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Abstract
Reinforcement learning (RL) is a promising technique for creat-
ing a dialog manager. RL accepts features of the current dialog
state and seeks to find the best action given those features. Al-
though it is often easy to posit a large set of potentially useful
features, in practice, it is difficult to find the subset which is
large enough to contain useful information yet compact enough
to reliably learn a good policy. In this paper, we propose a
method for RL optimization which automatically performs fea-
ture selection. The algorithm is based on least-squares policy it-
eration, a state-of-the-art RL algorithm which is highly sample-
efficient and can learn from a static corpus or on-line. Experi-
ments in dialog simulation show it is more stable than a baseline
RL algorithm taken from a working dialog system.
Index Terms: Dialog management, spoken dialog systems, par-
tially observable Markov decision processes

1. Introduction
In a spoken dialog system, the dialog manager is the central
component which decides what to say or do given the current di-
alog state. Unfortunately, because dialog is a temporal process,
there are in general an astronomical number of dialog states. In
industry, this problem is generally solved by manually design-
ing an appropriately small space of compressed dialog states,
for which a dialog manager can then be carefully designed by
hand. While this has been used to build numerous deployed
dialog systems, it can ignore potentially useful distinctions be-
tween dialog states and lead to sub-optimal dialog systems.

As a result, researchers have begun applying reinforcement
learning (RL) techniques to automatically assign actions to di-
alog states [1]. The hope is that more dialog states can be con-
sidered, and thus more detailed dialog managers can be created,
which for example better handle speech recognition errors. In
practice the number of independent states that RL can consider
is still bounded by practical limits of computational complexity
and the size of available dialog corpora. As a result, researchers
have suggested the dialog manager act on a feature-based rep-
resentation of the dialog state – for example, [2, 3, 4, 5], among
others. The hope is that features will enable the dialog manager
to generalize even when the number of dialog states is massive.

Learning tractability now depends not on the number of
possible dialog states, but on choosing a compact set of use-
ful features about these states. Whereas it is often easy for a
designer to suggest a large set of potentially useful features, it
is difficult to decide which subset are actually useful for an RL
algorithm. Thus there is an important feature selection problem
facing the following bias-variance trade-off: on the one hand,
using too few features ignores useful information which can

improve dialog managers; on the other hand, using too many
features prevents learning from converging within the limits of
available data and computation time.

In this paper, we present a method for automatically select-
ing features for RL-based dialog management. The next section
formalizes the problem and reviews related work; Section 3 in-
troduces our method; Section 4 presents results; and Section 5
concludes.

2. Background and related work
To begin, we formalize the learning problem. The spoken dialog
system’s internal dialog state is b. This state includes the most
recent automatic speech recognition (ASR) result, and also in-
cludes all the information the dialog system has collected about
dialog history, such as values for fields, grounding status, the
ASR confidence associated with a piece of information, distri-
butions over latent user goals, and so on.

At each timestep in the dialog, the RL algorithm is given
b, chooses an action a, and receives a reward r. Example ac-
tions include asking the user a question such as who they would
like to call or confirming the name of a callee, consulting a
database, or remaining silent. The reward r is a real-valued
measure of goodness of the current action and dialog state. A
reward functionR, which is a mappingR(b, a) = r, is specified
by the human designer and allows the designer to specify trade-
offs between quantities such as dialog speed and accuracy. The
goal of the RL algorithm is to find a policy π which is a map-
ping π(b) = a that maximizes the cumulative rewards over the
course of the entire dialog.

To choose actions it is useful to construct a value func-
tion Q(b, a), which yields the expected sum of rewards for
taking action a in dialog state b, and subsequently continuing
to follow the dialog manager’s policy until the end of the dia-
log. However, the large cardinality of b can make computing
Q(b, a) in tabular form hopeless. Instead, we extract k features,
φφφ(b, a) = [φ1(b, a), . . . , φk(b, a)]>, and use φφφ(b, a) to esti-
mate Q. These feature functions φi(b, a) are specified by the
dialog system designer.

Feature-based RL for dialog management has been ex-
plored before. For example, Henderson et al. [3] use a linear ap-
proximation of Q, i.e., Q(b, a) =

∑
i wiφi(b, a), where wi is

a weight whose magnitude indicates the contribution of feature
i to the value function. Optimization is then performed with a
modified SARSA algorithm (discussed more below). Williams
[5] creates a distance metric D(φφφ,φφφ′) and clusters feature vec-
tors to form template points, then performs standard value iter-
ation on the template points.

All of these feature-based approaches face the problem of



feature selection: the designer must find a set of features which
is on the one hand small enough to keep learning tractable, and
on the other hand large enough to capture important distinctions
to enable good policy learning. It is hard for designers to antic-
ipate which features, and in which combinations, will be useful
to RL algorithms. In the authors’ experience, development of
RL-based systems usually includes much trial-and-error search-
ing for a compact but useful set of features, for example in de-
veloping a voice dialer [5].

The main contribution of this paper is to develop an RL
algorithm which automatically selects among a large set of fea-
tures. The motivation is that it is often relatively easy for a
designer to propose a large set of potentially useful features; the
difficulty is deciding on a compact subset which is actually use-
ful. Although there are existing methods for feature selection
in RL, they appear too expensive to be suitable for optimizing a
realistic spoken dialog system [6, 7].

Our method is based on least-squares policy iteration
(LSPI), a state-of-the-art general-purpose RL technique which
has been successfully applied to a number of control and plan-
ning problems, such as riding a bicycle [8]. LSPI itself has
not been applied to dialog management before, and is attractive
starting point for a variety of reasons. First, it can learn either
on-policy or off-policy – that is, it can learn either from a cor-
pus generated with some other dialog manager, or learn when
it is controlling the dialog. Other popular RL algorithms such
as SARSA and Natural Actor Critic can only reliably learn on-
line, when they are in control of the dialog manager. In past
work which has used SARSA to learn from a corpus, modifi-
cations to the algorithm have been necessary which augment
the reward function to penalize transitions to under-sampled re-
gions of the feature space [3]. This in effect conflates the needs
of learning with the dialog goals sought by the designer. LSPI
requires no modification to the reward function, reserving its
use for specification of dialog goals.

Second, LSPI is sample-efficient, making maximal use of
data. Compared to other popular learning methods which sup-
port on-policy and off-policy learning such as Q-Learning, it
learns better policies with less data [8]. This is important for
dialog learning where example interactions are often in short
supply. Moreover, LSPI never diverges, and completely avoids
learning rate parameters required for algorithms like SARSA
and Q-Learning. Removing hand-set parameters removes much
of the “art” from getting an RL-based system working. Our ex-
tension adds two tunable parameters: one sets the fraction of
the features to retain, and the other is a learning rate.

3. Method: LSPI-FFS
We will begin by adopting a standard linear approximation
of the value function, Q(b, a) =

∑k
i=1 wiφi(b, a), well-

established in the RL literature and previously suggested for
dialog management by Henderson et al [3]. The magnitude of a
weightwi indicates the contribution of its feature φi(b, a) to the
value. It is often helpful to standardize features (so that compo-
nents in φφφ have comparable value ranges), and we will require
this here.

LSPI assumes a set of m sampled transitions are provided:
D = {(b1, a1, r1, b

′
1), . . . , (bm, am, rm, b

′
m)}. Starting with

an (arbitrary) initial weight vector w1 of dimension k, it im-
proves this vector iteratively until it (almost) converges.

At iteration j = 1, 2, . . .,
1. Let Qj(b, a) = w>j φφφ(b, a) be the current linear Q-

function, and πj(b) = argmaxa Qj(b, a) the corre-

sponding greedy policy.
2. Obtain Qj+1(b, a) to approximate the Q-function of
πj : Qj+1(b, a) = w>j+1φφφ(b, a); here, wj+1 solves a
system of linear equations, Aw = c, where A is a
k × k matrix and c a k-vector computed using D by:
A =

∑m
l=1φφφ(bl, al) (φφφ(bl, al)− γφφφ(b′l, πj(b

′
l)))
> and

c =
∑m

l=1φφφ(bl, al)rl. The standard RL discount fac-
tor γ ∈ (0, 1) determines the present value of future re-
wards, and is specified by the designer [9].

If in step 2 above (known as the LSTDQ algorithm [8]) Qj+1

computes exactly the Q-function of πj , LSPI becomes policy
iteration in which πj+1 is always better than πj , and the al-
gorithm will converge to an optimal policy [9]. If Qj+1 is a
sufficiently good approximation, as we hope in our case, LSPI
still converges to a near-optimal policy [8].

Note that LSPI in itself is difficult for large feature sets
because of the solution to the dense linear system involved in
LSTDQ (naively, with time complexity cubic in k). We thus
develop a novel variant of LSPI to handle many features. First,
observe that the magnitudes of weight wi in w indicate the rel-
ative strength of the contribution of φi to Q (recall that we have
standardized the features). Our basic idea is to retain only the
features with strong contributions to the value function. The key
insight is that an approximation of w which yields roughly the
same ordering of magnitudes in w can be used to choose rele-
vant features. Specifically, we propose to approximate w using
a gradient-descent-like algorithm known as temporal difference
(TD) [10] which has a time complexity linear in k and converges
to the same solution as LSTDQ in the limit. TD quickly com-
putes a rough estimate of the weight vector ŵ, from which a
small subset of features is selected; then LSTDQ computes the
expensive but exact weight vector w using this small feature
subset. More precisely, step 2 of LSPI is replaced by:

2-1. Initialize ŵ to the zero vector, and run TD to go through
the samples in D (possibly in multiple passes) to obtain
ŵ. For the sample (bl, al, rl, b

′
l), the TD update rule is

ŵ ← ŵ + ηdlφφφ(bl, al), where η ∈ (0, 1) is a step size
and dl = rl + γŵ>φφφ(b′l, πj(b

′
l)) − ŵ>φφφ(bl, al) is the

temporal difference.
2-2. Pick k′ (� k) features whose weights in ŵ are largest in

magnitude.
2-3. Run LSTDQ (step 2 of LSPI) using the k′ features to

obtain a new weight vector wj+1: the k − k′ compo-
nents in wj+1 not chosen are set to 0, while the other k′

components are computed by LSTDQ.
We call the modified algorithm LSPI with Fast Feature Se-

lection (LSPI-FFS). The parameter k′ in effect sets the resolu-
tion of the policy: increasing k′ adds resolution at the expense
of requiring more training data. For the step size η, experimen-
tation found that setting η = 1/k appears to produce reliable
results; this setting was used in the experiments below. One
key property of the method is that the set of features selected
may vary from one iteration to the next: as Q is estimated for
longer and longer planning horizons, different mixtures of fea-
tures may be relevant.

4. Experiments
To test the method, we applied it to an existing voice dialer ap-
plication, DIALER, which has been accessible within the AT&T
research lab for several years and which receives daily calls.
DIALER’s vocabulary consists of about 50, 000 AT&T employ-
ees. Since many employees have the same name, DIALER can



disambiguate by asking for the callee’s location. It can also dis-
ambiguate between multiple phone listings for the same person
(office/mobile) and indicate when a callee has no number listed.
This dialog system uses a hand-crafted dialog manager, which
has processed thousands of calls successfully.

We use this dialog system as a harness to compare our
method to two baseline methods for creating a dialog manager.
One is the conventional hand-coded dialog manager currently
running the dialog system. The second baseline is an RL algo-
rithm which operates on features, but does not do any feature
selection. It relies on a distance metric D(φφφ,φφφ′) to cluster to-
gether feature vectors into template points. It then estimates
dynamics on these template points and performs standard value
iteration. A complete description can be found in [5]. We feel
this second baseline is strong because it is also designed for
off-policy learning, has been demonstrated interactively to the
research community [11], and has been active on a second dialer
in the lab for about a year, processing real calls.

All of the RL methods reported below make use of a
hand-crafted “co-controller” [12]. At each stage in the di-
alog, the co-controller nominates a set of plausible action
types, and the RL algorithm chooses an action type from this
set. Example action types include AskName which asks the
callee’s name, AskPhoneTypewhich asks the intended phone
type, ConfirmName which confirms the callee’s name, and
TransferCallwhich transfers the call. Past work has shown
that using a co-controller is an effective way of incorporating
domain knowledge and business rules into learning, and of in-
creasing learning speed and reliability [12]. In the comparisons
below, all of the RL algorithms are evaluated using the same
hand-crafted co-controller.

For the reward function, the system receives a −1 penalty
for every action it takes, a large final reward of +20 if the call
is correctly transferred and a large penalty of −20 otherwise.
This reward function reflects our desire for the system to ask
the caller as few questions as possible and to transfer the call
to the right person and phone type.1 At most 20 actions are
allowed per conversation. The discount factor is 0.99.

In order to produce a large number of dialogs to test the
methods, a user simulation was employed – the same user sim-
ulation which was used to train the RL Baseline previously
demonstrated to the research community, giving us some confi-
dence in its ability to fairly model user behavior. From labeled
real dialogs with the existing (non-RL) dialer, probabilities over
user actions were estimated, conditioned on dialog history, user
goal, and the preceding system action. A synthetic corpus of
20, 000 dialogs was then generated by running the co-controller
with the user simulation, choosing among available actions uni-
formly at random. The same synthetic dialogs were then used
for optimization with each of the RL methods.

Past work developing the baseline RL algorithm explored a
variety of features; through manual trial-and-error, the follow-
ing set of features was found to perform best and are used here
for the baseline RL algorithm. We call these raw features be-
cause they do not attempt to capture interactions between their
components; in the experiments this feature set is referred to as
the hand-tuned raw feature set. Parentheses indicate the type
and cardinality of the features:

1If user satisfaction data were available to us, there are ways of
inferring a reward function that maximizes expected user satisfaction
[13, 14]. However our data was collected from real callers (not usabil-
ity subjects), for which we don’t have user satisfaction data. So our
reward function is handcrafted based on our goals for the system.

• Probability of most likely callee pc (continuous, 1)
• Probability of most likely phone type pt (continuous, 1)
• How many (0, 1, or 2) phone numbers are available for

the most likely callee (discrete, 3)
• Whether the name of the most likely callee is ambiguous

(discrete, 2)
In the development process, the first two features were ob-

vious; the difficulty was determining how to express the infor-
mation contained in the other two (discrete) features compactly.
Our main claim is that the LSPI-FFS algorithm can effectively
search among a large pool of easy-to-create features. We be-
lieve that features expressing whether an action is available or
not form such a pool: when using the “co-controller approach”,
this information is readily available, and the set of available ac-
tions implies information about the system state. With 9 action
types, there are 512 = 29 possible combinations of action avail-
abilities, compared to the 6 = 2 × 3 discrete feature combina-
tions above.

Thus, we created a second set of raw features by replacing
the two discrete features above with one for each of the 9 action
types, yielding the untuned raw feature set with 11 features:
• Probability of most likely callee pc (continuous, 1)
• Probability of most likely phone type pt (continuous, 1)
• Whether action n is available an (discrete, 2), for n ∈
{1, . . . , 9}

From this raw feature set, we formed a large, sparse set
of flat features suitable for learning with linear function ap-
proximation. First, to capture interactions, we considered all
pairwise combinations of the 9 actions, of which there are 36
(= 9×(9−1)

2
). Next, every pair of actions has four possible val-

ues based on their availability (both available, 2× one available
and the second not, both unavailable). Finally, each action pair-
availability setting has three scalar features: for the availabil-
ity that describes the action pair, these three features are set to
[pc, pt, 1]>, and for the others [0, 0, 0]>. Altogether this yields
432 (= 36× 4× 3) untuned flat features per action type.

Experiments were conducted by partitioning the synthetic
corpus into 10 subsets of 2000 dialogs. We process each of
these 10 subsets independently and will refer to them as tri-
als. For each trial, we trained three RL dialog managers: the
RL baseline with the hand-tuned raw feature set, the RL base-
line with untuned raw set, and LSPI-FFS with the untuned flat
feature set. (The clustering done by the RL baseline automati-
cally considers interactions between raw features.) For each RL
method, we obtained the resulting dialog manager after the first
N dialogs of training, where N was varied from 10 to 2000.
The policy learned after N dialogs was then run with the sim-
ulated user for 1000 dialogs. The results of the 10 trials were
then averaged together. For LSPI-FFS we used k′ = 80, i.e.
the 80 most useful features per action. The hand-crafted dialog
manager (with no RL) was also run for 1000 simulated dialogs.

Results are shown in Figure Fig. 1(a). The two curves for
the baseline RL method converge to the same task completion
ratio, indicating the (larger) untuned feature set contains suf-
ficient information for learning a good policy. LSPI-FFS per-
forms almost identically to the baseline RL method on the un-
tuned feature set, yet is using a small fraction of the features
(80 of the 432 flat features per action). This implies that it is
performing feature selection effectively. We also tried running
(unmodified) LSPI and found it was computationally infeasible
with the 432 flat features per action. In other words, our method
enables LSPI to scale to a real-world RL dialog problem.

We next augmented the untuned feature set by adding 1 or 2
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Figure 1: Average task completion ratios of policies learned by various algorithms. Average total rewards and average interaction
lengths had qualitatively similar curves. See text for details.

timesteps of history, increasing the number of raw features from
11 to 22 for a history window of 1 timestep, and 33 for a history
window of 2 timesteps. The untuned flat feature set grew from
432 features per action to 3060 and 9828 per action for 1 and 2
timesteps of history, respectively. We followed the same train-
ing procedure as above using the untuned feature set with the
baseline RL and LSPI-FFS methods. For these experiments for
LSPI-FFS we used k′ = 100, i.e., the 100 most useful features
per action. Results are shown in Figure Fig. 1(b).

With one timestep of history, the baseline RL and LSPI-FFS
methods both appear to converge after about 1000 dialogs; how-
ever with a window size of 2, the baseline RL method shows
clear signs of instability (dips at 100 − 200, and 1500 train-
ing dialogs), whereas LSPI-FFS does not. On inspection, we
found that these dips were caused when one of the 10 baseline
trials yielded a very poor policy. Thus these experiments illus-
trate the key distinction of our approach: whereas the baseline
RL method struggles to make use of a large number of features
(sometimes failing to find a good policy), LSPI-FFS appears
quite stable and converges consistently, implying that it can ef-
fectively and automatically prune the large set down to a small,
useful subset.

Past work has suggested history information can improve
performance [15]. Although we did not observe that trend in
Figure 1, this may be because some of our features already in-
clude history information (the probability that the top callee and
top phone type are correct are posteriors over the whole dialog),
or because our task contains a relatively small number (2) of
slots. We hope to study this more when we apply LSPI-FFS to
larger tasks.

5. Conclusions
In this work, we have investigated a method for scaling the num-
ber of features used by a reinforcement-learning based spoken
dialog system. A comparison to a baseline RL method used to
build a real-world dialog system shows that it is better able to
handle large numbers of features, evaluated in dialog simula-
tion. Our method extends least-squares policy iteration, which
has a variety of attractive properties for dialog systems.

With this method, a designer can propose a large set of po-
tentially useful features and side-step the difficult task of manu-
ally hunting for the useful subset. We hope this method will re-
move some of the “art” from deploying reinforcement-learning
dialog systems, moving this technology a step closer to com-
mercial readiness.
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