The following disussion presents a tehnique to do that.5.1 CPCA-based Distributed ClusteringThe proposed distributed lustering approah respets the user's hoie of any spei� loal lustering al-gorithm and works using a given module of entralized lustering algorithm C. It exeutes the followingsteps:1. Performs loal PCA at eah site.2. Projets the loal data on the loal PCs and applies the given lustering algorithm C at eah site.3. Selets a set of representative points from eah luster at every site. Let Si be the set of indies at sitei orresponding to the hosen representative points.4. All sites ommuniate the projeted data rows orresponding to all indies in [iSi to the entral site.5. The entral site performs the global PCA on this olleted data set and broadasts the global PCs toeah site.6. Eah site projets the loal data on the global PCs and performs lustering using the given algorithmC.7. Eah site ommuniates a desription of the loally onstruted lusters (using a graph struture) tothe entral site. 10



8. The entral site ombines the di�erent graphs obtained from the loal sites. The ombination methodsmay vary. Here we present one method: sine we have already obtained the information about rep-resentative points, we an have eah site send every point's \nearest neighbor" index to entral site,i.e., the entral site will know that in eah loal site, whih representative point is the losest to eahpoint. If there are n data points in the global data set, it will take O(n) ommuniations to send theindies information. Then we ould use that representative point's loal information to approximatethe point's loal information, so as to approximate the global information and get the global lusters.We will disuss this approximation in detail in next setion.The foundation of this algorithm is disussed in the following setion.5.2 Theoretial FoundationThe rationale behind this algorithm is explained in the following. The loal PCs are omputed for ompressingthe loal data|the same reason that we had for the initial step in the plain vanilla avored CPCA. In aseof CPCA the next step was the uniform sampling of the loal data rows. In ase of the distributed lusteringwe take advantage of the given loal lustering tehnique in order to selet representatives of all the di�erentlusters. This redues the possibility of hoosing a sample set that ompletely neglets some lusters presentin the data set. The idea of using representative points in lustering is not new. Centroids and otherstatistial entities have long been used for representing lusters. However, this approah may not workwhen lusters are of di�erent shapes and sizes. Alternate hoies for representative points have also beenproposed. For example, the CURE algorithm [21℄ selets a set of data points for eah luster as representativepoints, so that lusters of arbitrary shapes an be disovered. The algorithm proposed here shares the latterperspetive.Next the global site omputes the global PCs and broadasts them to eah site. This step is needed sinewe would like to onstrut the �nal lusters based on the global PCs. Note that the loal PCs are usefulonly in the loal ontext. They may not have any impliation in the global sense.Step six of the proposed lustering algorithm involves projetion of the loal data along the globaleigenvetors. In steps 7 and 8, we perform global lustering by deomposing it into loal ite lusteringsand ombining them at the entral site. In other words, we are laiming that the global distane10 betweenany two points x and y an be aurately approximated by adding the loal distanes between these twopoints. The following disussion justi�es this approah for the ase of Eulidean distane metri, sine theunderlying representation is orthogonal.Let V be an n � p matrix suh that its olumns are the global PCs, i.e., the p global eigenvetorsorresponding to the p dominant eigenvalues (omputed in step 5). The projetion of the omplete data setXalong V is XV . Unfortunately, the data set X is distributed among di�erent sites, i.e. X = [X1; X2; : : : ; Xs℄.Note thatXi (the data set at site i) hasm rows and ni olumns. Moreover, we an write V = [V 01 ; V 02 ; : : : ; V 0s ℄0,where Vi is an ni � p sub-matrix. Therefore, XV = [X1V1 + X2V2 � � � + XsVs℄ and the i-th site omputesonly XiVi.Let us onsider two data points x = [x1;x2; : : : ;xs℄ and y = [y1;y2; : : : ;ys℄, where xi and yi are 1� nidimensional row matries. Computing the distane between x and y requires entral olletion of the x1V1,x2V2, and xsVs. However in the following we show that sum of the distanes between xiVi and yiVi for alli is a good approximation of the overall distane between x and y.De�ne x � y = z = [z1; z2; : : : ; zs℄. Let U = [U 01; U 02; : : : ; U 0s℄0, where Ui is an ni � (n � p) sub-matrixwhose olumns orrespond to the (n � p) global eigenvetors orresponding to the (n � p) smallest globaleigenvalues. Reall that, in pratie, these eigenvetors are not omputed and orrespond to the (n�p) PCsthat are ignored. It is well known that the n�n matrix [V U ℄ is orthogonal. In partiular, its rows form anorthonormal basis.For notational simpliity, we will onsider a two site ase (i.e., s = 2). The extension to the general aseis straight-forward. Using all the global eigenvetors, the projetion of z an be written as10assuming that the lustering algorithm makes use of a distane metri.
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� ẑ ŵ � = z � V U � = � z1 z2 � � V1 U1V2 U2 �= � ẑ1 ŵ1 �+ � ẑ2 ŵ2 � :The vetors ẑ1 = z1V1 and ẑ2 = z2V2 are the loal PCs omputed at sites 1 and 2, respetively, whereasthe vetors ŵ1 = z1U1 and ŵ2 = z2U2 are the PCs that are ignored. Sine the rows of matrix [V U ℄ forman orthogonal basis, vetors [ẑ1 ŵ1℄ and [ẑ2 ŵ2℄ are orthogonal. Therefore,kx� yk2 = kzk2 = � ẑ ŵ �2= � ẑ1 ŵ1 �2 + � ẑ2 ŵ2 �2= kẑ1k2 + kŵ1k2 + kẑ2k2 + kŵ2k2:It follows that kzk2 � (kẑ1k2 + kẑ2k2) = kŵ1k2 + kŵ2k2;where ẑi = x̂i � ŷi = xiVi � yiVi, for i = 1; 2.It is now easy to see that the error in approximating the (squared) distane between data points x andy by the sum of the (squared) distanes between the appropriate loal PCs is relatively small. Indeed, itis diretly related to the norm of the prinipal omponents that have been ignored, whih is usually quitesmall.This gives us a simple way to approximate the global distane among a pair of points by omputing theloal distanes and adding them aordingly in order to get the global distane. Eah site runs the lusteringalgorithm C on XiVi and sends the loal distane information among the representative points of the lustersto the global site. The global site sums up the pair-wise distanes between any two points omputed by eahsite. As noted earlier, this serves as a good approximation to the global pair-wise Eulidean distane betweenthe two points. As a result the generated global lusters o�er good approximation of the lusters that anbe obtained by the orresponding entralized tehnique. The following setion presents some experimentalresults doumenting the performane of the CPCA-based distributed lustering algorithm.6 Experiments with CPCA-Based Distributed ClusteringThis setion presents the experimental results with CPCA-based lustering tehnique for two experimentaltest suites. In our experiments we use K-means lustering algorithm [16℄ as the lustering module. Weompare the results of entralized lustering with those of the CPCA-based distributed lustering. In theentralized ase, we also use PCA to extrat the features and perform lustering on the projetions. Sinethe result of K-means lustering algorithm depends heavily on the seletion of starting points, we randomlyhoose a set of starting points and use them for both the entralized and distributed algorithms. Ourexperiments follow the general steps of the algorithm presented in setion 5. However, the implementationof some of the steps depends on the lustering algorithm module, as we explain below.1. In the third step, when we selet the representative points, we make sure that the starting points areseleted, so that �nally we ould use the same set of starting points to ombine the loal lusters inentral site.2. In the sixth step, eah site projets the loal data on the global PCs. Sine the data are heterogeneous,the loal data are atually projeted to a horizontal partition of the global PCs. Let's all the projetion\partial projetion". We perform a \single-iteration K-means" lustering on the partial projetions.In other words, eah site uses the partial projetions of the representative points as entroids andomputes the distane between the projeted data points and these entroids. We label eah pointwith the index of the losest entroid, i.e. the index of a representative point whih has the losestpartial projetion to it. 12
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Figure 5: (Left) Performane of entralized lustering for the Quest Syntheti data . (Right) Performane ofCPCA-based distributed lustering for the Quest Syntheti data with two data sites. The plots are averagesof �ve independent runs.3. In the seventh step, we represent the loally onstruted lusters with the labels assoiated with thedata points. These labels are ommuniated to the entral site.4. In the last step, the entral site ombines the loal luster results. As disussed in setion 5.2, weapproximate the projetions of the global data on the global prinipal diretions by adding the partialprojetions obtained from loal sites. Our previous analytial result shows that this is indeed a goodapproximation. Then we run the K-means algorithm on the projetions of the global data to get the�nal lusters.The following setions desribe the performane of the above algorithm for two experimental suites.6.1 Experiment Suite: IThis suite uses a data set with 10,000 observations and 100 features, generated by the Quest Syntheti DataGeneration Code. As in setion 4, we did not use the lass labels.We partitioned the data set into two subsets, eah ontaining 50 features. Threshold is set to 0.90 and thedesired number of lusters is set to 8. 10% of points are sampled as representative points. After obtainingthe lusters from both entralized and distributed tehniques, we randomly sampled 50 points from the dataset and onstruted an adjaeny matrix (if the ith point and the jth point are in the same luster, thenthe entry (i,j) of the matrix is set to one, otherwise it is set to zero). Then we draw density plot based onthe adjaeny matrix. Figure 5 (left) shows the density plot obtained by the entralized algorithm. Figure5 (right) shows performane of our CPCA-based lustering algorithm. Sine we use random sampling in thealgorithm, here we present the average of �ve independent runs as the result of the distributed algorithm.We take the average of the �ve adjaeny matries obtained by �ve runs and onvert the numeri values inthe average matrix into boolean values by rounding o� the oating point numbers to the nearest integers.We also tested the performane of the algorithm with di�erent number of sites. Figure 6 shows theomparison of the sampled results of entralized and distributed algorithm when the data set is equallydistributed among ten sites. Figure 7 shows the di�erene, i.e., mislassi�ations in the CPCA-based lus-tering as ompared to the entralized PCA-based lustering. The perentage of mislassi�ations (i.e., theperentage of \white dots" in the density plots) for two-site experiment is 7.44%, while the one for ten-siteexperiment is 7.60%. We also notied that with this data set,we didn't get muh ompression in the CPCAphase (for two-site experiment, we seleted 71% of loal PCs, and for the ten-site experiment, we seleted83%. This was neessary for the required RMSE of 0.1). We will see that in the next experiment suite, wean get more ompression and the auray is higher.
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Figure 6: (Left) Performane of entralized lustering for the Quest Syntheti data with ten data sites.(Right) Performane of CPCA-based distributed lustering for the Quest Syntheti data with ten data sites.The plots are averages of �ve independent runs.
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Figure 7: Di�erene between results of entralized lustering algorithm and CPCA-based distributed lus-tering algorithm for Quest data with ten data sites.
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Figure 8: (Left) Performane of Centralized lustering for 3-site web data . (Right) Performane of CPCA-based distributed lustering for 3-site web data when 10% points are sampled as representative points. Theplots are averages of �ve independent runs. 14
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Figure 9: Di�erene between the results of entralized algorithm and CPCA-based lustering algorithm when20% points are sampled as representative points .6.2 Experiment Suite: IIThe main purpose of this setion is to illustrate an appliation senario for the CPCA-based lusteringtehnique. PCA is frequently used for high-dimensional text-analysis appliations. Therefore text analysisshould be an ideal andidate for applying the CPCA. However, in a distributed environment, appliationsmay beome more interesting and hallenging when relevant data sets involve text, numeri, and othernon-numeri features. In the following we desribe one suh ase.Consider the ase of �nanial news stories regularly posted on the Internet. These news stories are oftenvery useful for investors, portfolio managers, and others. Typially many of these stories are assoiated withsome ompanies. Announements regarding new produts, quarterly revenue, legal battles, mergers, andpartnerships of ompanies often dominate suh business news. On the other hand, there exist many sitesin the Internet (for example, Yahoo �nane and CNN �nane) that o�er valuable information about thebakground and urrent �nanial pro�le about almost all major ompanies.The website of a ompany itselfalso provides quite useful information suh as new developments, produts, and others. Another importantinformation soure will be the stok quotes. We ould easily aess the real-time stok quotes (or quoteswith short delay) online.The experiment performed in this setion onsiders suh real-life appliations. We olleted two data sets(named as 3-site web data and 4-site web data respetively) from �nanial websites and did experiments.First data set (3-site web data) ontains three data tables. One table orresponds to news orpora. Eahdoument in this orpora orresponds to a key, and thus assoiated with a ompany. For our appliationwe used the abbreviated symbol (tiker symbol) of the orresponding ompany as the key. A seond tableis onstruted that stores the �nanial and bakground feature values of a ompany, again indexed by theompany symbol. A third data table is onstruted using the data about the setor the ompany belongsto. This table is also indexed by the ompany symbol. We onsidered a data set involving 1027 ompaniesand the three tables are loated at three di�erent sites. The CPCA tehnique is applied on this three datasets. The PC seletion threshold is set to 0.90. Table 6 shows the number of features at eah site andorresponding number of hosen PCs. As we see, the CPCA tehnique o�ers a big ompression fator. Wevaried the number of representative points to ompare the auray of our algorithm. Figure 8 (left) showsthe density plot for entralized lustering result and �gure 8 (right) shows that for distributed lusteringresult when 10% of points are sampled as representative points. Figure 9 shows the the density plot ofthe di�erene between entralized result and distributed result when 20% of points are sampled. Whenthe number of representative points inreases, the auray is better. The perentages of mislassi�ationsorresponding to 10% and 20% ommuniation of data are 3.28% and 0.8% respetively, aording to the 50points we randomly hosen to display. We seleted 24% of loal PCs in the CPCA phase.We also studied the performane with di�erent sample sizes using the 3-site web data. For eah samplesize, we run our algorithm 5 times and ompute the average of the adjaeny matrix generated from thelusters. The adjaeny matrix is generated for all the data points, in this ase it is 1027 by 1027. Thenwe ompare the average adjaeny matrix with the one obtained by entralized algorithm and ompute the15
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Figure 10: Mislassi�ations (%) vs. sample size (%): average performane for 3-site web dataTable 6: 3-site web data: data subsets, number of features and number of seleted loal PCs.Data subset Number of Number offeatures seleted loal PCsPro�le information 73 2Setor data 15 4News stories 793 204perentage of the di�erent entries. Figure 10 shows the perentages of mislassi�ations when sample sizevaries from 5% to 60%.We also tested our algorithm on another data set (alled 4-site web data). It involves 4811 ompanies,and the data are distributed among four sites. Besides the three data soures mentioned above, we olleteda fourth data subset, whih is the quotes data set. We use the stok quotes on a ertain day to simulatethe real-time data. The data are time series, i.e., for eah ompany, we reord one quote every 15 minutes.For the news stories site, we olleted the latest three piees of news after Ot.1, 2000 for eah ompany.However, some ompanies may only have one or two news stories in this period. Besides these two subsets,the data set still ontains a pro�le data subset (63 features) and a setor data subset(13 features). The PCseletion threshold is set to 0.90, whih results in 53.86% of loal PCs in the CPCA phase. We sampled10% of the points as representative points. The perentages of mislassi�ations among the displayed data is7.44%. Figure 11 shows the di�erene between entralized result and distributed result. As in other �gures,50 points are randomly hosen to display the density plots.
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Figure 11: Di�erene between results of entralized lustering algorithm and CPCA-based distributed lus-tering algorithm for 4-site web data when 10% points are sampled as representative points.16



7 Future WorkThis paper douments our initial e�ort to perform distributed PCA-based lustering. It answers few ques-tions. However, it raises even more questions. Several fundamental and applied issues need to be answeredbefore this approah an be adopted in pratie. Some of them are disussed below.The problem of quantifying error in CPCA is one suh issue. A natural hoie is to ompute the angleos�1(u0ivi) between the ith eigenvetors ui; vi, i = 1; 2; : : : ; k, omputed by means of CPCA and the globalPCA, respetively. This paper adopts this approah (see Figures 1, 2, 3, 4). However, this may not be thebest way to do so.A more appropriate way to quantify the error in CPCA is to ompute the \distane" between thesubspaes spanned by fu1; : : : ; ukg and fv1; : : : ; vkg. In fat, for some ases with repeated eigenvalues, theformer error maybe large even when the subspaes are lose in some appropriate metri. To quote fromStewart [49℄:\... one annot expet the eigenvetors of nearby matries to lie near one another when theirorresponding eigenvalues belong to lusters of poorly separated eigenvalues."\Although the eigenvetors orresponding to a luster of eigenvalues of a Hermitian matrixare sensitive to perturbations in the elements in the matrix, the subspae spanned by them isrelatively insensitive."Sine we ultimately use the omputed eigenvetors to projet our data onto the subspae spanned bythem, the distane between the subspaes is more relevant than the distane between the basis vetors(omputed eigenvetors) of an orthonormal basis for these subspaes.A detailed analysis of this error measure based on distane between subspaes is important. Indeed, letU ;V � Rn be two subspaes. The gap between U and V is de�ned as [49, 33℄(U ;V) = maxf supkuk=1;u2U infv2V ku� vk; supkvk=1;v2V infu2U ku� vkg;where k:k is a norm on Rn. The gap funtion is a metri for the important speial ase where k:k is theEulidean norm. The gap funtion has many useful properties:(U ;V) < 1) dim(U) = dim(V); and (U ;V) = kPU � PVkwhere PU , PV denote orthogonal projetion operators onto subspaes U , V , respetively.The relation between two subspaes U , V an also be haraterized by a set of suitably onstrutedorthonormal basis vetors for the respetive subspaes. The angle �i between the i-th basis vetors of Uand V is de�ned as the i-th anonial angle between the subspaes [14℄. In this ase, the sine of the largestanonial angle is the gap (U ;V) between the subspaes.We are atively investigating the idea of haraterizing the CPCA error in terms of the relation betweeninvariant subspaes and will report our results in a future publiation.Another important issue is the reliane of our proposed tehnique on Eulidean distane metri. Whilethe deomposed evaluation of Eulidean distane works out �ne, the same annot be said for any general non-Eulidean metri. There are several pratial domains (e.g. DNA sequenes, web-log data) where Eulideandistane may not make sense. One possible way to handle this ase is to eÆiently onstrut an embeddingof the given data in a non-Eulidean spae to an Eulidean spae. There exist several interesting results thatsupport this possibility. Appreiating these results require a geometrial perspetive of graphs.Let (�x) be a metri that de�nes the distane between any two points in the given domain (Xn) thatontains the data sets. An isometry is a mapping  from the metri spae (Xn; �x) to another metri spae(Ym; �y) suh that �x(x1; x2) = �y((x1); (x2)). In other words  preserves the distane between points inthe two spaes. We say that the mapping  is �-nearly isometri, if �x(x1;x2)�y((x1);(x2)) � �. In this ase we maysay that the mapping has an � distortion.The following theorem developed elsewhere [7℄ provide an interesting result about near isometri mappingsof a metri spae to a Hilbert spae.Theorem 1 ([7℄) Every n-point metri spae of dimension n an be mapped to a O(logn) Hilbert spaewith an O(logn) distortion. 17



This result was further explored elsewhere [38℄ whih produed the following theorem.Theorem 2 ([39℄) In random polynomial time, every n-point metri spae of n dimensions an be embeddedin `O(logn)p (for any p � 1), with distortion O(logn), where `mp is a norm in the Eulidean spae <m de�nedby k(x1; x2; � � � ; xn)kp = (P jxijp)1=p.The randomized algorithm proposed by Linial et al. [39℄ works by randomly hoosing O(logn) number ofsubsets of the data and omputing the minimum distane between the point being projeted and the subsets.Related work for onstruting projetions of n points in Eulidean spae an be found elsewhere [9, 12℄. Weare urrently exploring this possibility.The assignment of the representative points to every member of the data set an be made more eÆientby storing the data set using similarity preserving indies [54℄. We are urrently integrating suh tehniqueswith the distributed lustering tehnique.8 ConlusionsDistributed data analysis is playing an inreasingly important role in KDD appliations from databasesonneted through large networks. Partiularly, the growing popularity of mobile omputing devies andwireless networks with limited bandwidth is fostering rapid development of this area. Unsupervised dataanalysis is an important part of data analysis and PCA plays a ritial role in suh analysis of high dimensionaldata. Development of distributed PCA algorithm is therefore important. This paper presented the ColletivePCA tehnique whih o�ers one solution to this problem. The experimental results demonstrated that theCPCA an be e�etively used for analyzing high dimensional voluminous data with limited ommuniationoverhead.This paper also showed that the CPCA algorithm an be integrated with o�-the-shelf lustering modulesfor developing distributed lustering algorithms. In fat the integrated approah is likely to improve theperformane of the CPCA tehnique itself. This is beause seletion of representative samples from datalusters is likely to perform better than the uniform sampling of data. This paper douments the result ofour early e�ort in distributed lustering from heterogeneous data. We do need to pursue the researh issuesidenti�ed in the previous setion in order to establish the proposed tehnique in pratie. Nevertheless,it opens up several new possibilities for distributed data mining appliations. Distributed web mining,identifying emerging patterns from a large network of sensors, exhange of \signi�ant" ativities amongmobile devies through wireless networks are only a few senarios where distributed PCA-based lusteringan be useful. We hope that this work brings the �eld of DKD one more step loser to the ultimate objetive| ubiquitous KDD.AknowledgmentsThis researh is supported by the United States National Siene Foundation CAREER award IIS-0093353.Referenes[1℄ J. Aithison. Multivariate statistial methods. Biometrika, 70(1):57{65, 1983.[2℄ E. Anderson, Z. Bai, C. Bishof, S. Blakford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum,S. Hammarling, A. MKenney, and D. Sorensen. LAPACK Users' Guide. Soiety for Industrial &Applied Mathematis, third edition, 1999.[3℄ P. J. Bikel and K. A. Doksum. Mathematial Statistis. Holden{Day, Oakland, California, 1977.[4℄ P. Billingsley. Probability and Measure. John Wiley, New York, 1995.[5℄ J. E. Birren and D. F. Morrison. Analysis of WAIS subtests in relation to age and eduation. Journal ofGerontology, 16:363{369, 1961. 18
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