
A Federated Architecture for Information 
Management 
DENNIS HEIMBIGNER 
University of Colorado, Boulder 

DENNIS McLEOD 
University of Southern California 

An approach to the coordinated sharing and interchange of computerized information is described 
emphasizing partial, controlled sharing among autonomous databases. Office information systems 
provide a particularly appropriate context for this type of information sharing and exchange. A 
federated database architecture is described in which a collection of independent database systems 
are united into a loosely coupled federation in order to share and exchange information. A federation 
consists of components (of which there may be any number) and a single federal dictionary. The 
components represent individual users, applications, workstations, or other components in an office 
information system. The federal dictionary is a specialized component that maintains the topology 
of the federation and oversees the entry of new components. Each component in the federation 
controls its interactions with other components by means of an export schema and an import schema. 
The export schema specifies the information that a component will share with other components, 
while the import schema specifies the nonlocal information that a component wishes to manipulate. 
The federated architecture provides mechanisms for sharing data, for sharing transactions (via 
message types) for combining information from several components, and for coordinating activities 
among autonomous components (via negotiation). A prototype implementation of the federated 
database mechanism is currently operational on an experimental basis. 

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design--data models; 
schema and subschema; H.2.4 [Database Management]: Systems--distributed systems; H.4.1 [In- 
formation Systems Applications]: Office Automation 

General Terms: Algorithms, Design, Languages, Management 

Additional Keywords and Phrases: Office information systems, distributed information management, 
federated databases 

1. INTRODUCTION 

The office information environment presents many new information manage- 
ment challenges [8, 28, 351. In particular, the types of information and the 
patterns of information access are quite different from those of application 
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environments for which conventional database management technology and 
systems are intended. The integrated database system was primarily developed 
to support large, integrated, centralized databases. In a decentralized information 
environment there may not be a single, integrated database containing all of the 
organizational information under the control of a centralized data processing 
organization. Rather, databases tend to proliferate throughout an organization 
with little or no control by any one group. In such an environment there is a 
need for substantial information management flexibility, partial integration/ 
sharing, and autonomy [23]. 

A possible response to the decentralization of information is to attempt to 
return to centralization by reintegrating the data into a “composite database,” 
sometimes called a “heterogeneous database.” To form a composite database, a 
new, global/virtual conceptual schema is introduced, which describes the infor- 
mation in the databases being composed; database access and manipulation 
operations are then mediated through this new conceptual schema. This return 
to strict integration does, however, require centralization. 

Inherent in the concept of integration is the existence of some authority 
(namely, a database administrator) responsible for designing and maintaining 
the conceptual and physical (implementation) schemas of the database. 
Thus, the process of integrating existing databases forces control over their 
structure to be ceded to some central authority. The users of the existing 
databases may have expended considerable resources (hardware, software, and 
human) in developing their databases and may be reluctant to lose control 
of them. Furthermore, changes to the structure of a database must pass through 
the database administrator, and they must be weighed against competing 
demands for change. 

The integration of existing databases into a composite database is in general 
quite difficult. An important problem in this regard is that the same fact may be 
contained in several databases yet be represented using different conceptual 
structures. For example, one database may represent a memo by links/mappings 
among the writer, recipient(s), and memo content, while another database may 
represent the memo as a distinct object with links to the writer, recipients, and 
memo content. If a composite database approach is used, one or the other of 
these conceptual representations must be selected, and applications using the 
other representation may need modification. In sum, the composite structure 
may be difficult to construct, and if it can be constructed, it may be suboptimal 
for many users’ needs. 

In light of the difficulties posed by composite databases, it is appropriate to 
pursue an alternative architecture that allows the existing database systems to 
maintain their autonomy, yet provides a substantial degree of information 
sharing. The goal of this paper is to define an architecture and supporting 
mechanisms for interconnecting databases that minimizes central authority, yet 
supports partial sharing and coordination among database systems. This feder- 
ated database architecture [lo, 12, 131 allows a collection of database systems 
(components) to unite into a loosely coupled federation in order to share and 
exchange information. The term federation refers to the collection of constituent 
databases participating in a federated database. 
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 
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Without the constraint of a central authority, the mechanisms provided for 
the federated architecture must balance two conflicting requirements: the com- 
ponents must maintain as much autonomy as possible; however, the components 
must be able to achieve a reasonable degree of information sharing. The first of 
these requirements, autonomy, specifically refers to four capabilities: 

(1) A component must not be forced to perform an activity for another compo- 
nent. The role of centralized authority must be replaced by cooperative 
activity among components and supporting protocols. 

(2) Each component determines the data that it wishes to share with other 
components. Since partial, controlled sharing is a fundamental goal of the 
federated approach, each component must be able to specify the information 
to be made available as well as to specify which other components may access 
it and in what ways. 

(3) Each component determines how it will view and combine existing data. In 
a composite system, all access to the underlying data is mediated by a global 
schema. In a federation, each component must be able to, in effect, build its 
own “global” schema that is best suited to its needs. 

(4) A component must have “freedom of association” with respect to the feder- 
ation. Since the federation is a dynamic entity, components must be able to 
dynamically enter or leave the federation. Further, a component must be able 
to modify its shared data interface, adding new data and withdrawing access 
to previously shared data. 

As a counterpoint to the capabilities required to support component autonomy, 
the federated architecture must provide mechanisms to support information 
sharing. Specifically, components can communicate in the following three ways: 

-Data communication. Each component has a collection of data, and other 
components may be interested in accessing some portion of those data. Ex- 
changing the data is the primary activity in a federation, and so a mechanism 
to support data sharing is essential to the operation of a federation. 

-Transaction sharing. A component may not wish to share its data directly, 
but rather to share operations upon its data. This may be the case if the data 
are sensitive or have consistency constraints attached to them. In any case, 
components must be able to define transactions that can be invoked by other 
components. 

-Cooperutiue actiuities. In a system of autonomous components, the only way 
that the federation can function correctly is by cooperation. Components must 
be able to initiate a potentially complex series of actions involving cooperation 
with other components. Cooperation in this context refers to negotiated data 
sharing. 

Using these facilities, a collection of components in an office information system 
can collectively achieve a substantial amount of sharing while maintaining 
essential control over their data. 
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2. DISTRIBUTED DATABASE SYSTEMS 

Databases, viewed as structured collections of information, can be roughly 
classified along two dimensions representing: (1) conceptual/logical structure 
(semantics), and (2) physical organization and structure. Each dimension may in 
turn be divided into two parts: centralized and decentralized. Using this frame- 
work, four classes of databases can be identified: (1) logically centralized and 
physically centralized databases, which include the conventional integrated da- 
tabases; (2) logically centralized and physically decentralized databases, including 
distributed databases,l as well as a number of recent approaches to composite 
database support; logically decentralized and either (3) physically centralized or 
(4) physically decentralized databases, which represent the province of federated 
databases. 

Integrated databases, distributed databases, and most approaches to composite 
databases represent the logically centralized approach: They provide a single 
conceptual schema for users and application programs. Multiple external schemas 
(views) may be provided in such systems, but a single central conceptual schema 
is nonetheless required. In this approach, an integration of the data associated 
with an application environment is attempted. 

The distributed database architecture, for example, as described in [19], [29], 
[30], and [34], fits into the category of logically centralized and physically 
decentralized databases. In such a database the users and applications access 
data described through a single conceptual schema, but the data may be physically 
stored in many separate computers, typically the nodes of a computer network. 
This architecture is specifically designed to provide a unified system that is 
distributed across several interconnected computer systems. As such, it does not 
address the integration of preexisting databases except by discarding those 
databases and pacing their data into the new system. Thus the distributed 
database architecture does not address the same issues as the federated architec- 
ture. 

Additional architectures have been proposed for databases, and these are more 
directly comparable to federated databases. The common feature of these com- 
posite database systems is that they attempt to combine a number of existing 
databases into a single, logically centralized entity. This is achieved by defining 
a global schema and then defining translation functions between the global 
schema and the local schemas of the constituent databases. In order to construct 
a composite database, two problems must be solved. First, the global schema 
must be defined in such a way as to integrate all the information in the local 
schemas and remove as much redundancy as possible. As indicated earlier, such 
integration is potentially very difficult. Second the translations must be defined 
so that operations on the global schema may be translated into equivalent 
operations on some set of the local schemas. 

Composite database systems may be further classified as homogeneous com- 
posite databases and heterogeneous composite databases. The former is a composite 
database in which all of the local schemas as well as the global schema are 
defined using the same database model. Although this limits the complexity of 

1 The term “distributed databases” is used here as it has been mainly used in the literature, denoting 
a logically centralized, physically distributed system. 
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the translation functions, they are not trivial since two or more local schemas 
may structure the same information in different ways. Thus, no matter how the 
global schema structures the information, some transformation will be necessary 
to access one or the other of the local schemas. 

A composite database is said to be heterogeneous if one or more of the 
constitutent databases does not use the same database model as is used for the 
global schema. A heterogeneous composite database system inherits the difficul- 
ties associated with homogeneous composite database systems, and in addition 
must face the additional problem of translating between different data models. 
This problem is aggravated by the fact that constructs in one model may not 
exist in another model. 

There are several existing and proposed composite database systems, including 
R* [20], XNDM [15, 161, Multibase [33], “superviews” [25], and the work of 
Litwin [21,22]. A significant limitation of composite architectures is their basic 
centralized nature, and particularly the existence of a global schema. However, 
these approaches provide significant concepts and principles to address the 
problems of heterogeneity, integration, and, to some extent, autonomy (R*). 
Many of the ideas of these approaches have been incorporated into the federated 
architecture. 

By contrast with composite systems, the federated database uses an organiza- 
tional model based on equal, autonomous databases, with sharing controlled by 
explicit interfaces. The effect of modifications may be limited, and no database 
has authority over another. There is no global schema in a federation. Rather, 
each component has direct access to the original data provided by other compo- 
nents, and it is free to restructure that information into whatever form is most 
appropriate to its needs. The control of the sharing rests with the owner of the 
data, but the negotiation mechanism ensures that changes to the structure of the 
data proceeds in an orderly fashion. 

The federated approach has some commonalities with the approach to “infor- 
mation object sharing” described in [23]; in fact, many of the basic concepts in 
[23] are derived from initial work on the federated architecture [12, 131. The 
focus of [23] is to provide a small set of operations for object definition, 
manipulation, and retrieval in a distributed environment, modeled as a logical 
network of office workstations. Relationships among objects can be established 
across workstation boundaries, objects are relocatable within the distributed 
environment, and mechanisms are provided for access control. An object-naming 
convention supports location transparent object references, which means that 
objects can be referenced by user-defined names rather than by address. By 
contrast, the federated architecture is focused on a higher level than the object- 
sharing approach, in that it provides more explicit intercomponent interfaces, 
specific capabilities to support negotiation, and a “semantic” model of informa- 
tion vis-a-vis sharing. 

3. THE FEDERATED DATABASE MODEL 

Before discussing the details of the federated architecture, it is necessary to 
summarize the database model used to describe data in a federation. The 
architecture presented in this paper assumes that a common database model is 
used throughout the federation; that is, the federation is homogeneous. It is, of 
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course, possible to have a heterogeneous federation if the components do not all 
use the same database model. “Hooks” exist in the architecture to deal with 
heterogeneity, although this paper does not consider them in detail; principles 
and techniques devised in research on composite database systems can be 
employed in this regard [15, 16, 21, 22, 25, 331. 

The federated database model used in this paper is based on an object-oriented 
database model: the event model [17]. The event model is a characteristic 
“semantic database model” [l-3, 8, 11, 18, 26, 321. Specifically, the federated 
database model is based on three basic data modeling primitives: 

-Objects. The basic modeling element is an object, which corresponds to some 
(real world) entity or concept (e.g., the person Jane Smith or the number 5). 
Objects are divided into two categories: descriptor objects and abstract objects. 
Descriptor objects are atomic strings of characters, integers, or Booleans, and 
generally serve as symbolic identifiers in the database. Decriptor objects are 
the only directly displayable objects; thus all external references to objects in 
the database must ultimately be in terms of descriptor objects. All nondescrip- 
tor objects are abstract objects. They are not directly displayable, except in 
terms of related descriptor objects (such as unique identifiers). 

-Types. Types are time-varying collections of objects that share common 
properties; the objects of a given type are called the instances of that type. 
Some types are designated descriptor types in that they may only contain 
descriptor objects. All other types are designated abstract types. A type may 
be a subtype of another (parent) type if it is defined so that its set of instances 
is always a subset of the instances of the parent type. Associated with any 
subtype is a predicate that determines which objects that are instances of the 
parent type are also instances of the subtype. A particular subclass of abstract 
types required in the federated architecture, termed message types, is described 
in Section 4.7. 

-Maps. Maps are “functions” that map objects from some domain type to sets 
of objects in the power set of some range type. A number of simple integrity 
constraints may be specified with each ‘map; for example, a map may be 
specified to be single-ualued (i.e., its value for all objects in the domain type 
has cardinality of zero or one) or multivalued, and a map can be declared to be 
a unique identifier (key). 

In addition to the data structuring primitives. described above, the federated 
information model provides primitive operators for data retrieval and modifica- 
tion. In the federated model, data manipulation primarily involves traversing the 
directed graph of types and maps that constitutes a given database. The actions 
of the data manipulation operators are defined principally in terms of cursors 
[9], which in this model are abstract ordered sets of objects together with a 
pointer into that set. Each cursor refers to a unique sequence of objects and also 
contains some state information about that sequence. In particular, the cursor 
contains a marker that points to some specific element of the associated sequence. 
The model contains operators to create and destroy cursors, and to sequence 
through the elements of the cursor. 

The database model also assumes the existence of transactions, which are 
procedures expressed in some programming language. The parameters to these 
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procedures are objects in the database system. A transaction is integrated into 
the schema by representing its interface as a type and its parameters as maps 
associated with that type. Each invocation of a transaction creates an instance 
of the type associated with that transaction. 

In a federated database, objects always reside in the component (database) in 
which they are created, but references to them may be passed to other components 
so that the objects can be manipulated remotely through a set of exported 
operators. Using this facility, a copy of any object can be created by any 
component, but the copy is a different object. This scheme requires that objects 
be given names that are unique with respect to an entire federation. Such unique 
names must themselves contain some tag indicating the component that contains 
the specified object. These unique names are generated by concatenating the 
component name with a local object name. The component name is guaranteed 
to be unique within the federation, and this is enforced by the federation system. 
A unique local object name (unique with respect to a component) can be generated 
by using a simple counter that is incremented whenever a new object is created. 
Alternatively, a clock of sufficient resolution can be used to generate unique 
names. Somewhat more general naming schemes can also be used, for example, 
as described in [23] and [28]. 

4. THE FEDERATED DATABASE ARCHITECTURE 

The basic elements of the federated architecture are components, of which there 
may be any number; components represent individual information systems that 
wish to share and exchange information. Each federation has a single federal 
dictionary, which is a distinguished component whose information province is 
the federation itself. The federal dictionary supports the establishment, mainte- 
nance, and termination of a federation. The only difference between the federal 
dictionary and any other component is the database it contains. It has no direct 
control over other components, and it does not mediate communications among 
other components. 

A component may be viewed as an autonomous database. A component has 
associated with it three schemas, each of which describes some class of informa- 
tion important to the proper functioning of the component. Each of the three 
schemas of a component is a collection of types and maps. The three component 
schemas are the private schema, export schema, and import schema; these are 
described immediately below. 

4.1 Private Schema 

The private schema describes that portion of a component’s data that is local to 
(stored at) the component. The bulk of the private schema is devoted to describing 
the application data available in the database of a component. This portion of 
the schema, as well as the data it describes, corresponds to a normal database in 
a nonfederated environment. Although some of this information will remain local 
to the component, a portion of the application data and transactions will be 
exported to other components. 

In addition to the application-specific data, the private schema contains a 
small collection of information and transactions relevant to the component’s 
participation in the federation. This information is exported by the component 
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for use by other components, particularly the federal dictionary. The federation- 
specific information falls into three categories: 

(1) descriptive information about the component, such as the component name 
and network address; 

(2) primitive operations for data manipulation, such as accessing a type and 
traversing a map; 

(3) the import and export schemas. 

4.2 Export Schema 

The export schema portion of the component specifies the information that the 
component is willing to share with other components of the federation. The 
export schema consists of a collection of types and maps denoting the information 
to be exported to other components. As in the private schema, the exported 
information is divided among federation-specific information and application- 
specific information. The federation-specific information is much the same as 
the federation-specific information of the private schema and is explicitly derived 
from it. The application-specific information is analogously derived from the 
information in the application-specific portion of the private schema. 

The export schema is actually a metaschema consisting of a set of types and 
maps in the component schema that contain the definitions of the types and 
maps that are to be exported. Other components import this export schema and 
peruse it like any other information. Not all exported types and maps are 
represented in the export schema. Certain primitive types and maps are always 
assumed to be exported, and it is not necessary for them to be explicitly included 
in the export schema. 

Each type and map in an export schema must have certain properties associated 
with it. There are five properties for types: category, definition, derivation, access 
list, and connection list. For exported maps, there are six properties: the same 
five as for types plus a list of constraints. The category property specifies the 
kind of type or map: descriptor or abstract. The definition property indicates 
whether the type or map is derived, its actual derivation expression is specified 
by the derivation property. The constraint list for maps specifies whether the 
map is single valued, a unique identifier (key), etc. The access list and connection 
list are used to control access to exported types. The access list property spec- 
ifies which other components may access this type. The connection list specifies 
which other components have imported this type and hence are potentially 
accessing it. 

In a given federation each component will have certain types and maps that it 
is willing to share with every other component, but it will also have other 
elements that it is willing to share only with some specified subset of the 
components in the federation. In the federated architecture this is supported by 
placing access controls on types and maps in the export schema. Thus the first 
line of control over data access is the export/import mechanism, and the access 
controls provide a finer grain of control on top of that mechanism. 

Access controls must be specified in terms of components rather than individual 
users of a component, because enforcement of user-level access controls is 
dependent on the proper operation of the component. If a component has errors 
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that allow one user of the component to masquerade as another user, then a user 
may circumvent the access protections. It is possible for one component to 
enforce component-level access controls since it mediates every access to its data 
by another component, assuming proper operation of the underlying network. 

An access list is a set of ordered pairs. The first element of each pair is a 
component identifier; the second element of the pair is an access right assigned 
to that component, specifying some type or map. Any component not contained 
in the access list has no right to access the type or map. There are two kinds of 
access rights: “read” and “write” (which implicitly allows read also). If a compo- 
nent has “read” access to a type, then it is allowed to “open” the type to sequence 
through the objects in that type. A component may only have “read” access to a 
map if it also has “read” access to the domain and range types of the map. If a 
component has “read” access to a map, then it can traverse (“apply”) the map 
from a domain object to a set of range objects. A component with “write” access 
to a map allows a component to change the mappings for a given object, as well 
as perform “read” operations. 

4.3 Import Schema 

The import schema of a component specifies the information that component 
desires to use from other components. As for the other two schemas, the import 
schema deals both with federation-specific and application-specific information. 
Both the application-specific information and the federation-specific information 
are specified by a schema derived from the corresponding (accessible) portions 
of the export schemas of other components. 

An imported type or map has the same properties as an exported type, except 
that it has no access list and no connection list. In addition, each imported 
element (type or map) has a derived definition property, specifying how the 
imported element is derived from the underlying exported element(s). 

4.4 Schema Importation 
Schema importation is the fundamental information-sharing operation in a 
federation. The term “importation” refers to the process of modifying a compo- 
nent’s import schema as well as gaining access to some element of exported 
information. Before a component enters a federation, it imports nothing. As soon 
as it enters, it imports sufficient built-in information to function within the 
federation. This level of importation is essentially automatic. Beyond this, all 
importation of information is at the discretion of the component itself and must 
be explicitly negotiated with other components. 

In order to import information, each component must know or discover what 
information is available in the federation. This is accomplished in two steps. 
First, through the federal dictionary each component may discover the names 
and network addresses of the other components. Second, each component con- 
tacts those components, using a predefined protocol. At this point a component 
is in a position to peruse the export schemas of the other components and engage 
in the schema importation process. 

To illustrate the importation process, suppose that component cl exports a 
type tl. Further suppose that component c2 wishes to import tl for reading as 
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its (~2’s) type t2. Cl arranges the importation through the following negotiation: 

(1) C2 requests cl to give it read access to tl. 
(2) Cl grants c2 the access, modifying the connection list. 
(3) When c2 receives the affirmative reponse from cl, it adds a new type t2 to 

its import schema. The type t2 is defined to be derived with an initial 
derivation expression of “cl > tl”; that is, it is a derivation of type tl of 
component cl. 

It is important to note that the importation of a type or map is separate from 
subsequent data access. The type is imported once, and then all subsequent 
accesses to the contents of that type are carried out directly, without the overhead 
of negotiation. The actual data transfers occur when the importer attempts to 
scan the contents of the type. This is completely analogous to access to a local 
type except that the data is transferred over a network. 

When component c2 imports a schema element that is exported by another 
component cl, an implicit contract is established between cl and c2. In this 
contract cl guarantees that it will not modify the definition (structure or 
semantics) of the exported element unless it notifies the importer, ~2. By this 
contract c2 also agrees to notify cl when it no longer requires access to the 
element. This process of negotiated change is a key element of the federated 
architecture. 

Three kinds of modification caused by evolving information sharing patterns 
require notification: giving the importer no access to the element, changing the 
importer’s access right from “write” to “read,” and changing the semantics of the 
element. In the first case, where the importer is denied any access to the element, 
the importer is obligated to relinquish the connection to the element. Of course, 
the importer cannot be forced to do this, but the implicit contract has been 
broken and further access would be denied. In the other two cases the importer 
has the option of either relinquishing access to the element or notifying the 
exporter that the modified element is an acceptable replacement for the original 
element, and so continue to use the element. 

4.5 Type and Map Derivation Operators 

Once some set of types and maps have been imported, a component can proceed 
to restructure that information to suit its purposes. To this end, the architecture 
provides a set of derivation operators for manipulating type and map definitions 
to produce new ones. 

Before discussing the various type and map derivation operators, it is necessary 
to describe the concept of an object equality function. Such functions are essential 
for combining information across component boundaries. In the federated data- 
base model it is assumed that two objects from different components a priori 
refer to different objects. Often this is acceptable, but sometimes it is necessary 
to indicate that two objects owned by different components in fact do represent 
the same entity. Object equality functions are used to define this equivalence of 
objects. 
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An object equality function is a string (descriptor object) manipulation opera- 
tion defined in a programming language. 2 The argument to the function is a 
string that is assumed to be an assigned name for an object. This string may be 
derived from the object via a series of key map traversals until a desriptor value 
is reached. The equality function takes that string and computes another string 
as a value. This string is assumed to represent some other object, which can be 
found via an additional series of traversals of key maps. 

As an example, suppose that component cl contains a type “employee” with a 
key map “employee-number” that is an encodng of the employee’s social security 
number of the form “123456789.” Also, suppose that component c2 contains a 
type “manager” with a map “social-security-number” of the form “123-45-6789.” 
A possible equality function, denote it by -, is a string funtion that takes a 
number of the form 123456789 and transforms it to 123-45-6789. Thus, given an 
employee, one constructively finds the equivalent manager by (I) obtaining the 
employee-number of the employee, (2) converting it to a social-security-number 
using -, and then (3) finding the manager with that social-security-number. 

The type derivation operators are used to construct new types as combination 
of existing types, which in turn may be derived types. These operators treat types 
as multisets of objects. There are four principal type derivation operators: 

-Concatenate combines the instances of two types to create a new type. As a 
typical example, a unified type for airplanes might be constructed by concaten- 
ating the types for various makes of airplanes.3 

--Subtraction subtracts the instances of one type from the instances of another 
type. Subtraction is most often used to obtain the complement of a type. For 
example, given types “airplanes” and “military-airplanes,” one may obtain 
“commercial-airplanes” via subtraction. 

-Cross product creates a type with one instance for every n-tuple of objects from 
some set of n types. This operation might be used for example to create a type 
“date” as the cross product of types “month,” “day,” and “year.” 

-Subtype allows a new type to be created via some predicate on another type. 
For example, given the type “airplanes” with a map “kind” specifying whether 
the airplane is commercial or military, the subtype “commercial-airplanes” is 
a subtype of airplanes where the map “kind” has the value “commercial.” 

As for types, it is possible to derive new maps from existing maps. Object 
equality functions are considered derived maps, although the derivation is by 
means of an arbitrary host-language procedure. Some type derivation operations 
(concatenate, cross product, and subtype) automatically induce new maps on the 
derived type. 

In addition to object equality functions, there are the following eight map 
derivation operators. 

’ In the case of the prototype federated system, described below, this language is LISP. 
a Since these operations generally involve types of two different components, it is typically necessary 
to specify an object equality function for defining common objects in the two types. 
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-Composition defines a new map as the composition of two other maps (e.g., A 
and B). If the map A and/or the map B are multivalued, then the composed 
map consists of all objects in the range of map B that are obtained by following 
an A map from the domain of A to the range of A, and then following a B map; 
if the result of applying either map is undefined, then so is the composition. 
For example, composing the map “manufacturer” of type “airplanes” with the 
map “name” of “manufacturer,” the result is a new map specifying the name 
of the manufacturer of an airplane; if “manufacturer” and “name” are multi- 
valued, then the composition consists of the set of all names of all manufac- 
turers of airplanes. 

--Inversion defines a new map as the inverse of another map. For example, 
inverting the map specifying the manufacturer of an airplane gives a map 
specifying the airplanes of a manufacturer. 

--Extension extends the definition of a map from a type to its supertype. Even 
if the original map is total, its extension will be partial since it is undefined 
for objects in the supertype but not in the type. Extension is most commonly 
used with composition to allow a map on a subtype to be attached to the 
supertype. Thus if the type “commercial” airplanes had a map specifying the 
number of cabin attendants, composing this map with the extension map to 
type “airplanes” could provide the number of cabin attendants for all airplanes. 
Note, however, that the value of the map would be undefined for military 
airplanes. 

--Restriction restricts the definition of a map from a type to its subtype. If the 
original function is total, then so is the restricted function. This derivation 
allows a map on a type to be attached to a subtype. 

-Cross product creates a map whose value is the two-tuple of values produced 
by applying two other maps. It is most commonly used with the cross-product 
type derivation. Thus if the type “airplane” has maps specifying the year, 
month, and day of manufacture, these maps could be combined via cross 
product to create a map representing the date of manufacture. 

-Discrimination maps are automatically defined for each type derived by con- 
catenation. If n types are concatenated, then n discimination maps are defined. 
The ith discrimination map is defined only on elements from the ith type, so 
it may be used with selection to test whether an object originated from a 
particular type. This derivation is usually used with the selection derivation. 

--Projection maps, similarly to discrimination maps, are automatically defined 
for cross-product types. The ith projection map selects the ith element of any 
n-tuple of the cross product. This derivation can be used, for example, to 
choose the “month, ” “day,” and “year” maps of the “date” type created via 
cross product. 

-Selection allows a map to be one of a set of map expressions based upon a 
series of condition tests (viz., a “case statement”). The conditions are also map 
expressions. Each condition is evaluated, and if it results in a defined value, 
then the corresponding map expression is evaluated and returned as the result 
of the selection. When used in conjunction with discrimination maps, selection 
can be used to convert an operation on a concatenated type into an operation 
on one of types from which it was created. 
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This collection of type and map derivation operators is quite low-level (com- 
pared for example to [25] and [27]). In particular, it is important to realize that 
the derivation of a type is generally independent of the derivation of maps. For 
example, suppose two types, X and Y, are concatenated into a new type 2. 
Further, suppose that X and Y both have associated maps called “name.” This 
does not mean that 2 automatically is given a derived map called “name.” 
Instead, that derivation, if it is desired, must be explicitly constructed. A higher 
level interface supporting such functionality, which, for example, automatically 
derives maps when new types are derived, can be constructed using the primitives 
provided here. 

4.6 Data Update 

In addition to providing read access to imported and derived data, the federated 
architecture must provide the capability for components to update such data. 
The update problem is complicated by the existence of derived types whose 
update requires updating the types from which it is derived (called “base types”). 
The problem of updating derived data is essentially the same as the view update 
problem [4, 7, 141, which has been principally studied in the context of the 
relational database model. Briefly, the problem is that the derived type is obtained 
by a mapping from a set of base types to the derived type. To update a derived 
type, it is necessary to invert the derivation function so that updates to the base 
types can be determined from the update to the derived type. In the most general 
case this inversion is impossible (it may be undefined or ambiguous), which 
means the derived type cannot be updated correctly. 

The following approach to the update problem is adopted in the federated 
architecture. If the derivation is direct (i.e., renaming only), then update is 
allowed. Otherwise the data abstraction approach of Rigel [31] is used. In this 
method, all updates to derived types are funneled through an associated set of 
user-defined operations. Thus, the definer of the derived type also specifies all 
possible operations on that derived type, and specifically the update operations 
for the type. In practice, this method just transfers the problem to the definer of 
the derived type, who must choose operations and their parameters so that 
enough information is available to do the inversion. In the federation these 
operations are specified by means of a set of message types implementing 
transactions that perform the meaningful updates. The exporter is free to define 
the semantics of these transactions as desired. 

4.7 Message Types 
The decentralized nature of a federation dictates the need for many forms of 
communication among components. The capability for importing base types and 
maps is one form of communication, but other means are needed to support the 
exchange of higher levels of information. Specifically, the federation must allow 
components to import and invoke transactions defined by other components. 
Shared transactions are useful for two purposes. First, they can be used to control 
updates to shared data, much as in abstract data types. Second, they are needed 
to implement the negotiation subsystem (described in the next section). 

The federated architecture allows components to share transactions through 
message passing. This facility is embodied in the message type construct, which 
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serves as an interface specification for some transaction. The message type, like 
any type, can be exported by one component and imported by other components; 
it is this process that constitutes the sharing of a transaction among components. 

The message type describes a class of intercomponent messages. Associated 
with the exporting component is a procedure that defines the transaction asso- 
ciated with that message type. The normal message-sending paradigm is trans- 
formed to the database paradigm of creating a new object: creating an object of 
the message type is equivalent to sending the object as a message. At the receiving 
component, the message is queued as an instance of the type. The message objects 
are scanned in arrival order, and the earliest one is passed to the transaction for 
processing. When the transaction is finished, the object is returned to the sender 
to signal the completion of one message passing cycle. If the object sender 
attempts to access the object before it is returned, the sender is delayed. Thus, 
to the sender the process is reasonably transparent and appears more or less as 
a normal object creation and access activity. 

The maps associated with the message type allow parameters to be passed to 
the receiver and results returned to the sender. The maps associated with the 
type are partitioned into two kinds: input maps and output maps. The input maps 
define attributes of the messages that are intended to be inputs to the transaction 
associated with the message type. Similarly, the output maps represent results 
returned after the transaction processes the message. 

A message actually consists of two objects. The importer of the message type 
creates a surrogate object locally and assigns values to all of the input maps. 
Each message type has two predefined input maps, “msg-surrogate” and “msg- 
source,” whose values are assigned by the database system. The “msg-surrogate” 
map specifies a unique object name of the surrogate, while the “msg-source” map 
provides the name of the component sending the message. 

For example, if component cl exports the message type “order” with maps 
“part” and “quantity” as follows:4 

order: 
part + partname 
quantity + integer 

then c2 may import the type and maps as 

cl/order: 
part ---, partname 
quantity + integer 

The identifier “cl/order” is ~2’s local name for the imported version of cl’s 
“order” type. An order message can be sent (by c2) using the following sequence: 

1. let m = new (cl/order) 
2. insert-map (m, cl/order.part, “wrench”) 
3. insert-map (m, cl/order.quantity, 100) 

Here step 1 creates a new object of type “order,” and steps 2 and 3 establish the 
input maps. 

’ Here the arrow separates a map name from its range type. 
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It is at the point when all the input maps have been assigned that the object 
is actually sent to the receiver. The originating component, c2 in this case, 
collects the name of the surrogate object, its own name (c2), and the input map 
values (“wrench” and loo), and converts them to a linear message suitable for 
shipping over the network. It should be noted that when the map value is an 
object, the value shipped is the unique name of that object (i.e., objects are 
transmitted by reference). 

When the message is received by cl (the exporter), cl creates an instance of 
its message type (“order” in this case) and assigns the input map values taken 
from the message. The transaction of the message type is then invoked with this 
object as its argument. The transaction performs whatever action it desires, 
assigns values to the output maps, and returns. In the case where map values are 
objects (object references), accesses to these remote objects are converted to 
appropriate intercomponent messages. After the transaction is complete, the 
output maps are collected, linearized, and returned to the sender. The sender 
assigns the output values to its surrogate object and continues operation. 

4.8 Negotiation 

With the absence of a central authority, the federated architecture provides a 
mechanism to coordinate the sharing of information among components: the 
negotiation subsystem. A negotiation is a multistep, distributed dialogue among 
two components. For example, there is a built-in negotiation that sequences 
through the steps for importing a type that was exported by some component. 
Other negotiations control the entry and exit of components with respect to the 
federation. It is important to note that negotiation is distinct from the process 
of data access. Negotiation establishes the right to access some general kinds of 
data elements. Once this is established, the primitives of Section 3 are used to 
manipulate that data. 

It is also possible for users to define new application-specific negotiations as 
well. As a corollary, the structure of negotiations must be accessible to the user, 
and hence they must be at least partially embedded in the database itself. The 
actual negotiation subsystem has two main parts: an interpreter and a negotiation 
language for writing negotiation procedures. The negotiation procedures (written 
in the negotiation language) are stored in the database of each component. Each 
negotiation procedure contains three elements: a set of participant schemas, a 
negotiation schema, and a negotiation graph. 

Any particular negotiation is conducted between two participants, which are 
abstractions for components in the federation. Several of the same kind of 
negotiation may be in operation simultaneously but with different bindings of 
participant to component. Each participant has a participant schema, which 
when instantiated provides local memory during the negotiation. The schema 
may be parameterized, and the participant’s state is initialized with actual values 
of these parameters when the negotiation is invoked. 

To support the negotiation process, each participating component has a nego- 
tiation database. A negotiation database is described by a negotiation schema, 
which specifies a collection of types and maps; the database is in turn a collection 
of objects and map instances matching the format of the negotiation schema. It 
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contains the actual state for any single instance of a negotiation. One of the 
types in the negotiation schema is called the tolzen type; it represents the “root” 
type of the negotiation schema in that it serves as a handle to reach all other 
portions of the negotiation schema. The instance of the token type in the 
negotiation database is designated the token. During the steps of a negotiation, 
the token is exchanged between the participants until some final result is 
determined. The negotiation database is modified during the steps of the nego- 
tiation to reflect changes in the state of the subject of the negotiation. 

The possible steps for each kind of negotiation are specified by the negotiation 
graph. If a negotiation is viewed as a program, then the negotiation graph serves 
as a representation of the major control flow of that program. A negotiation 
graph consists of a collection of nodes connected by arcs. Each negotiation node 
stands for a possible state of the negotiation, and each negotiation arc indicates 
a possible transition between states. A negotiation node has the following 
structure: 

-the node name describes the state associated with that node. 
-The class of the node indicates whether a node is initial, which means that it 

is the (unique) starting node for the negotiation, terminal, which means that 
it is a final node for the negotiation, or other. The three classes are mutually 
exclusive properties of the nodes. 

-The transitions are the arcs from a given node leading to other nodes. 
-Associated with each node is a procedure that defines the semantics of the 

node. It determines which transition is taken from the node on the basis of 
any criteria it chooses, for example, by interrogating one of the participants to 
the negotiation, or by some arbitrary computation. 

-Each node of the graph is assigned to an owning participant, which “owns” 
that node. 

A negotiation arc has the following structure: 

-The arc has an arc name that is used as an input to the node semantics, 
-The source and destination are the nodes connected by the arc. 

One of the components in a federation initiates a negotiation by assigning 
itself as participant one and choosing another component as participant two. 
The use of “one” and “two” is arbitrary, but one of the participants must be 
identifiable as the initiator of the negotiation. Participant two is notified that a 
particular negotiation is to be initiated by means of an imported message type, 
specific to that negotiation. Each participant creates its local state and initializes 
it. In addition, participant two is responsible for creating the token and returning 
its unique name to participant one. 

The negotiation starts with the participant that owns the initial node of the 
negotiation graph. It “places” the token upon the initial node of the negotiation 
graph via an arc with no name. Whenever the token is “located” at a given node, 
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the owner of the node executes the procedure associated with that node. This 
procedure is given four arguments: its state, the token, the name of the current 
node, and the name of the last arc traversed. The procedure may examine and 
modify its local database and the negotiation database, and it may interact with 
the owner of the node. For nonterminal nodes the output of the procedure is an 
arc, which the system then traverses to reach a new node. For terminal nodes 
any output is ignored and the negotiation is terminated. 

The success or failure of the negotiation is determined by the semantics of the 
terminal node. Many negotiations will have several terminal nodes, some repre- 
senting success and some representing failure. It is important, however, that 
both participants know the outcome of the negotiation, and so as a special rule 
of notification, once the result of the negotiation is decided by one participant, 
the token must travel to a node of the other participant by the time it reaches a 
terminal state. In this way each participant knows the outcome of the negotiation. 

As an example, consider the “access-type” primitive negotiation. In this nego- 
tiation, participant one requests access to (i.e., imports) some type exported by 
participant two. As data the negotiation requires access to an instance of the 
negotiation schema, a state for component one, and a state for component two. 
This information is defined by the following types: 

access-type-info: 
type ---, string 
category + string 
definition + string 
excuse --, string 

access-type-statel: 
component --* component-name 
type --, string 

access-type-state2: 
source + component-name 

The type “access-type-info“ is the sole type in the negotiation schema, so it is 
also the token type for the negotiation. It carries four items of information: 

-The “type” is the name of the type to be imported. 
-The “category” is either “descriptor,” “abstract,” or “message.” 
-The “definition” is either “base” or “derived.” 
-The “excuse” is an error message in case the access to the type is denied. 

The two types “access-type-statel” and “access-type-state2” define the state 
information for each participant. Since the state and the token are the only items 
of information passed among nodes, the state must record any information at 
initiation that is needed by later nodes. In this case, each participant must record 
its binding to a particular real component, and participant one (the requester) 
must record the type to which access is requested. 

The negotiation interpreter also requires information in order to track 
the state of the negotiation, and to this end, it uses the following 

ACM Transactions on Office Information Systems, Vol. 3, NO. 3, July 1985. 



270 l D. Heimbigner and D. McLeod 

negotiation-specific types: 

access-type$participantl-negotiation: 
current-node + negotiation-node 
current-arc + negotiation-arc 
state1 ---, access-type-state1 
participant2 -9 component-name 
token ---, object-name 

access-type$participant2-negotiation: 
current-node + negotiation-node 
current-arc ---* negotiation-arc 
state2 ---, access-type-state2 
participant1 + component-name 
token ---, access-type-info 

The interpreter at each component maintains a collection of information about 
each instance of negotiation in process, specifically, “access-type$participantl- 
negotiation” and “access-type$participant2-negotiation.” For both participants, 
the interpreter keeps a record of the node currently containing the token 
(“current-node”) and the last arc traversed (“current-arc”). Additionally, links 
to the state information are maintained via “statel” or “state2,” as appropriate. 
Further, the “token” is recorded, and hence a link is provided to the entire 
negotiation database. Finally, the interpeter records the identity of the compo- 
nent bound to the other participant. 

A set of three message types is defined for each negotiation. These message 
types are used by the interpreters on each component to invoke action by the 
other component. The types are defined as follows: 

access-type$initialize: 
input maps: 

graph ---, string 
output maps: 

token + access-type-info 
participant2-negotiation 4 access-type$participant2-negotiation 

access-type$transition: 
input maps: 

graph + string 
participant2-negotiation ---, access-type$participant2-negotiation 
participantl-arc + string 

output maps: 
participants-arc + string 

access-type$finalize: 
input maps: 

graph + string 
participant2-negotiation - access-type$participant2-negotiation 

output maps: 

The interpreter initializes the negotiation by first creating an instance of 
“access-type$participantl-negotiation” to stand for this instance of the negotia- 
tion. Next, the interpreter creates an instance of “access-type-statel,” passes it 
to a negotiation-specific initialization procedure specified by the negotiation 
graph, and finally links that state object to the negotiation instance. The 
interpreter then sends an “access-type$initialize” message to the second partici- 
pant to inform it to initialize for the specified negotiation. When the second 
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participant receives the message, it creates an instance of “access-type-state2,” 
an instance of the token type, and an instance of “access-type$participant2- 
negotiation.” These latter two objects are returned to participant one as the 
output of the message. Upon receiving the response, the first participant begins 
to sequence through the graph. 

Graph traversal is handled by repeated exchanges of “access-type$transition” 
messages between the two participants. The essential input from participant one 
is the arc that it is traversing; the output from participant two is the next arc. 
As a side effect of the message passing, the appropriate negotiation-specific node 
action is executed. After the negotiation reaches a terminal state and participant 
one gets a final response from participant two, the first participant sends an 
“access-type$finalize” message to the second participant to allow both of them 
to clean up the residue from the negotiation. 

Textually, the negotiation graph for “access-type” is as follows: 

access-type 
(token = access-type-info, 
state1 = access-type-statel, 
state2 = access-type-state2, 
initl = save-atype, init = savesource, 
final1 = no&l, final2 = nofin2) 

request-access 
(type = start, 
semantics = get-atype, 
owner = 1): 
ready * receive-request 

receive-request 
(type = other, 
semantics = test-type-access, 
owner = 2): 
ok + access-granted 
notok = access-denied 

access-granted 
(type = terminal, 
semantics = finish-type-access, 
owner = 1): 

access-denied 
(type = terminal, 
semantics = explain-type-access-failure, 
owner = 1): 

The first part, labeled “access-type,” is the header of the negotiation. It specifies 
the type which is the token, the two state types, and the names of the procedures 
that will handle initialization and finalization for each participant. Following the 
header is a series of node definitions. Each node specifies the node type (start, 
other, terminate), the procedure defining the semantics of the node, and the 
participant that owns the node. After that it specifies the names of the arcs from 
that node and the destination of each arc. For example, the start state has only 
one arc, named “ready,” and it leads to the node names “receive-request.” 

The negotiation subsystem provides enough functionality so that it is relatively 
easy to add new negotiations to the system. It is only necessary to define the 
negotiation schema, the participant states, the negotiation graph, and the node 
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semantics procedures. The interpreter then performs remaining functions auto- 
matically. 

4.9 System-Level Issues 

Underlying any instance of the federated architecture must be a real system of 
hardware and software, and certain system-level mechanisms are needed to 
support the proper operation of the federation. In [12] three particular system 
issues are addressed in detail: concurrency control, nested transactions, and 
object passing. The solutions proposed are straightforward modifications of 
known or obvious solutions (which is not to say that better solutions are not 
possible). Concurrency control is a variation on two-phase locking. Nested 
transactions are handled by associating locks of the inner transactions with the 
parent transaction. This solution is similar to that described in [24]. Finally, 
objects are only passed by reference, and all objects are given systemwide unique 
names derived from the unique name of the component in the federation. 

4.10 The Initial Structure of a Federation 

In order to function, the federated architecture assumes that each component 
shares a common set of descriptor types, base types, message types, and negoti- 
ations. There are seven primitive descriptor types: string, boolean, integer, real, 
object name, component name, and path. The first four are needed to represent 
descriptor objects. The type “object name” is a subset of strings representing a 
unique object name. “Component name” is a subset of strings representing the 
component names. “Path” is a subset of strings representing a unique type or 
map name; this unique name is formed from the concatenation of the component 
name and the type or map name. 

Base types and message types may be grouped into three classes: (1) data 
manipulation, (2) negotiation support, and (3) import and export schemas. Data 
manipulation types allow a component to perform the data operations on remote 
objects analogously to operations upon local objects. As described previously, the 
basic access structure is the cursor. The base type “cursor” represents a set of 
primitive objects corresponding to cursors. It has no associated maps and can 
only be manipulated with primitive message types. The type “cursor” is used to 
access objects of other components. 

The message types for data operations implement the operations of the 
federated database model. They are provided as message types so that they may 
be exported to other components. These components may in turn use them to 
navigate through their imported data. Cursors may be manipulated via the 
following operations: “cursor-create,” “cursor-destroy,” “cursor-reset,” “cursor- 
next,” and “cursor-more.” Type-related operators are: “create-object” and “delete- 
object”; maps are manipulated via “apply,” “apply-inverse,” “insert-map,” and 
“delete-map.” 

Most of the types and all of the operations associated with negotiations have 
been described in the context of the example negotiation “access-type.” The only 
types not mentioned are those that store the negotiation graphs for the inter- 
preter. The type “negotiation-graph” contains one object for every kind of 
negotiation in the system. Each such object refers to (via string names) the 
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associated base and message types for each kind of negotiation. In addition, each 
graph refers to a set of nodes in the primitive type “negotiation-node,” which in 
turn refers to the set of arcs in “negotiation-arc.” 

The import schema for each component is represented by a collection of types 
and maps defining the imported types and maps. In effect, there is a metaschema 
for defining the import schema. In this metaschema, the type “import-schema” 
has one object for each connected component. Each of these objects refers in 
turn to a set of “import-types,” which in turn refer to a set of “import-maps.” 
Associated with these imported types and maps is defining information (defini- 
tion, category, and constraints). 

The export schema is similar to but slightly simpler than the import schema. 
Since there is only one exporter (per component), there is no need for a type 
“export-schema.” Thus only the types “export-type” and “export-map” are 
needed. These types differ from the import types by the addition of a connection 
list map specifying the names of the other components currently importing a 
given type or map. 

Manipulation of the import schema and the export schema is carried out by a 
specific set of negotiations. One set allows the exporter to augment the export 
schema or to reduce it by withdrawing previously exported types and maps. 
Another set allows the importer to augment the import schema and to reduce it. 
The complete set is as follows: 

-Bootstrap supports the initial negotiation between the federal dictionary and 
a component entering the federation. 

-Connect links two components in the federation; it causes them to exchange 
import and export interface information so that each may determine what data 
is provided by the other. 

-Disconnect unlinks two components; typically this is done as part of a sequence 
of actions when a component plans to leave the federation. 

-Withdraw-type notifies others that a component plans to withdraw a type from 
its export schema. 

-Withdraw-map notifies others that a component plans to withdraw a map from 
its export schema. 

-Access-type requests access to a type exported by some component. 
-Access-map requests access to a map exported by some component. 
-Release-type notifies an exporter of a type that some component no longer 

wishes to import it. 
-Release-map notifies an exporter of a map that some component no longer 

wishes to import it. 

5. A PROTOTYPE IMPLEMENTATION 

Completely implementing the federated architecture requires the use of a network 
of computers with each computer supporting a semantic database system. Neither 
the database nor the network was originally available when the federated archi- 
tecture was designed. In consequence, a modest experimental prototype was 
produced. This existing prototype is a large program written in Franz-LISP under 
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the Berkeley UNIX5 operating system. The prototype supports a simple database 
implementing the federated information model, export and import schemas, 
message passing, and negotiations. In [12] an exhaustive, annotated transcript is 
provided of the execution of the prototype. The prototype has successfully 
executed access to imported data, simple derivations, message types, all of the 
built-in negotiations, and a sample negotiation based on a shared database of 
parts, suppliers, and consumers. 

As a further test of its utility, the federated architecture is now being used as 
the basis for a distributed software engineering database [6]. A typical software 
project may involve a number of programmers each working on his or her own 
part of the software but also using certain pieces of code and data provided by 
other programmers. The federated architecture, with its emphasis on autonomy 
and partial sharing, is a natural structure for such programming environments. 

This software engineering system prototype is a combination of the federated 
architecture with Odin [5], which is an extension of the UNIX “make” facility. 
The prototype runs on a network of Sun workstations running Berkeley UNIX 
4.2, which provides both the hardware and software necessary to support distrib- 
uted programs. In this prototype, there are three processes per machine: a user 
process (running Odin), a local database server process, and a federation server 
process. The user process provides the interface between the user and the local 
database server on one hand, and the user and the rest of the federation on the 
other hand. The local server performs requests generated by the user. The 
federation server handles requests from other components for exported infor- 
mation and negotiations. The local server and the federation server are designed 
to access the local database in parallel to provide better response for local 
requests. In consequence, requests from the local user are handled immediately. 
Requests from other components are multiplexed by the federation server. This 
means that intercomponent requests (e.g., for data transfer or negotiation) may 
not execute immediately. If a greater degree of concurrency is desired, then 
additional federation server processes can be added. In the extreme there may be 
one federation server for each known external component database. 

6. CONCLUSIONS 
While there is no production version of a federated architecture in use by a large 
body of users, it is nevertheless possible to assess how well the original goals are 
met by the architecture presented in this paper. It is also possible to see the parts 
of the architecture that are not completely successful and should be changed in 
some future version. Recall that in the absence of a central authority, the 
federated architecture has to resolve two conflicting requirements: (1) the com- 
ponents must maintain as much autonomy as possible, but (2) the components 
must be able to achieve a reasonable degree of information sharing. Autonomy 
specifically refers to four capabilities: control of data sharing, control of data 
viewing, cooperative activity, and support for structural evolution. 

The principal architectural features in support of autonomy are the export and 
import interfaces of components. The export interface directly supports the 

’ UNIX is a trademark of AT&T Bell Laboratories. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



A Federated Architecture for Information Management l 275 

requirement for control of data sharing. All accesses to some item of data must 
ultimately reference the component containing that item and hence are under 
the control of that component. The export interface also supports cooperation 
by providing a barrier between the private data of the component and all the 
other components. As long as a component maintains its interface contract with 
the federation, it is free to change the structure of its private data. 

The role of the import interface is not as direct as that of the export schema. 
Its primary function is to support directly the requirement that each component 
be able to define its own view of the directly available data (i.e., without the use 
of a global schema). As a secondary function, the import schema focuses the 
attention of each component upon that exported data of immediate interest to 
it. If every component indiscriminately imported all the available information, 
which is equivalent to having no import schema, then it would be difficult for a 
component to deal with all of the information. It would also be difficult for other 
components to know who was a potential user of its data, thus inhibiting the 
evolution of a federation. 

Once the concept of export and import interfaces is integrated with the 
database, the idea of importing simple data items follows immediately. But 
extending importation to include transactions is not quite so obvious, at least 
from the database point of view. Traditionally, databases have kept the trans- 
actions quite separate from the database structure. This is a result of the 
traditional emphasis on long-term data independence of the operations that 
manipulate it. The federated architecture, along with other work in office data- 
base systems (e.g., [35]), integrates communication facilities with the database. 

Any discussion of sharing must also consider the exchange of metadata, namely, 
data representing the structure of the data, as opposed to the actual data. The 
federated architecture allows metadata to be exported so that other components 
may peruse the structure of exported data. Metadata are supported by a set of 
types in the built-in structures of the architecture. In this way, they may be 
shared using the normal export-import mechanisms. 

Negotiation is another key feature of the federated architecture. Initially, the 
negotiation subsystem was to be a monolithic program that had all possible 
negotiations embedded within it. This approach, although feasible, does not allow 
the users easily to discern the structure of negotiations, and makes it difficult to 
add new kinds of negotiations. The negotiation subsystem has thus been divided 
into two parts: an interpreter, and a collection of procedures written in the 
negotiation language (negotiation graphs). A problem with the approach is that 
it does not go far enough. Currently, the semantics of a node is described as a 
string representing a host-language procedure to be executed. This means that a 
user must know that language in order to understand existing negotiations and 
to write new ones. Further, much information about the meaning of a negotiation 
state is hidden in those procedures. The system would be more uniform if the 
semantics was specified using the structures provided by the database model. In 
effect this would build in a programming language into the database model, and 
its programs would be manipulated in the same way as any other database 
structure. 

The lack of multiparticipant negotiations is another problem with the current 
architecture. There are cases in which negotiations need to be carried out 
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simultaneously by three or more participants. Modifying the system to handle n 
participants, for n fixed, is straightforward; the problem is handling negotiations 
that require varying numbers of participants or that need to be “quantified” over 
all the components currently in the federation. 

An additional limitation of the negotiation system is its handling of exceptional 
conditions. Since it is operating in a distributed environment, many kinds of 
failures can occur: lost or duplicated messages, component failures, and network 
partitioning. At the moment, the only way to deal with these during a negotiation 
is to introduce explicit failure arcs to all the nodes in the graph. This seriously 
complicates the structure of such graphs. One alternative currently being explored 
is to introduce special nodes to the graph that can handle such errors, but need 
not have explicit arcs leading into them. Thus a typical negotiation graph would 
have the main graph plus a separate collection of graphs to handle various kinds 
of failures. 

Finally, it is possible to compare the federated architecture with the list of the 
benefits of the logically centralized architectures (such as composite systems). A 
comparison shows two benefits that have been partially lost: removal of redun- 
dancy and providing a global resource. Since global data is directly counter to 
the goals of a federation, the latter loss seems inevitable. The redundancy problem 
has two essential aspects. First, two components may export the same informa- 
tion, kept separately. It may be desirable to relate these two versions by electing 
one of them to export the data and have the others keep their versions local. 
Second, for efficiency, it may be desirable to allow an importing component to 
keep a local copy of the shared data. It is clear from some work on federated 
software environments that this form of redundancy is desirable. To this end, 
new mechanisms (principally negotiations) are currently being added to support 
duplicated data. 
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