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Abstract: Neuro-Symbolic Integration is an interdisciplinary area that endeavours to unify neural networks and symbolic
logic. The goal is to create a system that combines the advantages of neural networks (adaptive behaviour,
robustness, tolerance of noise and probability) and symbolic logic (validity of computations, generality, higher-
order reasoning). Several different approaches have been proposed in the past. However, the existing neuro-
symbolic networks provide only a limited coverage of the techniques used in computational logic. In this
paper, we outline the areas of neuro-symbolism where computational logic has been implemented so far, and
analyse the problematic areas. We show why certain concepts cannot be implemented using the existing
neuro-symbolic networks, and propose four main improvements needed to build neuro-symbolic networks of
the future.

1 INTRODUCTION

The joint efforts of researchers in many areas have
given many insights on how logic and neuroscience
can relate1: Boolean (binary) networks can com-
pute logical connectives (Rumelhart and McClelland,
1986; Aleksander and Morton, 1993); binary thresh-
old networks can simulate Finite Automata (Cloete
and Zurada, 2000), (Universal) Turing machines can
be simulated by neural networks with rational weights
(Siegelmann, 1999).

The natural question that arises is how neural net-
works can cope with logical theories and calculi. The
traditional approach developed by neuro-symbolic
community is based upon McCulloch and Pitts binary
neural networks and encodes the semantics of first-
order logic theories in neural networks. The books
(d’Avila Garcez et al., 2002; d’Avila Garcez et al.,
2008) and papers (Bader et al., 2008; Domingos,
2008; Hölldobler et al., 1999; Lange and Dyer, 1989;

1The title of this position paper is inspired by the book
”Neurons and Symbols”, (Aleksander and Morton, 1993),
that claimed, rather convincingly, that neural and symbolic
approaches to computation and information processing can
be considered as two complementary sides of one machine.

Hitzler et al., 2004; Wang and Domingos, 2008) are
good examples of this approach. We discuss here
why this kind of view has not yet resulted in a neuro-
symbolic system that successfully implements algo-
rithms of computational logic.

Throughout this paper, we make one subtle dis-
tinction between the levels of abstraction one uses
when speaking about relations between logic and neu-
ral networks. The most fundamental results relating
logic and neural networks, such as papers by McCul-
loch and Pitts (McCulloch and Pitts, 1943), Kleene
(Kleene, 1956), books by von Neumann (Neumann,
1958) and Minsky (Minsky, 1954; Minsky, 1969),
considered neural networks at the level of automata
and computing machines, showing that the neural net-
works, taken as a hardware, can simulate computa-
tions performed by digital computers.

This line of research has been successfully devel-
oped. There has been series of publications concern-
ing computational complexity of neural networks and
their relation to Turing computability. Pollack (Pol-
lack, 1987) showed that a particular type of heteroge-
neous processor network is Turing universal. Siegel-
mann and Sontag (Siegelmann and Sontag, 1991)
showed the universality of homogeneous networks of



first-order neurons having piecewise-linear activation
functions. Their results were generalised by Kilian
and Siegelmann (Kilian and Siegelmann, 1996) to
include various sigmoidal activation functions. The
number of neurons required for universality with first-
order neurons was estimated at 886 (Siegelmann and
Sontag, 1995), and in the later papers was reduced
to 96 (Koiran et al., 1994) and down to 25 (Indyk,
1995). In (Siegelmann and Margenstern, 1999), it was
shown that there is a universal neural network with
nine switch-affine neurons which is Turing universal.
A good summary can be found in (Siegelmann, 1999).

The paper by McCulloch and Pitts (McCulloch
and Pitts, 1943) started another line of research
into the relation between logic and neural networks.
Namely, Connectionism, and one of its branches -
Neuro-Symbolic Integration (Güsgen and Hölldobler,
1992; Bader and Hitzler, 2005; Hammer and Hitzler,
2007) took up this problem at another level of ab-
straction. Neural networks were taken as a ready-to-
use tool in which one could implement some aspects
of logical deduction. Unlike the theoretical line of
research we described above, this approach did not
necessarily involve general translation of automata or
Turing machines into Neural networks. On the con-
trary, it often explored the ways of developing neural
networks architectures that could be suitable for a par-
ticular task in computational logic. The generality of
the theoretical level was sacrificed for convenient and
efficient implementations. We give a survey of this
approach in Section 2.

We also note here, that this second approach to
developing neuro-symbolic networks has been influ-
enced by the fact that the hardware development of
digital computers took over from neuro computers;
and the development of neural networks became more
a question of software than of a hardware. And this
justifies the changes in the style of neuro-symbolism.

However, neuro-symbolic networks have not yet
become a useful tool in computational logic. Instead,
neuro-symbolism has found its place somewhere on
the intersection of artificial intelligence, cognitive sci-
ence, and linguistics. See (Markus, 2001; Smolensky
and Legendre, 2006) for very successful examples. In
Section 3, we formulate four principles that are es-
sential for implementing algorithms of computational
logic. We conclude in Section 4.

2 PROPERTIES OF EXISTING
NEURO-SYMBOLIC NETS

Many of the neuro-symbolic networks rely on the rep-
resentation of logical connectives by McCulloch and

Pitts (McCulloch and Pitts, 1943). We start with a
simple example concerning a very popular approach
to implementing semantic operators for logic pro-
grams in neural networks.

Logic programs consist of clauses of the form
A← B1, . . . ,Bn, where A,B1, . . . ,Bn are atomic (first-
order) formulae. For a given program P, the Herbrand
Base BP is a set that contains all possible ground in-
stances of atomic formulae appearing in P. Given a
logic program P, one can define a semantic opera-
tor TP that computes the least Herbrand model of P:
TP(I) = {A∈BP : A←B1, . . . ,Bn is a ground instance
of a clause in P and {B1, . . . ,Bn} ⊆ I}, where I is an
interpretation of a program given by a set of proposi-
tions that are true. See (Lloyd, 1987) for formal de-
scription.

Theorem 1 (Hölldobler and Kalinke, 1994;
Hölldobler et al., 1999) For each propositional
logic program P, there exists a 3-layer recurrent
neural network built of binary threshold units that
computes TP.

We will call these networks TP-neural networks
and illustrate them below. The theorem extends to
function-free first-order logic programs, and other
subclasses of first-order logic programs that have fi-
nite models. First-order logic programs in their full-
generality may have infinite models, and these cases
would require infinite neural networks, see (Hitzler
et al., 2004; Bader et al., 2008) for discussions and
solutions.

Example 1 Consider the ground logic program:

B ←
A ←
C ← A, B.

The neural network below computes TP ↑ 2 =
{A,B,C}, that is, the least model of P, in two itera-
tions. Each of the atoms A,B,C is represented by a
neuron in the output and input layers. Connections
between the hidden layer and both outer layers are
set in a particular way that reflects the structure of
clauses. The weights of the recurrent connections be-
tween the output and the input layer are set to 1. That
is, all the connections // on the following dia-
gram have weights set to 1. Numbers 0.5, −0.5, etc.
show the thresholds (biases) of the neurons. The ac-
tivation functions are binary, that is, if the neuron re-
ceives a signal greater than its threshold, it outputs 1;
and it outputs 0 otherwise.
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There are three characteristic properties that

distinguish TP-neural networks. We summarise them
as follows.

1. For a given program P, the number of neurons in
the input and output layers is the number of atoms
in the Herbrand base BP.

2. Signals of TP-neural networks are binary, and this
provides the computations of truth value functions
∧ and← that are used in program clauses.

3. As a consequence of the property (3), first-order
atoms are not represented in the neural network
directly, and only truth values 1 and 0, that are the
same for all the atoms, are propagated.

These three properties arise from a more general
Principle universally applicable to neuro-symbolic
networks of other kinds: When processing a logic
theory, the neural networks process truth values of
the ground instances of formulae, and compute the
models of the theory as a result. Moreover, each
ground instance of an atom from the given theory
should be represented by at least one neuron.

The main Principle has three main conse-
quences. The resulting network cannot:

• directly deal with recursive programs, that is, pro-
grams that can have infinitely many ground in-
stances;

• deal with non-ground reasoning that is common
in computational logic;

• cover proof-theoretic aspect of logic theories;

One would be surprised to find how often neuro-
symbolic systems of different architectures obey the
main Principle and its three consequences. We will
consider some examples.

There were attempts to develop an original Learn-
ing Theory within Neuro-Symbolic integration. In
(d’Avila Garcez et al., 2002; d’Avila Garcez et al.,
2008), binary threshold units in the hidden layer of
TP networks were replaced by sigmoidal units. Such

networks allow back-propagation which can be used
to train neural networks. These neural networks obey
the general Principle, albeit they process signals from
the interval [−1,1]. They were applied to inductive
logic programming, where facts in a database can be
assigned some measures of probabilities. The values
from the interval [−1,0] were recognised by the out-
put unit as “false”, and the values from the interval
[0,1] as “true”.

The Markov Logic Networks (Wang and Domin-
gos, 2008; Domingos, 2008) are another possible
modification of TP-neural networks. Here, the compu-
tational power of Markov chains and stochastic (prob-
abilistic) methods was used to give an account of
Logics of Probabilities. These networks do not use
a semantic operator directly, but the methodology is
very close to TP-networks, in that the networks rely
on ground instances of atoms appearing in logic pro-
grams, and propagate their truth values. This model
has been successfully applied to many practical prob-
lems, but it still obeys the main Principle.

Propositional Modal Logic Programs (d’Avila
Garcez et al., 2007; d’Avila Garcez et al., 2008).
Construction of TP-neural networks was exactly re-
produced in this approach, the only difference being
that it was adapted to Kripke semantics. That is, in
each possible world (by Kripke) one could have a sep-
arate TP-neural network computing classical values.

Fibrational Neural Networks. Some research
was done on creating networks of TP-neural networks,
they were called Fibring Neural Networks in (d’Avila
Garcez and Gabbay, 2004).

Many-Valued Logic Programs. This approach
was developed in (Komendantskaya et al., 2007;
Komendantskaya, 2007). Here, binary neurons rep-
resented some atom together with its value, and sev-
eral additional layers were needed in order to reflect
some additional properties of many-valued semantic
operators. These networks have the same properties
as TP-networks.

There have been several papers relating Fuzzy
Prolog and Fuzzy Neural Networks, (Ding, 1995;
Nauck et al., 1997; Zadeh, 1992). The resulting neu-
ral networks are called Fuzzy-Logical Neural Net-
works. The authors of (Nauck et al., 1997) show
that Fuzzy Logic Programs can be simulated by feed-
forward neural networks; moreover, they use learning
algorithms when working with fuzzy numbers. The
Fuzzy-Logical Neural Nets are capable of propagating
fuzzy signals, and not just 0, 1. If we examine Fuzzy-
Logical Neural Networks relative to the TP-neural net-
works, we will notice that they are not correlated with
semantic operators any more, however, they still obey
the main Principle, in that they work with truth val-



ues and functions over truth values, and do not encode
first-order atoms directly.

Even with approaches that are not directly tied to
logic programs, such as (Pollack, 1990; Shastri and
Ajjanagadde, 1993), one can notice that the networks
essentially rely upon ground reasoning and binary sig-
nal processing.

3 OBSTACLES AND SOLUTIONS

Networks considered in the previous section have
been successfully implemented for certain practical
or industrial problems. But they did not advance our
understanding of how inference algorithms used in
computational logic and proof theory could be imple-
mented in neural networks.

In this section, we offer four principles for devel-
oping neuro-symbolic networks suitable for simulat-
ing the algorithms of computational logic.

1. Implementation of techniques from proof
theory should not be replaced by the model theory.
There are two reasons why such a replacement cannot
lead to successful implementations of computational
logic.

In the case of first-order theories, the semantics is
often developed on the meta-level, not using the syn-
tax of the theory. For example, first-order logic pro-
grams are executed by the algorithms of unification
and SLD-resolution, whereas their semantics is given
by semantic (fixed point) operators. Neural-symbolic
networks we have surveyed can do the semantics of (a
restricted class of) first-order logic programs, but not
the syntactic inference. And implementations of the
former did not lead to the implementation of the lat-
ter. Using logic programming terminology, the neuro-
symbolic networks could do declarative semantics,
but not the operational one.

Another obstacle is that the traditional Neuro-
Symbolic Networks, owing to their dependence on
truth value assignments and first-order semantics, do
not adapt well to higher-order logics and type theory.
Moreover, in typed theories, such as typed lambda
calculus or the calculus of constructions, the very
distinction between syntax and semantics is erased,
and manipulations with types of expressions are per-
formed using the syntax of the theory, and this, in its
turn, justifies correctness of computations.

Because the existing neuro-symbolic networks do
not adapt well to the two major trends in compu-
tational logic – automated proving (given by oper-
ational semantics of first-order logic programs) and
Type theory, – they have not yet found their proper
niche in the area, and are normally conceived as a

branch of AI rather than of computational logic.
2. Direct processing of logic terms should be

preferred to processing of their truth values. This
can be achieved by using a one-to-one numerical en-
coding of the symbols of the formal alphabet, such
as Gödel numbering. The main difficulty here is to
represent strings of such numbers.

Logic formulae are effectively strings of symbols
of a given alphabet. However, according to a general
convention, neurons do not process strings, or ordered
sequences, or any other structured data. Every neu-
ron can accept only a scalar as a signal, and output a
scalar in its turn. This general convention has been
developed through decades of discussion, and differ-
ent views on it are best summarised in (Aleksander
and Morton, 1993; Smolensky and Legendre, 2006).

However, some order is innate to neural networks:
and this order is imposed by position of neurons in a
given layer, and by positions of layers in a network.
So, although each neuron accepts only a scalar num-
ber as an input, a layer of neurons accepts a vector
of such numbers, and the whole network can accept a
matrix of numbers.

Therefore, a vector of neurons in a layer mirrors
the structure of a string, and the matrix that describes
a many-layered neural network mirrors the structure
of a tree. This is all we need to encode logical terms
(strings of symbols of an alphabet), and term trees -
in case we use a tree-like representation of terms in
parallel algorithms. See (Pollack, 1990; Smolensky
and Legendre, 2006) for related discussion.

Given a first-order formula F = P(t) built from
the symbols of the alphabet A, and having a one-to-
one numerical encoding of A given by a function η,
the vector [Pη; (η; tη; )η] can be directly used as an
input or weight vector in a neural network. Here, we
denote the result of applying η to a symbol x by xη.

3. Levels of abstraction should not be mixed.
Two levels of abstraction we mentioned in the in-

troduction can provide two different solutions to the
problem of simulating symbolic logic in neural net-
works. On the low level, we can build a network that
simulates Turing machines, and then use it for sym-
bolic computations. This approach can be bulky, and
for this reason logic algorithms are commonly writ-
ten on a higher level of abstraction than Turing ma-
chines. We suggest to look for direct representations
of these high-level algorithms in Neural networks, ig-
noring the low-level theoretical correspondence be-
tween neural networks and Turing machines.

This direct approach may seem to lack generality;
nevertheless, we claim that it can be very useful in
practice. Consider, for example, the algorithm of first-
order unification due to (Robinson, 1965), that is used



as one of the basic and essential algorithms in proof
theory and computational logic. It is P-complete and
can be performed by a Turing machine, however, its
definition in terms of Turing machines can be bulky.
Its traditional description is as follows.

Suppose we have two first-order formulae P(a)
and P(x). The algorithm of unification will inspect
each symbol in the formulae, and pick two symbols
that disagree - x and a. Then it will substitute a for x in
P(x), and thus, the two formulae will be unified. This
can be done using a conventional error-correction
learning in neural networks. We simply need to
take numerical vector representation of the symbolic
terms; let [Pη; (η; aη; )η] and [Pη; (η; xη; )η] de-
note the numerical encodings. Take a layer of 4
neurons. Let the weight vector be [Pη; (η; xη; )η]
and the bias vector be [Pη; (η; aη; )η]. Set the ac-
tivation function to be linear, and the target to be
[0; 0; 0; 0]. Send the signal 1 to the network, it
will output [0; 0; (xη − aη); 0]. Thus, the error –
the difference between the desired response and the
output – will be [0; 0; −(xη − aη); 0]. The error-
correction algorithm will amend the weight vector,
and, on the next iteration, the weight vector will be
[Pη; (η; aη; )η], and the error will be zero. See
(Komendantskaya, 2009b).

This example illustrates that some algorithms of
computational logic have direct analogy with the
learning algorithms of neurocomputing. This direct
use of neural networks for implementations of com-
putational logic should be further exploited.

This discussion of the unification by error-
correction learning leads us to the last thesis:

4. Attitude to learning functions should be
more liberal, and allow symbolic components.

Coming back to the previous example, it is impos-
sible to get a general-purpose network that performs
unification algorithm without adding a certain sym-
bolic description into the definition of the learning
function. For example, we need to make sure that
only a can be substituted for x, and not x for a. In
case we deal with function symbols in the language,
we may need to substitute f (y) for x, and then the net-
work will need to be enlarged. Also, the occur check
should be performed, e.g., we should make sure that
f (x) is not substituted for x.

Among the advantages of having such hybrid
networks would be that simply switching between
conventional and pseudo-symbolic learning functions
one can achieve multi-functionality of the resulting
neural network. Another advantage is parallelism.

The algorithm of unification is not the only algo-
rithm of computational logic that yields a simple and
direct representation as a learning process. As an-

other example, parallel (term)-rewriting can be shown
to correspond to a form of Hebbian learning. That
is, given a string [1 2 3 1 2 3], a 6-neuron layer can
perform a rewriting operation for the rewriting rule
x→ 3x using a Hebbian learning rule. For this, we
simply need to set the weight vector to be [1 2 3 1 2 3],
set the rate of learning to be 2, and send the input sig-
nal 1. At the next iteration, the weight will be rewrit-
ten to [3 6 9 3 6 9]. This example, moreover, shows
that neural networks are capable of parallel rewriting,
which will bring a much desired speed up to the com-
putations; (Komendantskaya, 2009a).

In order for this scheme to cover a more symbolic
form of rewriting — a term-rewriting — one must
allow a symbolic component into the conventional
learning function to deal with the symbolic subtleties
that arise when we rewrite and substitute first-order
terms.

4 CONCLUSIONS

We separated two levels of abstraction at which the
relations between “neurons” and “symbols” can be
considered. We restricted our attention to the im-
plementational level. We analysed common proper-
ties of existing neuro-symbolic networks, and showed
that they obey one general Principle. This Princi-
ple and its three main consequences cause the dis-
junction “Neurons OR Symbols” to remain exclusive
— that is, they prevent implementations of the sym-
bolic (proof-theoretic) aspects of computational logic
in neural networks. Finally, we proposed four princi-
ples for building neuro-symbolic nets of the future.
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