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ABSTRACT

High density oligonucleotide expression arrays are a widely
used tool for the measurement of gene expression on a large
scale. Affymetrix GeneChip arrays appear to dominate this
market. These arrays use short oligonucleotides to probe
for genes in an RNA sample. Due to optical noise, non-
specific hybridization, probe-specific effects, and measure-
ment error, ad-hoc measures of expression, that summarize
probe intensities, can lead to imprecise and inaccurate re-
sults. Various researchers have demonstrated that expres-
sion measures based on simple statistical models can provide
great improvements over the ad-hoc procedure offered by
Affymetrix. Recently, physical models based on molecular
hybridization theory, have been proposed as useful tools for
prediction of, for example, non-specific hybridization. These
physical models show great potential in terms of improving
existing expression measures. In this paper we suggest that
the system producing the measured intensities is too com-
plex to be fully described with these relatively simple physi-
cal models and we propose empirically motivated stochastic
models that compliment the above mentioned molecular hy-
bridization theory to provide a comprehensive description
of the data. We discuss how the proposed model can be
used to obtain improved measures of expression useful for
the data analysts.
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1. INTRODUCTION

In the Affymetrix system, a fair amount of further pre-
processing and data reduction occur following the image pro-
cessing step to obtain measures of gene expression. Back-
ground adjustments, normalization, and summarization of
the probe level data are three typical steps. The model pro-
posed in this paper is especially useful for the background
adjustment step, thus we will focus our discussion on this
aspect. However, in Section 6 we briefly discuss how it can
be useful for normalization and summarization as well.

Affymetrix GeneChip arrays use short oligonucleotides (of
length 25 bases) to probe for genes in an RNA sample. Each
gene will be represented by 11-20 pairs of oligonucleotide
probes. The first component of these pairs is referred to as
a perfect match (PM) probe and is designed to be specific to
transcripts from the intended gene. However, non-specific
hybridization and optical noise are unavoidable. Therefore,
the observed intensities need to be adjusted to give accu-
rate measurements of specific hybridization. Affymetrix’s
approach to adjusting is to pair each perfect match probe
with a mismatch (MM) probe, that is designed by chang-
ing the middle (13th) base, with the intention of measuring
only optical background noise and non-specific hybridiza-
tion (NSB). The default adjustment, provided as part of the
Affymetrix system, is based on the difference between per-
fect match and mismatch probe intensities (PM — MM).

A final step in the pre-processing of these arrays is to
combine the 11-20 probe pair intensities, after background
adjustment and normalization, for a given gene to define a
measure of expression that represents the amount of the cor-
responding mRNA species. Affymetrix’s default algorithm,
MAS 5.0, is based on a robust average of log(PM — M M™)
values (M M* denotes that some tweaking is performed to
avoid logs of non-positives). Various researchers have devel-
oped alternative algorithms, motivated by statistical mod-
els, that outperform the default algorithm in many applica-
tions. For example, Li and Wong [16] notice a strong probe
effect in both PM and PM — MM and describe it via a
simple multiplicative model. By analyzing various arrays
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Figure 1: Signal detection by PM and MM probes in the Latin-square spike-in experiment. a). log,(PM)
intensities of spike-in genes plotted against concentration. Number indicate the order of each probe within
probesets, each number is associated with a color for probesets. The line shows median log,(PM) for each
concentration. The dashed lines is the same median but for each probe-set. b). Same as a) but for MM

intensities.

at once they are able to estimate probe effects and use this
to improve outliers detection. Li and Wong also propose
a non-linear normalization procedure that improves preci-
sion of the default re-scaling approach. Irizarry et al. [12]
demonstrate that the log(PM — M M™) transformation re-
sults in gene expression estimates with exaggerated variance.
As a practical solution, they propose a global background
adjustment step that ignores the M M intensities. This ap-
proach sacrifices some accuracy for large gains in precision.
After the global background adjustment, arrays are quantile
normalized [3] and a log-scale expression effect plus probe
effect model is fitted robustly to define the robust multi-
array analysis (RMA) expression measure. Irizarry et al.
[14] and Cope et al. [5] demonstrate that RMA outperforms
MAS 5.0 and the Li and Wong procedure in various practi-
cal tasks. RMA has been implemented in the Bioconductor
project (http://www.bioconductor.org) affy package [13],
Iobion’s Genetraffic (http://www.iobion.com), and Insight-
ful’s S+ArrayAnalyzer (http://www.insightful.com) and
has become a popular alternative to the default algorithm
provided by Affymetrix. Various other similar algorithms
have been proposed [10, 21, 17, 4, 24]. In Section 6 we will
argue that the model described in this paper can be used
to improve the accuracy of these methods, without much
sacrifice in precision.

A simple version of our model can be written as PM =
O + N + S with PM the measured intensity of a particu-

lar PM probe, O representing optical background noise for
this probe, N representing NSB and S represents observed
specific signal. Similar models have been proposed by, for
example, Hekstra et al. [9] and Zhang, Miles and Aldape
[23]. A deterministic model that motivates Affymetrix’s ap-
proach to background adjustment would be MM = O + N
which would imply that PM — MM = S. However, in
Section 2 we demonstrate that a stochastic model is more
appropriate. In this case, PM = O™ 4 NOPM) 4 g
and MM = OMM) 4 NMM) where OFM) 4 N(PM) 44
OWMM) L N(MM) )ave similar expectations but are not per-
fectly correlated. In this case the difference log(PM —MM™)
is approximately unbiased, since E[PM — M M] =~ S, but
may have a large variance var[log(PM — M M™)].

In Section 2 we demonstrate that the O + N compo-
nent of the PM and M M are not perfectly correlated, thus
var[log(PM)] << var[log(PM — MM™)]. In part this ex-
plains why PM-only measures, such as RMA, are more pre-
cise than measures based on PM — M M, such as MAS 5.0.
Irizarry et al. [12] empirically show that for low intensity
probes the variance of the difference log(PM — MM™) can
be considerably larger than that of log(PM). Furthermore,
in general, MM > PM for roughly 40% of all probes and
this is problematic because we know S is strictly positive.
These facts have led some researchers to consider PM —only
measures. However, because O and N are strictly positive,
not correcting for optical noise and NSB can lead to biased
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Figure 2: Standard deviation of probe intensity in original scale (a) and log scale (b) plotted a

results: E(PM) > S. To see the negative effect this can have
in a practical application of, say, estimating expression fold-
change in two samples being compared, consider a simple
example: Say that the true expression for a particular gene
of interest in two samples being compared are p1 and pa pi-
coMolar. Ideally we should observe a fold change of p1/ue.
In practice, we observe intensities PM; = OgPM) +N1<PM) +
kp1 and PMy = OgPM) —I—NQ(PM) + k2 and an observed fold
change (ngM) 4 NI(PIM) I kul)/(O;PIVI) I N2(P]VI) + ko).
Thus, as the ku1 and kpe become smaller, as compared to
the the strictly positive mean of the background components
O and N, the estimated fold change converges to 1. This re-
sults in attenuated fold change estimates. RMA performs a
global background adjustment that improves accuracy over
non- background adjusted methods. However, as we will
discuss later, different probes have different propensities to
NSB which implies RMA does not fully account for NSB. In
this paper we develop a model that predicts the behavior of
optical noise, NSB, and specific binding very well. We use
hybridization theory from molecular biology together along
with data from carefully designed experiments to motivate
the model. We also propose a model for the distribution of
the specific signal S intensities within an array. This model
can be used to improve existing expression measures and
provides theoretical explanations for various facts observed
in practice, for example: 1) MM > PM for a considerable
amount of probes, 2) log(PM — M M ™) has much larger vari-
ance than log(PM) when S is small, and 3) log(PM —MM™)
is more accurate than log(PM) when S is small.

2. EMPIRICALLY MOTIVATED
STOCHASTIC MODELS

In this Section we use publicly available data and data
from our own experiments to motivate some of the compo-
nents of our stochastic models. The first of these data sets
is the Affymetrix spike-in experiments. These experiments
are described in detail, for example, by Irizarry et al. [12]

and Cope et al. [5]. For this experiment, human cRNA
fragments matching 16 probe-sets on one of the Affymetrix
human chips were added to a hybridization mixture at con-
centrations ranging from 0 to 1024 picoMolar in a design
similar to a Latin square. Apart from the spiked-in probe-
sets, the same RNA mixture was hybridized to 59 arrays.
Because we know the spike-in concentrations, it is possible
to identify statistical features of the data for which the ex-
pected outcome is known in advance. The second data come
from what we call the empty chip experiment. For this ex-
periment, sample RNA control from human embryonic kid-
ney derived cells was not labeled, but hybridized following
the Affymetrix protocol. Because the RNA was not labeled,
the observed intensities for this hybridization will represent
optical noise in the presence of biological sample. Finally,
the third data come from what we call the NSB experiment.
For this experiment, yeast control RNA was hybridized to
an array probing for human genes. This hybridization will
represent the full component of the noise, NSB and optical
noise. These two experiments are described in more detail
in Wu et al. [22].

2.1 Optical noise

Data from the empty chip experiment (not-shown) appear
to follow a normal distribution with mean of roughly 30
and standard deviation (SD) of roughly 2. This motivates
modeling the first component of our model, the optical noise
component, as normally distributed.

By using a log-scale transformation before analyzing mi-
croarray data, a great number of investigators have, implic-
itly or explicitly, proposed a multiplicative measurement er-
ror model [7, 19, 15, 20] for microarray data. A slightly
more complicated additive background multiplicative mea-
surement error model has been proposed by, for example,
[11, 6, 8]. In Figure la we see observed PM log (base 2) in-
tensities from the spike-in data plotted against their nominal
log (base 2) concentration. The solid line shows the median
value for each concentration. Notice that this line looks very
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Figure 3: Global accuracy and precision of various background adjustments. a) Log median adjusted inten-
sity plotted against log concentration. b) Standard deviation of log adjusted intensity plotted against log
concentration. Adjusted intensities resulting in negative values are ignored. c¢) As a) but with simulated

data. d) as b) but with simulated data.

much like the shape of the function f(z) = log,(z+k) with &k
about 60. The Figure also shows this median value for each
probe set with dashed lines. Although the curves are slightly
different the general shape is about the same. This confirms
that optical noise is additive as opposed to multiplicative.

Figure 2a shows SD of probe intensities, computed across
28 replicate arrays, plotted against the respective average
intensity. Figure 2b shows the same plot for log intensities.
The mean-variance dependence that is removed by applying
a log transformation is a strong argument for a multiplica-
tive error model. We therefore propose using an additive
background multiplicative measurement error model.

Because the standard deviation of the optical noise is so
small, as compared, for example, to the range of intensities,
we will assume it is constant and correct for it by simply
subtracting the minimum probe intensity (and adding 1 to
avoid logs of 0). In Figure 3a we see the median intensities
for each nominal concentration, as in Figure 1, for the PM
and the PM adjusted for optical noise (along with other ad-
justments described later). We expect the curves in Figure
3a to be lines with slope 1, since every time the nominal
concentration doubles observed concentration should dou-
ble. We fit a line to the curve in this Figure and the slope
for the PM intensities is 0.51. For the adjusted PM we
have a slope of 0.59. The background adjustment slightly
improves accuracy.

2.2 Non-specific binding
Molecular hybridization theory predicts that short oligonu-
cleotides will hybridize to non-complementary transcripts.

Our data from the NSB experiment support this. Figure
5a demonstrate a log-scale scatter plot of optical noise ad-
justed PMs versus optical noise adjusted M Ms. This plot
demonstrates intensities due to NSB are larger (by orders
of magnitude) than those obtained just from optical noise.
Because in this data there is no specific signal, if in fact the
MM are an exact measure of the NSB captured by the PM
then the predictive power of the M M should be 1 and this
plot should have no scatter. However, as expected, we do see
scatter. The relative predictive power or R? for this scatter
plot is 0.71. Although not perfect, the large R? suggest that
there is information on NSB to be extracted from the M M.
Notice also that Figure 5a seems to suggest that after adjust-
ment for optical noise the NSB component of the PM, M M
pairs appear to follow a bivariate normal distribution.

To see that NSB is an additive effect more than it is a
multiplicative effect, we adjusted the PM by subtracting
and by dividing the M M. The resulting median intensity of
PM — MM is shown in Figure 3a. The estimated slope is
0.90 which is a good improvement over the non-adjusted
PM. The PM/MM adjustment is very inaccurate (not
shown in Figure 3a). The slope is only about 0.14. This
suggest that NSB is an additive effect more than it is a mul-
tiplicative effect.

In Figure 3b we show a smooth curve demonstrating the
over-all log-scale SD, across 28 replicate arrays, as a function
of average log intensity, for the different adjustments. Notice
that the PM — M M adjustment is very noisy, especially at
the low end. The loss of precision is quite significant; the
median SD grows from 0.20 for non-adjusted PM, to 0.36
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Figure 4: Probe log (base 2) intensities for the same
probe set on two arrays spiked in at 4 and 8 pico-
Molar respectively.

for optical noise adjusted PM, to 0.91 for PM — M M. The
loss in accuracy of ignoring the M M is not as drastic.

2.3 Specific Signal

Li and Wong [16] demonstrate that, even after subtracting
M M, there is a strong probe effect. Notice in Figure 1 that
the range of probe intensities measuring the same nominal
amount of RNA cover various orders of magnitude. In Fig-
ure 1 we use color and numbers to denote the same probes.
The probes that have, on average bigger effects, are shown
in yellowish colors, those with lower values in blue colors.
The fact that the blue are always at the bottom, the yel-
low at the top demonstrate the strong and consistent probe
effects. The fact that Figure 1 is a log-scale plot, suggests
that their exists a multiplicative probe effect as well as the
measurement error.

Figure 4 better illustrate the size of the probe effects com-
pared to the differential expression effect sizes. This Figure
shows probe intensity on the y-axis (logged) against probe
number on the x-axis (ordered by proximity to the 5 end of
the target transcript), for one probeset. The two lines repre-
sent the intensities read on two arrays where this particular
probe-set was spiked-in at 4 and 8 picoMolar respectively.
This plot clearly shows that probe effects are huge compared
to array effects. Other probe-sets behave similarly (data not
shown).

3. PHYSICAL MODELS

Zhang et al. [23] propose a stacking energy, positional-
dependent-nearest-neighbor (PDNN) model for RNA/DNA
duplex formed on microarrays. Their energy model takes
into account the sequence of nearest-neighbors (adjacent two
bases) and the position of these nucleotide pairs. It has been
suggested that the effect of nearest-neighbor nucleotide pairs
is the most important factor in determining RNA/DNA du-
plex stability. Zhang et al. add a positional weight factor

to reflect the different contributions from different parts of
the probe.

The energies for gene-specific binding (signal specific probe
effect) and NSB of the j-th probe in i-th probe-set is thus
calculated as,

24

E;; = Zwkﬁ(bk,bk+1)
k=1
24

Ej = ) wie" (b, brra),
k=1

respectively, where wy, wy, are weights, €(bx, br+1), € (b, br+1)
are nearest-neighbor stacking energies, and by, is the base (A,
T, G, or C) at position k. Zhang et al. [23] then proceed to
describe the PM intensity of the j-th probe in i-th probe-set
as

PM;j = S;/{1 +exp(Ei;)} + N" /{1 + exp(Ej;)} + O,

where S; is the number of expressed mRNA molecules of
gene i, and S; /{1 + exp(Fi;)} is the contribution from gene
specific binding. N* is population of RNA molecules con-
tributing to NSB for the entire array, and N*/{14+exp(E};)}
is the contribution to intensity of j-th probe in i-th probe-
set. The weights (wks) are estimated empirically (see [23]
for more details).

Naef and Magnasco [18] propose a simpler model to de-
scribe the probe effect, that considers only the sequence
composition of the probes. Affinity of a probe is described
as the sum of position-dependent base affinities:

3

25
Afﬁnity = Z Z ,Uzj,klbk:j with Wik = Z ﬁjylkl

k=1j€{A,T,G,C} 1=0

where j is the base letter index, & = 1,...,25 indicates
the position along the probe, by represents the base at po-
sition k as before, 15, —; is an indicator function, and u; &
represents the effect of having base j in position k. Naef
and Magnasco [18] make the model more parsimonious by
assuming that the p;x follow a polynomial of degree 3 as a
function of position k. Their model is fitted to many arrays
at once to obtain an affinity value for each sequence. We
adapt this model to describe non-specific binding by fitting
the model to our NSB experiment data and by modeling the
1,k as spline functions with 5 degrees of freedom. Notice
that this model does not take into accout the interactions
between nearest neighbors. Naef and Magnasco [18] demon-
strate the these interactions for add much predictive power
for specific signal probe effects. We find the same is true
when predicting NSB. Notice also this model predicts that
for certain probes the hybridization strength of the M M ill
be stronger than the PM which implies PM — M M is only
an approximately unbiased estimate of S.

In Figure 5b and 5¢c we plot the optical noise adjusted
log,(PM)s from the NSB data set against Naef and Mag-
nasco’s affinities and Zhang’s PDNN log,(N™) — log,(1 +
exp(Ej;)). Notice that Naef and Magnasco’s affinities pre-
dict the NSB almost as well as the MM. The R? is 0.62.
Zhang’s PDNN also does relatively well with an R? of 0.28.
However, notice that the slope of the PDNN model scatter
plot is not 1.

Figure 5 demonstrates that these physical models can not
predict NSB perfectly. However, they motivate a simple
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stochastic model. In Section 4 we propose a model that
describes the NSB contribution as log-normal distributed
with log-scale mean proportional to Naef and Magnasco’s
affinities. The two parameters describing this relationship
is estimated from the data and not predicted using physi-
cal models. The model works similarly when using Zhang’s
—log, (1 + exp(E;;)) as the affinity measure.

3.1 Specific Signal

Irizarry et al. [14] postulate a log-scale additive model for
the specific signal component of the probe level data:

lOg(Sij):Si+O[j+€i]’,’L':1,...,[, and]zl,J

Here s; represents log scale expression (the quantity of inter-
est), a; represents the probe effect, and ¢;; is the multiplica-
tive measurement error. This model fits very well in practice
and if one has enough arrays the probe effects a; can be effi-
ciently estimated [14]. As described above, Zhang et al. [23]
and Naef and Magnasco [18] describe physical models useful
for predicting a; from the probe sequence. For example, we
could add the further assumption that alpha; = Affinity, (.
However, as described in section 6, it is also useful to de-
scribe the within array distribution of the s;. This distri-
bution will vary somewhat among RNA sources, and varies
greatly among chip designs and other processing and hy-
bridization factors. In this section we describe a parametric
distribution useful for describing the empirical distribution
of Si.

Wu et al. [22] notice that for a wide variety of arrays (in-
cluding arrays hybridized to samples of various type from
humans, mice, and rats) the distribution of the specific sig-
nal for probe intensities can be well approximated with a
power-law distribution. Observed intensities contain compo-
nents of both the background noise and the signal. However,
for higher intensities, where background has little effect, we
observe that log frequency versus log rank plots fall on a line
with slope near 1, as predicted by a power law, specifically
by Zipf’s Law [25]. This distribution has also been observed
empirically in SAGE data [2].

Wu et al. [22] demonstrate that a log-exponential distri-
bution (a special case of Zipf’s law) appropriately predicts
the signal. If this assumption holds then we can write:

Pr(s;i < s) =1—exp(s/a),a~ 1.

Although we do not expect this assumption to hold true for
all hybridization, we do find it useful in many instances.

4. UNIFIED PHYSICAL/STOCHASTIC
MODEL

The described physical models perform relatively well at
predicting NSB and, as will become apparent, the distribu-
tion of the specific signal. However, the predictions are not
perfect and are complimented well with stochastic versions.
The system producing intensities is very complicated and we
argue that one can use physical models to approximate the
process relatively well, but the lack-of-fit is best described
with a stochastic model.

Our model for the PM intensity contains NSB and specific
signal components that on the probe sequence composition
as described by the physical models. The model can be
written as

PM; = O; + N; + 5;

where O; ~ Normal(b,, 02), log(N;) ~ Normal(bnx(A;), 0% ),
and log(S;) = s+A,B+¢;. Here by (A;) is a smooth function
of Aj;, and s ~ Exponential(1). We assume independence
across probes. For the MM we assume the same model
except for the lack of the S;:

MM; =0, + Nj.

Furthermore, we assume that the PM and MM log(Nj;)
have a correlation of 0.7 (what we observe in the NSB ex-
periment).

Notice that this model is defined by only few parame-
ters and that we have over 200,000 probe intensities to fit
them. One can use maximum likelihood estimation to do
this. However, writing down the likelihood for this model
is complicated as it involved a convolution of 3 densities.
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experiment against simulated PM intensity.

We have developed some ad-hoc procedures to estimate the
parameters that yield very good fits.

To estimate the parameters for the background model, we
notice that 02 << ¢%, thus we can assume that optical noise
is approximately constant (o, ~ 0) which implies that b,
is approximately equal to the minimum observed intensity.
Our estimate is thus b, = min{min; PM;, min; MM;} — 1
(we subtract 1 to avoid nonpositive adjusted values). We

then construct the intensities adjusted for optical noise: PM J' =

PM; —l;o, MMJ' = MM; —l;o on an array. If we assume that
the M Ms do not measure specific signal, then Pr(PM; <
MM;) = Pr{PM} < by(A;)}. Because bn(A;) is assumed
to be a smooth function of A;, we can estimate by (A;) by
considering a neighborhood, {PMj,, k € A;}, with k € A; if
Ay is “close” to Aj, define the quantile

1
qg=Pr(PM; < MM;) ~ ZAT Z lpn, <mnay s
I ken

and then define the estimate by (A;) as the q-th quantile of
the log(PM,,), k € Ay probe intensity empirical distribution.
Because we know that the N(A;) is an increasing function
we force it to be monotonic using the pool-adjacent-violators
(PAV) algorithm [1]. 0% can be estimated using the negative
residuals PMj, — by (A;) (the positive residuals will contain
part of the signal S;). Finally, the 3 parameter can be
estimated by simply regressing the PM]‘ on Aj. We estimate
the N(A;) for the M M; similarly but because we assume the
M Mj do not detect signal we use ¢ = 0.5.

5. RESULTS

We fitted the model as described in the previous Section.
The model fits extremely well. Figure 6a shows kernel den-
sity estimates of the PM intensities for one of the spike-in
arrays along with the predicted distribution from the model.
Notice that this model has less than 10 parameters (the

smooth function fit uses about 4 degrees of freedom) and
200,000 data points so over-fitting is not a concern. Further-
more, the model is based on molecular hybridization theory.
Figure 6b shows a quantile-quantile plot that confirms the
good fit.

In Figure 3c and 3d we present the results shown in Fig-
ure 3a and 3b but instead of real data we use data simulated
from our model. Notice the similarity between the real and
simulated results. Our model predicts that, for low intensity
probes, log(PM — M M™) is a low precision transformation
and that log(PM) is a low accuracy transformation. This
suggests that our proposed model can be used for simula-
tions related to statistical procedures based on Affymetrix
data. For example, one could use it decide among different
test statistics (Wilcoxon, t-test, SAM, etc...)

Finally, we point out that under this model, as fitted to
this array, predicts the probability of a MM > PM to be
0.40 which is exactly what we see empirically. Thus having
many MM > PM is not necessarily a bad thing. It is just
a consequence of the noisy character of the system and the
differenct in affinities for different sequences. Both these
issues can be dealt with statistically.

6. DISCUSSION

We have presented a stochastic model motivated by molec-
ular hybridization theory that fits Affymetrix GeneChip probe
level data very well. Apart from giving a theoretical expla-
nation for various facts observed in practice, this model can
also be used to improve expression measures. For example,
once we have fitted the model, we could correct for optical
noise and NSB by computing the expectation of S given that
we have observed a PM and M M. An approach such as this
has been used by Wu et al. [22] with very encouraging re-
sults. Wu et al. describe an expression measure algorithm
similar to RMA but using a model such as the one described
here to adjust for background. Their expression measure is
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Figure 7: Boxplots show distribution of probe-

specific fitted observed versus nominal log-scale
slopes for different background adjustments. The
scatterlots compare these slope for PM-MM, RMA,
and the procedure described in this paper. Each
point represents a probe.

about as precise as RMA but more accurate. In fact, it is
more accurate than MAS 5.0.

Notice that this model can also be used for normalization
and summarization. The fact that we have a prior distribu-
tion for the specific signal component suggest that one could
use the log-exponential as the reference distribution used in
quantile normalization. Furthermore, by incorporating in-
formation about probe-sets in the model (i.e. which probes
represent which genes) one could directly obtain MLE esti-
mates of expression measures from the model. One aspect
that is not described by our model is the existence of outliers
probes. This is subject of future work.

Finally, we point out that the described model motivates
a PM-only expression measure that can be as accurate as
those that use MM (such as MAS 5.0). In Figure 3a we show
the global accuracy of the background adjustment defined
by

PM;—E[O;+Nj] = PMj—{EO — exp (BN(Aj) + %aﬁv) } .

This adjustment has similar precision to PM — MM but
slightly better accuracy. Notice this adjustment does not
depend on M Mj, except for that fact that we used to them
to obtain the quantile ¢ used to estimate by (A;). Although
there is complimentary information in the M M and in the
affinities, PM-only measures are attractive for various rea-
sons, for example: 1) We can have twice as many probes on
the chips and 2) the M M seems to detect signal as demon-
strated by Figure 1b. Using our model one could obtain
roughly the same accuracy without the need for M M probes.

Figure 7 demonstrates that the gains in accuracy presented
by the use of our model is not only a global result. The
figure demonstrates that for almost all probes accuracy is
improved by subtracting out the optical and NSB effects.
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