
A Federated Architecture for Information
Management
DENNIS HEIMBIGNER
University of Colorado, Boulder

DENNIS McLEOD
University of Southern California

An approach to the coordinated sharing and interchange of computerized information is described
emphasizing partial, controlled sharing among autonomous databases. Office information systems
provide a particularly appropriate context for this type of information sharing and exchange. A
federated database architecture is described in which a collection of independent database systems
are united into a loosely coupled federation in order to share and exchange information. A federation
consists of components (of which there may be any number) and a single federal dictionary. The
components represent individual users, applications, workstations, or other components in an office
information system. The federal dictionary is a specialized component that maintains the topology
of the federation and oversees the entry of new components. Each component in the federation
controls its interactions with other components by means of an export schema and an import schema.
The export schema specifies the information that a component will share with other components,
while the import schema specifies the nonlocal information that a component wishes to manipulate.
The federated architecture provides mechanisms for sharing data, for sharing transactions (via
message types) for combining information from several components, and for coordinating activities
among autonomous components (via negotiation). A prototype implementation of the federated
database mechanism is currently operational on an experimental basis.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design--data models;
schema and subschema; H.2.4 [Database Management]: Systems--distributed systems; H.4.1 [In-
formation Systems Applications]: Office Automation

General Terms: Algorithms, Design, Languages, Management

Additional Keywords and Phrases: Office information systems, distributed information management,
federated databases

1. INTRODUCTION

The office information environment presents many new information manage-
ment challenges [8, 28, 351. In particular, the types of information and the
patterns of information access are quite different from those of application

This research was supported in part by the Joint Services Electronics Program through the Air Force
Office of Scientific Research under contract F49620-85-C-0071, in part by the National Science
Foundation under grant MCS-8203485, and in part by the Defense Advanced Research Projects
Agency under contract MDA903-81-C-0335.
Authors’ addresses: D. Heimbigner, Computer Science Department, University of Colorado, Boulder,
CO 80309. D. McLeod, Computer Science Department, Los Angeles, CA 90089-0782; ARPANET:
McLeodBUSC-ISIB.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0734-2047/85/0700-0253 $00.75

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985, Pages 253-278.

254 l D. Heimbigner and D. McLeod

environments for which conventional database management technology and
systems are intended. The integrated database system was primarily developed
to support large, integrated, centralized databases. In a decentralized information
environment there may not be a single, integrated database containing all of the
organizational information under the control of a centralized data processing
organization. Rather, databases tend to proliferate throughout an organization
with little or no control by any one group. In such an environment there is a
need for substantial information management flexibility, partial integration/
sharing, and autonomy [23].

A possible response to the decentralization of information is to attempt to
return to centralization by reintegrating the data into a “composite database,”
sometimes called a “heterogeneous database.” To form a composite database, a
new, global/virtual conceptual schema is introduced, which describes the infor-
mation in the databases being composed; database access and manipulation
operations are then mediated through this new conceptual schema. This return
to strict integration does, however, require centralization.

Inherent in the concept of integration is the existence of some authority
(namely, a database administrator) responsible for designing and maintaining
the conceptual and physical (implementation) schemas of the database.
Thus, the process of integrating existing databases forces control over their
structure to be ceded to some central authority. The users of the existing
databases may have expended considerable resources (hardware, software, and
human) in developing their databases and may be reluctant to lose control
of them. Furthermore, changes to the structure of a database must pass through
the database administrator, and they must be weighed against competing
demands for change.

The integration of existing databases into a composite database is in general
quite difficult. An important problem in this regard is that the same fact may be
contained in several databases yet be represented using different conceptual
structures. For example, one database may represent a memo by links/mappings
among the writer, recipient(s), and memo content, while another database may
represent the memo as a distinct object with links to the writer, recipients, and
memo content. If a composite database approach is used, one or the other of
these conceptual representations must be selected, and applications using the
other representation may need modification. In sum, the composite structure
may be difficult to construct, and if it can be constructed, it may be suboptimal
for many users’ needs.

In light of the difficulties posed by composite databases, it is appropriate to
pursue an alternative architecture that allows the existing database systems to
maintain their autonomy, yet provides a substantial degree of information
sharing. The goal of this paper is to define an architecture and supporting
mechanisms for interconnecting databases that minimizes central authority, yet
supports partial sharing and coordination among database systems. This feder-
ated database architecture [lo, 12, 131 allows a collection of database systems
(components) to unite into a loosely coupled federation in order to share and
exchange information. The term federation refers to the collection of constituent
databases participating in a federated database.
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

A Federated Architecture for Information Management 255

Without the constraint of a central authority, the mechanisms provided for
the federated architecture must balance two conflicting requirements: the com-
ponents must maintain as much autonomy as possible; however, the components
must be able to achieve a reasonable degree of information sharing. The first of
these requirements, autonomy, specifically refers to four capabilities:

(1) A component must not be forced to perform an activity for another compo-
nent. The role of centralized authority must be replaced by cooperative
activity among components and supporting protocols.

(2) Each component determines the data that it wishes to share with other
components. Since partial, controlled sharing is a fundamental goal of the
federated approach, each component must be able to specify the information
to be made available as well as to specify which other components may access
it and in what ways.

(3) Each component determines how it will view and combine existing data. In
a composite system, all access to the underlying data is mediated by a global
schema. In a federation, each component must be able to, in effect, build its
own “global” schema that is best suited to its needs.

(4) A component must have “freedom of association” with respect to the feder-
ation. Since the federation is a dynamic entity, components must be able to
dynamically enter or leave the federation. Further, a component must be able
to modify its shared data interface, adding new data and withdrawing access
to previously shared data.

As a counterpoint to the capabilities required to support component autonomy,
the federated architecture must provide mechanisms to support information
sharing. Specifically, components can communicate in the following three ways:

-Data communication. Each component has a collection of data, and other
components may be interested in accessing some portion of those data. Ex-
changing the data is the primary activity in a federation, and so a mechanism
to support data sharing is essential to the operation of a federation.

-Transaction sharing. A component may not wish to share its data directly,
but rather to share operations upon its data. This may be the case if the data
are sensitive or have consistency constraints attached to them. In any case,
components must be able to define transactions that can be invoked by other
components.

-Cooperutiue actiuities. In a system of autonomous components, the only way
that the federation can function correctly is by cooperation. Components must
be able to initiate a potentially complex series of actions involving cooperation
with other components. Cooperation in this context refers to negotiated data
sharing.

Using these facilities, a collection of components in an office information system
can collectively achieve a substantial amount of sharing while maintaining
essential control over their data.

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1965.

256 l D. Heimbigner and D. McLeod

2. DISTRIBUTED DATABASE SYSTEMS

Databases, viewed as structured collections of information, can be roughly
classified along two dimensions representing: (1) conceptual/logical structure
(semantics), and (2) physical organization and structure. Each dimension may in
turn be divided into two parts: centralized and decentralized. Using this frame-
work, four classes of databases can be identified: (1) logically centralized and
physically centralized databases, which include the conventional integrated da-
tabases; (2) logically centralized and physically decentralized databases, including
distributed databases,l as well as a number of recent approaches to composite
database support; logically decentralized and either (3) physically centralized or
(4) physically decentralized databases, which represent the province of federated
databases.

Integrated databases, distributed databases, and most approaches to composite
databases represent the logically centralized approach: They provide a single
conceptual schema for users and application programs. Multiple external schemas
(views) may be provided in such systems, but a single central conceptual schema
is nonetheless required. In this approach, an integration of the data associated
with an application environment is attempted.

The distributed database architecture, for example, as described in [19], [29],
[30], and [34], fits into the category of logically centralized and physically
decentralized databases. In such a database the users and applications access
data described through a single conceptual schema, but the data may be physically
stored in many separate computers, typically the nodes of a computer network.
This architecture is specifically designed to provide a unified system that is
distributed across several interconnected computer systems. As such, it does not
address the integration of preexisting databases except by discarding those
databases and pacing their data into the new system. Thus the distributed
database architecture does not address the same issues as the federated architec-
ture.

Additional architectures have been proposed for databases, and these are more
directly comparable to federated databases. The common feature of these com-
posite database systems is that they attempt to combine a number of existing
databases into a single, logically centralized entity. This is achieved by defining
a global schema and then defining translation functions between the global
schema and the local schemas of the constituent databases. In order to construct
a composite database, two problems must be solved. First, the global schema
must be defined in such a way as to integrate all the information in the local
schemas and remove as much redundancy as possible. As indicated earlier, such
integration is potentially very difficult. Second the translations must be defined
so that operations on the global schema may be translated into equivalent
operations on some set of the local schemas.

Composite database systems may be further classified as homogeneous com-
posite databases and heterogeneous composite databases. The former is a composite
database in which all of the local schemas as well as the global schema are
defined using the same database model. Although this limits the complexity of

1 The term “distributed databases” is used here as it has been mainly used in the literature, denoting
a logically centralized, physically distributed system.

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1935.

A Federated Architecture for Information Management 257

the translation functions, they are not trivial since two or more local schemas
may structure the same information in different ways. Thus, no matter how the
global schema structures the information, some transformation will be necessary
to access one or the other of the local schemas.

A composite database is said to be heterogeneous if one or more of the
constitutent databases does not use the same database model as is used for the
global schema. A heterogeneous composite database system inherits the difficul-
ties associated with homogeneous composite database systems, and in addition
must face the additional problem of translating between different data models.
This problem is aggravated by the fact that constructs in one model may not
exist in another model.

There are several existing and proposed composite database systems, including
R* [20], XNDM [15, 161, Multibase [33], “superviews” [25], and the work of
Litwin [21,22]. A significant limitation of composite architectures is their basic
centralized nature, and particularly the existence of a global schema. However,
these approaches provide significant concepts and principles to address the
problems of heterogeneity, integration, and, to some extent, autonomy (R*).
Many of the ideas of these approaches have been incorporated into the federated
architecture.

By contrast with composite systems, the federated database uses an organiza-
tional model based on equal, autonomous databases, with sharing controlled by
explicit interfaces. The effect of modifications may be limited, and no database
has authority over another. There is no global schema in a federation. Rather,
each component has direct access to the original data provided by other compo-
nents, and it is free to restructure that information into whatever form is most
appropriate to its needs. The control of the sharing rests with the owner of the
data, but the negotiation mechanism ensures that changes to the structure of the
data proceeds in an orderly fashion.

The federated approach has some commonalities with the approach to “infor-
mation object sharing” described in [23]; in fact, many of the basic concepts in
[23] are derived from initial work on the federated architecture [12, 131. The
focus of [23] is to provide a small set of operations for object definition,
manipulation, and retrieval in a distributed environment, modeled as a logical
network of office workstations. Relationships among objects can be established
across workstation boundaries, objects are relocatable within the distributed
environment, and mechanisms are provided for access control. An object-naming
convention supports location transparent object references, which means that
objects can be referenced by user-defined names rather than by address. By
contrast, the federated architecture is focused on a higher level than the object-
sharing approach, in that it provides more explicit intercomponent interfaces,
specific capabilities to support negotiation, and a “semantic” model of informa-
tion vis-a-vis sharing.

3. THE FEDERATED DATABASE MODEL

Before discussing the details of the federated architecture, it is necessary to
summarize the database model used to describe data in a federation. The
architecture presented in this paper assumes that a common database model is
used throughout the federation; that is, the federation is homogeneous. It is, of

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

258 l D. Heimbigner and D. McLeod

course, possible to have a heterogeneous federation if the components do not all
use the same database model. “Hooks” exist in the architecture to deal with
heterogeneity, although this paper does not consider them in detail; principles
and techniques devised in research on composite database systems can be
employed in this regard [15, 16, 21, 22, 25, 331.

The federated database model used in this paper is based on an object-oriented
database model: the event model [17]. The event model is a characteristic
“semantic database model” [l-3, 8, 11, 18, 26, 321. Specifically, the federated
database model is based on three basic data modeling primitives:

-Objects. The basic modeling element is an object, which corresponds to some
(real world) entity or concept (e.g., the person Jane Smith or the number 5).
Objects are divided into two categories: descriptor objects and abstract objects.
Descriptor objects are atomic strings of characters, integers, or Booleans, and
generally serve as symbolic identifiers in the database. Decriptor objects are
the only directly displayable objects; thus all external references to objects in
the database must ultimately be in terms of descriptor objects. All nondescrip-
tor objects are abstract objects. They are not directly displayable, except in
terms of related descriptor objects (such as unique identifiers).

-Types. Types are time-varying collections of objects that share common
properties; the objects of a given type are called the instances of that type.
Some types are designated descriptor types in that they may only contain
descriptor objects. All other types are designated abstract types. A type may
be a subtype of another (parent) type if it is defined so that its set of instances
is always a subset of the instances of the parent type. Associated with any
subtype is a predicate that determines which objects that are instances of the
parent type are also instances of the subtype. A particular subclass of abstract
types required in the federated architecture, termed message types, is described
in Section 4.7.

-Maps. Maps are “functions” that map objects from some domain type to sets
of objects in the power set of some range type. A number of simple integrity
constraints may be specified with each ‘map; for example, a map may be
specified to be single-ualued (i.e., its value for all objects in the domain type
has cardinality of zero or one) or multivalued, and a map can be declared to be
a unique identifier (key).

In addition to the data structuring primitives. described above, the federated
information model provides primitive operators for data retrieval and modifica-
tion. In the federated model, data manipulation primarily involves traversing the
directed graph of types and maps that constitutes a given database. The actions
of the data manipulation operators are defined principally in terms of cursors
[9], which in this model are abstract ordered sets of objects together with a
pointer into that set. Each cursor refers to a unique sequence of objects and also
contains some state information about that sequence. In particular, the cursor
contains a marker that points to some specific element of the associated sequence.
The model contains operators to create and destroy cursors, and to sequence
through the elements of the cursor.

The database model also assumes the existence of transactions, which are
procedures expressed in some programming language. The parameters to these
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1935.

A Federated Architecture for Information Management l 259

procedures are objects in the database system. A transaction is integrated into
the schema by representing its interface as a type and its parameters as maps
associated with that type. Each invocation of a transaction creates an instance
of the type associated with that transaction.

In a federated database, objects always reside in the component (database) in
which they are created, but references to them may be passed to other components
so that the objects can be manipulated remotely through a set of exported
operators. Using this facility, a copy of any object can be created by any
component, but the copy is a different object. This scheme requires that objects
be given names that are unique with respect to an entire federation. Such unique
names must themselves contain some tag indicating the component that contains
the specified object. These unique names are generated by concatenating the
component name with a local object name. The component name is guaranteed
to be unique within the federation, and this is enforced by the federation system.
A unique local object name (unique with respect to a component) can be generated
by using a simple counter that is incremented whenever a new object is created.
Alternatively, a clock of sufficient resolution can be used to generate unique
names. Somewhat more general naming schemes can also be used, for example,
as described in [23] and [28].

4. THE FEDERATED DATABASE ARCHITECTURE

The basic elements of the federated architecture are components, of which there
may be any number; components represent individual information systems that
wish to share and exchange information. Each federation has a single federal
dictionary, which is a distinguished component whose information province is
the federation itself. The federal dictionary supports the establishment, mainte-
nance, and termination of a federation. The only difference between the federal
dictionary and any other component is the database it contains. It has no direct
control over other components, and it does not mediate communications among
other components.

A component may be viewed as an autonomous database. A component has
associated with it three schemas, each of which describes some class of informa-
tion important to the proper functioning of the component. Each of the three
schemas of a component is a collection of types and maps. The three component
schemas are the private schema, export schema, and import schema; these are
described immediately below.

4.1 Private Schema

The private schema describes that portion of a component’s data that is local to
(stored at) the component. The bulk of the private schema is devoted to describing
the application data available in the database of a component. This portion of
the schema, as well as the data it describes, corresponds to a normal database in
a nonfederated environment. Although some of this information will remain local
to the component, a portion of the application data and transactions will be
exported to other components.

In addition to the application-specific data, the private schema contains a
small collection of information and transactions relevant to the component’s
participation in the federation. This information is exported by the component

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

260 l D. Heimbigner and D. McLeod

for use by other components, particularly the federal dictionary. The federation-
specific information falls into three categories:

(1) descriptive information about the component, such as the component name
and network address;

(2) primitive operations for data manipulation, such as accessing a type and
traversing a map;

(3) the import and export schemas.

4.2 Export Schema

The export schema portion of the component specifies the information that the
component is willing to share with other components of the federation. The
export schema consists of a collection of types and maps denoting the information
to be exported to other components. As in the private schema, the exported
information is divided among federation-specific information and application-
specific information. The federation-specific information is much the same as
the federation-specific information of the private schema and is explicitly derived
from it. The application-specific information is analogously derived from the
information in the application-specific portion of the private schema.

The export schema is actually a metaschema consisting of a set of types and
maps in the component schema that contain the definitions of the types and
maps that are to be exported. Other components import this export schema and
peruse it like any other information. Not all exported types and maps are
represented in the export schema. Certain primitive types and maps are always
assumed to be exported, and it is not necessary for them to be explicitly included
in the export schema.

Each type and map in an export schema must have certain properties associated
with it. There are five properties for types: category, definition, derivation, access
list, and connection list. For exported maps, there are six properties: the same
five as for types plus a list of constraints. The category property specifies the
kind of type or map: descriptor or abstract. The definition property indicates
whether the type or map is derived, its actual derivation expression is specified
by the derivation property. The constraint list for maps specifies whether the
map is single valued, a unique identifier (key), etc. The access list and connection
list are used to control access to exported types. The access list property spec-
ifies which other components may access this type. The connection list specifies
which other components have imported this type and hence are potentially
accessing it.

In a given federation each component will have certain types and maps that it
is willing to share with every other component, but it will also have other
elements that it is willing to share only with some specified subset of the
components in the federation. In the federated architecture this is supported by
placing access controls on types and maps in the export schema. Thus the first
line of control over data access is the export/import mechanism, and the access
controls provide a finer grain of control on top of that mechanism.

Access controls must be specified in terms of components rather than individual
users of a component, because enforcement of user-level access controls is
dependent on the proper operation of the component. If a component has errors
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 198.5

A Federated Architecture for Information Management l 261

that allow one user of the component to masquerade as another user, then a user
may circumvent the access protections. It is possible for one component to
enforce component-level access controls since it mediates every access to its data
by another component, assuming proper operation of the underlying network.

An access list is a set of ordered pairs. The first element of each pair is a
component identifier; the second element of the pair is an access right assigned
to that component, specifying some type or map. Any component not contained
in the access list has no right to access the type or map. There are two kinds of
access rights: “read” and “write” (which implicitly allows read also). If a compo-
nent has “read” access to a type, then it is allowed to “open” the type to sequence
through the objects in that type. A component may only have “read” access to a
map if it also has “read” access to the domain and range types of the map. If a
component has “read” access to a map, then it can traverse (“apply”) the map
from a domain object to a set of range objects. A component with “write” access
to a map allows a component to change the mappings for a given object, as well
as perform “read” operations.

4.3 Import Schema

The import schema of a component specifies the information that component
desires to use from other components. As for the other two schemas, the import
schema deals both with federation-specific and application-specific information.
Both the application-specific information and the federation-specific information
are specified by a schema derived from the corresponding (accessible) portions
of the export schemas of other components.

An imported type or map has the same properties as an exported type, except
that it has no access list and no connection list. In addition, each imported
element (type or map) has a derived definition property, specifying how the
imported element is derived from the underlying exported element(s).

4.4 Schema Importation
Schema importation is the fundamental information-sharing operation in a
federation. The term “importation” refers to the process of modifying a compo-
nent’s import schema as well as gaining access to some element of exported
information. Before a component enters a federation, it imports nothing. As soon
as it enters, it imports sufficient built-in information to function within the
federation. This level of importation is essentially automatic. Beyond this, all
importation of information is at the discretion of the component itself and must
be explicitly negotiated with other components.

In order to import information, each component must know or discover what
information is available in the federation. This is accomplished in two steps.
First, through the federal dictionary each component may discover the names
and network addresses of the other components. Second, each component con-
tacts those components, using a predefined protocol. At this point a component
is in a position to peruse the export schemas of the other components and engage
in the schema importation process.

To illustrate the importation process, suppose that component cl exports a
type tl. Further suppose that component c2 wishes to import tl for reading as

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

262 l D. Heimbigner and D. McLeod

its (~2’s) type t2. Cl arranges the importation through the following negotiation:

(1) C2 requests cl to give it read access to tl.
(2) Cl grants c2 the access, modifying the connection list.
(3) When c2 receives the affirmative reponse from cl, it adds a new type t2 to

its import schema. The type t2 is defined to be derived with an initial
derivation expression of “cl > tl”; that is, it is a derivation of type tl of
component cl.

It is important to note that the importation of a type or map is separate from
subsequent data access. The type is imported once, and then all subsequent
accesses to the contents of that type are carried out directly, without the overhead
of negotiation. The actual data transfers occur when the importer attempts to
scan the contents of the type. This is completely analogous to access to a local
type except that the data is transferred over a network.

When component c2 imports a schema element that is exported by another
component cl, an implicit contract is established between cl and c2. In this
contract cl guarantees that it will not modify the definition (structure or
semantics) of the exported element unless it notifies the importer, ~2. By this
contract c2 also agrees to notify cl when it no longer requires access to the
element. This process of negotiated change is a key element of the federated
architecture.

Three kinds of modification caused by evolving information sharing patterns
require notification: giving the importer no access to the element, changing the
importer’s access right from “write” to “read,” and changing the semantics of the
element. In the first case, where the importer is denied any access to the element,
the importer is obligated to relinquish the connection to the element. Of course,
the importer cannot be forced to do this, but the implicit contract has been
broken and further access would be denied. In the other two cases the importer
has the option of either relinquishing access to the element or notifying the
exporter that the modified element is an acceptable replacement for the original
element, and so continue to use the element.

4.5 Type and Map Derivation Operators

Once some set of types and maps have been imported, a component can proceed
to restructure that information to suit its purposes. To this end, the architecture
provides a set of derivation operators for manipulating type and map definitions
to produce new ones.

Before discussing the various type and map derivation operators, it is necessary
to describe the concept of an object equality function. Such functions are essential
for combining information across component boundaries. In the federated data-
base model it is assumed that two objects from different components a priori
refer to different objects. Often this is acceptable, but sometimes it is necessary
to indicate that two objects owned by different components in fact do represent
the same entity. Object equality functions are used to define this equivalence of
objects.
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

A Federated Architecture for Information Management 263

An object equality function is a string (descriptor object) manipulation opera-
tion defined in a programming language. 2 The argument to the function is a
string that is assumed to be an assigned name for an object. This string may be
derived from the object via a series of key map traversals until a desriptor value
is reached. The equality function takes that string and computes another string
as a value. This string is assumed to represent some other object, which can be
found via an additional series of traversals of key maps.

As an example, suppose that component cl contains a type “employee” with a
key map “employee-number” that is an encodng of the employee’s social security
number of the form “123456789.” Also, suppose that component c2 contains a
type “manager” with a map “social-security-number” of the form “123-45-6789.”
A possible equality function, denote it by -, is a string funtion that takes a
number of the form 123456789 and transforms it to 123-45-6789. Thus, given an
employee, one constructively finds the equivalent manager by (I) obtaining the
employee-number of the employee, (2) converting it to a social-security-number
using -, and then (3) finding the manager with that social-security-number.

The type derivation operators are used to construct new types as combination
of existing types, which in turn may be derived types. These operators treat types
as multisets of objects. There are four principal type derivation operators:

-Concatenate combines the instances of two types to create a new type. As a
typical example, a unified type for airplanes might be constructed by concaten-
ating the types for various makes of airplanes.3

--Subtraction subtracts the instances of one type from the instances of another
type. Subtraction is most often used to obtain the complement of a type. For
example, given types “airplanes” and “military-airplanes,” one may obtain
“commercial-airplanes” via subtraction.

-Cross product creates a type with one instance for every n-tuple of objects from
some set of n types. This operation might be used for example to create a type
“date” as the cross product of types “month,” “day,” and “year.”

-Subtype allows a new type to be created via some predicate on another type.
For example, given the type “airplanes” with a map “kind” specifying whether
the airplane is commercial or military, the subtype “commercial-airplanes” is
a subtype of airplanes where the map “kind” has the value “commercial.”

As for types, it is possible to derive new maps from existing maps. Object
equality functions are considered derived maps, although the derivation is by
means of an arbitrary host-language procedure. Some type derivation operations
(concatenate, cross product, and subtype) automatically induce new maps on the
derived type.

In addition to object equality functions, there are the following eight map
derivation operators.

’ In the case of the prototype federated system, described below, this language is LISP.
a Since these operations generally involve types of two different components, it is typically necessary
to specify an object equality function for defining common objects in the two types.

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 198.5.

264 l D. Heimbigner and D. McLeod

-Composition defines a new map as the composition of two other maps (e.g., A
and B). If the map A and/or the map B are multivalued, then the composed
map consists of all objects in the range of map B that are obtained by following
an A map from the domain of A to the range of A, and then following a B map;
if the result of applying either map is undefined, then so is the composition.
For example, composing the map “manufacturer” of type “airplanes” with the
map “name” of “manufacturer,” the result is a new map specifying the name
of the manufacturer of an airplane; if “manufacturer” and “name” are multi-
valued, then the composition consists of the set of all names of all manufac-
turers of airplanes.

--Inversion defines a new map as the inverse of another map. For example,
inverting the map specifying the manufacturer of an airplane gives a map
specifying the airplanes of a manufacturer.

--Extension extends the definition of a map from a type to its supertype. Even
if the original map is total, its extension will be partial since it is undefined
for objects in the supertype but not in the type. Extension is most commonly
used with composition to allow a map on a subtype to be attached to the
supertype. Thus if the type “commercial” airplanes had a map specifying the
number of cabin attendants, composing this map with the extension map to
type “airplanes” could provide the number of cabin attendants for all airplanes.
Note, however, that the value of the map would be undefined for military
airplanes.

--Restriction restricts the definition of a map from a type to its subtype. If the
original function is total, then so is the restricted function. This derivation
allows a map on a type to be attached to a subtype.

-Cross product creates a map whose value is the two-tuple of values produced
by applying two other maps. It is most commonly used with the cross-product
type derivation. Thus if the type “airplane” has maps specifying the year,
month, and day of manufacture, these maps could be combined via cross
product to create a map representing the date of manufacture.

-Discrimination maps are automatically defined for each type derived by con-
catenation. If n types are concatenated, then n discimination maps are defined.
The ith discrimination map is defined only on elements from the ith type, so
it may be used with selection to test whether an object originated from a
particular type. This derivation is usually used with the selection derivation.

--Projection maps, similarly to discrimination maps, are automatically defined
for cross-product types. The ith projection map selects the ith element of any
n-tuple of the cross product. This derivation can be used, for example, to
choose the “month, ” “day,” and “year” maps of the “date” type created via
cross product.

-Selection allows a map to be one of a set of map expressions based upon a
series of condition tests (viz., a “case statement”). The conditions are also map
expressions. Each condition is evaluated, and if it results in a defined value,
then the corresponding map expression is evaluated and returned as the result
of the selection. When used in conjunction with discrimination maps, selection
can be used to convert an operation on a concatenated type into an operation
on one of types from which it was created.

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

A Federated Architecture for Information Management l 265

This collection of type and map derivation operators is quite low-level (com-
pared for example to [25] and [27]). In particular, it is important to realize that
the derivation of a type is generally independent of the derivation of maps. For
example, suppose two types, X and Y, are concatenated into a new type 2.
Further, suppose that X and Y both have associated maps called “name.” This
does not mean that 2 automatically is given a derived map called “name.”
Instead, that derivation, if it is desired, must be explicitly constructed. A higher
level interface supporting such functionality, which, for example, automatically
derives maps when new types are derived, can be constructed using the primitives
provided here.

4.6 Data Update

In addition to providing read access to imported and derived data, the federated
architecture must provide the capability for components to update such data.
The update problem is complicated by the existence of derived types whose
update requires updating the types from which it is derived (called “base types”).
The problem of updating derived data is essentially the same as the view update
problem [4, 7, 141, which has been principally studied in the context of the
relational database model. Briefly, the problem is that the derived type is obtained
by a mapping from a set of base types to the derived type. To update a derived
type, it is necessary to invert the derivation function so that updates to the base
types can be determined from the update to the derived type. In the most general
case this inversion is impossible (it may be undefined or ambiguous), which
means the derived type cannot be updated correctly.

The following approach to the update problem is adopted in the federated
architecture. If the derivation is direct (i.e., renaming only), then update is
allowed. Otherwise the data abstraction approach of Rigel [31] is used. In this
method, all updates to derived types are funneled through an associated set of
user-defined operations. Thus, the definer of the derived type also specifies all
possible operations on that derived type, and specifically the update operations
for the type. In practice, this method just transfers the problem to the definer of
the derived type, who must choose operations and their parameters so that
enough information is available to do the inversion. In the federation these
operations are specified by means of a set of message types implementing
transactions that perform the meaningful updates. The exporter is free to define
the semantics of these transactions as desired.

4.7 Message Types
The decentralized nature of a federation dictates the need for many forms of
communication among components. The capability for importing base types and
maps is one form of communication, but other means are needed to support the
exchange of higher levels of information. Specifically, the federation must allow
components to import and invoke transactions defined by other components.
Shared transactions are useful for two purposes. First, they can be used to control
updates to shared data, much as in abstract data types. Second, they are needed
to implement the negotiation subsystem (described in the next section).

The federated architecture allows components to share transactions through
message passing. This facility is embodied in the message type construct, which

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

266 l D. Heimbigner and D. McLeod

serves as an interface specification for some transaction. The message type, like
any type, can be exported by one component and imported by other components;
it is this process that constitutes the sharing of a transaction among components.

The message type describes a class of intercomponent messages. Associated
with the exporting component is a procedure that defines the transaction asso-
ciated with that message type. The normal message-sending paradigm is trans-
formed to the database paradigm of creating a new object: creating an object of
the message type is equivalent to sending the object as a message. At the receiving
component, the message is queued as an instance of the type. The message objects
are scanned in arrival order, and the earliest one is passed to the transaction for
processing. When the transaction is finished, the object is returned to the sender
to signal the completion of one message passing cycle. If the object sender
attempts to access the object before it is returned, the sender is delayed. Thus,
to the sender the process is reasonably transparent and appears more or less as
a normal object creation and access activity.

The maps associated with the message type allow parameters to be passed to
the receiver and results returned to the sender. The maps associated with the
type are partitioned into two kinds: input maps and output maps. The input maps
define attributes of the messages that are intended to be inputs to the transaction
associated with the message type. Similarly, the output maps represent results
returned after the transaction processes the message.

A message actually consists of two objects. The importer of the message type
creates a surrogate object locally and assigns values to all of the input maps.
Each message type has two predefined input maps, “msg-surrogate” and “msg-
source,” whose values are assigned by the database system. The “msg-surrogate”
map specifies a unique object name of the surrogate, while the “msg-source” map
provides the name of the component sending the message.

For example, if component cl exports the message type “order” with maps
“part” and “quantity” as follows:4

order:
part + partname
quantity + integer

then c2 may import the type and maps as

cl/order:
part ---, partname
quantity + integer

The identifier “cl/order” is ~2’s local name for the imported version of cl’s
“order” type. An order message can be sent (by c2) using the following sequence:

1. let m = new (cl/order)
2. insert-map (m, cl/order.part, “wrench”)
3. insert-map (m, cl/order.quantity, 100)

Here step 1 creates a new object of type “order,” and steps 2 and 3 establish the
input maps.

’ Here the arrow separates a map name from its range type.

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

A Federated Architecture for Information Management 267

It is at the point when all the input maps have been assigned that the object
is actually sent to the receiver. The originating component, c2 in this case,
collects the name of the surrogate object, its own name (c2), and the input map
values (“wrench” and loo), and converts them to a linear message suitable for
shipping over the network. It should be noted that when the map value is an
object, the value shipped is the unique name of that object (i.e., objects are
transmitted by reference).

When the message is received by cl (the exporter), cl creates an instance of
its message type (“order” in this case) and assigns the input map values taken
from the message. The transaction of the message type is then invoked with this
object as its argument. The transaction performs whatever action it desires,
assigns values to the output maps, and returns. In the case where map values are
objects (object references), accesses to these remote objects are converted to
appropriate intercomponent messages. After the transaction is complete, the
output maps are collected, linearized, and returned to the sender. The sender
assigns the output values to its surrogate object and continues operation.

4.8 Negotiation

With the absence of a central authority, the federated architecture provides a
mechanism to coordinate the sharing of information among components: the
negotiation subsystem. A negotiation is a multistep, distributed dialogue among
two components. For example, there is a built-in negotiation that sequences
through the steps for importing a type that was exported by some component.
Other negotiations control the entry and exit of components with respect to the
federation. It is important to note that negotiation is distinct from the process
of data access. Negotiation establishes the right to access some general kinds of
data elements. Once this is established, the primitives of Section 3 are used to
manipulate that data.

It is also possible for users to define new application-specific negotiations as
well. As a corollary, the structure of negotiations must be accessible to the user,
and hence they must be at least partially embedded in the database itself. The
actual negotiation subsystem has two main parts: an interpreter and a negotiation
language for writing negotiation procedures. The negotiation procedures (written
in the negotiation language) are stored in the database of each component. Each
negotiation procedure contains three elements: a set of participant schemas, a
negotiation schema, and a negotiation graph.

Any particular negotiation is conducted between two participants, which are
abstractions for components in the federation. Several of the same kind of
negotiation may be in operation simultaneously but with different bindings of
participant to component. Each participant has a participant schema, which
when instantiated provides local memory during the negotiation. The schema
may be parameterized, and the participant’s state is initialized with actual values
of these parameters when the negotiation is invoked.

To support the negotiation process, each participating component has a nego-
tiation database. A negotiation database is described by a negotiation schema,
which specifies a collection of types and maps; the database is in turn a collection
of objects and map instances matching the format of the negotiation schema. It

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

268 l D. Heimbigner and D. McLeod

contains the actual state for any single instance of a negotiation. One of the
types in the negotiation schema is called the tolzen type; it represents the “root”
type of the negotiation schema in that it serves as a handle to reach all other
portions of the negotiation schema. The instance of the token type in the
negotiation database is designated the token. During the steps of a negotiation,
the token is exchanged between the participants until some final result is
determined. The negotiation database is modified during the steps of the nego-
tiation to reflect changes in the state of the subject of the negotiation.

The possible steps for each kind of negotiation are specified by the negotiation
graph. If a negotiation is viewed as a program, then the negotiation graph serves
as a representation of the major control flow of that program. A negotiation
graph consists of a collection of nodes connected by arcs. Each negotiation node
stands for a possible state of the negotiation, and each negotiation arc indicates
a possible transition between states. A negotiation node has the following
structure:

-the node name describes the state associated with that node.
-The class of the node indicates whether a node is initial, which means that it

is the (unique) starting node for the negotiation, terminal, which means that
it is a final node for the negotiation, or other. The three classes are mutually
exclusive properties of the nodes.

-The transitions are the arcs from a given node leading to other nodes.
-Associated with each node is a procedure that defines the semantics of the

node. It determines which transition is taken from the node on the basis of
any criteria it chooses, for example, by interrogating one of the participants to
the negotiation, or by some arbitrary computation.

-Each node of the graph is assigned to an owning participant, which “owns”
that node.

A negotiation arc has the following structure:

-The arc has an arc name that is used as an input to the node semantics,
-The source and destination are the nodes connected by the arc.

One of the components in a federation initiates a negotiation by assigning
itself as participant one and choosing another component as participant two.
The use of “one” and “two” is arbitrary, but one of the participants must be
identifiable as the initiator of the negotiation. Participant two is notified that a
particular negotiation is to be initiated by means of an imported message type,
specific to that negotiation. Each participant creates its local state and initializes
it. In addition, participant two is responsible for creating the token and returning
its unique name to participant one.

The negotiation starts with the participant that owns the initial node of the
negotiation graph. It “places” the token upon the initial node of the negotiation
graph via an arc with no name. Whenever the token is “located” at a given node,
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

A Federated Architecture for Information Management 269

the owner of the node executes the procedure associated with that node. This
procedure is given four arguments: its state, the token, the name of the current
node, and the name of the last arc traversed. The procedure may examine and
modify its local database and the negotiation database, and it may interact with
the owner of the node. For nonterminal nodes the output of the procedure is an
arc, which the system then traverses to reach a new node. For terminal nodes
any output is ignored and the negotiation is terminated.

The success or failure of the negotiation is determined by the semantics of the
terminal node. Many negotiations will have several terminal nodes, some repre-
senting success and some representing failure. It is important, however, that
both participants know the outcome of the negotiation, and so as a special rule
of notification, once the result of the negotiation is decided by one participant,
the token must travel to a node of the other participant by the time it reaches a
terminal state. In this way each participant knows the outcome of the negotiation.

As an example, consider the “access-type” primitive negotiation. In this nego-
tiation, participant one requests access to (i.e., imports) some type exported by
participant two. As data the negotiation requires access to an instance of the
negotiation schema, a state for component one, and a state for component two.
This information is defined by the following types:

access-type-info:
type ---, string
category + string
definition + string
excuse --, string

access-type-statel:
component --* component-name
type --, string

access-type-state2:
source + component-name

The type “access-type-info“ is the sole type in the negotiation schema, so it is
also the token type for the negotiation. It carries four items of information:

-The “type” is the name of the type to be imported.
-The “category” is either “descriptor,” “abstract,” or “message.”
-The “definition” is either “base” or “derived.”
-The “excuse” is an error message in case the access to the type is denied.

The two types “access-type-statel” and “access-type-state2” define the state
information for each participant. Since the state and the token are the only items
of information passed among nodes, the state must record any information at
initiation that is needed by later nodes. In this case, each participant must record
its binding to a particular real component, and participant one (the requester)
must record the type to which access is requested.

The negotiation interpreter also requires information in order to track
the state of the negotiation, and to this end, it uses the following

ACM Transactions on Office Information Systems, Vol. 3, NO. 3, July 1985.

270 l D. Heimbigner and D. McLeod

negotiation-specific types:

access-type$participantl-negotiation:
current-node + negotiation-node
current-arc + negotiation-arc
state1 ---, access-type-state1
participant2 -9 component-name
token ---, object-name

access-type$participant2-negotiation:
current-node + negotiation-node
current-arc ---* negotiation-arc
state2 ---, access-type-state2
participant1 + component-name
token ---, access-type-info

The interpreter at each component maintains a collection of information about
each instance of negotiation in process, specifically, “access-type$participantl-
negotiation” and “access-type$participant2-negotiation.” For both participants,
the interpreter keeps a record of the node currently containing the token
(“current-node”) and the last arc traversed (“current-arc”). Additionally, links
to the state information are maintained via “statel” or “state2,” as appropriate.
Further, the “token” is recorded, and hence a link is provided to the entire
negotiation database. Finally, the interpeter records the identity of the compo-
nent bound to the other participant.

A set of three message types is defined for each negotiation. These message
types are used by the interpreters on each component to invoke action by the
other component. The types are defined as follows:

access-type$initialize:
input maps:

graph ---, string
output maps:

token + access-type-info
participant2-negotiation 4 access-type$participant2-negotiation

access-type$transition:
input maps:

graph + string
participant2-negotiation ---, access-type$participant2-negotiation
participantl-arc + string

output maps:
participants-arc + string

access-type$finalize:
input maps:

graph + string
participant2-negotiation - access-type$participant2-negotiation

output maps:

The interpreter initializes the negotiation by first creating an instance of
“access-type$participantl-negotiation” to stand for this instance of the negotia-
tion. Next, the interpreter creates an instance of “access-type-statel,” passes it
to a negotiation-specific initialization procedure specified by the negotiation
graph, and finally links that state object to the negotiation instance. The
interpreter then sends an “access-type$initialize” message to the second partici-
pant to inform it to initialize for the specified negotiation. When the second

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985

A Federated Architecture for Information Management 271

participant receives the message, it creates an instance of “access-type-state2,”
an instance of the token type, and an instance of “access-type$participant2-
negotiation.” These latter two objects are returned to participant one as the
output of the message. Upon receiving the response, the first participant begins
to sequence through the graph.

Graph traversal is handled by repeated exchanges of “access-type$transition”
messages between the two participants. The essential input from participant one
is the arc that it is traversing; the output from participant two is the next arc.
As a side effect of the message passing, the appropriate negotiation-specific node
action is executed. After the negotiation reaches a terminal state and participant
one gets a final response from participant two, the first participant sends an
“access-type$finalize” message to the second participant to allow both of them
to clean up the residue from the negotiation.

Textually, the negotiation graph for “access-type” is as follows:

access-type
(token = access-type-info,
state1 = access-type-statel,
state2 = access-type-state2,
initl = save-atype, init = savesource,
final1 = no&l, final2 = nofin2)

request-access
(type = start,
semantics = get-atype,
owner = 1):
ready * receive-request

receive-request
(type = other,
semantics = test-type-access,
owner = 2):
ok + access-granted
notok = access-denied

access-granted
(type = terminal,
semantics = finish-type-access,
owner = 1):

access-denied
(type = terminal,
semantics = explain-type-access-failure,
owner = 1):

The first part, labeled “access-type,” is the header of the negotiation. It specifies
the type which is the token, the two state types, and the names of the procedures
that will handle initialization and finalization for each participant. Following the
header is a series of node definitions. Each node specifies the node type (start,
other, terminate), the procedure defining the semantics of the node, and the
participant that owns the node. After that it specifies the names of the arcs from
that node and the destination of each arc. For example, the start state has only
one arc, named “ready,” and it leads to the node names “receive-request.”

The negotiation subsystem provides enough functionality so that it is relatively
easy to add new negotiations to the system. It is only necessary to define the
negotiation schema, the participant states, the negotiation graph, and the node

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

272 l D. Heimbigner and D. McLeod

semantics procedures. The interpreter then performs remaining functions auto-
matically.

4.9 System-Level Issues

Underlying any instance of the federated architecture must be a real system of
hardware and software, and certain system-level mechanisms are needed to
support the proper operation of the federation. In [12] three particular system
issues are addressed in detail: concurrency control, nested transactions, and
object passing. The solutions proposed are straightforward modifications of
known or obvious solutions (which is not to say that better solutions are not
possible). Concurrency control is a variation on two-phase locking. Nested
transactions are handled by associating locks of the inner transactions with the
parent transaction. This solution is similar to that described in [24]. Finally,
objects are only passed by reference, and all objects are given systemwide unique
names derived from the unique name of the component in the federation.

4.10 The Initial Structure of a Federation

In order to function, the federated architecture assumes that each component
shares a common set of descriptor types, base types, message types, and negoti-
ations. There are seven primitive descriptor types: string, boolean, integer, real,
object name, component name, and path. The first four are needed to represent
descriptor objects. The type “object name” is a subset of strings representing a
unique object name. “Component name” is a subset of strings representing the
component names. “Path” is a subset of strings representing a unique type or
map name; this unique name is formed from the concatenation of the component
name and the type or map name.

Base types and message types may be grouped into three classes: (1) data
manipulation, (2) negotiation support, and (3) import and export schemas. Data
manipulation types allow a component to perform the data operations on remote
objects analogously to operations upon local objects. As described previously, the
basic access structure is the cursor. The base type “cursor” represents a set of
primitive objects corresponding to cursors. It has no associated maps and can
only be manipulated with primitive message types. The type “cursor” is used to
access objects of other components.

The message types for data operations implement the operations of the
federated database model. They are provided as message types so that they may
be exported to other components. These components may in turn use them to
navigate through their imported data. Cursors may be manipulated via the
following operations: “cursor-create,” “cursor-destroy,” “cursor-reset,” “cursor-
next,” and “cursor-more.” Type-related operators are: “create-object” and “delete-
object”; maps are manipulated via “apply,” “apply-inverse,” “insert-map,” and
“delete-map.”

Most of the types and all of the operations associated with negotiations have
been described in the context of the example negotiation “access-type.” The only
types not mentioned are those that store the negotiation graphs for the inter-
preter. The type “negotiation-graph” contains one object for every kind of
negotiation in the system. Each such object refers to (via string names) the
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

A Federated Architecture for Information Management 273

associated base and message types for each kind of negotiation. In addition, each
graph refers to a set of nodes in the primitive type “negotiation-node,” which in
turn refers to the set of arcs in “negotiation-arc.”

The import schema for each component is represented by a collection of types
and maps defining the imported types and maps. In effect, there is a metaschema
for defining the import schema. In this metaschema, the type “import-schema”
has one object for each connected component. Each of these objects refers in
turn to a set of “import-types,” which in turn refer to a set of “import-maps.”
Associated with these imported types and maps is defining information (defini-
tion, category, and constraints).

The export schema is similar to but slightly simpler than the import schema.
Since there is only one exporter (per component), there is no need for a type
“export-schema.” Thus only the types “export-type” and “export-map” are
needed. These types differ from the import types by the addition of a connection
list map specifying the names of the other components currently importing a
given type or map.

Manipulation of the import schema and the export schema is carried out by a
specific set of negotiations. One set allows the exporter to augment the export
schema or to reduce it by withdrawing previously exported types and maps.
Another set allows the importer to augment the import schema and to reduce it.
The complete set is as follows:

-Bootstrap supports the initial negotiation between the federal dictionary and
a component entering the federation.

-Connect links two components in the federation; it causes them to exchange
import and export interface information so that each may determine what data
is provided by the other.

-Disconnect unlinks two components; typically this is done as part of a sequence
of actions when a component plans to leave the federation.

-Withdraw-type notifies others that a component plans to withdraw a type from
its export schema.

-Withdraw-map notifies others that a component plans to withdraw a map from
its export schema.

-Access-type requests access to a type exported by some component.
-Access-map requests access to a map exported by some component.
-Release-type notifies an exporter of a type that some component no longer

wishes to import it.
-Release-map notifies an exporter of a map that some component no longer

wishes to import it.

5. A PROTOTYPE IMPLEMENTATION

Completely implementing the federated architecture requires the use of a network
of computers with each computer supporting a semantic database system. Neither
the database nor the network was originally available when the federated archi-
tecture was designed. In consequence, a modest experimental prototype was
produced. This existing prototype is a large program written in Franz-LISP under

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

274 l D. Heimbigner and D. McLeod

the Berkeley UNIX5 operating system. The prototype supports a simple database
implementing the federated information model, export and import schemas,
message passing, and negotiations. In [12] an exhaustive, annotated transcript is
provided of the execution of the prototype. The prototype has successfully
executed access to imported data, simple derivations, message types, all of the
built-in negotiations, and a sample negotiation based on a shared database of
parts, suppliers, and consumers.

As a further test of its utility, the federated architecture is now being used as
the basis for a distributed software engineering database [6]. A typical software
project may involve a number of programmers each working on his or her own
part of the software but also using certain pieces of code and data provided by
other programmers. The federated architecture, with its emphasis on autonomy
and partial sharing, is a natural structure for such programming environments.

This software engineering system prototype is a combination of the federated
architecture with Odin [5], which is an extension of the UNIX “make” facility.
The prototype runs on a network of Sun workstations running Berkeley UNIX
4.2, which provides both the hardware and software necessary to support distrib-
uted programs. In this prototype, there are three processes per machine: a user
process (running Odin), a local database server process, and a federation server
process. The user process provides the interface between the user and the local
database server on one hand, and the user and the rest of the federation on the
other hand. The local server performs requests generated by the user. The
federation server handles requests from other components for exported infor-
mation and negotiations. The local server and the federation server are designed
to access the local database in parallel to provide better response for local
requests. In consequence, requests from the local user are handled immediately.
Requests from other components are multiplexed by the federation server. This
means that intercomponent requests (e.g., for data transfer or negotiation) may
not execute immediately. If a greater degree of concurrency is desired, then
additional federation server processes can be added. In the extreme there may be
one federation server for each known external component database.

6. CONCLUSIONS
While there is no production version of a federated architecture in use by a large
body of users, it is nevertheless possible to assess how well the original goals are
met by the architecture presented in this paper. It is also possible to see the parts
of the architecture that are not completely successful and should be changed in
some future version. Recall that in the absence of a central authority, the
federated architecture has to resolve two conflicting requirements: (1) the com-
ponents must maintain as much autonomy as possible, but (2) the components
must be able to achieve a reasonable degree of information sharing. Autonomy
specifically refers to four capabilities: control of data sharing, control of data
viewing, cooperative activity, and support for structural evolution.

The principal architectural features in support of autonomy are the export and
import interfaces of components. The export interface directly supports the

’ UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

A Federated Architecture for Information Management l 275

requirement for control of data sharing. All accesses to some item of data must
ultimately reference the component containing that item and hence are under
the control of that component. The export interface also supports cooperation
by providing a barrier between the private data of the component and all the
other components. As long as a component maintains its interface contract with
the federation, it is free to change the structure of its private data.

The role of the import interface is not as direct as that of the export schema.
Its primary function is to support directly the requirement that each component
be able to define its own view of the directly available data (i.e., without the use
of a global schema). As a secondary function, the import schema focuses the
attention of each component upon that exported data of immediate interest to
it. If every component indiscriminately imported all the available information,
which is equivalent to having no import schema, then it would be difficult for a
component to deal with all of the information. It would also be difficult for other
components to know who was a potential user of its data, thus inhibiting the
evolution of a federation.

Once the concept of export and import interfaces is integrated with the
database, the idea of importing simple data items follows immediately. But
extending importation to include transactions is not quite so obvious, at least
from the database point of view. Traditionally, databases have kept the trans-
actions quite separate from the database structure. This is a result of the
traditional emphasis on long-term data independence of the operations that
manipulate it. The federated architecture, along with other work in office data-
base systems (e.g., [35]), integrates communication facilities with the database.

Any discussion of sharing must also consider the exchange of metadata, namely,
data representing the structure of the data, as opposed to the actual data. The
federated architecture allows metadata to be exported so that other components
may peruse the structure of exported data. Metadata are supported by a set of
types in the built-in structures of the architecture. In this way, they may be
shared using the normal export-import mechanisms.

Negotiation is another key feature of the federated architecture. Initially, the
negotiation subsystem was to be a monolithic program that had all possible
negotiations embedded within it. This approach, although feasible, does not allow
the users easily to discern the structure of negotiations, and makes it difficult to
add new kinds of negotiations. The negotiation subsystem has thus been divided
into two parts: an interpreter, and a collection of procedures written in the
negotiation language (negotiation graphs). A problem with the approach is that
it does not go far enough. Currently, the semantics of a node is described as a
string representing a host-language procedure to be executed. This means that a
user must know that language in order to understand existing negotiations and
to write new ones. Further, much information about the meaning of a negotiation
state is hidden in those procedures. The system would be more uniform if the
semantics was specified using the structures provided by the database model. In
effect this would build in a programming language into the database model, and
its programs would be manipulated in the same way as any other database
structure.

The lack of multiparticipant negotiations is another problem with the current
architecture. There are cases in which negotiations need to be carried out

ACM Transactions on Office Information Systems, Vol. 3, NO. 3, July 1985.

276 - D. Heimbigner and D. McLeod

simultaneously by three or more participants. Modifying the system to handle n
participants, for n fixed, is straightforward; the problem is handling negotiations
that require varying numbers of participants or that need to be “quantified” over
all the components currently in the federation.

An additional limitation of the negotiation system is its handling of exceptional
conditions. Since it is operating in a distributed environment, many kinds of
failures can occur: lost or duplicated messages, component failures, and network
partitioning. At the moment, the only way to deal with these during a negotiation
is to introduce explicit failure arcs to all the nodes in the graph. This seriously
complicates the structure of such graphs. One alternative currently being explored
is to introduce special nodes to the graph that can handle such errors, but need
not have explicit arcs leading into them. Thus a typical negotiation graph would
have the main graph plus a separate collection of graphs to handle various kinds
of failures.

Finally, it is possible to compare the federated architecture with the list of the
benefits of the logically centralized architectures (such as composite systems). A
comparison shows two benefits that have been partially lost: removal of redun-
dancy and providing a global resource. Since global data is directly counter to
the goals of a federation, the latter loss seems inevitable. The redundancy problem
has two essential aspects. First, two components may export the same informa-
tion, kept separately. It may be desirable to relate these two versions by electing
one of them to export the data and have the others keep their versions local.
Second, for efficiency, it may be desirable to allow an importing component to
keep a local copy of the shared data. It is clear from some work on federated
software environments that this form of redundancy is desirable. To this end,
new mechanisms (principally negotiations) are currently being added to support
duplicated data.

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge the comments and suggestions
of several individuals on earlier versions of this paper: Hamideh Afsarmanesh
and Amihai Motro (USC); Robert Balzer, Neil Goldman, and David Wile (USC
Information Sciences Institute); Roger King (University of Colorado, Boulder);
Withold Litwin (INRIA); and Peter Lyngbaek (Hewlett-Packard Research Lab-
oratories). The very useful recommendations of the ACM Transactions on Office
Information Systems referees and editors are also most appreciated.

REFERENCES

1. ARITEBOUL, S., AND HULL, R. IFO: A formal semantic database model. In Proceedings of the
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (Apr. 1984). ACM, New
York, pp. 119-132.

2. BRODIE, M. L., MYLOPOULOS, J., AND SCHMIDT, J. W. (ED.). On Concept& Modelling. Springer-
Verlag, 1984.

3. BUNEMAN, P., AND FRANKEL, R. E. A functional query language. In Proceedings of the Znternn-
tionul Conference on Manugement of Data (Boston, Mass., May 30-June 1, 1979). ACM, New
York, pp. 52-57.

4. CHAMBERLIN, D. D., GRAY, J. N., AND TRAIGER, I. L. Views, authorization, and locking in a

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985.

A Federated Architecture for Information Management l 277

relational database system. In Proceedings of the National Computer Conference (June 1975).
AFIPS Press, Reston, Va., pp. 425-430.

5. CLEMM, G. M. ODIN-An extensible software environment: Report and user’s manual. CU-
CS-262-84, Computer Science Dept., Univ. of Colorado, Boulder, Colo., March, 1984.

6. CLEMM, G., HEIMBIGNER, D., OSTERWEIL, L., AND WILLIAMS, L. Keystone: A federated
software environment. In ACM SIGPLAN Symposium on Programming Languages and Program-
ming Environments (Seattle, Wash., May 1985). ACM, New York.

7. DAYAL, U. AND BERNSTEIN, P. A. On the updatability of relational views. In Proceedings of the
4th International Conference on Very Large Databases (West Berlin, Sept. 1978). ACM, New
York, pp. 368-377.

8. GIBBS, S., AND TSICHRITIZIS, D. A data modelling approach for office information systems. ACM
Trans. Office Znf. Syst. 1, 4 (Oct. 1983), 299-319.

9. GRAY, J. N. Notes on data base operating systems. In Operating Systems: An Advanced Course,
Lecture Notes in Computer Science, vol. 60. Springer Verlag, 1978, pp. 393-481.

10. HAMMER, M., AND MCLEOD, D. On database management system architecture. In Znfotech State
of the Art Report: Data Design, Infotech State of the Art Reports, vol. 8. Pergamon Infotech
Limited, Maidenhead, United Kingdon, 1980, pp. 177-202.

11. HAMMER, M., AND MCLEOD, D. Database description with SDM: A semantic database model.
ACM Trans. Database Syst. 6,3 (Sept. 1981), 351-386.

12. HEIMBIGNER, D. M. A federated architecture for database systems. Ph.D. dissertation, Univ. of
Southern California, Los Angeles, Calif., Aug. 1982.

13. HEIMBIGNER, D., AND MCLEOD, D. Federated information bases-A preliminary report. In
Znfotech State of the Art Report: Database. Infotech State of the Art Reports, vol. 9. Pergamon
Infotech Limited, Maidenhead, United Kingdom, 1981, pp. 383-410.

14. KATZ, R., AND GOODMAN, N. View processing in multibase-A heterogeneous database system.
In An Entity-Relationship Approach to Information Modelling and Analysis, ER Institute, 1981,
pp. 259-280.

15. KIMBLETON, S. R., WANG, P. S. C., AND FONG, E. XNDM: An experimental network data
manager. In Proceedings of the Berkeley Workshop on Distributed Data Management and Com-
puter Networks (Berkeley, Calif., Aug. 1979). Pp. 3-17.

16. KIMBLETON, S. R., WOOD, H. M., AND FITZGERALD, M. L. Network operating systems-An
implementation approach. In Proceedings of the National Computer Conference (June 1978),
AFIPS Press, Arlington, Va., pp. 773-782.

17. KING, R., AND MCLEOD, D. A database design methodology and tool for information systems.
ACM Trans. Office Znf. Syst.1, 1 (Jan. 1985), pp. 2-21.

18. KING., R., AND MCLEOD, D. Semantic database models. In Database Design, S. B. Yao, Ed.
Prentice Hall, Englewood Cliffs, N.J., 1985.

19. LIEN, Y. E., AND YING, J. H. Design of a distributed entity-relationship database system. In
Proceedings of the International Computer Software and Applications Conference (Chicago, Nov.
1978). IEEE, New York, pp. 277-282.

20. LINDSAY, B., AND SELINGER, P. G. Site autonomy issues in R*: A distributed database man-
agement system. Res. Rep. RJ2927, IBM Research Lab, San Jose, Calif., Sept. 1980.

21. LITWIN, W. A model for distributed data bases. In Proceedings of the ACM 2ndAnnual Louisiana
Computer Exposition (Feb. 1980). ACM, New York, pp. l-36.

22. LITWIN, W. Logical design of distributed data bases. MOD-1-043, INRIA, Paris, France, July
1981.

23. LYNGBAEK, P., AND MCLEOD, D. Object sharing in distributed information systems. ACM
Trans. Office Znf. Syst. 2, 2 (Apr. 1984), 96-122.

24. MOSS, E. B. Nested transactions: An approach to reliable distributed computing. Ph.D. Disser-
tation, Massachusetts Institute of Technology, Cambridge, Mass., Apr. 1981.

25. MOTRO, A., AND BUNEMAN, P. Constructing superviews. In Proceedings of the ACM-SIGMOD
International Conference on Management of Data (Ann Arbor, Mich., Apr. 1981), ACM, New
York, pp. 56-64.

26. MYLOPOULOS, J., BERNSTEIN, P. A., AND WONG, H. K. T. A language facility for designing
database-intensive applications. ACM Trans. Database Syst. 5, 2 (June 1980), 185-207.

27. NAVATHE, S. B. Schema analysis for database restructuring. ACM Trans. Database Syst. 5, 2

278 l D. Heimbigner and D. McLeod

(June 1980), 157-184.
28. OPPEN, D. C., AND YOGEN, Y. K. The clearinghouse: A decentralized agent for locating named

objects in a distributed environment. ACM Trans. Office Znf. Syst. 1, 3 (July 1983), 230-253.
29. ROTHNIE, J. B., JR., BERNSTEIN, P. A., Fox, S., GOODMAN, N., HAMMER, M., LANDERS, T. A.,

REEVE, C., SHIPMAN, D. W., AND WONG, E. Introduction to a system for distributed databases
(SDD-1). ACM Trans. Database Syst. 5, 1 (Mar. 1980), 1-17.

30. ROTHNIE, J. B., JR., AND GOODMAN, N. A survey of research and development in distributed
database management. In Proceedings of the 3rd International Conference on Very Large Databases
(Tokyo, Japan, Oct. 1977). IEEE, New York, pp. 48-62.

31. ROWE, L. A., AND SHOENS, K. A. Data abstraction, views, and updates in Rigel. In Proceedings
of the ACM-SZGMOD International Conference on Management of Data (Boston, May 1979).
ACM, New York, pp. 71-81.

32. SHIPMAN, D. The functional data model and the the data language DAPLEX. ACM Trans.
Database Syst. 2,3 (Mar. 1981), 140-173.

33. SMITH, J. M., BERNSTEIN, P. A., DAYAL, U., GOODMAN, N., LANDERS, T., LIN, K. W. T., AND
WONG, E. Multibase: Integrating heterogeneous distributed database systems. In Proceedings
of the National Computer Conference (June 1981). AFIPS Press, Reston, Va., pp. 487-499.

34. STONEBRAKER, M. R., AND NEUHOLD, E. A distributed database version of INGRES. In
Proceedings of the Berkeley Workshop on Distributed Data Manugement and Computer Networks,
(Berkeley, Calif., May 1977). University of California, Berkeley, pp. 19-36.

35. TSICHRITZIS, D. C. Integrating data base and message systems. In Proceedings of the International
Conference on Very Large Databases (Cannes, France, Sept. 1981). IEEE, New York, pp. 356-
362.

Received December 1984; revised June 1985; accepted June 1985

