
A

Power and Limits of Structural Display Rules

AGATA CIABATTONI, Vienna University of Technology
REVANTHA RAMANAYAKE, Vienna University of Technology

What can (and what cannot) be expressed by structural display rules? Given a display calculus, we present a systematic
procedure for transforming axioms into structural rules. The conditions for the procedure are given in terms of (purely
syntactic) abstract properties of the base calculus and thus the method applies to large classes of calculi and logics. If the
calculus satisfies certain additional properties we prove the converse direction thus characterising the class of axioms that
can be captured by structural display rules. Determining if an axiom belongs to this class or not is shown to be decidable.
Applied to the display calculus for tense logic, we obtain a new proof of Kracht’s Display Theorem I.

Additional Key Words and Phrases: proof theory, display calculus, structural rules, display theorem

ACM Reference Format:
Agata Ciabattoni and Revantha Ramanayake, 2014. Power and Limits of Structural Display Rules. ACM Trans. Embedd.
Comput. Syst. V, N, Article A (January YYYY), 35 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
[Gentzen 1935] introduced a proof system called the sequent calculus as a tool for studying the
structure of proofs in classical and intuitionistic logic. The main result is the cut-elimination theorem
which shows how to eliminate the cut-rule from derivations (i.e. proofs) in a specific calculus,
leading to an analytic calculus for the logic. The feature of an analytic calculus is the subformula
property which states that every formula that occurs in a derivation is a subformula of the formula
to be proved; this allows us to prove important results about the formalized logic and is key for
developing automated reasoning methods. Despite the successful formalisation of many important
logics, certain interesting logics do not fit into the sequent calculus framework. Moreover, cut-free
sequent calculi suffer from a lack of modularity: even when such a calculus is known for a logic,
it is often not clear how to define cut-free sequent calculi for the extensions of the logic that are
obtained by the addition of further properties (e.g. as new axioms to its Hilbert calculus).

A large range of formalisms extending the sequent calculus have been introduced in the last few
decades to define analytic calculi for logics apparently lacking a cut-free sequent formalisation and
to alleviate the problem of modularity while still retaining cut-elimination. Prominent examples
include the hypersequent calculus [Avron 1987], the display calculus [Belnap 1982], labelled de-
ductive systems [Fitting 1983; Negri 2005], nested sequent systems [Kashima 1994; Brünnler 2006]
and the calculus of structures [Guglielmi 2007]. And yet, despite a large number of papers in the
literature dealing with this topic some logics still lack an analytic calculus (e.g. the logic of cancella-
tive residuated lattices [Bahls et al. 2003]). It is not known if this is due to the lack of the “correct”
inference rule(s) and/or cut-elimination proof, or the lack of an appropriate formalism, or if there is
some fundamental obstacle preventing these logics from having an analytic calculus.

Systematic procedures to automate the introduction of analytic calculi from (axiomatic or seman-
tic) specifications of logics are therefore highly sought-after and very useful to deal with the new

This work is supported by the Austrian Science Fund (FWF), START project Y544.
Author’s addresses: A. Ciabattoni and R. Ramanayake, Vienna University of Technology.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 A. Ciabattoni and R. Ramanayake

logics that emerge on a regular basis. Results in this area also yield deeper insights into the ex-
pressive power and fundamental properties of the different proof theoretic formalisms. This paper
tackles exactly this challenge, focusing on the display calculus. Introduced under the name Display
Logic, the display calculus [Belnap 1982] is a powerful and semantic-independent formalism that
has been used to formalise a variety of different logics ranging from resource-oriented logics [Goré
1998b; 1998a; Brotherston 2012] to temporal logics [Kracht 1996]. The display calculus extends
Gentzen’s language of sequent, comprising of the structural connectives comma and `, with new
n-ary connectives. While the comma is usually assumed to be associative (and often commuta-
tive), no implicit assumptions are made about the n-ary structural connectives in display calculi
and properties such as associativity are stated explicitly, using rules built exclusively from struc-
tural connectives and variables (structural rules). An attractive feature of the display calculus is the
general cut-elimination theorem which leads to analyticity and applies to all display calculi obeying
eight syntactic conditions C1–C8; only one of them (C8) is non-trivial to verify, and that condition
is not relevant for structural rules. These features make the display calculus an ideal candidate for
capturing large classes of logics in a unified way, irrespective of their semantics or connectives, and
motivates our interest in analytic (structural) rules i.e. structural rules satisfying C1–C7.

Various algorithms have been proposed to define analytic calculi for extensions of logics in a
uniform and modular manner, e.g. [Kracht 1996; Negri 2005; Ciabattoni et al. 2008; Ciabattoni
et al. 2009; Goré et al. 2011; Ciabattoni et al. 2012; Lellmann and Pattinson 2013; Lahav 2013;
Marin and Straßburger 2014; Lellmann 2014]. Yet, they all start with a specific calculus in some
proof-theoretic framework and transform Hilbert axioms or semantic conditions into suitable rules.
Moreover, excepting [Ciabattoni et al. 2012] (sequent structural rules over intuitionistic Lambek
logic), [Kracht 1996] (display structural rules over tense logic Kt) and [Lellmann 2014] (hyperse-
quent logical rules over classical logic), these algorithms work in one direction only and do not tell
us if a different procedure could capture a larger class of logics.

In contrast with the existing results, the emphasis in this paper is on providing a methodology
to construct uniform and modular calculi for different classes of logics and on understanding how
far the modular construction can be developed using the display calculus. Instead of starting from a
display calculus for a specific logic, our transformation from Hilbert axioms into structural display
rules applies to any display calculus satisfying natural properties (the amenability conditions). We
identify a hierarchy of axiom classes—computed as a function of the invertible logical rules of the
chosen base calculus—and show how to translate axioms from suitable classes (acyclic I2 axioms)
into equivalent structural display rules satisfying Belnap’s conditions C1-C8. More invertible rules
in the base calculus lead to larger sets of axioms in each suitable class and hence to the construction
of analytic calculi for more logics. The crucial point is that the amenability conditions are purely
syntactic abstract conditions on the display calculus. Furthermore we prove the converse direction,
namely that under few additional conditions on the chosen base calculus, every structural display
rule satisfying C1-C8 actually corresponds to an acyclic I2 axiom. In other words, the analytic
structural rule extensions of a calculus are characterised by its acyclic I2 axioms. Determining if
an axiom is acyclic I2 or not is shown to be decidable.

Our result applies to many (base) calculi, including the calculi for non-associative Bi-Lambek
logic [Goré 1998a], Bi-Intuitionistic Logic HB [Wolter 1998], bunched logics [Brotherston 2012]
and tense logic Kt [Kracht 1996], and sheds light on the expressive power of analytic structural
rules. As a corollary we provide an alternative—and fully checkable—proof of [Kracht 1996] char-
acterisation of analytic structural rule extensions of the display calculus δKt for Kt.

The paper is an extended version of [Ciabattoni and Ramanayake 2013], where we gave the
algorithm for transforming axioms into analytic structural rules. The proof of the reverse direction,
which leads to a characterisation of analytic structural rule extensions, does not appear in that work.

The paper is organized as follows: Section 2 provides a short introduction to the display calculus
(see, e.g., [Wansing 1998; Restall 1998; Ciabattoni et al. 2014] for more details). The algorithm for
transforming axioms into structural display rules is described in Section 3, and compared in 3.3 with

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

the seminal algorithm in [Ciabattoni et al. 2008]. The converse direction is contained in Section 4.
The case study of tense logics is discussed in Section 5, where our method is compared with Kracht’s
method and a new proof of his Display Theorem I is presented.

2. DISPLAY CALCULI IN A NUTSHELL
Since this work establishes a general result on display calculi, we provide an abstract introduction
of display calculi (independent of any particular calculus or logic).

Definition 2.1. An a-structure (resp. s-structure) is built from logical formulae and structure
constants using structural connectives. A display sequent X ` Y is a tuple (X,Y) where X (an-
tecedent) is an a-structure and Y (succedent) is an s-structure.

We use the term structure to mean an a-structure or an s-structure. To see a concrete example, the
reader may find it helpful to look ahead to Example 2.10, where the a-structures and s-structures of
the display calculus for Bi-Lambek logic are explicitly defined. A structure Z is a substructure ofX
(denoted X[Z]) if Z occurs in X . Trivially every structure is a substructure of itself.

An N -premise rule (N ≥ 0) is a sequence (s1, . . . , sN , sN+1) of display sequents, written:

s1 · · · sN
sN+1

The sequent sN+1 is called the conclusion of the rule and the remaining sequents are called the
premises of the rule. In the case of a 0-premise rule (also called an initial sequent), for brevity
we simply write the conclusion, omitting the horizontal line. A calculus is a set of rules, typically
including initial sequents and the cut-rule. The rules of the calculus are usually presented as rule
schemata. By this we mean that the rule is built from schematic sequents each of the form X ` Y
where X and Y are schematic structures, built from schematic (structure and formula) variables
using the structural and the logical connectives and constants. A concrete sequent is obtained from
a schematic sequent by substituting a formula (resp. structure) for each schematic formula (struc-
ture) variable. A concrete instance of a rule is obtained by replacing the premises and conclusion
by concrete sequents. The use of rule schemata in presenting the rules of a calculus is standard.
In particular, following standard practice, we do not always distinguish explicitly between a rule
instance and a rule schema.

Given a calculus C and sequent s, we assume that the set of concrete rule instances in C with
conclusion s is finite and computable. For a concrete calculus this can be vertified by inspection. In
the abstract case we need to explicitly demand this property from C.

Definition 2.2 (derivation from assumptions). Let C be a calculus and S a set of sequents. A
derivation (assuming S) of a sequent s is a directed tree rooted at s where the nodes are display
sequents, the leaves are initial sequents or belong to S, and the edges are defined according to the
rules of C (from premises to conclusion).

Notation: We write ForL to denote the formulae of a language L. We use p, q, . . . for propositional
variables; A,B, . . . both for formulae and for schematic formulae; L,M,N for structure variables;
and X,Y, U, V, . . . to denote either (concrete) structures or schematic structures. This will not cause
confusion in practice.

Example 2.3 (difference between a structure variable and a schematic structure).
A structure variable can be instantiated to obtain any structure while a schematic structure cannot,

in general, be instantiated to obtain an arbitrary structure. Looking ahead to Example 2.10, (L >
M), N is an example of a schematic structure constructed from three structure variables L,M
and N . A structure variable can be instantiated by, for example, p or p > q or (p > q), r. Of these
three (concrete) structures, only the latter can be obtained via instantiation of the schematic structure
(L > M), N . Thus a schematic structure may be viewed as possessing an underlying ‘shape’.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 A. Ciabattoni and R. Ramanayake

Certain types of rules in the calculus will be of special interest to us. A structural rule is constructed
from structure variables using structural connectives and structure constants (so no schematic for-
mula variables, logical connectives or constants are present). The display rules (see Definition 2.7)
and the cut-rule (below) are important examples of structural rules:

L ` A A `M
cut

L `M
(where L and M are structure variables and A is a schematic formula variable). The logical rules
introduce logical connectives into the conclusion. Clearly a rule cannot be both a logical rule and a
structural rule.

The calculus C + {ρi}i∈I obtained by the addition (strictly speaking, set union) of structural
rules {ρi}i∈I to a calculus C is called a structural rule extension (of C).

A rule is derivable in a calculus C if there is a derivation of every concrete conclusion assuming
the corresponding premises.

Definition 2.4 (invertible). A rule is invertible if there is a derivation of each concrete premise
assuming the conclusion.

In this paper we will only consider logical rules containing more logical connective occurrences in
the conclusion than in any premise of the rule (see Remark 3.8). Furthermore, we assume1 that the
conclusion of invertible logical rules has a schematic formula on one side of the sequent and the
other side consists of a structure variable (used in the proof of Lemma 3.27).

Definition 2.5 (equivalent rules). Let R0 and R1 be sets of rules. We say that R0 and R1 are
equivalent in C if each rule inRi is derivable in C +R1−i for i = 0, 1.

Remark 2.6. Viewing a sequent X ` Y as the 0-premise rule with conclusion X ` Y , we can
define in the obvious way what it means for two sets of sequents to be equivalent, and for a sequent
to be equivalent to a rule.

Now we define the crucial display property whence display calculi get their name. The abstract def-
inition here is slightly more involved than what is encountered for concrete calculi. This is because
we need to demand properties here that can simply be verified by inspection in a concrete case.

Definition 2.7 (display property and display rules). A calculus C is said to have the display
property if it contains a set of single-premise structural rules (the display rules) such that

(i) The rule upwards from conclusion to premise of a display rule is also a display rule.
(ii) Suppose that Z occurs in X ` Y . Then Z ` U or U ` Z (but not both) are effectively

derivable from X ` Y , for some U , using the display rules.

A structure Z is displayed (in a sequent) if the sequent has the form Z ` U or U ` Z. In the
former (resp. latter) case, the occurrence Z is said to be a-part (s-part) in the sequent. If Z is a
structure/formula then the sequent is said to display Z as an a-part (resp s-part) structure/formula.
Note that we do not exclude the possibility that a substructure can be displayed in more that one
way or using arbitrarily long sequences of display rule applications.

A display calculus is a calculus with the display property.
Since a formula is itself a structure, the display property applies to a formula occurring in a

sequent but not to its proper subformulae. The motivation of the display property is that it permits a
finer manipulation of a sequent that is not possible with the usual Gentzen sequent. This finer control
permits, for example, a straightforward proof of the general cut-elimination theorem [Belnap 1982].
Contrast, for example, with the typically intricate and delicate proofs of cut-elimination for nested
sequent calculi e.g. [Marin and Straßburger 2014].

1This is a very natural requirement if we regard the invertible logical rules as rewrite rules in the sense of [Goré 1998b].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Definition 2.8 (logic of C). Let C be a display calculus. For an a-structure constant I, the set
LI(C) = {A is a formula | I ` A is derivable in C} is called the logic of C w.r.t I.

Remark 2.9. Clearly LI(C) is parametrised by the structural constant I. In the case of a concrete
calculus, the appropriate structural constant needs to be chosen. To understand the role of I, recall
that Gentzen’s LK [Gentzen 1935] is a sequent calculus for classical logic in the sense that ⇒ A
(note: empty antecedent) is derivable in LK iff A is a theorem of classical logic. Roughly speaking,
the empty antecedent in LK is abstracted by the a-structure constant I.

Since this paper is concerned with axiomatic extensions of a logic we will define a logic as the
set of derivable formulae in a Hilbert calculus. Recall that a Hilbert calculus consists of a set of rule
schemata (including zero-premise rules, i.e. axioms) built from propositional variables and logical
connectives, and contains the rule of modus ponens and the rule of uniform substitution. The latter
permits the uniform substitution of a propositional variable with an arbitrary formula. A derivation
of a formula A assuming A1, . . . , AN in the Hilbert calculusH is a sequence of formulae such that
each is an instance of an axiom, or of Ai, or follows from the previous formulae using the rules
ofH. Define L(H) = {B | there is a derivation inH of B from no assumptions }.

Note: alternative presentations of Hilbert calculi use schematic variables rather than propositional
variables and the rule of uniform substitution. Schematic variables can be uniformly substituted
with any formula so the rule of uniform substitution is not required. Here we use the propositional
variables/rule of uniform substitution presentation so that the Hilbert axioms are clearly contrasted
with sequents in the display calculus. Nevertheless, at certain points in the text (e.g. the proof of
Lemma 3.15) we will move between these presentations and treat the propositional variables as
schematic variables for formulae.

Example 2.10 (Bi-Lambek logic). (Non-associative) Bi-Lambek logic Bi-FL [Lambek 1993] is
obtained by augmenting the language of Lambek calculus with the right→d and left←d coimpli-
cation connectives. The set ForLBi-FL of formulae are given as follows:

F ::= prop. variable p | > | ⊥ | 1 | 0 | F · F | F + F | F ∧ F | F ∨ F | F → F |
F ← F | F →d F | F ←d F

The display calculus δBi-FL [Goré 1998b] is built from sequents X ` Y where X ∈ Sant (a-
structures) and Y ∈ Ssuc (s-structures):

Sant ::= A ∈ ForLBi-FL | I | Φ | Sant,Sant | Sant > Ssuc | Sant < Ssuc

Ssuc ::= A ∈ ForLBi-FL | I | Φ | Ssuc,Ssuc | Sant > Ssuc | Sant < Ssuc

In the following, the double line is used as notation to indicate two rules (read in the downward
direction to see one rule and upwards for the other). Each rule of the pair denoted in this way is
necessarily invertible. To save space, we also bundle two double line rules together and write these
as a single ‘object’ of three lines. Thus each such object describes four rules in all. The display and
structural rules are:

display rules

M ` L > N

L,M ` N
L `M < N

M > L ` N
L `M,N

L < N `M

I, L `M
L `M
L, I `M

L `M, I

L `M
L ` I,M

I `M
L `M

L ` I
L `M

L,Φ `M
L `M

Φ, L `M

L `M,Φ

L `M
L ` Φ,M

It is easy to check that the display property holds. For every structural connective that may occur as
head symbol in the antecedent or succedent, there is a display rule that can be used to ‘peel-away’

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 A. Ciabattoni and R. Ramanayake

that connective thus revealing its nested substructure. Displaying a substructure is thus computable
so Definition 2.7(ii) is satisfied. Moreover, Definition 2.7(iii) holds because the set of sequents
display equivalent to a given sequent is finite and computable. This follows from the observation
that each display rule preserves the total number of structural connectives in the sequent.

The calculus also contains the cut rule and the following initial sequents and logical rules:

⊥ ` I p ` p I ` > I ` L >l> ` L
L ` I ⊥r
L ` ⊥ 0 ` Φ Φ ` 1

Φ `M
1 `M

L ` Φ
L ` 0

Ai ` L ∧l; i ∈ {1, 2}
A1 ∧A2 ` L

L ` A L ` B ∧r
L ` A ∧B

A ` L B ` L ∨l
A ∨B ` L

L ` Ai ∨r; i ∈ {1, 2}
L ` A1 ∨A2

L ` A B `M → l
A→ B ` L > M

L ` A > B → r
L ` A→ B

B < A ` L ←d l
B ←d A ` L

L ` A B `M ←d r
L < M ` A←d B

L ` A < B ←r
L ` A← B

A > B `M →l
A→d B `M

A ` L M ` B →dr
L > M ` A→d B

A,B `M
·l

A ·B `M
L ` A M ` B ·r
L,M ` A ·B

A ` L B `M
+l

A+B ` L,M
L ` A,B

+r
L ` A+B

A ` L M ` B ←l
A← B ` L < M

It can be proved that Bi-FL is the logic of δBi-FL (we also say that δBi-FL is a calculus for Bi-FL)
in the sense that A ∈ Bi-FL iff I ` A is derivable in δBi-FL.

A calculus is said to be cut-eliminable if it is possible to eliminate all occurrences of the cut-rule
from a given derivation in order to obtain a cut-free derivation of the same sequent. A display
calculus has the subformula property if every formula that occurs in a cut-free derivation appears as
a subformula of the final sequent. An important feature of the display calculus is Belnap’s conditions
C1–C8. In the following we write formula (resp. structure) variable to mean a schematic formula
(structure) variable.

(C1) Each formula occurring in a premise of a rule instance is a subformula of some formula in the
conclusion.

(C2) Occurrences of the identical structure variable in a rule are said to be congruent to each other.
(C3) Each structure variable in the premise is congruent to at most one structure variable in the conclu-

sion. I.e. no two structure variables in the conclusion are congruent to each other.
(C4) Congruent structure variables are all either a-part or s-part structures.
(C5) A schematic formula variable in the conclusion of a rule ρ is either the entire antecedent or the

entire succedent. This formula is called a principal formula of ρ.
(C6/7) Each rule is closed under uniform substitution of arbitrary structures for congruent variables.

(C8) If there are rules ρ and σ with respective conclusions L ` A and A `M with formula A principal
in both inferences (see C5) and if cut is applied to yield L `M , then either L `M is identical to
either L ` A or A `M ; or it is possible to pass from the premises of ρ and σ to L `M by means
of inferences falling under cut where the cut-formula always is a proper subformula of A.

The condition C8 is on the set of rules of the calculus. A display calculus satisfies one of the rules
in C1–C7 if each rule in the calculus satisfies that condition, and the display calculus satisfies C8
if the set of all rules satisfy C8. Belnap’s general cut-elimination theorem states that C2–C8 con-
stitute sufficient conditions for a calculus to be cut-eliminable. Meanwhile C1 is the subformula

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

property. Of the conditions, only C8 is non-trivial to check. Since C8 is pertinent only to logical
rules, structural rule extensions of a calculus satisfying C8 preserve this property.

Example 2.11. It is easy to check that δBi-FL satisfies conditions C1-C8, hence it is a cut-
eliminable calculus with the subformula property.

Remark 2.12. Suppose that below left is an instance of a structural rule r satisfying C1-C7.
Then below right is also an instance of r when σ is the substitution A 7→ X where A is a formula
and X is an arbitrary concrete structure.

s1 · · · sN rsN+1

s1σ · · · sNσ rsN+1σ

LEMMA 2.13. Let s1 be the premise of a display rule satisfying C1-C7 and s2 its conclusion.
Then s1 and s2 contain exactly the same structure variables, each with multiplicity 1.

PROOF. From C3, the multiplicity of a structure variable in s2 must be 1. Also s1 cannot contain
a structure variable that does not appear in s2 as this would violate C1. The claim follows by now
reasoning on the rule with premise s2 and conclusion s1, which is a display rule by Def. 2.6(i).

3. POWER OF STRUCTURAL DISPLAY RULES
We present an algorithm to transform a large class of Hilbert axioms into equivalent structural dis-
play rules that preserve cut-elimination and the subformula property when added to a suitable base
calculus. The conditions for the procedure are given in terms of purely syntactic abstract properties
of the base calculus and thus the method applies to large classes of calculi and logics. This permits
the automated construction of (infinitely) many display calculi in a uniform and modular way.

More precisely, given a Hilbert calculusH and a display calculus C for L(H) such that C andH
‘simulate’ each other (see Definition 3.33), we show how to obtain structural rules r1, . . . , rm so
that C + {r1, . . . , rm} is a cut-eliminable calculus with subformula property for the axiomatic ex-
tension H + A1 + . . . + An. Our method is constructive and works whenever the base calculus C
is ‘expressive enough’ (i.e., it is amenable, Def. 3.1 below) and each formula Ai is of a specific
syntactic form that is determined by the logical rules invertible in C.

3.1. From I ` A to equivalent structural rules
Definition 3.1 (amenable calculus). Suppose that C is a display calculus which contains an a-

structure constant and an s-structure constant—for brevity, use I to denote both constants—and
satisfies C1–C8. Let Sant and Ssuc denote the class of a- and s-structures of C, and let L be the
language of LI(C). A display calculus satisfying the following conditions is said to be amenable.

1 (interpretation functions) There are functions l : Sant 7→ ForL and r : Ssuc 7→ ForL such that
l(A) = A = r(A) for A ∈ ForL, and for arbitrary X ∈ Sant and Y ∈ Ssuc:

(i) X ` l(X) and r(Y) ` Y are derivable in C.
(ii) if X ` Y is derivable in C then so is l(X) ` r(Y).

2 (logical constants) There are logical constants ca, cb ∈ ForL such that the following sequents are
derivable for arbitrary X ∈ Sant and Y ∈ Ssuc:

ca ` Y X ` cs
3 (logical connectives) There are binary connectives ∨,∧ ∈ L and the following are derivable:

(i) commutativity: A ? B ` B ? A where ? ∈ {∨,∧}
(ii) associativity: A ? (B ? C) ` (A ? B) ? C and (A ? B) ? C ` A ? (B ? C)

Also, for A,B ∈ ForL, X ∈ Sant and Y ∈ Ssuc:
(a)∨ A ` Y and B ` Y implies A ∨B ` Y
(b)∨ X ` A implies X ` A ∨B for any formula B.
(a)∧ X ` A and X ` B implies X ` A ∧B
(b)∧ A ` Y implies A ∧B ` Y for any formula B.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 A. Ciabattoni and R. Ramanayake

Remark 3.2. In the above definition:

— the function l (resp. r) ‘interprets’ the structural connectives in the antecedent (resp. succedent);
— we use the notation ∧ and ∨ to reflect that in a calculus for intuitionistic or classical logic, the

standard connectives of conjunction and disjunction satisfy the properties in Definition 3.1.3.

Example 3.3 (δBi-FL). The calculus δBi-FL (see Example 2.10) is amenable. Indeed define the
functions l : Sant 7→ ForLBi-FL and r : Ssuc 7→ ForLBi-FL:

l(A) = A r(A) = A

l(I) = > r(I) = ⊥
l(Φ) = 1 r(Φ) = 0

l(X,Y) = l(X) · l(Y) r(X,Y) = r(X) + r(Y)

l(X < Y) = l(X)←d r(Y) r(X < Y) = l(X)← r(Y)

l(X > Y) = l(X)→d r(Y) r(X > Y) = l(X)→ r(Y)

We prove X ` l(X) and r(Y) ` Y (Definition 3.1.1) simultaneously by induction on the size of X
and Y . The base cases are:

A ` A I ` l(I) Φ ` l(Φ) r(I) ` I r(Φ) ` Φ

Each of these is derivable in δBi-FL. Inductive case: we must prove X ` l(X) and r(Y) ` Y for
each of the following:

X = U, V X = U < V X = U > V

Y = U, V Y = U < V Y = U > V

We give the proof for Y = U > V (the other cases are similar). We need to obtain a derivation
of r(U > V) ` U > V i.e. l(U) → r(V) ` U > V . The following suffices—the derivations of
U ` l(U) and r(V) ` V are obtained from the induction hypothesis:

U ` l(U) r(V) ` V
→ll(U)→ r(V) ` U > V

That X ` Y implies l(X) ` r(Y) is shown by induction on the size of X and Y . Definition 3.1.2
holds due to the following derivations (here ca := ⊥ and cs := >):

⊥ ` I
⊥ ` Y

I ` >
X ` >

Finally, Definition 3.1.3 can be verified by inspection of the rules for ∨ and ∧.

Remark 3.4. Note that Condition 2 in the original definition of amenability in [Ciabattoni and
Ramanayake 2013] required the presence in C of the following rules

I ` L
lI

Y ` L
L ` I

rI
L ` Y

The present condition only specifies the sequents that are derivable (and not the specific form of the
rule that should derive it).

Example 3.5 (Bunched logics). The bunched logics {BI,BBI, dMBI,CBI} are obtained as
the free combination of the intuitionistic and classical logic with multiplicative intuitionistic
and classical linear logic. A display calculus [Brotherston 2012] has been given for each logic
in {BI,BBI, dMBI,CBI}. By inspection each calculus is amenable.

Our algorithm abstracts and reformulates for display calculi the procedure in [Ciabattoni et al.
2008; Ciabattoni et al. 2009] for (hyper)sequent calculi and substructural logics. To transform ax-
ioms into structural rules we use: (1) the invertible logical rules of C and (2) the display calculus

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

formulation, below, of the so-called Ackermann’s lemma [Ciabattoni et al. 2008; Conradie and
Palmigiano 2012] allowing a formula in a rule to switch sides of the sequent moving from conclu-
sion to premises.

LEMMA 3.6 (ACKERMANN’S LEMMA). Each of the following pairs of rules is pairwise equiv-
alent in an amenable calculus where A ∈ ForL, S is a set of sequents andM is a structure variable
not in S or X .

S ρ1
X ` A

S A `M ρ2
X `M

S δ1A ` X
S M ` A δ2M ` X

PROOF. (ρ1 ⇒ρ2) Suppose that we have concrete instances S ∪ {A ` Y } of the premises of ρ2.
Applying ρ1 to S we get X ` A. Applying cut with A ` Y we get X ` Y and thus it follows
that ρ2 is derivable in a calculus containing ρ1.

(ρ2 ⇒ ρ1) Given concrete instances of the premises S of ρ1. Observe that A ` A is derivable.
Applying ρ2 to S ∪ {A ` A} we get X ` A as required.

The proof that δ1 and δ2 are equivalent is analogous.

We now give an abstract description of the axioms that we can handle. The description is based on
the invertible logical rules of the chosen display calculus C and is inspired by the classification in
[Ciabattoni et al. 2008] for formulae of intuitionistic Lambek logic with exchange FLe. We identify
three classes of axioms in the language of L from which the logical connectives can be eliminated
using the invertible logical rules of C (modulo the display rules) at various levels. The intuition
behind the three classes is the following (see Definition 3.11 for the formal definition):

0-inverted axioms I0(C). Propositional variables.
1-inverted axioms I1(C). Formulae A whose logical connectives can be eliminated by repeat-
edly applying the invertible logical rules backwards starting with I ` A (thus obtaining sets of
sequents built from propositional variables and structure constants using the structural connec-
tives of C).
2-inverted axioms I2(C). Formulae A whose logical connectives can be eliminated by applying
the invertible logical rules to the premises of those rules obtained by applying some invertible
rules to I ` A followed by Lemma 3.6.

Definition 3.7 (inv). Given a display calculus C and sequent X ` Y : the set inv(X ` Y) con-
sists of all the sets of sequents obtained by applying upwards (i.e. from conclusion to premise) some
sequence of invertible logical rules in C (and display rules in order to display the formula occurring
in the sequent) starting from X ` Y .

So inv(X ` Y) has the form {S1, . . . ,Sn} where each Sj is a set of sequents.
Let us identify a distinguished subset invall(X ` Y) ⊆ inv(X ` Y) consisting of those sets of

sequents that are obtained by applying invertible logical rules (and display rules where required)
as much as possible. If all maximal sequences of invertible logical rules applied upwards yield the
same set of sequents up to display equivalence, then invall(X ` Y) is a singleton set.

Remark 3.8. Notice that inv(X ` Y) is computable since displaying a substructure is
computable—Definition 2.7(ii)—and each application of a logical rule reduces the number of logi-
cal connectives in each premise (see below Definition 2.4). Similarly, invall(X ` Y) is computable.

Example 3.9. Let A be the axiom (p → 0) + ((p → 0) → 0) for the weak excluded middle.
With respect to the calculus δBi-FL (Example 2.10), the set inv(I ` A) consists of those sets of
sequents obtained by applying some number of invertible rules. There is only a single invertible
rule that can be applied to I ` A and then {I ` (p → 0), ((p → 0) → 0)} ∈ inv(I ` A). Applying
two invertible rules to I ` A (and display rules where required, of course) yields that the following

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 A. Ciabattoni and R. Ramanayake

sets belong to inv(I ` A):

{I < (p→ 0)→ 0 ` p > 0} {p→ 0 > I ` (p→ 0) > 0}
For the sake of clarity we apply further display rules to present the sequents with I displayed (we
may do this because the display rules hold in both directions so logical equivalence is preserved):

{I ` (p > 0), ((p→ 0)→ 0)} {I ` (p→ 0), ((p→ 0) > 0)}
Applying three invertible rules to I ` A leads to the following, each thus a member of inv(I ` A):

{I ` (p > Φ), ((p→ 0)→ 0)} {I ` (p→ 0), ((p→ 0) > Φ)} {I ` (p > 0), ((p→ 0) > 0)}
Continuing in this way until all possible invertible rules have been applied leads to the following set
which is thus a member of invall(I ` A) ⊆ inv(I ` A):

{I ` (p > Φ), ((p→ 0) > Φ)}
The reason that the above set is the only element of invall(I ` A) is because every maximal sequence
of invertible rules in δBi-FL applied to I ` A leads to this set (up to display equivalence).

A set {Ui ` Vi}i∈Ω of sequents is said to contain no logical connectives if all {Ui}i∈Ω and {Vi}i∈Ω

are free of logical connectives.

Definition 3.10 (soluble). A formula A ∈ ForL is a-soluble (resp. s-soluble) if there is some
{Ui ` Vi}i∈Ω ∈ inv(A ` I) (resp. ∈ inv(I ` A)) containing no logical connectives.

The most external connective of an a-soluble formula has left introduction rules that are invertible
(i.e. it is a positive connective [Andreoli 1992]), while the most external connective of an s-soluble
formula has invertible right introduction rules (i.e. it is a negative connective).

Definition 3.11 (I0(C), I1(C), I2(C)). Let C be an amenable calculus and let L denote the
language of LI(C). The classes Ij(C) ⊆ ForL for j ∈ {0, 1, 2} are defined in the following way.

- I0(C): A ∈ ForL belongs to the class I0(C) if A is a propositional variable.

A ∈ ForL belongs to the following classes if there is some {Ui ` Vi}i∈Ω ∈ inv(I ` A) such that

- I1(C): {Ui ` Vi}i∈Ω contain no logical connectives
- I2(C): each a-part formula in Ui ` Vi is s-soluble and each s-part formula in Ui ` Vi is a-soluble,

for each i ∈ Ω.

We say that {Ui ` Vi}i∈Ω witnesses A ∈ Ij(C).

We will often write Ij for Ij(C) when the discussion applies to a generic amenable calculus.
As each propositional variable is both a-soluble and s-soluble it follows that:

I0 ⊆ I1 ⊆ I2

Remark 3.12. If A ∈ Ij(C) then it must be the case that every element in invall(I ` A) wit-
nesses it. For this reason all the results in this section hold if we use an arbitrary (fixed) element of
{invall(X ` Y)} instead of inv(X ` Y). However, the more general Definition 3.7 permits the proof
of Lemma 4.4 in the following section.

Example 3.13. Let A be the axiom (p → 0) + ((p → 0) → 0). Let us verify that A ∈
I2(δBi-FL). In Example 3.9 we saw that applying all possible invertible rules upwards starting
with I ` A yields the set invall(I ` A) consisting of a single element {I ` (p > Φ), ((p → 0) >
Φ)}. In the sequent I ` (p > Φ), ((p → 0) > Φ), the occurrence p → 0 is a-part. It remains to
check that this formula is s-soluble (the other formula occurrence is a propositional variable so it is
soluble). Since inv(I ` p→ 0) contains the singleton set {I ` p > Φ} this is indeed the case.

Example 3.14. Consider the display calculus δBi-FL and let A1 be the axiom (p→ q) + (q →
p). Then {I ` (p > q), (q > p)} ∈ inv(I ` A1) and hence A1 ∈ I1(δBi-FL).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Henceforth a rule whose conclusion is constructed from structure variables and structure con-
stants using structural connectives, and whose premises might additionally contain propostional
variables will be called a semi-structural rule.

Given any axiom within the class I2(C), the proof of the following proposition contains an al-
gorithm to extract equivalent semi-structural rules satisfying conditions C2-C7 such that the calculi
obtained from C by the addition of these rules preserve C82 and hence have cut-elimination, notwith-
standing the presence of propositional variables in the premises of the semi-structural rules. If the
axioms satisfy the additional condition of acyclicity3 (Definition 3.23) then the semi-structural rules
can be transformed into equivalent structural rules satisfying C1–C7. The steps of the algorithm
which lead to a cut-eliminable calculus with the subformula property are summarized in Figure 1.

PROPOSITION 3.15. Let C be an amenable calculus and A ∈ I2(C) (witnessed by some {Ui `
Vi}i∈Ω ∈ invall(I ` A)). There are computable semi-structural rules {ρi}i∈Ω equivalent to I ` A
in C such that C + {ρi}i∈Ω is a cut-eliminable calculus satisfying C2–C8.

PROOF. The conclusion of the semi-structural rules are built from structure variables and con-
stants using structural connectives while the formula A in the sequent I ` A is built from proposi-
tional variables using the logical connectives. In order to meaningfully discuss the equivalence of
the semi-structural rules (which permit uniform substitution of concrete structures for structure vari-
ables) and the sequent I ` A, concrete instances of the latter are obtained via uniform substitution
of formulae for propositional variables (see the note above Example 2.10).

First note that I ` A is equivalent to {Ui ` Vi}i∈Ω in C. We have noted that the set invall(I ` A)
is computable (Remark 3.8). This together with the construction below yields computability of the
semi-structural rules.

Let us construct a semi-structural rule equivalent to each Ui ` Vi. Suppose that Ui ` Vi consists
of a-part formulae C1, . . . , Cn and s-part formulae D1, . . . , Dm. First display C1 in Ui ` Vi as
C1 ` W1 (for some structure W1) and then apply Lemma 3.6 to obtain the equivalent rule below
left. Note that theM1 in the rule is a new structure variable. Next display C2 in the conclusion of the
rule below left as C2 ` W2 (for some structure W2) and apply Lemma 3.6 to obtain the equivalent
rule below right (recall Mi is a structure variable, Wi is a structure and Ci is a formula):

M1 ` C1

M1 `W1

M1 ` C1 M2 ` C2

M2 `W2

Repeat in this way until Lemma 3.6 has been applied to every Ci. Next, in the conclusion of the
rule obtained in the previous step display D1 as Wn+1 ` D1 (for some structure Wn+1) and apply
Lemma 3.6 (replaceD1 with the new structure variableMn+1). Repeat in this way until Lemma 3.6
has been applied to every Di. In this way we ultimately obtain the following rule.

M1 ` C1 . . . Mn ` Cn D1 `Mn+1 . . . Dm `Mn+m

Wn+m `Mn+m

Here Wn+m is constructed only from structure variables M1, . . . ,Mn+m−1 (each of which occurs
exactly once) and structure constants using structural connectives. SinceA ∈ I2, everyCi (resp.Di)
formula is s-soluble (a-soluble) and so the following is a semi-structural rule equivalent to Ui ` Vi:

S1 . . . Sn Sn+1 . . . Sn+m ρi
Wn+m `Mn+m

Here Sj is an element of invall(Mj ` Cj) (1 ≤ j ≤ n) and invall(Dj `Mn+j) (n+1 ≤ j ≤ n+m).
As the conclusion of ρi does not contain multiple occurrences of structure variables C2 and C3 hold.

2Recall that C8 only applies to logical rules and hence is preserved under the addition of structural rules.
3An analogous condition is used to adapt the original algorithm in [Ciabattoni et al. 2008] to non-commutative sequent
calculi [Ciabattoni et al. 2012] and to multiple-conclusion (hyper)sequent calculi [Ciabattoni et al. 2009].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 A. Ciabattoni and R. Ramanayake

C4 holds for all structure variables in the rule (but possibly not for the propositional variables) and
C5–C8 are easily satisfied. Though the premises of ρi might contain propositional variables that do
not occur in the conclusion (and hence C1 may not hold) cut-elimination for C + {ρi}i∈Ω proceeds
without difficulty as no propositional variable occurs in the conclusion of any ρi.

Example 3.16. We saw in Example 3.13 that inv(I ` A) consists of the set {I ` (p > Φ), ((p→
0) > Φ)}. Display the occurrence of p → 0 in I ` (p > Φ), ((p → 0) > Φ) to obtain the sequent
p → 0 ` Φ < ((p > Φ) > I). Now applying Lemma 3.6 we get the equivalent rule below left.
Starting with the conclusion of the rule below left, display the remaining occurrence of p to get the
sequent p ` I < (Φ < (M1 > Φ)). Apply Lemma 3.6 again to get the semi-structural rule below
centre. This is not yet a semi-structural rule because it contains a logical connective. Applying the
invertible rules to the left premise we finally get the semi-structural rule below right.

M1 ` p→ 0

M1 ` Φ < ((p > Φ) > I)

M1 ` p→ 0 M2 ` p
M2 ` Φ < (I < (M1 > Φ))

M1 ` p > I M2 ` p
M2 ` Φ < (I < (M1 > Φ))

Definition 3.17 (analytic structural rules). An analytic structural rule is a structural rule that
satisfies C1–C7.

Notice that if a display calculus satisfies C1–C8 then any extension of that calculus by analytic
structural rules (analytic structural rule extension) also satisfies C1–C8.

Remark 3.18. [Kracht 1996] refers to analytic structural rule (extensions) as proper structural
rule (extensions).

Restricting our attention to a subclass of I2 axioms satisfying the additional condition of acyclic-
ity (Definition 3.24 below), we transform the semi-structural rules in the above proposition into
equivalent analytic structural rules. The transformation given below mirrors the ‘completion’ pro-
cedure in [Ciabattoni et al. 2009] and amounts to applying the cut-rule to the premises of the semi-
structural rules. We formalise this by defining an operation that takes a set S of sequents (containing
the propositional variable p, say) and returns a set Sp of sequents that does not contain p (think of
this as applying the cut-rule in ‘all possible ways’ to all the occurrences of p). Sometimes it is not
possible to remove all occurrences of p. Indeed, this operation is successful if S satisfies certain
conditions—in our terminology: S respects multiplicities wrt p. A set S is acyclic if this operation
can be repeated to obtain ultimately a set of sequents not containing any propositional variables.

Let V(S) denote the set of propositional variables occurring in a set S of sequents.

Definition 3.19 (respect multiplicities). A nonempty set S of sequents is said to respect multi-
plicities wrt a propositional variable p ∈ V(S) if S can be partioned into one of the forms below
using the display rules for fixed p:

{p ` U | p 6∈ U} ∪ {V ` p | every p in V ` p is s-part} ∪ {S | p 6∈ S} (1)
{U ` p | p 6∈ U} ∪ {p ` V | every p in p ` V is a-part} ∪ {S | p 6∈ S} (2)

An alternative definition is that (i) no S ∈ S contains both an a-part and s-part occurrence of p (eg.
p ` p cannot be in S), and (ii) there do not exist S1, S2 ∈ S such that S1 contains multiple (ie.>1)
a-part occurrences of p and S2 contains multiple s-part occurrences of p.

Example 3.20. Consider a display calculus containing a structural connective ⊗ such that both
occurrences of p in p ⊗ p ` X (resp. Y ` p ⊗ p) are a-part (s-part). If (p ⊗ p ` X) ∈ S and
(Y ` p ⊗ p) ∈ S , then S does not respect multiplicities wrt p because it contains sequents with
multiple a-part occurrences of p and multiple s-part occurrences of p.

Given a set S of sequents respecting multiplicities wrt p. An equivalent set (cf. Remark 2.6) not
containing p can be constructed as indicated in the following definition.

Definition 3.21 (Sp). Let S be a set of sequents respecting multiplicities wrt p. If it is not
the case that (p ` U) ∈ S and (V ` p) ∈ S (up to display equivalence) then define Sp as

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

{S ∈ S | p 6∈ S}. Otherwise, define Sp as the union of {S | p 6∈ S} and one of the following,
depending on the display equivalent form of S as (1) or (2), respectively.

{S | obtain S from (V ` p) ∈ S by substituting each occurrence of p with a U s.t. p ` U ∈ S }
{S | obtain S from (p ` V) ∈ S by substituting each occurrence of p with a U s.t. U ` p ∈ S }

LEMMA 3.22. If S respects multiplicities wrt p, then p does not occur in Sp.

PROOF. Follows immediately from the form of S and the definition of Sp.

Definition 3.23 (acyclic set). Let C be a display calculus. A finite set S of sequents built from
structure variables, structure constants and propositional variables using structural connectives is
acyclic if (i) V(S) = ∅ or (ii) ∃p ∈ V(S) such that S respects multiplicities wrt p and Sp is acyclic.

Definition 3.24 (acyclic formula). Let A ∈ I2(C). If there is some set {ρi}i∈Ω of semi-
structural rules equivalent to A obtained according to Proposition 3.15 such that the premises of
each ρi (i ∈ Ω) are acyclic, then A is called an acyclic formula.

Example 3.25. In Example 3.16 we computed the semi-structural rule equivalent to A: (p →
0) + ((p → 0) → 0). To check if A is acyclic we need to check if the set S = {M1 ` p >
Φ,M2 ` p} of premises of the equivalent semi-structural rule is acyclic. Let us unfold the recursive
definition of acyclicity. Certainly V(S) = {p} 6= ∅. Noting that M1 ` p > Φ is display equivalent
to p ` Φ < M1 we see that S can be written as {p ` Φ < M1,M2 ` p} using only the display
rules. This set respects multiplicities wrt p—it is the form (1) in Definition 3.19. We now compute

Sp = {S | obtain S from M2 ` p by substituting p with Φ < M1} = {M2 ` Φ < M1}
The construction of Sp from S can be read as applying ‘all possible cuts’ on p in S. Since {M2 `
Φ < M1} contains no propositional variables, it is acyclic. We conclude that A is acyclic.

Remark 3.26. The abstract definition of acyclic formula above is procedural. In the case of a
concrete calculus, a declarative definition might be obtained.

The following shows that checking acyclicity is decidable.

LEMMA 3.27. Determining if a given formula is acyclic is decidable.

PROOF. First we need to decide if the given formula A ∈ I2(C), i.e. is there some {Ui `
Vi}i∈Ω ∈ inv(I ` A) such that each a-part formula in Ui ` Vi is s-soluble and each s-part formula
in Ui ` Vi is a-soluble for some i ∈ Ω. Computing the function inv(I ` A) and checking a/s-
solubility rely on displaying formulae, which is effective by Definition 2.7(ii), and on checking if
an invertible logical rule can be applied upwards to that formula. The latter depends only on the
head-connective of the formula and on whether the formula is a-part or s-part.4 As we have allowed
for the possibility that a substructure can be displayed in more than one way, in order to decide if
A ∈ I2(C) it remains to show: if one way of displaying a substructure yields that A 6∈ I2(C) then
A 6∈ I2(C) irrespective of how we choose to display the substructures. By Lemma 2.13, a formula
occurrence cannot ‘disappear’ under any sequence of display rules. Moreover by C4, an a-part (s-
part) formula remains a-part (resp. s-part) whichever display rules are used. So if A 6∈ I2(C) this
can only be due to the unavailability of a suitable invertible logical rule to apply upwards to some
a-part or s-part subformula of A and this problem persists irrespective of the display strategy.

We have already seen that obtaining the (finite) set of sets of semi-structural rules equivalent
to I ` A (A ∈ I2(C)) is effective (Lemma 3.15). If there is some set {ρi}i∈Ω of semi-structural
rules such that the set of premises of each ρi is acyclic, then A is acyclic. Otherwise it is not.

Thus, to complete the proof, we must show how to decide if a finite set S of premises of semi-
structural rules is acyclic or not. The proof proceeds by induction on |V(S)|. The base case is trivial.

4Note that the invertible logical rules can be applied upwards irrespective of the structure on the other side of the sequenta—
see the text following Definition 2.4.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 A. Ciabattoni and R. Ramanayake

Suppose |V(S)| = n + 1. Following Definition 3.23, check if S respects multiplicities wrt p ∈
V(S). We can check the latter by effectively displaying the substructures via Definition 2.7(ii). As
in the paragraph above, we need to show that if one way of displaying does not yield that the set
respects multiplicities, then no other way of displaying can yield that the set respects multiplicities.
To see this, suppose that S does not respect multiplicities wrt p using the effective way of displaying
a substructure. This means that either (i) there is an a-part and s-part occurrence of p in some
sequent in S or (ii) there is in S, a sequent containing multiple s-part occurrences of p and a sequent
containing multiple a-part occurrences of p. In either case, Lemma 2.13 and C4 assures us that any
other way of displaying the structures will lead to the same result, and hence S does not respect
multiplicities wrt p irrespective of how the substructures are displayed.

We can check the latter by effectively displaying the substructures. As in the paragraph above,
we need to show that if one way of displaying does not yield that the set respects multiplicities, then
no other way of displaying can yield it. To see this, suppose that S does not respect multiplicities
wrt p. This means that S contains either (i) a sequent having an a-part and s-part occurrence of p or
(ii) a sequent containing multiple s-part occurrences of p and a sequent containing multiple a-part
occurrences of p. In either case, Lemma 2.13 and C4 assures us that any other way of displaying
the structures will lead to the same result. If S does not respect multiplicities for any p ∈ V(S) then
the set is not acyclic. Otherwise, for each p such that S respects multiplicities wrt p, check if Sp is
acyclic; if it is then S is acyclic. Since V(Sp) < n+1 we can use the induction hypothesis to decide
this. If Sp is not acyclic for any such p then S is not acyclic.

Remark 3.28. Every formula A ∈ I1 is acyclic. To see this, follow the above definition. Since
A ∈ I1, there is some S = {S1, . . . , SN} ∈ invall(I ` A) that witnesses this i.e. every a-part
formula Ajk and s-part formula Bjl in Sj (1 ≤ j ≤ N) is a propositional variable. Since every union
of singleton sets of the form {L ` p} and {q `M} is acylic the result follows.

We are ready to show that every acyclic I2 axiom has equivalent analytic structural rules. Recall
that the I2 axiom A is acyclic if there is an equivalent set of semi-structural rules whose set of
premises are each acyclic. The base case of the definition of acyclic set is a set containing no
propositional variables. Then the corresponding rule is already an analytic structural rule. In the
following proposition we show that the inductive part of the definition (which amounts to deleting
a propositional variable p from the set) preserves equivalence.

Informally speaking, the proposition states that if the set S of premises of a semi-structural rule ρ
is acyclic, then ρ is equivalent to the rule ρp with premises Sp, where Sp is obtained from S by
applying cut in ‘all possible ways’ with cut-formula p. Before we state and prove the proposition,
we illustrate the proof with an example.

Example 3.29. Let C be an amenable calculus and let ρ be the semi-structural rule below left
(so the conclusion s does not contain any propositional variables). We claim that ρ is equivalent in C
to the rule ρp below right.

X1 ` p p ` Y1 p ` Y2 ρ
s

X ` Y1 X ` Y2 ρps

Indeed, given concrete premises of ρ, we can obtain s by applying the cut-rule to the formula in-
stantiating the propositional variable p and then applying ρp. For the other direction, given concrete
premises of ρp, we need to find a formula instantiating p in order to construct concrete premises
for ρ. The required formula is r(Y1) ∧ r(Y2). Indeed, making use of Definition 3.1 (the dashed lines
indicate some number of rules in C) here is the derivation of s using ρ:

X ` Y1

X ` r(Y1)
X ` Y2

X ` r(Y2)
X ` r(Y1) ∧ r(Y2)

r(Y1) ` Y1

r(Y1) ∧ r(Y2) ` Yi
r(Y2) ` Y2

r(Y1) ∧ r(Y2) ` Yi ρ
s

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

PROPOSITION 3.30. Let C be an amenable calculus, S an acyclic set of sequents and p ∈ V(S).
Then the semi-structural rule ρ with premises S and the semi-structural rule ρp with premises Sp
are equivalent in C.

PROOF. Let S be any acyclic set of sequents. There are two cases to consider.
(i) Suppose that S does not contain sequents of the form p ` U and V ` p. Then S has one of

the following forms

{V1 ` p, . . . , Vn+1 ` p} ∪ {S | p 6∈ S} {p ` V1, . . . , p ` Vn+1} ∪ {S | p 6∈ S}
and Sp is {S ∈ S | p 6∈ S}. Suppose the case above right (the other case is similar). One direction is
immediate, and to show that ρp is derivable in C+ρ it is enough to apply ρ using the sequents {ca `
Vi[p 7→ ca]}1≤i≤n+1 for the missing premises. These sequents are derivable due to Definition 3.1.2.

(ii) Suppose that S contains sequents of the form p ` U and V ` p. Clearly ρ is derivable in
C + ρp—it suffices to apply the cut-rule (and display rules) to concrete premises of ρ and then
apply ρp. For the other direction, assume, to fix ideas that the premises S of ρ have the form (1)
in Definition 3.19 (the other case is similar, use (a)∨ and (b)∨ from Def. 3.1(3) instead of (a)∧ and
(b)∧), i.e.,

{p ` Ui | p 6∈ Ui; 1 ≤ i ≤ n} ∪ {V ` p | every p in V ` p is s-part} ∪ {S | p 6∈ S}
Then the premises Sp of ρp have the following form:

{S |S is a subst. instance of V ` p ∈ S s.t. each occ. p 7→ Ui for some 1 ≤ i ≤ n) } ∪ {S | p 6∈ S}
We now want to use Sp to ‘reconstruct’ a concrete instance of S by instantiating p with a suitable

formula. It may be helpful for the reader to read the following steps in parallel with Example 3.29.
For each sequent in the above set, display each occurrence of Ui (necessarily in the succedent
since Ui is s-part) and apply the function r to get the set

{S |S is a subst. instance of V ` p ∈ S s.t. each occ. p 7→ r(Ui) for some 1 ≤ i ≤ n) } ∪ {S | p 6∈ S}

Suppose that we are given concrete instances of the premises of ρp. Repeatedly using (a)∧, Defini-
tion 3.1.1(ii) and the display rules, obtain the set S∗p

{S |S is a subst. instance of V ` p ∈ S s.t. each occ. p 7→ ∧1≤i≤nr(Ui) } ∪ {S | p 6∈ S}
Making use of (b)∧ and Definition 3.1.1(i), derive the set {∧1≤j≤nr(Uj) ` Ui}1≤i≤n of sequents.
By inspection, this set together with S∗p yield concrete instances of the premises of ρ (in particular, p
has been instantiated with ∧1≤i≤nr(Ui)). Applying ρ to these and noting that ρ and ρp have the same
conclusion, we have that ρp is derivable in C + ρ.

THEOREM 3.31. Let C be an amenable calculus. IfA ∈ I2(C) is acyclic, then there are analytic
structural rules {ρ′i}i∈Ω equivalent to I ` A such that C + {ρ′i}i∈Ω is a cut-eliminable calculus
satisfying C1–C8 (i.e. an analytic structural rule extension of C).

PROOF. Let {ρi}i∈Ω be the semi-structural rules equivalent to I ` A in C obtained in Propo-
sition 3.15. Notice that each ρi might violate (only) Belnap’s condition C1 due to the presence of
propositional variables in the set Si of sequents that are its premises.

Since A is acyclic, by Definition 3.24 we have that Si is acyclic. Let V(Si) = {p1, p2, . . . , pn}.
By (repeatedly applying) Proposition 3.30 the rule ρ′i obtained from ρi by replacing the premises Si
with ((. . . (Sip1)p2 . . .)pn−1

)pn is an equivalent analytic structural rule (in particular, observe that any
structure variable that appears only as an a-part (resp. s-part) structure in every sequent in Si has
the same property in ((. . . (Sip1)p2 . . .)pn−1

)pn). By repeating this process to all {ρi}i∈Ω we obtain
a new set of structural rules {ρ′i}i∈Ω (Lemma 3.22) such that C + {ρ′i}i∈Ω satisfies C1–C8.

Example 3.32. In Example 3.16 we obtained the semi-structural rule (below left) equivalent to
A: (p → 0) + ((p → 0) → 0). In Example 3.25 we saw that the axiom is acyclic by verifying

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 A. Ciabattoni and R. Ramanayake

STEP 1. Apply invertible rules to I`A STEP 2. Apply Ackermann’s lemma to each of the Ci, Di.

(only ith premise shown)

C1, . . . , Cn ` D1, . . . , Dm

...
invertible rules

I ` A

M1 ` C1 · · · Mn ` Cn D1 `Mn+1 · · · Dm `Mn+m

Wn+m `Mn+m

STEP 3. Apply invertible rules to each of the premises in the previous step. If A ∈ I2 then we can
eliminate all logical connectives to obtain a semi-structural rule.

prop. vars,M1 ` prop. vars · · · prop. vars,Mn ` prop. vars · · · prop. vars `Mn+m, prop. vars

...
...

...
invertible rules

M1 ` C1 . . . Mn ` Cn D1 `Mn+1 · · · Dm `Mm+n

Wn+m `Mn+m

STEP 4. Show that the set of premises is acyclic (informally: cut-closure on this set terminates yielding an analytic structural rule)
cut-closure on the propositional variables︷ ︸︸ ︷

prop. vars,M1 ` prop. vars · · · prop. vars,Mn ` prop. vars · · · prop. vars `Mn+m, prop. vars

Wn+m `Mn+m

Fig. 1. A summary of the algorithm for converting an initial sequent I ` A into an equivalent analytic structural rule (for
simplicity we use comma as the only structural connective).

the acyclicity of the premises S of that rule. In particular, we computed Sp = {M2 ` Φ < M1}.
Replacing the premises of the semi-structural rule with this set we obtain the equivalent analytic
structural rule below right.

M1 ` p > Φ M2 ` p
M2 ` Φ < (I < (M1 > Φ))

M2 ` Φ < M1

M2 ` Φ < (I < (M1 > Φ))

Figure 1 summarises our algorithm for converting initial sequents into analytic structural rules.

3.2. Relating H+A with C + {ρi}i∈Ω

In Theorem 3.31 we established the equivalence between an amenable calculus C extended by the
initial sequent I ` A (for A ∈ I2(C) acyclic) and a suitable analytic rule extension of C. We show
below that if the rules of C and the Hilbert calculus H for LI(C) ‘simulate’ each other (in a sense
that is made precise in Definition 3.33) then the logic of C + (I ` A) coincides with the set of
formulae derivable in the axiomatic extensionH+A.

Definition 3.33 (display calculus corresponds to a Hilbert calculus). Let C be an amenable
calculus and let L denote the language of LI(C). Then C corresponds to the Hilbert calculusH if:

(i) F is a function mapping sequents of the form A ` B (A,B ∈ ForL) to some F(A ` B) ∈
ForL and I ` B to B (B ∈ ForL).

(ii) For every instance X1 ` Y1 . . . XN ` YN/XN+1 ` YN+1 of a rule in C: there is a derivation
inH of F(l(XN+1) ` r(YN+1)) assuming F(l(X1) ` r(Y1)) , . . . ,F(l(XN) ` r(YN)).

(iii) For every instance of a rule A1 . . . AN/AN+1 in H: there is a derivation in C of I ` AN+1

assuming I ` A1, . . . , I ` AN .

LEMMA 3.34. If C corresponds toH then L(H) is the logic of C (i.e. LI(C) = L(H)).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

PROOF. For B ∈ LI(C) iff there is a derivation of I ` B in C iff F(I ` B) is derivable in H iff
there is a derivation of B inH iff B ∈ L(H).

LEMMA 3.35. Let C be an amenable calculus and let L denote the language of LI(C). If C
corresponds to the Hilbert calculus H (for function F), then C + (I ` A) (A ∈ ForL) corresponds
to the axiomatic extensionH+A using the same function F.

PROOF. Certainly the function F which witnesses that C corresponds toH is a function satisfying
condition (i) in the statement ‘C+(I ` A) corresponds toH+A’. We now prove (ii), noting that the
proof for (iii) is similar. If ρ is a rule in C + (I ` A) then ρ is a rule in C or ρ = (I ` A). For every
rule X1 ` Y1 . . . XN ` YN/XN+1 ` YN+1 in C, there is a derivation in H of F(XN+1 ` YN+1)
from F(X1 ` Y1) , . . . ,F(XN ` YN). By definition this holds in H + A too. Also F(I ` A) = A
which is certainly derivable inH+A.

THEOREM 3.36. Let C be an amenable calculus and let L denote the language of LI(C). Sup-
pose that C corresponds to the Hilbert calculus H. If ∆ is a set of acyclic I2(C) formulae in ForL
then there is an analytic structural rule extension corresponding toH+ ∆.

PROOF. Let A ∈ ∆. By Lemma 3.35 we have that C + (I ` A) corresponds to H + A. Theo-
rem 3.31 ensures that there are analytic structural rules {ρi} equivalent to I ` A in C, which implies,
by definition of equivalence between rules (Definition 2.5), that C+{ρi} corresponds toH+A.

Example 3.37. It is easy to check that the display calculus δBi-FL from Example 2.10 corre-
sponds to a standard Hilbert calculus HBi-FL for Bi-FL. Observe here that Bi-FL = L(HBi-FL).
The function F is defined as follows.

F(I ` B) = B F(A ` B) = A→ B

Example 3.38 (Bi-intuitionistic logic). Bi-intuitionistic logic (Heyting-Brouwer logic) HB is
obtained by the addition of the coimplication connective←d to the language of intuitionistic logic.

A Hilbert calculus HHB for HB can be obtained from HBi-FL by the addition of the axioms
(below) for right weakening and left weakening, right exchange and left exchange (first row) and
right contraction and left contraction, right associativity and left associativity (second row). Then,
using Theorem 3.36, and following some simplification to get the form in [Wansing 2008], we
obtain corresponding analytic structural rules (given below each axiom). Their addition to δBi-FL
yields a display calculus corresponding to a Hilbert calculus for HB.

A→ (A + B)

L `M
L `M,N

A ·B→ A

L `M
L,N `M

A + B→ B + A

L `M,N

L ` N,M

A ·B→ B ·A
L,N `M
N,L `M

A + A→ A

L `M,M

L `M

A→ A ·A
L,L `M
L `M

(A + B) + C→ A + (B + C)

L ` (M1,M2),M3

L `M1, (M2,M3)

A · (B ·C)→ (A ·B) ·C

(M1,M2),M3 ` L
M1, (M2,M3) ` L

It is well-known that in the presence of these axioms, the binary connectives ·,+,←,→d conflate,
respectively, with ∧,∨,→,←d, and also the constants 1 and 0 conflate with > and ⊥, respectively.
At the structural level > and < in the antecedent (resp. succedent) conflate, as Φ and I. Hence
a display calculus for HB may be obtained from δBi-FL by deleting the logical rules for ·,+,←
,→d, 1, 0, and deleting Φ and > (resp. <) in the antecedent (succedent). Thus the a-structures and
s-structures and functions l and r are defined as follows:

Sant ::= A ∈ ForLHB | I |Sant,Sant | (Sant < Ssuc)

Ssuc ::= A ∈ ForLHB | I |Ssuc,Ssuc | (Sant > Ssuc)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 A. Ciabattoni and R. Ramanayake

l(A) = A r(A) = A

l(I) = > r(I) = ⊥
l(X,Y) = l(X) · l(Y) r(X,Y) = r(X) + r(Y)

l(X < Y) = l(X)←d r(Y) r(X > Y) = l(X)→ r(Y)

In the calculus δBi-FL, the ·l and +r rules were invertible but the ∧l and ∨r were not. Since ·
and ∧ (and + and ∨) conflate we may obtain the display calculus δHB for HB where ∧l and ∨r
are invertible from δBi-FL by deleting the logical rules for ·,+,←,→d, 1, 0 and replacing the ∧l
and ∨r rules with the following:

A,B `M
∧l

A ∧B `M
L ` A,B

∨r
L ` A ∨B

The point of having more invertible rules in the calculus is that it enlarges the class I2. An almost
identical calculus for HB appears in [Goré 1998b; Wansing 2008].

The following examples present analytic display calculi for two axiomatic extensions introduced
in [Wolter 1998] for the logic HB.

Example 3.39. Let A1 be the axiom (p → q) ∨ (q → p). From Prop. 3.15 we obtain the
equivalent semi-structural rule ρ1 (below left). The set S of premises of ρ1 can be written {L `
p} ∪ {p ` V } ∪ {(Z ` q), (q ` M)}. Then Sp = {L ` V,Z ` q, q ` M}. Hence (Sp)q = {L `
V,Z `M}. So S is equivalent to the analytic structural rule below right:

L ` p q `M Z ` q p ` V
ρ1

I ` (L > M), (Z > V)

L ` V Z `M ρ′1I ` (L > M), (Z > V)

Then we have that δHB + ρ′1 is a cut-eliminable display calculus corresponding toHHB +A1 with
the subformula property.

Example 3.40. Let A2 be ((p ←d q) ∧ (q ←d p)) → ⊥. A2 ∈ I1(δHB). Then applying our
algorithm we get the equivalent rule ρ2

L ` Z U `M ρ2
(L < M), (U < Z) ` I

So δHB+ρ2 is a cut-eliminable calculus corresponding toHHB+A2 with the subformula property.

3.3. Related work on (hyper)sequent structural rules
We compare our algorithm for display logic with the algorithm in [Ciabattoni et al. 2008] which
computes sequent and hypersequent structural rules to be added to the calculus for intuitionistic
Lambek logic (also known as full Lambek calculus) with exchange; the latter are a simple gener-
alization of sequent calculus rules [Avron 1987] acting on basic objects which are disjunctions of
sequents (see, e.g. [Ciabattoni et al. 2014]). For the comparison, as a case study we consider calculi
for logics between classical and intuitionistic logic (i.e. intermediate logics).

The base calculus that is used [Ciabattoni et al. 2008] is the hypersequent calculus HLJ (see
Appendix), essentially obtained by replacing sequents with hypersequents in Gentzen calculus LJ
for intuitionistic logic Ip. Structural hypersequent rule extensions of HLJ have been obtained in
[Ciabattoni et al. 2008] for intermediate logics extending Ip by formulae in the class P3. The latter
consists of axioms defined by the grammar: N0,P0 contain the set of atomic formulae, and

Pn+1 ::= ⊥ | > | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= ⊥ | > | Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1

Clearly Pn ⊆ Nn+1, Nn ⊆ Pn+1, Nn ⊆ Nn+1 and Pn ⊆ Pn+1. Also Pm,Nm ⊆ N3 see
e.g. [Jeřábek 2015].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

The grammar for Pn+1 is constructed based on the logical left introduction rules of HLJ that
are invertible (P stands for positive connectives [Andreoli 1992]). Similarly the grammar forNn+1

is based on the logical right introduction rules of HLJ that are invertible (N stands for negative
connectives). Recall that we constructed In+1(C) in a similar manner, based on the invertible rules
of the calculus C.

3.3.1. Using the display calculus for bi-intuitionistic logic. We show below that by applying our
algorithm for display logic to the calculus δHB for Bi-intuitionistic logic (Example 3.38) we can
transform into structural rules more Ip formulae than those contained in the class P3. Note indeed
that every left (resp. right) invertible rule in HLJ is left (right) invertible in δHB. In addition, the
right introduction rule for disjunction (ie. ∨r) is invertible in δHB. Consideration of these facts
leads to the conclusion that P3 ⊆ I2(δHB). Furthermore we have

PROPOSITION 3.41. Every axiom in P3 is equivalent to an acyclic I2(δHB) axiom.

PROOF. Every intuitionistic P3 formula A is equivalent to a formula A′ which is a disjunction
of N2-normal formulae (see [Ciabattoni et al. 2008, Lemma 3.4]). An N2-normal formula is a
conjunction of formulae of the form α1 ∧ . . .∧ αn → β. Here β is ⊥ or a disjunction β1 ∨ . . .∨ βk
with each βi a conjunction of propositional variables. Also each αi is of the form ∨1≤j≤Mi

γji → βji
where βji is ⊥ or a propositional variable and γji is a conjunction of propositional variables. Noting
that the only non-invertible logical rules in δHB are the rules→l and←dr, it is easy to check that
A′ ∈ I2(δHB). We show now that A′ is acyclic.

In the concrete case of δHB it is easily seen that invall(I ` A′) = {S} i.e. a singleton set of N
sequents. Let Aj1, . . . , A

j
n and Bj1, . . . , B

j
m denote, respectively, the a-part formulae and s-part for-

mulae in each of such sequents (1 ≤ j ≤ N). Each invall(Ajk ` I) and invall(I ` Bjl) has the form
p1, . . . , pn ` pn+1, . . . , pm, where pi are either propositional variables or >,⊥. To show acyclicity
of A′ we show that Sj0 is equivalent in δHB to an acyclic set for each j. From Sjk (k ≥ 0) obtain the
equivalent set S ′jk by:

(i) deleting sequents containing the same propositional variable in the antecedent and succedent
(such sequents are derivable in δHB by initial sequents and weakening); and

(ii) repeatedly applying contraction to the sequents to ensure that the propositional variables in
the antecedent (resp. succedent) are unique.

Noting that S ′jk respects multiplicities wrt any ql ∈ V(S ′jk), compute Sjk+1 = (S ′jk)ql . Continue
in this way to obtain the sequence Sj0 , . . . ,Sjm such that V(S ′jm) = ∅. It follows that Sj0 is acyclic.
Since j was arbitrary the result is proved.

So intuitionistic axioms which can be transformed into equivalent structural hypersequent rules can
also be transformed into structural display rules. This is no surprise since any hypersequent calculus
can be embedded into a display calculus [Ramanayake 2015]. In fact, many more axioms can be
transformed into structural rules in the display calculus setting.

Example 3.42 (Bounded depth axioms). The axiomsBdk (k ≥ 1), defining intermediate logics
semantically characterized by Kripke models of depth ≤ k, belong to the classes P2k (⊆ N3) in the
classification in [Ciabattoni et al. 2008]; these axioms are recursively defined as follows:

Bd1 : p1 ∨ (p1 → ⊥) Bdi+1 : pi+1 ∨ (pi+1 → Bdi)

For k ≥ 2, no axiom within P3 is known to be equivalent, yet these all belong to I1(δHB). As an
example: for the case k = 2, the analytic structural display rule equivalent to Bd2 is

M ` L V ` U ρ
I ` L, (M > (U, (V > I)))

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 A. Ciabattoni and R. Ramanayake

In contrast no equivalent hypersequent structural rule is known.

Conservativity. A logic L is called a conservative extension of L′ if L′ ⊆ L and for everyB in the
language of L′: B ∈ L implies B ∈ L′. The conservativity of the logic of a display calculus with
respect to the logic of a subcalculus (obtained by the deletion of some logical rules) is a delicate
point. When conservativity holds, we can obtain a display calculus for the smaller logic. Specifically,
let C be an amenable calculus and let L denote the language of the logic LI(C). It is frequently the
case that we are interested, not in a calculus for axiomatic extensions of LI(C), but instead in a
calculus for axiomatic extensions of a sublogic L′ ⊂ LI(C) in a restricted language L′ ⊂ L. For
example, our interest is in intuitionistic, modal or Lambek logic although the logic of the display
calculus is usually bi-intuitionistic, tense or Bi-Lambek logic.5

More concretely, we saw in Example 3.42 how to obtain display calculi for HHB + Bdi. Let us
investigate the conditions under which we can obtain display calculi for HIp + Bdi. Here HIp is a
Hilbert calculus for (propositional) intuitionistic logic, so Ip = L(HIp).

Let δHB′ be the calculus obtained from δHB by deleting the logical rules for ←d. Notice
that δHB′ may not be an amenable calculus. The reason is that it is not clear how to define the
functions l and r mapping sequents into formulae in the intuitionistic language LIp. In particular, it
seems not to be possible to interpret the antecedent structural connective < of δHB in LIp.

First observe that for every B in the language of LIp: I ` B is derivable in δHB′ + ρ iff I ` B
is derivable in δHB + ρ. The forward direction is trivial and the reverse direction makes use of
cut-elimination since any cutfree derivation of I ` B cannot use the logical rules for←d. It follows
that B ∈ LI(δHB′ + ρ) iff B ∈ LI(δHB + ρ). It should be clear that this argument does not work
if we had obtained δHB′ + ρ by deleting some non-logical rules from δHB + ρ instead.

Next, observe that the languages of LI(δHB′ + ρ) and L(HIp + Bdi) are identical. Finally, let
us recall the fact that L(HHB +Bdi) is a conservative extension of L(HIp +Bdi).

Then we have B ∈ LI(δHB′ + ρ) iff B ∈ LI(δHB + ρ) iff B ∈ L(HHB + Bdi) iff B ∈
L(HIp + Bdi) (the last ‘iff’ uses conservativity). Therefore LI(δHB′ + ρ) = L(HIp + Bdi). In
other words, L(HIp +Bdi) is the logic of δHB′ + ρ. The proof is represented graphically below.

B ∈ LI(δHB + ρ) //

cut-elimination
		

B ∈ L(HHB +Bdi)
‘corresponds to’oo

conservativity
��

B ∈ LI(δHB′ + ρ) oo //

trivial

II

B ∈ L(HIp +Bdi)

OO

We can generalise the above argument as follows:

THEOREM 3.43. Let C be a display calculus andH andH′ be Hilbert calculi. Suppose that

(i) LI(C + {ρi}i∈I) corresponds toH+A,
(ii) The display calculus C′ is obtained from C by deleting some logical rules,

(iii) the language of LI(C′ + {ρi}i∈I) and L(H′ +A) are identical, and
(iv) L(H+A) is a conservative extension of L(H′ +A).

Then LI(C′ + {ρi}i∈I) = L(H′ +A).

PROOF. By (iii), every formula in the language of LI(C′+ {ρi}i∈I) is a formula in the language
of L(H′ + A) and vice versa. Let B be an arbitrary formula from this language. By definition:
B ∈ LI(C′ + {ρi}i∈I) iff I ` B is derivable in C′ + {ρi}i∈I . Due to cut-elimination and (ii),
the latter holds iff I ` B is derivable in C + {ρi}i∈I . Once again by definition, the latter holds iff
B ∈ LI(C + {ρi}i∈I). By the ‘corresponds to’ relation (i), the latter holds iff B ∈ L(H + A).
Finally, by conservativity (iv), the latter holds iff B ∈ L(H′ +A).

5The larger language is needed to interpret the structural connectives that are required to obtain the display property.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Example 3.44. Back to the intermediate logics and analytic structural rule extensions of δHB:
conservativity for many logics L(HHB + A) over L(HIp + A) for acyclic intuitionistic axioms
P3 63 A ∈ I2(δHB) can be established by proving canonicity [Ghilardi and Meloni 1997], and
utilising the result that the axiomatic extensions of HB and Ip share the same frame semantics,
see [Wolter 1998].

Remark 3.45. Although our algorithm is an abstraction of the algorithm in [Ciabattoni et al.
2008], the key point is that the expressive power of the display calculus permits a base calculus δHB′

for Ip (obtained from δHB by deleting the rules for co-implication←d) in which the ∨r rule is also
invertible, leading to cut-eliminable structural rule extensions for more logics. This justifies the use
of the more complex machinery of the display calculus.

4. LIMITS OF STRUCTURAL DISPLAY RULES
Given an amenable calculus C, the previous section presented an algorithm to extract analytic struc-
tural rules out of acyclic I2 axioms. In this section we address the converse problem and show that
if the calculus C satisfies a few natural additional properties then its analytic structural rules are
equivalent to acyclic I2 axioms. The result is a generalisation of Kracht’s Display Theorem I for
tense logics (see Section 5.1) and applies to calculi for a much larger class of logics including e.g.
substructural logics.

Definition 4.1. An amenable calculus C for L is well-behaved if

(i) C corresponds to some Hilbert calculusH
(ii) C contains the following rules

A `M B `M ∨l
A ∨B `M

L ` A L ` B ∧r
L ` A ∧B

Here ∧ and ∨ are the connectives in the definition of amenable calculus (not necessarily con-
junction, disjunction).

(iii) For every sequent A ` B (A,B ∈ ForL) we have A ` B ∈ inv(I ` F(A ` B)) (cf. Def.3.33).

Note that by definition of inv we have: A ` B ∈ inv(I ` F(A ` B)) implies I ` F(A ` B) is
derivable from A ` B.

Example 4.2. It is easy to see that the calculus δBi-FL for non-associative Bi-Lambek logic
(Example 2.10) and the calculus δHB for bi-intuitionistic logic (Example 3.38) are well-behaved.
In both calculi take indeed F(A ` B) = A→ B.

LEMMA 4.3. Let C be a well-behaved calculus. Then the rules ∨l and ∧r are invertible.

PROOF. Let us show that ∨l is invertible. The case of ∧r is analogous. Suppose we have a
concrete sequent of the form A ∨ B ` Y . By Definition 3.1.(1) follows that A ` A and B ` B
are derivable, and then from Definition 3.1.(3) we obtain A ` A ∨ B and B ` A ∨ B. Then by the
cut-rule we obtain derivations of A ` Y and B ` Y .

Notation. We writeX[U] to mean that the structureX contains an occurrence of a substructure U .
Then X[V] is the structure obtained by replacing that occurrence with V . Extending this notation,
X[U1] . . . [Un]denotes thatX contains occurrences of each U i. For brevity of notation we write this
as X[U i]ni=1 or simply X[U i]i. We extend this notation in the obvious way, writing (X ` Y)[U i]i
to mean that the sequent X ` Y contains occurrences of the substructures U i. Finally we write
l(X) ` r(Y)[U i]i to mean the sequent obtained by applying the function l (resp. r) to the antecedent
(succedent) of (X ` Y)[U i]i

From condition C1 we know that any structure variable in the premise of an analytic structural
rule ρ must appear in its conclusion. Suppose that ρ contains a premise s having no structure vari-
ables (i.e. s is built using only structural constants). If this premise is derivable in C then it is clear

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 A. Ciabattoni and R. Ramanayake

that an equivalent rule can be obtained by deleting the premise s. On the other hand, if s is not
derivable in C, then C + ρ = C. Thus, without loss of generality we may suppose that each premise
of ρ contains (at least) one structure variable which appears in the conclusion. By displaying some
structure variable in each premise, we can write any analytic structural rule in the form below.{

Xi
j ` Li

}
ij

{
Mk ` Y kl

}
kl

ρ
(X ` Y)

[
Li
]
i

[
Mk
]
k

[P s]s
[
Qt
]
t

(3)

The i, j, l, k, s, t range over finite index sets. Also X,Y,Xi
j and Y kl are structures built from struc-

ture variables in {Li}i ∪ {Mk}k ∪ {P s}s ∪ {Qt}t (so any structure variable may occur in any Xi
j ,

Y kl structure). By C4, all occurrences of these variables will be a-part or s-part (i.e. a mixture of a-
part and s-part is not possible). Here theMk and P s variables are a-part and the Li andQt variables
are s-part. By C3, X ` Y contains only one occurrence of each distinct structure variable.

The key lemma below indicates how to construct the axiom equivalent to ρ.

LEMMA 4.4. Let C be a well-behaved calculus for the logic L and ρ an arbitrary analytic
structural rule, written in the form (3). Then ρ is equivalent in C to the sequent below:

(l(X) ` r(Y))

(Liσ) ∨
∨
j

l(Xi
jσ)


i

[
(Mkσ) ∧

∧
l

r(Y kl σ)

]
k

[P sσ]s
[
Qtσ

]
t

(4)

Here σ is a function that replaces distinct structure variables with distinct propositional variables.

Note: The rule ρ is constructed from structure variables while (4) is constructed from propositional
variables. In order to meaningfully discuss the equivalence of ρ and (4), we must consider concrete
instances of the latter, obtained via uniform substitution of formulae for propositional variables.

PROOF. Using the property of the l and r functions (Definition 3.1.1), sequent (4) is equivalent to

(X ` Y)

(Liσ) ∨
∨
j

l(Xi
jσ)


i

[
(Mkσ) ∧

∧
l

r(Y kl σ)

]
k

[P sσ]s
[
Qtσ

]
t

(5)

and, by Ackermann’s lemma (Lemma 3.6), to the following rule for fresh structure variables
{Li}i, {Mk}k, {P s}s and {Qt}t.{

(Liσ) ∨
∨
j

l(Xi
jσ) ` Li

}
i

{
Mk ` (Mkσ) ∧

∧
l

r(Y k
l σ)

}
k

{P s ` P sσ}s
{
Qtσ ` Qt}

t

(X ` Y)
[
Li
]
i

[
Mk
]
k

[
P s
]
s

[
Qt
]
t

(6)
By the invertibility of ∨l and ∧r (Lemma 4.3) this is equivalent to the rule:

{
Liσ ` Li

}
i

{
l(Xi

jσ) ` Li
}
ij

{
Mk `Mkσ

}
k

{
Mk ` r(Y k

l σ)
}
kl
{P s ` P sσ}s

{
Qtσ ` Qt

}
t

(X ` Y)
[
Li
]
i

[
Mk
]
k

[P s]s
[
Qt
]
t

Using the properties of the l and r functions, this rule is equivalent to

{
Liσ ` Li

}
i

{
Xi

jσ ` Li
}
ij

{
Mk `Mkσ

}
k

{
Mk ` Y k

l σ
}
kl
{P s ` P sσ}s

{
Qtσ ` Qt

}
t
ρ′

(X ` Y)
[
Li
]
i

[
Mk
]
k

[P s]s
[
Qt
]
t

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

It remains to show the equivalence between ρ′ and (3). Given concrete premises of ρ′, apply the cut
rule (and display rule where required) to the formulae instantiating the propositional variables Liσ,
Mkσ, P sσ and Qtσ to obtain the premises of (3).

Now for the other direction. Suppose that we have concrete premises of (3). Let us notation-
ally distinguish a schematic structure U from its instantiation Ū . Convert every instantiation N̄ (in
X̄i
j ` L̄i) of a structure variable N (in Xi

j ` L̄i) to l(N̄) or r(N̄) depending on whether N is a-part
or s-part, to obtain ultimately a substitution instance of Xi

jσ ` L̄i. Similarly obtain the substitution
instance of M̄k ` Y kl σ from concrete M̄k ` Ȳ kl . In the substitution instances, every occurrence
of Liσ, Mkσ, P sσ and Qtσ is instantiated with the formula r(L̄i), l(M̄k) r(P̄ s) and l(Q̄t), respec-
tively. We can also derive

{
r(L̄i) ` L̄i

}
i
,
{
M̄k ` l(M̄k)

}
k
,
{

r(P̄ s) ` P s
}

and
{
Qt ` l(Q̄t)

}
. We

now have concrete instances of the premises of ρ′. Apply ρ′ to get the required sequent.

Example 4.5. The rule ρ1 below left is equivalent in δHB to the sequent below right (the propo-
sitional variable m stands for Mσ)

M `M > I ρ1
M ` I

m ∧ (m→ ⊥) ` I

THEOREM 4.6. Let C be a well-behaved calculus (for the Hilbert calculusH) and let ∆ be a set
of formulae in the language of LI(C). Then there is an analytic structural extension C + {ρi}1≤i≤n
corresponding toH+ ∆ iff L(H+ ∆) = L(H+ ∆′) for a set ∆′ of acyclic I2(C) axioms.

PROOF. For the ‘if’ direction, let the set ∆′ of acyclic I2(C) axioms be {A1, . . . , An}. Then by
Theorem 3.31 we obtain setsRj of analytic structural rules equivalent to I ` Aj for j ∈ {1, . . . , n}.
By applying Lemma 3.35 n times we get that C+R1 + . . .+Rn corresponds toH+A1 + . . .+An.

For the ‘only if’ direction, first note that by Lemma 4.4 we have that each ρi (1 ≤ i ≤ n) is
equivalent to a sequent Ai ` Bi of the form (4). Because C is well-behaved, it follows that ρi
is equivalent to I ` F(Ai ` Bi). By Lemma 3.35 C + ρi corresponds to H + F(Ai ` Bi).
Since C + ρi is well-behaved—by inspection, this property is preserved in all extensions of C—
we can repeat this argument to ultimately obtain that C + {ρi}1≤i≤n corresponds toH+ ∆′ where
∆′ = {F(Ai ` Bi) , . . . ,F(An ` Bn)}. Since C + {ρi}1≤i≤n corresponds toH+ ∆ it follows that
L(H+ ∆) = L(H+ ∆′) (cf. Lemma 3.34).

Now it suffices to show that each F(Ai ` Bi) ∈ ∆′ is an acyclic I2(C) formula (we drop the
subscript i in the following to simplify the notation). By Definition 4.1(iii) we have A ` B ∈
inv(I ` F(A ` B)) where A ` B has the form (4). To show that F(Ai ` Bi) is an I2(C) formula,
apply the algorithm transforming an sequent into a semi-structural rule to the sequent (4). To help
the reader follow the transformation, we refer now to the labelling of the steps in Figure 1.

Repeated application of the invertible rules to (4)—STEP 1—yields, by inspection, the se-
quent (5). By repeated application of the display rules and Lemma 3.6 starting with the above
sequent—STEP 2—we get the rule (6). Apply invertible rules to each of the premises of this rule
(STEP 3), once again by inspection, we get a semi-structural rule. In particular, because this rule
contains no logical connectives, we conclude that F(A ` B) is in I2(C).

The final step—STEP 4—is to show that the set S of premises of the semi-structural rule is
acyclic. By C4, every propositional variable in a premise Xi

jσ ` Li and Mk ` Y kl σ is either a-part
or s-part (possibly with multiplicities) but not both. Obviously P s ` P sσ andQtσ ` Qt also satisfy
this condition. Thus S respects multiplicities wrt every propositional variable occurring in it (see (1)
and (2)). By consideration of the simple form of the premises P s ` P sσ and Qtσ ` Qt we see that
repeated application of the Sp operation (see Definition 3.21) yields each time a set that respects
multiplicities wrt each variable in it. Then from Definition 3.21 and Definition 3.23, it follows that S
is an acyclic set. By Definition 3.24, F(A ` B) is an acyclic I2 axiom.

The following are immediate.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 A. Ciabattoni and R. Ramanayake

COROLLARY 4.7. LetH be an axiomatic extension of intuitionistic non-associative Bi-Lambek
logic Bi-FL. There is an analytic structural rule extension of δBi-FL corresponding toH iffH is an
extension by acyclic I2(δBi-FL) axioms.

COROLLARY 4.8. LetH be an axiomatic extension of bi-intuitionistic logic HB. There is an an-
alytic structural rule extension of δHB corresponding toH iffH is an extension by acyclic I2(δHB)
axioms.

Example 4.9. In Example 3.42 we saw how to obtain the analytic structural rule ρ (below left)
such that δHB + ρ corresponds toHHB + p2 ∨ (p2 → (p1 ∨ (p1 → ⊥))).

M ` L1 V ` L2
ρ

I ` L1, (M > (L2, (V > I)))

M ` L1 V ` L2
ρ

I ` L1, (M > (L2, (V > I)))[L1][L2][M][V]

This is the ‘if’ direction of Theorem 4.6.
For the ‘only if’ direction let us compute the axiom that is equivalent to this rule. Above right

we have written ρ in the form (3). From Lemma 4.4, this rule is equivalent to the sequent > `
(l1 ∨m)∨ (m→ ((l2 ∨ v)∨ (v → ⊥))) where Mσ = m, V σ = v, L1σ = l1 and L2σ = l2. Using
the function F (see Example 3.37) we have that δHB+ρ corresponds to HB+> → (l1∨m)∨(m→
((l2 ∨ v) ∨ (v → ⊥))). Although this axiom is not identical to the Bd2 axiom, it is easy to check
that each axiomatisation over HB can derive the other axiom.

5. A CASE STUDY: TENSE LOGICS
The class of tense axioms equivalent to analytic (proper, in Kracht’s terminology) structural display
rules was identified by [Kracht 1996] who called these primitive tense formulae. In this section
we compare our transformation algorithm with Kracht’s method and provide an alternative, fully
checkable6 proof of the converse direction: every analytic structural rule extension of the display
calculus δKt corresponds to an axiomatic extension of the Hilbert calculusHKt for Kt by primitive
tense formulae. Here δKt is the display calculus corresponding toHKt.

Recall that the modal language LK is obtained from the propositional classical language by the
addition of the modal operators 3 and �. The tense language LKt is obtained from LK by the
addition of the tense operators _ and �. The Hilbert calculi HK and HKt for normal basic modal
logic K and tense logic Kt, respectively, are conservative extensions of classical propositional logic
obtained by the addition of the usual axioms (see, e.g., [Blackburn et al. 2001]).

The set of a- and s-structures for δKt have the identical grammar S(LKt):

X ::= A ∈ ForLKt | I | (X,X) | •X | ?X

The display rules of δKt are:

L,M ` Z
L ` Z, ?M

L,M ` Z
M ` ?L,Z

L `M,Z

L, ?Z `M
L `M,Z

?M,L ` Z
?L `M
?M ` L

L ` ?M
M ` ?L

L ` •M
•L `M

? ? L `M
L `M

L ` ? ? M
L `M

Since there is a display rule to remove each structural head connective in the antecedent/succedent
to reveal the nested substructure, displaying a substructure of a given sequent is computable (Defini-
tion 2.7(ii)). Although the set of sequents display equivalent to a given sequent is not finite—we can
repeatedly affix ?? to any substructure using the display rules—display equivalence is computable
as demanded by Definition 2.7(iii). This is because a sequent can be first put in a normal form by
removing all occurrences of (??)n (n ≥ 1) that occur in front of a substructure.

The remaining structural rules of δKt are given below.

6Unfortunately, a crucial step in the proof of [Kracht 1996] lacks important details, thus making it impossible to check.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

Name Axiom Rule Name Axiom Rule
D �A→ 3A (? • ?)•X ` Y/X ` Y B A→ �3A ? • ?X ` Y/•X ` Y
G 3�A→ �3A •X ` ? • ?Y/? • ?X ` •Y 4 �A→ ��A •X ` Y/ • •X ` Y
5 3A→ �3A ? • ?X ` Y/? • ?X ` •Y T �A→ A •X ` Y/X ` Y

Fig. 2. Some acyclic I2 axioms and corresponding analytic structural rules

L ` Z
I, L ` Z

L ` Z
L ` I, Z

I `M
?I `M

L ` I

L ` ?I
L ` Z

M,L ` Z

L ` Z
L,M ` Z

I `M
•I `M

L ` I
L ` •I

L,M ` Z
M,L ` Z

Z ` L,M
Z `M,L

L,L ` Z
L ` Z

Z ` L,L
Z ` L

L1, (L2, L3) ` Z
(L1, L2), L3 ` Z

Z ` L1, (L2, L3)

Z ` (L1, L2), L3

The initial sequents of δKt are p ` p for any propositional variable p, and I ` > and ⊥ ` I. Here
are the logical rules of δKt (we use the invertible form for ∧r, ∨l and→l).

I ` L >l> ` L
L ` I ⊥r
L ` ⊥

?A ` L ¬l¬A ` L

L ` ?A ¬r
L ` ¬A

A,B ` L
∧l

A ∧B ` L
L ` A L ` B ∧r

L ` A ∧B

A ` L B ` L ∨l
A ∨B ` L

L ` A,B
∨r

L ` A ∨B
?M ` A B `M →l

A→ B `M
L,A ` B →r
L ` A→ B

A ` L
�l

�A ` •L
L ` •A

�r
L ` �A

? • ?A ` L
3l

3A ` L
L ` A

3r
? • ?L ` 3A

•A ` L
_l

_A ` L
L ` A

_r•L ` _A
A ` L

�l
�A ` ? • ?L

L ` ? • ?A
�r

L ` �A

Define the functions l and r from S(LKt) into ForLKt.

l(A) = A r(A) = A

l(I) = > r(I) = ⊥
l(?X) = ¬r(X) r(?X) = ¬l(X)

l(X,Y) = l(X) ∧ l(Y) r(X,Y) = r(X) ∨ r(Y)

l(•X) = _l(X) r(•X) = �r(X)

It may be checked that δKt is an amenable well-behaved calculus. Using Theorem 4.6 we have:

COROLLARY 5.1. LetH be an axiomatic extension of tense logic Kt. There is an analytic struc-
tural rule extension of δKt corresponding toH iffH is an extension by acyclic I2(δKt) axioms.

LEMMA 5.2. Every logical rule with the exception of �l, 3r, _r and �l is invertible.

Example 5.3. Figure 2 displays some examples of acyclic I2(δKt) axioms and the correspond-
ing rules generated by our algorithm.

Using the above observation we can give a more explicit description of I2(δKt) axioms along the
line of the classes in [Ciabattoni et al. 2008] for substructural logics.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 A. Ciabattoni and R. Ramanayake

Set P0 = N0 as the set of propositional variables.

P1 := P0 | > | P1 ∧ P1 | P1 ∨ P1 | ¬N1 | N1 → P1 | 3P1 | _P1

N1 := N0 | ⊥ | N1 ∧N1 | N1 ∨N1 | ¬P1 | P1 → N1 | �N1 | �N1

P2 := P1 | > | P2 ∧ P2 | P2 ∨ P2 | ¬N2 | N2 → P2 | 3P2 | _P2 | �N1 | �N1

N2 := N1 | ⊥ | N2 ∧N2 | N2 ∨N2 | ¬P2 | P2 → N2 | �N2 | �N2 | 3P1 | _P1

It is easy to see that I0(δKt) = N0; I1(δKt) = N1; and I2(δKt) = N2.

Example 5.4. The Scott-Lemmon axioms have the form 3i�jA → �k3lA. It is easy to see
that all these axioms are acyclic I2(δKt) formulae.

The next section shows that the class of acyclic I2(δKt) formulae coincides with Kracht’s primi-
tive tense formulae.

Definition 5.5 (primitive tense formula). A primitive tense axiom is a formula of the formA→
B where bothA andB are constructed from propositional variables and> using {∧,∨,3,_} andA
contains each propositional variable at most once.

5.1. Kracht’s Display Theorem I revisited
We provide an alternative proof of Kracht’ characterisation of analytic structural rule extensions of
the display calculus δKt.

THEOREM 5.6 (DISPLAY THEOREM I [KRACHT 1996]). Let H be an axiomatic extension
of HKt. There is an analytic structural rule extension of δKt corresponding to H iff the logic of H
is axiomatisable overHKt by primitive tense axioms.

Observe that in the case of δKt, invall(U ` V) is a singleton set for any U ` V i.e. all possible
sequences of applying invertible rules upwards lead to the same set of sequents. With an abuse of
notation for the sake of simplicity, in this section we will write invall(U ` V) to mean that element
(rather than the set containing that element).

First note that every primitive tense axiom is an acyclic I2(δKt) axiom. To see this, first ob-
serve that for any primitive tense formula A → B, both A and B are a-soluble and negation-
free. Hence A → B ∈ I2(δKt). Let Aj1, . . . , A

j
n and Bj1, . . . , B

j
m denote, respectively, the

formulae coming from A and B in a sequent Sj ∈ invall(I ` A→ B) (1 ≤ j ≤ N). First
note that every Bjk is an a-part formula and each Aik is a (single) propositional variable. The
set {invall(I ` Aj1), . . . , invall(I ` Ajn), invall(Bj1 ` I), . . . , invall(Bjm ` I)} is clearly acyclic because
every propositional variable in Bjk is a-part (this is because B is negation-free). It follows that A→
B is acyclic.

To show (⇐), suppose that H is an axiomatic extension of HKt and L(H) = L(HKt + ∆)
where ∆ is a set of primitive tense axioms. Due to the above observation and Theorem 3.36 there is
an analytic structural rule extension corresponding toHKt + ∆. It may been seen that the structural
rule extension also corresponds to H—in particular, note that any derivation from assumptions
inHKt + ∆ can be transformed into a derivation from assumptions inH and vice versa since every
instance of an axiom in one system must be derivable in the other because L(H) = L(HKt + ∆).

Kracht’s method for (⇐). Let us simply illustrate Kracht’s method for obtaining an analytic struc-
tural rule from a primitive tense formula A → B. First write A and B as equivalent disjunc-
tions ∨1≤i≤NCi and ∨1≤j≤MDj , respectively, of primitive tense formulae not containing ∨. Re-
peatedly applying the invertible rule ∨l starting with ∨1≤i≤NCi ` ∨1≤j≤MDj , equivalent sequents
Ci ` ∨1≤j≤MDj are obtained. Although ∨r is also invertible, Kracht chooses to apply Acker-
mann’s lemma directly to ∨1≤j≤MDj and then applies all possible invertible rules to the premises
and conclusion. The resulting rules can be presented in our notation as follows (1 ≤ i ≤ N):

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

Name Axiom Primitive tense Name Axiom Primitive tense
D �A→ 3A A→ 3_A B A→ �3A _A→ 3A

confluence 3�A→ �3A _3A→ 3_A 4 �A→ ��A 33A→ 3A
5 3A→ �3A _3A→ 3A T �A→ A A→ 3A

Fig. 3. Some I2 axioms and their equivalent primitive tense form.

invall(D1 `M) · · · invall(DM `M)
invall(Ci `M)

Contrast with our procedure where we permit the possibility of applying some invertible right rules
to ∨1≤j≤MDj before applying Ackermann’s lemma. This is the reason why our procedure can
obtain analytic structural rules for a class I2(δKt) of axioms that is syntactically larger (i.e. in the
sense of set containment) than the primitive tense axioms. (Nevertheless, we will see later that every
axiomatic extension ofHKt by I2(δKt) axioms is equivalent to some extension ofHKt by primitive
tense axioms and vice versa).

Example 5.7. In general, the Scott-Lemmon axioms in Example 5.4 are not primitive tense ax-
ioms since they may contain �. Nevetheless, an axiomatic extension ofHKt by 3i�jA→ �k3lA
is equivalent to an axiomatic extension by the primitive tense formula _i3kA→ 3j_lA.

Aside from this, it appears that there exists a primitive tense axiom that Kracht’s method cannot
transform into an equivalent analytic structural rule. Consider the primitive tense formula _p→ q.
Indeed, if we apply Kracht’s method we obtain the rule

Q `M
•P `M

which is not analytic (C1 is violated since the structure variable Q does not appear in the conclu-
sion). However this shortcoming can be rectified by noting that this rule is equivalent to the rule
with empty premise and conclusion •P ` M . Generalising this argument to handle all primitive
tense formulae A→ B where B contains a propositional variable not appearing in A we can com-
plete Kracht’s proof of (⇒). Note here that the logic HKt + _p → q is not the inconsistent logic
but instead the tense counterpart of the maximal (in the sense of axiomatic extensions) consistent
modal logic Ver which is usually axiomatised asHK + �⊥ [Hughes and Cresswell 1996].

Remark 5.8. We have already seen above that a disadvantage of applying Ackermann’s lemma
directly to ∨1≤j≤MDj rather than applying invertible right rules first is that the former (Kracht’s
method) cannot be applied directly to a formula in I2(δKt) but instead relies on receiving a primitive
tense formula as input. Even the standard presentation of the usual modal axioms are not in primitive
tense form. This point is illustrated by Figure 3. The need to transform the given axiom into a
primitive tense axiom is a disadvantage in Kracht’s method—when the axiom is more complicated,
it may be rather challenging to do so. In addition, the primitive modal equivalent of the given axiom
(should it exist) may be considerable more complicated. For example, although the primitive tense
equivalent _A→ 3A of the modal axiom A→ �3A is easily derived, it is not immediately clear
that the primitive modal equivalent is the formula A ∧3B → 3(3A ∧B).

Kracht’s proof of the (⇒) direction. It cannot be checked because important details are missing.
In particular, [Kracht 1996] defines a special structural rule as an analytic structural rule containing
a structure variable L that (i) is the common antecedent (equivalently, succedent) of every sequent
in the rule, and (ii) occurs exactly once in each sequent. A key result is that every analytic struc-
tural rule is equivalent to a special structural rule. However Kracht does not give a proof of this
equivalence or a method to actually transform each structural rule into a special structural rule.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 A. Ciabattoni and R. Ramanayake

Proposition 5.17 below provides a new proof of (⇒). The key step is showing that every
acyclic I2(δKt) axiom is equivalent to a primitive tense formula. This is proved in the crucial
Lemma 5.12 in a model-theoretic way, making use of the standard Kripke semantics for tense logics.

We start briefly recalling semantic concepts and terminology; see, e.g., [Blackburn et al. 2001]
for more details. A frame is a pair F = (W,R) where W is a non-empty set and R is a binary
relation on W . A model is a pair M = (F, V) where F is a frame (W,R) and V is a valuation
function assigning to each proposition variable p a subset V (p) of W . Suppose that M = (F, V) is
a model. The relation M,w |= A (read as ‘formula A holds in M at w’) is defined inductively on
the structure of A. For the propositional connectives the definition is classical relativised to w. Also

M,w |= 3A iff there exists v ∈W such that Rwv and M, v |= A

M,w |= _A iff there exists v ∈W such that Rvw and M,v |= A

M,w |= �A iff for all v ∈W , if Rwv then M,v |= A

M,w |= �A iff for all v ∈W , if Rvw then M,v |= A

The negation of M,w |= A is written M,w 6|= A. A formula A holds on a frame F = (W,R)
(denoted F |= A) if for all valuations V and w ∈ W : (F, V), w |= A. Two formulae A and B are
frame equivalent if for all frames F : F |= A iff F |= B. It is well-known that A ∈ Kt iff for all
frames F : F |= A.

Let α be a formula in the first-order language (of classical logic) with equality and a binary
relation R. Viewing a model M = (F, V) as a relational structure, define M |= α in the obvious
way to mean that the underlying frame F = (W,R) satisfies α when the symbol R is interpreted
as the binary relation on W . For a string σ constructed from 3 and _ (ε is the empty string), define
recursively the first-order formulae Σσ(w, v):

Σε(w, v) = (w = v)

Σ3σ(w, v) = ∃w′(Rww′ ∧ Σσ(w′, v))

Σ_σ(w, v) = ∃w′(Rw′w ∧ Σσ(w′, v))

Intuitively, Σσ(w, v) converts a path σ between w and v specified in terms of 3 and _ in terms of
existential quantifers. For example,

Σ3_(w, s) = ∃w′(Rww′ ∧ (∃w′′(Rw′′w′ ∧ w′′ = s)))

LEMMA 5.9. Let σ be a (possibly empty) string constructed from 3 and _. For any tense
formula A, model M and state w:

M,w |= σA iff there exists v such that M |= Σσ(w, v) and M,v |= A

PROOF. Induction on the length of σ.

We will require the following definitions (see [Blackburn et al. 2001]).

Definition 5.10 (positive, negative propositional var). A propositional variable is in positive
(resp. negative) position if it occurs in an implication-free formula under an even (odd) number
of negation symbols. A formula is positive (resp. negative) in p if every occurrence of p is in posi-
tive (negative) position.

E.g. the formula p ∧ q ∧ ¬(q ∨ ¬p) is positive in p, and neither negative nor positive in q (the first
occurrence of q is in positive position and the second is in negative position).

Definition 5.11 (upward monotone). A tense formula A is upward monotone in p if whenever
V ′(p) ⊆ V (p) and V ′(q) = V (q) for q 6= p: (F, V ′), w |= A implies (F, V), w |= A.

It may be checked easily that if A is positive in p then A is upward monotone in p.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

For A,B ∈ LKt, we write A = B to mean A → B ∈ Kt and B → A ∈ Kt. The proof
of the following lemma appears in [Ramanayake 2011] where a second proof using second-order
correspondence is also given.

LEMMA 5.12. Suppose that

(i) g(p1, . . . , pN) is a formula constructed from distinct propositional variables p1, . . . , pN and>
using 3,_ and ∧ such that each propositional variable appears exactly once; and

(ii) Each of D1, . . . , DN is either ⊥ or constructed from distinct propositional vari-
ables p1, . . . , pN , pN+1, . . . , pM and > using 3,_,∧ and ∨.

Then g(p1 ∧ ¬D1, . . . , pN ∧ ¬Dn)→ ⊥ is frame-equivalent to

g(p1, . . . , pN)→ g∨(p1 ∧D1, . . . , pN ∧DN) (7)

where g∨(p1, . . . , pN) is obtained by replacing every ∧ in g(p1, . . . , pN) with ∨. Also, if someDi 6=
⊥ then (7) is frame-equivalent to a primitive tense formula.

PROOF. Let us first show that (7) is equivalent to a primitive tense formula whenever someDi 6=
⊥. By inspection, if (7) contains no occurrence of ⊥ then it is already a primitive tense for-
mula. Next, suppose without loss of generality that DN = ⊥. By the hypotheses some Dk 6= ⊥,
hence N > 1. Using the equivalence pN ∧ ⊥ = ⊥ followed by repeated applications of 3⊥ = ⊥;
_⊥ = ⊥ and finally > ∨ ⊥ = > or (pj ∧ Dj) ∨ ⊥ = pj ∧ Dj (j < N) we obtain a formula
equivalent to (7) of the following form containing one less occurrence of ⊥.

g(p1, . . . , pN)→ g∨′(p1 ∧D1, . . . , pN−1 ∧DN−1)

By repeating this procedure we ultimately obtain a primitive tense formula.
We make use of the following notation (left column) in the remainder of this proof.

g(pi) g(p1, . . . , pN)

g(pi ∧Di) g(p1 ∧D1, . . . , pN ∧DN)

We need to prove that for every frame F : F |= g(pi) → g∨(pi ∧Di) iff F |= g(pi ∧ ¬Di) → ⊥.
Argue in each direction by contradiction.

Assume that there is some F such that F |= g(pi ∧ ¬Di)→ ⊥ and F 6|= g(pi)→ g∨(pi ∧Di).
The latter implies that there exists some modelM = (F, V) and state w such thatM,w 6|= g(pi)→
g∨(pi ∧Di). ThereforeM,w |= g(pi) andM,w 6|= g∨(pi ∧Di). Starting withM,w |= g(pi) and
making use of Lemma 5.9 it follows that there exist v1, . . . , vN and strings σ1, . . . , σN in 3,_ such
thatM |= Σσi(w, vi) andM, vi |= pi for 1 ≤ i ≤ N . Moreover, sinceM,w 6|= g∨(pi ∧Di) it must
be the case that M,vi 6|= pi ∧Di and hence M,vi 6|= Di (1 ≤ i ≤ n). Therefore M,vi |= pi ∧¬Di

for each i, so M,w |= g(pi ∧ ¬Di). Since F |= g(pi ∧ ¬Di)→ ⊥ it follows that M,w |= ⊥. This
is impossible so we have obtained a contradiction.

Now for the other direction. Assume that there is some frame F such that F |= g(pi) →
g∨(pi ∧Di) and F 6|= g(pi ∧ ¬Di) → ⊥. Then there exists some model M = (F, V) and state
w such that M,w 6|= g(pi ∧ ¬Di)→ ⊥. Thus M,w |= g(pi ∧ ¬Di). This implies via Lemma 5.9
that there exist v1, . . . , vN and strings σ1, . . . , σN constructed from 3,_ such thatM |= Σσi(w, vi)
and M,vi |= pi ∧ ¬Di. We will assume from here on that

(†) no Di = >

as this would immediately give us the contradiction. Therefore M, vi |= pi for each i, and thus
M,w |= g(pi). Since F |= g(pi) → g∨(pi ∧Di) by assumption, we must have M,w |=
g∨(pi ∧Di). Define the set ui (1 ≤ i ≤ N) (‘the set of states that are at the end of a σi path
from w in which pi ∧Di holds’):

s ∈ ui iff M |= Σσi(w, s) and M, s |= pi ∧Di

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 A. Ciabattoni and R. Ramanayake

Notice that if ui is non-empty then Di 6= ⊥. Also observe that vi 6∈ ui for any i since M,vi |=
pi ∧ ¬Di.

Let M ′ = (F, V ′) be the model obtained from M = (F, V) by setting

V ′(pi) = V (pi) \ ui for each pi; V ′(q) = V (q) for other propositional variables

Informally, the model M ′ is obtained from M by ‘switching-off’ pi at states s such that M |=
Σσi(w, s) and M |= pi ∧Di. The models M and M ′ are illustrated below.

pi ¬Di

vi

w

Σσi (w,vi)
::vvvvvvvvv

Σσi (w,s) $$HHHHHHHHH model M

s ∈ ui

pi Di

pi ¬Di

vi

w

Σσi (w,vi)
::vvvvvvvvvv

Σσi (w,s) %%LLLLLLLLLLL model M ′

s ∈ ui

Clearly M ′, vi |= pi for each i, so M ′, w |= g(pi) and since we have assumed F |= g(pi) →
g∨(pi ∧Di) we getM ′, w |= g∨(pi ∧Di). Since noDi = > from (†), there must be some i∗ and s
such that M ′ |= Σσi∗ (w, s) and M ′, s |= pi∗ ∧Di∗ . Since the formula pi∗ ∧Di∗ is positive in every
propositional variable occurring in it, it is upward monotone in all propositional variables. Since
V ′(p) ⊆ V (p) for every p, by repeated upward monotonicity we have M, s |= pi∗ ∧ Di∗ . Then it
must be the case that s ∈ ui

∗
and thus M ′, s 6|= pi∗ by definition of V ′(pi∗). This is a contradiction

since we have already noted that M ′, s |= pi∗ ∧Di∗ .

Example 5.13. Consider the formula g(p, q, r) = p ∧ 3q ∧ _r. Suppose that D1 = 3q ∨ s;
D2 = ⊥; and D3 = 3>. Then the lemma tells us that the formulae below are frame-equivalent.
Note that g∨(p, q, r) = p ∨3q ∨ _r.

(p ∧ ¬(3q ∨ s)) ∧3(q ∧ ¬⊥) ∧ _(r ∧ ¬3>)→ ⊥
p ∧3q ∧ _r → (p ∧ (3q ∨ s)) ∨3(q ∧ ⊥) ∨ _(r ∧3>)

The latter is equivalent to the primitive tense p ∧3q ∧ _r → (p ∧ (3q ∨ s)) ∨ _(r ∧3>).

Definition 5.14 (positive, negative structure var). A structure variable is in positive (negative)
position if it occurs under an even (odd) number of ? symbols. A schematic structure is positive
(resp. negative) in a structure variable if every occurrence of that variable is positive (negative).

LEMMA 5.15. Let ρ be an analytic structural rule, or an analytic structural rule minus C1,
of δKt containing the structural variable L. Let ρ∗ be the rule obtained from ρ by uniformly substi-
tuting ?L for L. Then ρ and ρ∗ are equivalent.

PROOF. One direction is trivial since every instance of ρ∗ is an instance of ρ. Now suppose that
we are given premise instantiations {si}1≤i≤n of ρ. Let X be the concrete structure instantiating
the structure variable L. Apply the display rules to {si}1≤i≤n to obtain sequents {s′i}1≤i≤n where
each X is replaced with ??X . Apply ρ∗ to {s′i}1≤i≤n. The conclusion will contain an occurrence
of ??X . It now suffices to apply the display rules to rewrite ??X as X .

A literal has the form p or ¬p where p is a propositional variable.

LEMMA 5.16 (KRACHT). For any structure X not containing logical connectives:

(i) l(Xσ) is equivalent to a formula constructed from literals and > using 3,_ and ∧.
(ii) r(Xσ) is equivalent to a formula constructed from literals and ⊥ using �,� and ∨.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

Here σ is a function from schematic structures—built from structure variables using structural con-
nectives and constants—to concrete structures, which simply replaces distinct structure variables
with distinct propositional variables.

PROOF. The result follows from writingX in a normal form. See [Kracht 1996, Lemma 14].

PROPOSITION 5.17. Let H be an axiomatic extension of HKt. If δKt + {ρi}i∈I is an analytic
structural rule extension corresponding to H, then L(H) = L(HKt + ∆) where ∆ is a set of
primitive tense formulae.

PROOF. The idea of the proof is the following: we first use Lemma 4.4 to compute a formula
equivalent to each analytic structural rule ρi. Then we show that this formula can be transformed
into an equivalent formula (this is the formula (8), below) satisfying the hypotheses of Lemma 5.12.
It then follows from that lemma that (8) is a primitive tense formula.

To simplify the notation we consider a single rule extension so {ρi}i∈I = {ρ}. If ρ contains
no premise, then it can be written simply as a sequent X ` I. This sequent is equivalent to the
following rule for fresh structure variables L and M :

M ` L
M,X ` I

Indeed, applying this rule to the initial sequent I ` > we get I, X ` I which is display equivalent
to X ` I. In the other direction, applying weakening to X ` I we get M,X ` I. Note that this rule
is an analytic structural rule minus C1.

Hence without loss of generality assume that ρ has at least one premise. Then due to Lemma 5.15
we may assume that ρ has the form below where every structure variable in the rule is a-part. Note
that we have applied the display rules to the conclusion to move all structures to the antecedent.{

Mk ` Y kl
}
kl ρ

X
[
Mk
]
k
` I

Although ρ might be an analytical structural rule minus C1, is easy to see that C1 is not required in
the proof of Lemma 4.4. Thus using Lemma 4.4, δKt + ρ is a calculus corresponding toHKt +Ax
where Ax is the formula

l(X)

[
(Mkσ) ∧

∧
l

r(Y kl σ)

]
k

→ ⊥

Here σ is a function from schematic structures—built from structure variables using structural con-
nectives and constants—to concrete structures, which simply replaces distinct structure variables
with distinct propositional variables.

Note that ∧lr(Y kl σ) = ¬∨l l(?Y kl σ). From Lemma 5.16 we can write ∨ll(?Y kl σ) as a formulaDk

constructed from literals and> using 3,_,∧ and ∨. Since every structure variable in ρ is a-part and
each Y kl is an s-part structure, it follows that Y kl is negative in every structure variable and thus ?Y kl
is positive in every structure variable. Hence Dk is constructed from propositional variables and >
using 3,_,∧ and ∨.

Next we will show that Ax is equivalent to a formula satisfying the hypotheses of Lemma 5.12.
BecauseX

[
Mk
]
k
` I is the conclusion of an analytic structural rule ρ, due to C3 it contains distinct

occurrences of structure variables. Because every structure variable in ρ is a-part, from Lemma 5.16
we can write l(X

[
Mk
]
k
σ) as a formula g(p1, . . . , pN) constructed from distinct propositional vari-

ables {M1σ, . . . ,Mµσ, q1, . . . , qν} and > using 3,_ and ∧ such that each propositional variable
occurs exactly once. Here the qi are propositional variables corresponding to structure variables not
in {Mk}k. Then the formula Ax is equivalent to the formula α1:

g(M1σ ∧ ¬D1, . . . ,Mµσ ∧ ¬Dµ, q1 ∧ ¬⊥, . . . , qν ∧ ¬⊥)→ ⊥ (8)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 A. Ciabattoni and R. Ramanayake

In order to apply Lemma 5.12 it remains to show that each Dk has the proper form. We now show
that no Dk = ⊥. Indeed, suppose that some Dk = ⊥ so ∧lr(Y kl σ) = > and thus r(Y kl σ) = >.
From Lemma 5.16 and because Y kl is negative in every structure variable, we can write r(Y kl σ) as
a formula constructed from negated propositional variables and ⊥ using �,� and ∨. Now consider
the frame (Z, R) where Z = {. . . ,−2,−1, 0, 1, 2, . . .} and R is the binary relation defined by
R(n)(n + 1) for all n ∈ Z. Setting the valuation V (p) = Z for every propositional variable p we
obtain the model M = ((Z, R), V). We claim that for every n: M,n 6|= r(Y kl σ). Certainly M,n 6|=
⊥ and M,n 6|= ¬p (base cases). For the inductive case observe that M,n 6|= �A and M,n 6|= �A
follow, respectively, fromM,n+1 6|= A andM,n−1 6|= A—obtained via the induction hypothesis.
Finally M,n 6|= A ∨B since M,n 6|= A and M,n 6|= B by the induction hypothesis. Since there is
a model refuting r(Y kl σ) it follows that r(Y kl σ) 6= >, hence Dk(= ¬ ∧l r(Y kl σ)) 6= ⊥.

Now from Lemma 5.12 we have that α1 is frame-equivalent to some primitive tense formula α2.
To complete the proof, define the classes of framesFα1 = {F |F |= α1} andFα2 = {F |F |= α2}.
We have shown that Fα1 = Fα2 . Noting that α1 and α2 are Sahlqvist formulae [Blackburn et al.
2001], by the Sahlqvist completeness theorem we have for any formula B: B ∈ L(HKt + αi) iff
Fαi |= B (i ∈ {1, 2}). Thus L(HKt + Ax) = L(HKt + α1) = L(HKt + α2). Since δKt + ρ
is a display calculus corresponding to H and HKt + Ax, from Lemma 3.34 we have L(H) =
LI(δKt + ρ) = L(HKt + Ax) = L(HKt + α2). (Indeed, it even holds that δKt + ρ corresponds
toHKt + α2).

Example 5.18. Consider the analytic structural rule below left. The equivalent rule where every
structure variable is a-part (see Lemma 5.15) is below right.

P ` • ? Q P ` ?S ? • ?I ` R
P, ? • ?Q ` ? • ?R

P ` • ? Q P ` ?S R ` • ? I
ρ

P, ? • ?Q, •R ` I

From Lemma 4.4, Kt + ρ is a calculus corresponding toHKt +Ax where Ax is the formula

((p ∧�¬q ∧ ¬s) ∧3q ∧ _(r ∧�¬>))→ ⊥

or equivalently p ∧ ¬(3q ∨ s) ∧3(q ∧ ¬⊥) ∧ _(r ∧ ¬3>) → ⊥. The equivalent primitive tense
formula was obtained in Example 5.13 using Lemma 5.12.

Remark 5.19. In addition to the Display Theorem I, Kracht also claimed a ‘Display Theo-
rem II’ characterising analytic structural rule extensions of the display calculus δK (obtained
from δKt by deleting the rules introducing the connectives _ and �) as axiomatic extensions of
the basic modal logic K by primitive modal formulae. Here primitive modal formulae refers to the
subset of primitive tense formulae in the modal language. A counterexample to Kracht’s claim has
been known at least as far back as [Wansing 2002] where he credits Rajeev Goré. We note that the
calculus δK is not amenable because there do not exist functions l and r satisfying Definition 3.1.
Nevertheless we can obtain a display calculus for any acyclic I2(δKt) modal axiomatic extension
HK+A if we know that L(HKt +A) is conservative over L(HK+A) (see Theorem 3.43). In the
case that A is a Sahlqvist axiom, conservativity is a direct consequence of the Sahlqvist complete-
ness theorem and the fact that Kt and K share the same frame semantics.

6. SUMMARY AND OPEN PROBLEMS
Given any display calculus satisfying a few (purely syntactic) properties, we introduced an algorithm
for transforming large classes of Hilbert axioms into structural rules satisfying Belnap’s conditions.
The converse direction (from structural rules to axioms) is also shown, thus characterising the class
of axioms that can be captured by structural display rules; this class (acyclic I2 axioms) turns out
to be a function of the invertible logical rules of the chosen base calculus. Checking if an axiom
belongs to this class or not is shown to be decidable.

Our work is a concrete step towards the automated construction of analytic display calculi. This
work can be developed in several directions, among them:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

Investigating the expressive power of logical rules in cut-eliminable display calculi; the case study
of tense logics shows that these rules can formalize Hilbert axioms that cannot be captured by ana-
lytic structural rules. As proved by Kracht (and seen in the above section), the latter capture exactly
the primitive tense formulae. It is easily verified that every primitive tense formula is a Sahlqvist
formula [Blackburn et al. 2001]. On the other hand, extension of the logical calculus by logical rules
can capture axioms that are not equivalent to Sahlqvist formulae and hence are not primitive tense
axioms. An example is provided by the display calculus for provability logic GL [Demri and Goré
2002], obtained by the addition of a logical rule to δK; it is well-known that this logic cannot be
axiomatised using Sahlqvist formulae. It would be interesting to develop methods for introducing
logical rules preserving cut-elimination and characterising their expressive power. This problem has
been already considered [Lellmann and Pattinson 2013; Lellmann 2014] in the context of sequent
and hypersequent rules for modal logics.

It would also be interesting to develop (syntactic or semantic) characterisations of acyclic I2

axioms for specific families of calculi/logics.
The case study of tense logics provides an example of such a syntactic characterization:

acyclic I2(δKt) axioms coincide with primitive tense formulae (Definition 5.5). For the extensions
of the display calculus δHB for Bi-intuitionistic logic (see Example 3.38) we conjecture that all
I2(δHB) axioms are acyclic.

A semantic characterization of acyclicity for the Hilbert axioms in the class N2 (cf. Section 3.3)
that can be captured by structural sequent calculus rules is contained in [Ciabattoni et al. 2012];
there, by interweaving proof theoretic and algebraic arguments starting with the observation that
axioms over full Lambek calculus FL are precisely algebraic equations over residuated lattices, it
is shown that acyclicity is equivalent to the closure under the Dedekind-MacNeille completions for
the corresponding varieties of residuated lattices. A similar characterisation of acyclicity for I2(δ
Bi-FL) axioms (see Example 2.10) is not yet available.

Incidentally, the steps in our procedure (the usage of the display rules—viewed as residuation
properties of the logic—and invertible rules, Ackermann’s lemma and the argument from semi-
structural rules to structural rules) play a crucial role in the ALBA7 algorithm [Conradie and Palmi-
giano 2012] for correspondence theory, although these steps are not explicitly identified there.

Acknowledgments
The authors would like to thank the anonymous referees and A. Tzimoulis for their valuable com-
ments on previous versions of this paper.

APPENDIX
The hypersequent calculus HLJ is presented below. Note that all hypersequents there are single-
conclusioned (Π and Π′ are schematic variables to be replaced by the empty set or a single formula).

Initial sequents Cut Rule

A ` A ⊥ ` A G | Γ′ ` A G | A,Γ ` Π

G | Γ,Γ′ ` Π
(cut)

External Structural Rules

G
G | Γ ` Π

(ew)
G | Γ ` Π | Γ ` Π

G | Γ ` Π
(ec)

G | Γ′ ` Π′ | Γ ` Π | G′

G | Γ ` Π | Γ′ ` Π′ | G′ (ee)

7Ackermann Lemma Based Algorithm.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 A. Ciabattoni and R. Ramanayake

Internal Structural Rules

G | Γ ` Π

G | Γ, A ` Π
(w, l)

G | Γ `
G | Γ ` Π

(w, r)

G | Γ, A,A ` Π

G | Γ, A ` Π
(c, l)

G | Γ, B,A,∆ ` Π

G | Γ, A,B,∆ ` Π
(e, l)

Logical Rules

G | Γ, A ` B
G | Γ ` A→ B

(→, r)
G | Γ ` A G | B,Γ ` Π

G | Γ, A→ B ` Π
(→, l)

G | Γ ` A G | Γ ` B
G | Γ ` A ∧B

(∧, r)
G | Γ, A,B ` Π

G | Γ, A ∧B ` Π
(∧, l)

G | Γ ` Ai

G | Γ ` A1 ∨A2
(∨i, r)i=1,2

G | Γ, A ` C G | Γ, B ` Π

G | Γ, A ∨B ` Π
(∨, l)

G | Γ, A `
G | Γ ` ¬A

(¬, r)
G | Γ ` A
G | Γ,¬A `

(¬, l)

REFERENCES
J.-M. Andreoli. 1992. Logic programming with focusing proofs in linear logic. J. Logic Comput. 2(3) (1992), 297–347.
A. Avron. 1987. A Constructive Analysis of RM. J. of Symbolic Logic 52, 4 (1987), 939–951.
P. Bahls, J. Cole, N. Galatos, P. Jipsen, and C. Tsinakis. 2003. Cancellative residuated lattices. Algebra Universalis 50 (2003),

83–106.
N. D. Belnap, Jr. 1982. Display logic. J. Philos. Logic 11, 4 (1982), 375–417.
P. Blackburn, M. de Rijke, and I. Venema. 2001. Modal logic. Cambridge Tracts in Theoretical Computer Science, Vol. 53.

Cambridge University Press, Cambridge. xxii+554 pages.
J. Brotherston. 2012. Bunched logics displayed. Studia Logica 100, 6 (2012), 1223–1254.
K. Brünnler. 2006. Deep sequent systems for modal logic. In Advances in modal logic. Vol. 6. Coll. Publ., London, 107–119.
A. Ciabattoni, N. Galatos, and K. Terui. 2008. From axioms to analytic rules in nonclassical logics. In LICS 2008. 229–240.
A. Ciabattoni, N. Galatos, and K. Terui. 2012. Algebraic proof theory I: cut-elimination and completions. Annals of Pure

and Applied Logic 163, 3 (2012), 266–290.
A. Ciabattoni and R. Ramanayake. 2013. Structural rule extensions of display calculi: a general recipe. In WOLLIC 2013

(LNCS), Vol. 8071. Springer, 81–95.
A. Ciabattoni, R. Ramanayake, and H. Wansing. 2014. Hypersequent and Display Calculi a Unified Perspective. Studia

Logica 102, 6 (2014), 1245–1294.
A. Ciabattoni, L. Strassburger, and K. Terui. 2009. Expanding the realm of systematic proof theory. In CSL 2009. LNCS.

Springer, 163–178.
W. Conradie and A. Palmigiano. 2012. Algorithmic Correspondence and Canonicity for Distributive Modal Logic. Annals

of Pure and Applied Logic 163(3) (2012), 338–376.
S. Demri and R. Goré. 2002. Theoremhood-preserving maps characterizing cut elimination for modal provability logics. J.

Logic Comput. 12, 5 (2002), 861–884.
M. Fitting. 1983. Proof methods for modal and intuitionistic logics. Synthese Library, Vol. 169. D. Reidel Publishing Co.,

Dordrecht. viii+555 pages.
G. Gentzen. 1935. Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39 (1935), 176–210, 405–431.

English translation in: American Philosophical Quarterly 1 (1964), 288–306 and American Philosophical Quarterly 2
(1965), 204–218, as well as in: The Collected Papers of Gerhard Gentzen, (ed. M.E. Szabo), Amsterdam, North Holland
(1969), 68–131.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

S. Ghilardi and G. Meloni. 1997. Constructive canonicity in non-classical logics. Ann. Pure Appl. Logic 86, 1 (1997), 1–32.
R. Goré. 1998a. Gaggles, Gentzen and Galois: how to display your favourite substructural logic. Log. J. IGPL 6, 5 (1998),

669–694.
R. Goré. 1998b. Substructural logics on display. Log. J. IGPL 6, 3 (1998), 451–504.
R. Goré, L. Postniece, and A. Tiu. 2011. On the correspondence between display postulates and deep inference in nested

sequent calculi for tense logics. Log. Methods Comput. Sci. 7, 2 (2011), 2:8, 38.
A. Guglielmi. 2007. A system of interaction and structure. TOCL 8(1) (2007).
G. E. Hughes and M. J. Cresswell. 1996. A new introduction to modal logic. Routledge, London. x+421 pages.
E. Jeřábek. 2015. A note on the substructural hierarchy. preprint.
R. Kashima. 1994. Cut-free sequent calculi for some tense logics. Studia Logica 53, 1 (1994), 119–135.
M. Kracht. 1996. Power and weakness of the modal display calculus. In Proof theory of modal logic (Hamburg, 1993). Appl.

Log. Ser., Vol. 2. Kluwer Acad. Publ., Dordrecht, 93–121.
O. Lahav. 2013. From Frame Properties to Hypersequent Rules in Modal Logics. In LICS 2013, IEEE. 408–417.
J. Lambek. 1993. From categorical grammar to bilinear logic. In Substructural Logics, K. Dosen and P. Schrieder-Heister

(Eds.). Oxford University Press, 207–237.
B. Lellmann. 2014. Axioms vs Hypersequent Rules with Context Restrictions: Theory and Applications. In IJCAR 2014.

LNCS. Springer, 307–321.
B. Lellmann and D. Pattinson. 2013. Correspondence between Modal Hilbert Axioms and Sequent Rules with an Application

to S5. In Tableaux 2013. LNCS. Vol. 8123. Springer, 219–233.
S. Marin and L. Straßburger. 2014. Label-free Modular Systems for Classical and Intuitionistic Modal Logics. In Advances

in modal logic. Volume 10. College Publications, London, 387–406.
S. Negri. 2005. Proof analysis in modal logic. J. Philos. Logic 34, 5-6 (2005), 507–544.
R. Ramanayake. 2011. Cut-elimination for provability logics and some results in display logic. Ph.D. Dissertation. Australian

National University. http://www.logic.at/home/httpd/html/staff/revantha/thesis-rev.pdf
R. Ramanayake. 2015. Embedding the hypersequent calculus in the display calculus. Journal of Logic and Computation 25,

3 (2015), 921–942.
G. Restall. 1998. Displaying and deciding substructural logics. I. Logics with contraposition. J. Philos. Logic 27, 2 (1998),

179–216.
H. Wansing. 1998. Displaying Modal Logic. Springer, Trends in Logic.
H. Wansing. 2002. Sequent Systems for Modal Logics. In Handbook of Philosophical Logic, D. Gabbay and F. Guenthner

(Eds.). Vol. 8. Kluwer, 61–145.
H. Wansing. 2008. Constructive negation, implication, and co-implication. J. Appl. Non-Classical Logics 18, 2-3 (2008),

341–364.
F. Wolter. 1998. On logics with coimplication. J. Philos. Logic 27, 4 (1998), 353–387.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

