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Abstract

Theory of imprecise probability generalizes classical probability theory, by
assigning to each event an interval instead of a single number. In this paper,
we briefly discuss this generalization and some recently suggested applications
of imprecise probabilities in reliability. We also comment on challenges for
research and applications.

1 Introduction

Most reliability models which include aspects of uncertainty use probability theory
to quantify information about these uncertain aspects. For example, to take a
future lifetime 7" of a component into account in a model for system reliability, a
probability distribution for 7" can be used, which e.g. can be assumed to belong to
a certain class of parametric distributions such as Weibull, Gamma, or Lognormal.
Such a choice of a single distribution is often highly subjective, even if there is a
fair amount of relevant data available there are still many possible distributions
which are equally well supported by the data. Several authors (e.g. [1, 5, 25]) have
suggested that data are often sparse in reliability applications, if available at all,
so quantification of uncertain aspects should be based on subjective information,
i.e. experts’ judgements. Such judgements are then to be translated into, again, a
single probability distribution for the uncertain aspects of the model, with the same
problem that many distributions could be used without the possibility to distinguish
between these.

Central to these quantifications of uncertainty, either based on data, experts’
judgements, or a combination of both, is the restrictive assumption of using pre-
cise probabilities and probability distributions. During the past few decades there
has been increasing attention to generalized uncertainty quantification, including
concepts such as fuzzy sets and belief functions, for further references to such con-
cepts, and discussion from the perspective of generalized probability, see [32, 33].



One such a concept is called ‘imprecise probability’ [32], also known as ‘interval
probability’ [34, 35], and in recent years this has particularly been a growing area
of research, as it is realized that it provides a consistent theory for generalized
uncertainty quantification (which to some extend coincides with belief functions
and other concepts). Researchers with widely varying backgrounds are currently
contributing to theory, and indeed applications, of imprecise probability, including
mathematicians, statisticians, computer scientists, and researchers working on arti-
ficial intelligence, medicine, and a variety of engineering areas. Such researchers are
brought together via the Society for Imprecise Probability Theory and Applications
(SIPTA, www.sipta.org), which also organizes biennial conferences.

In this paper, we discuss possible use of imprecise probabilities in reliability.
We explain some methods recently presented in the literature, without aiming to
provide a full literature survey, and outline several topics for future research to
enable applications of imprecise probability in this field. Section 2 provides a concise
informal introduction to imprecise probability. In Section 3 we consider the use of
imprecise probability in reliability by discussing some methods and models presented
in the literature. Finally, in Section 4 we discuss some challenges for research and
applications. Throughout the paper we refer to other sources for details on theory
and further examples.

2 Imprecise probability

Imprecise probability generalizes classical probability in the sense that uncertainties
about events are quantified via intervals, instead of single numbers. For an uncer-
tain event A, where classical probability theory would require one value P(A), we
now assign an interval [P(A), P(A)], with 0 < P(A) < P(A) < 1, where P(A) is
called the lower probability for event A, P(A) the upper probability for event A, and
A(A) = P(A) — P(A) is called the imprecision for event A. When introducing such
a generalization, careful attention is required to interpretation, axioms, theorems,
further concepts, and development of related statistical models and corresponding
inference, including decision making. In addition, insight into advantages and dis-
advantages, when compared to the established theory of precise probabilities, is
required, in particular to convince practitioners to start using the new concepts
and methods. It is amusing that quite many mathematicians and statisticians have
expressed fairly strong views against the use of imprecise probability, see e.g. [23],
whereas the onus of justification is clearly on the side of using the far more restrictive
precise probabilities, which are a special case of imprecise probability.

There are several possible interpretations of classical probabilities, and the same
holds for imprecise probabilities. A relatively straightforward interpretation of such
an interval is in terms of ‘all possible values’ for a precise probability, so all values
one has not yet been able to exclude. This implies that one thinks that A does have
a precise probability P(A), which happens not to be precisely known, but it is known
(or at least one strongly believes) that it is within [P(A), P(A)]. Many researchers in
fields related to uncertainty prefer a subjective interpretation of probability, which



also underlies Bayesian statistics, and where a precise probability P(A) is defined
in terms of a personal ‘fair price’ for a bet on event A, loosely speaking such that
you consider £P(A) the fair price for a bet that pays £1 if A occurs, and nothing
otherwise (formally, some unit of linear utility is required instead of pounds [32] to
avoid influence of personal attitudes towards risk). Generalizing this to imprecise
probability, one distinguishes between the maximum price for which one would wish
to buy this bet, which is P(A), and the minimum price for which one would wish
to sell this bet, which is P(A). The idea is that, if one has a lot of information
relevant to the uncertainty of A, one might be able to determine upper and lower
probabilities which are close to each other, whereas if one hardly has any such
information, one may wish to assess lower and upper probabilities close to 0 and 1,
respectively. Clearly, this allows different levels of expertise underlying subjective
information to be taken into account. For example, an experienced engineer might
confidently assess lower and upper probability of 0.7 and 0.8, respectively, for the
event that a particular unit will not fail during its first year in use, whereas a less
experienced engineer, for example knowing less relevant facts about the process and
environment in which the unit is used, might only feel confident to assess the values
0.5 and 0.9 for the same event. If two experts would assign ‘conflicting values’, in the
sense that one expert’s upper probability for an event is less than the other expert’s
lower probability for the same event, then this is indeed very useful to know (note
that, when restricting to precise probabilities, it is very likely that they would assess
different values, so it is less clear that there may be ‘conflict’). In such a situation,
these values would, from a subjective interpretation point of view, imply that they
could exchange a bet such that both would find this favourable. More practically,
however, noticing such difference in experts’ imprecise probabilities might point
towards them having different information or knowledge available on which to base
their quantifications, in such cases discussion of the reasons for their assessments
might be very useful in reliability applications, we return to this issue in Subsection
3.1.

During the last two decades, a variety of generalizations of classical probability
theory have been presented, including axiom systems and important further con-
cepts and theorems, for example enabling corresponding statistical inference and
decision making. It appears that, after several concepts were developed more or less
in parallel early on, many researchers now agree that the most complete framework
is offered by Walley’s [32] theory of imprecise probability, and, closely related to
this, Weichselberger’s [34, 35] theory of interval probability, where the latter theory
is more directly formulated as a generalization of Kolmogorov’s classical probabil-
ity axioms, and puts less emphasis on development via coherent subjective betting
behaviour than Walley’s theory. Without wishing to go into details on axioms and
further concepts, it should be remarked that these are far more complex than for
precise probabilities. For example, the important concept of conditional probability,
which e.g. plays a crucial role in Bayesian statistics, does not have a unique general-
ization to imprecise probability, where conditioning can be done via several differing
concepts [2, 34].

Statistical inference based on imprecise probability offers a wide range of mod-



elling opportunities, among these are well-known models from robust (Bayesian)
statistics [3, 18], which however have a different interpretation from imprecise prob-
ability perspective, with differences between upper and lower bounds for inferences
fundamentally quantifying indeterminacy in the information used for the quantifi-
cation of the uncertain events of interest, which goes beyond the classical sensitivity
interpretation (which, of course, can still be of use). In Section 3 we will briefly show
some possibilities for inference based on imprecise probabilities, including attention
to decision making (Subsection 3.4). There, we also comment on advantages and
disadvantages of the use of imprecise probabilities for quantification of uncertainties
in reliability, including attention to elicitation (Subsection 3.1).

3 Imprecise probability in reliability

There is a wide variety of reasons why imprecise probability might be of particular
relevance in the area of reliability. A main reason is the fact that, in many reliability
applications, there may be few, if any, statistical data available, implying stronger
dependence on subjective information in the form of expert judgements [1, 5, 25].
Apeland, et al. [1] suggest a fully subjective approach, without even considering
statistical data, precisely because of this reason. However, they still rely on precise
probabilities, where it is not clear how imperfections in the experts’ uncertainty
quantifications can be dealt with. Such imperfections may, for example, occur due to
constraints on time and resources to elicit all probabilities of interest, inconsistency
of elicited subjective probabilities on related events, or the use of information from a
group of possibly disagreeing experts. This last issue also raises interesting questions
on combination of subjective probabilities from a group of experts, which we will
address in Subsection 3.1.

A second reason is the relaxation of dependence on precise statistical models
justified by physical arguments. Although there is some overlap with the issues
relating to expert judgements, some probability distributions can be assumed based
on physical properties, e.g. the shape of the Weibull distribution [22] for the lifetime
of a unit might be assumed a known constant based on knowledge of the ageing
process of a unit, e.g. shape parameter 1, giving the exponential distribution, relates
to no ageing effects, and shape parameter 2 leads to linearly increasing hazard rate
(a Rayleigh distribution), where roughly speaking, if unit A is twice as old as unit
B, it is twice as likely to fail within the next short time period. In practice, there
may indeed be relevant ageing knowledge backed up by physical reasons, yet this
knowledge may not be strong enough to justify restriction to a single statistical
model. We will address this issue a bit further in Subsection 3.2.

A third reason may be encountered in study of system reliability. An assumption
underlying most mathematical work in this field is that the exact system structure
and dependence relations between components are known, which may well be unre-
alistic in many applications for all but the simplest systems. We address this issue
in Subsection 3.3.

There are more reasons suggesting benefits of using imprecise probability in reli-



ability, e.g. the nature of data collection such as grouped data [7, 13], but we reckon
that the ones we discuss explicitly in this paper are strong enough to emphasize
the possible benefits of using imprecise probabilities in reliability. In Subsection 3.4
we briefly address the important aspect of actually making decisions when using
imprecise probabilities, which is often the ultimate goal of analyses of uncertainty
in reliability.

3.1 Expert judgements: elicitation and combination

Many authors have presented strong cases for the use of expert judgements in re-
liability applications which involve uncertainty (e.g. [1, 5]). Crucial to inclusion of
such information in probabilistic or statistical models is proper quantification of such
judgements, a process often called ‘elicitation’. When interest is in the uncertain
time to failure of a technical unit, an often used approach is to assume a particular
convenient family of probability distributions for this random quantity, e.g. Weibull
distributions with two unknown parameters, and ask an expert just enough (i.e. two
in this case) characteristics to choose a particular Weibull distribution. For example,
one might ask the expert’s judgement on the expected value and variance of this
distribution, or two different quantiles. At a more sophisticated level, one might try
to use a Bayesian approach with probability distributions for the parameters, but
effectively this just adds one more layer of model assumptions, as typically expert’s
judgements are still elicited via a few summaries [5, 25]. Whether or not the full
resulting probability distribution carefully reflects the expert’s judgements is often
not clear, if one would elicit more characteristics than the number of parameters to
be chosen then there would almost certainly not be a precisely fitting probability
distribution in the chosen family of distributions.

Imprecise probabilistic methods allow as many characteristics of probability dis-
tributions to be elicited as the expert, or the statistician working on the problem,
feels appropriate to carefully quantify the expert’s judgements. Of course, if dif-
ferent such quantifications are implicitly contradictory this should be pointed out,
but otherwise a set of probability distributions can be used such that all the elicited
values correspond to some of the probability distributions in this set. In addition,
and perhaps the most important advantage, such methods do not require the expert
to quantify his judgements via single numbers for characteristics of the probability
distribution, explicitly allowing indeterminacy which could possibly reflect the con-
fidence that the expert has in his knowledge with regard to the particular random
quantity of interest.

For example, suppose that for a reliability study it is important to model the
uncertainty about the lifetime X (in years) of a particular unit, and that two experts
are consulted. Let P;(A) and P;(A) be the lower and upper probabilities for event
A, respectively, as assessed by expert ¢ = 1,2. Suppose that the following values
have been elicited: P;(X > 1) = 0.9, Pi(X > 1) = 1.0, Py(X > 2) = 0.8,
Pi(X > 2) =09, Po(X > 1) = 0.8, Po(X > 1) = 0.95, Py(X > 2) = 0.3,
Pyo(X > 2) = 0.7. With such elicited values, it is possible to use sets of lifetime
distributions per expert, such that these sets correspond to these elicited values. For



example, for expert 1 all Weibull distributions with probability of surviving 1 year
between 0.9 and 1.0, and of surviving 2 years between 0.8 and 0.9, could be found,
and used for inference.

It may also be of interest to combine the judgements from both experts. First,
however, note that, from a betting interpretation perspective, these experts disagree
about survival past 2 years to the extent that they would be happy to exchange a
bet, which follows from the fact that expert 2’s upper probability is less than expert
1’s lower probability for the event X > 2. For example, a bet that would pay £1, say,
if the unit actually survives 2 years, and nothing else, could be exchanged for a price
of £0.75, such that expert 1 pays expert 2 £0.75 now, getting the bet in return, and
both experts are eager to do so as they expect a profit. Such differences in opinion
might be important to notice, whereas when restricting to precise probabilities it
would be a mere coincidence if the two experts would exactly agree.

If one wishes to combine the expert judgements, there is a variety of possibilities.
Most obviously, we could define a combined lower (upper) probability for A as the
minimum (maximum) of the individual lower (upper) probabilities for A. This could
be interpreted as a cautious approach, as all experts would agree with the resulting
value being a lower (upper) bound of the probability, or, in terms of the betting
interpretation, all experts would indeed support buying the bet for this combined
lower probability. Obviously, this might lead to fairly large differences between
corresponding upper and lower probabilities. An alternative would be to take the
maximum (minimum) individual lower (upper) probability as the combined lower
(upper) probability, but this might lead to incoherent probabilities. For example,
with the two experts above, this would lead to lower probability 0.8 of surviving
past 2 years, but upper probability 0.7 for the same event, which is not acceptable
for obvious reasons. Such combination rules are discussed in more detail by, for
example, Walley [32] and Kozine and Filimonov [20]. Coolen [6] also discusses the
possibility of taking weighted averages of individual lower (upper) probabilities as
the combined lower (upper) probability, where weights could reflect the expertise of
the individuals, generalizing weighted averaging of precise subjective probabilities
[5], but theory into appropriate definitions for such weights has not yet been devel-
oped for imprecise probabilities. There are good opportunities to use calibration of
the experts [5] related to such weights, and one route towards sensible weights for
experts for combining imprecise probabilities might be to actually relate weights to
the betting interpretations of lower and upper probabilities, as budgets of ‘good ex-
perts’ would tend to increase, whereas those of ‘bad experts’ would tend to decrease
over time if they were actually buying and selling bets. Finally, we need to warn
about any simple rule on combining quantified experts’ judgements, as resulting
combined imprecise probabilities may not take into account that the information of
some of the experts may not be independent. For precise probabilities some progress
has been made on dealing with this aspect [27], it may well be that imprecise prob-
abilities are again better suited to deal with this but, as far as we are aware, this
has not yet been reported in the literature.

Imprecise probabilities also naturally occur when looking for statistical inferen-
tial methods with a minimum of expert judgements included, to the point that one



also wishes to reduce structural modelling assumptions. Of course, it remains nec-
essary to assume some mathematical structure, to link random quantities on future
observations to past observations, which can be achieved by a post-data assumption
related to exchangeability, leading to so-called nonparametric predictive inference
[2, 9, 14], brief examples of such inference are presented in Subsections 3.2 and 3.4.

Finally, with ever growing computational powers, statisticians have successfully
developed models allowing very many random quantities, with careful representation
of dependence structures between these quantities. For example, Bayesian graphical
models [15, 19] have proven successful for large scale applications [26, 36]. Typically,
the elicitation task for such models is enormous, as it is exponential in the number of
quantities included in the model and these models normally add unobservable ran-
dom quantities (‘parameters’) to the observable random quantities. For application
of such models, elicitation tends to suffer from serious time constraints, so methods
are needed that can leave many probabilities unspecified, or at best only partially
specified. Such methods have been suggested during the past few years, see e.g.
Cozman [16], and are being developed further, where main problems involve devel-
opment of fast optimisation algorithms combined with the algorithms for learning
in such models. Studying imprecision in such models is also likely to be of use for
indicating on which parts of the models it is best to focus the elicitation effort, but
methods for this have not yet been fully developed.

3.2 Lifetime models and inference

For statistical inference in reliability, with imprecise probabilities, statistical models
for lifetimes are required. Several models have been suggested explicitly based on
imprecise probabilities, we briefly discuss a few below. In addition, there is a rich
literature on robust statistics, both Bayesian [3] and frequentist [18], suitable models
presented there can also be used within imprecise probability theory [10]. This is
generally discussed by Walley [32].

A particularly interesting class of lifetime distributions, leading to imprecise re-
liability inferences, has recently been proposed by Utkin and Gurov [30]. For a
non-negative random lifetime 7', with cumulative hazard function H(t) = f; h(x)dx,
where h(-) is the hazard rate, they define the class of distributions #(r,s), for
0 <r < s < oo, as those distributions for which H(t)/t" increases and H (t)/t*
decreases for all . Such classes can contain a wide variety of distributions [30], e.g.
H(1,00) is the class of all distributions with increasing hazard rate, H(0,1) those
with decreasing hazard rate, while bath-tub shaped hazard rates might be embed-
ded in such classes by choosing r < 1 < s. Furthermore, a Weibull distribution
with shape parameter 8 belongs to all such classes with » < # < s, and a Gamma
distribution with shape parameter k£ belongs to #(1, k) for £ > 1 and to H(k,1) for
k < 1. Utkin and Gurov discuss in great detail the optimisation problems related to
calculation of upper and lower bounds for reliability characteristics corresponding
to such classes of distributions, where they particularly focus on system reliabil-
ity. For example, if n independent components, where component 7 has lifetime
distribution belonging to H(r;, s;), form a series system, then the system lifetime



distribution belongs to #H(minr;, maxr;), while if they form a parallel system it
belongs to H(minr;, Y- s;).

Such classes of distributions allow partial information to be taken into account
without requiring many additional assumptions. To make practical use of such
models more attractive, statistical theory for such models must be developed, e.g.
on fitting such classes to available data. Furthermore, generalizations may be useful,
for example by partitioning the time axis and defining separate such classes on each
interval.

Nonparametric predictive methods [9] enable lifetime inferences with a minimum
of subjective assumptions added to data. For example, Coolen and Yan [12] present
predictive upper and lower survival functions for a future lifetime 7},,,, based on
observations of n such previous lifetimes, which may include right-censored observa-
tions. This gives an alternative to the well-known product-limit estimate by Kaplan
and Meier (see e.g. [22]), and to the predictive method by Berliner and Hill [4],
which is based on similar foundations as the Coolen-Yan method, but cannot deal
with exact censoring information. For example, the following data are part of an
example discussed by Coolen and Yan [12], who provide details on context and the
original source. The 16 observations are (in days, t* denotes right-censoring):

90, 142, 150, 269, 291, 468*, 680, 837, 890%, 1037, 1090%,1113*, 1153, 1297, 1429, 1577*

Figure 1 gives the lower and upper survival functions for X7 according to the method
developed by Coolen and Yan [12], together with the Kaplan-Meier and Berliner-Hill
alternatives. The use of imprecision enables clear indication of the moments where
right-censoring takes place, at which the lower survival function decreases. The two
alternative methods do not clearly indicate the immediate effects of right-censoring.
Also, it seems natural to interpret right-censoring as a loss of information, which is
reflected by greater imprecision.

Applications of such nonparametric predictive inference to replacement problems
have been presented [8, 11], results for age replacement are presented at this confer-
ence [14]. Coolen and Yan [13] present such inference for grouped lifetime data, e.g.
life tables, where only numbers of observed events and right-censorings per interval
for a partition of the time-axis are given. Here, imprecision results from three dif-
ferent sources, namely the few assumptions added to the data, right-censoring, and
the fact that the data are not exactly observed. Although these are quite different
reasons for imprecision, indeed it appears that all cause some reduced level of infor-
mation which is rightly reflected by increased imprecision. An alternative method
for such grouped lifetime data, also using imprecise probability but closer in nature
to a robust Bayesian approach, was presented by Coolen [7].

3.3 Systems

In the previous subsection we briefly mentioned reliability results for systems cor-
responding to the distribution classes by Utkin and Gurov [30]. Utkin and Gurov
[28, 29], Kozine and Filimonov [20], and Utkin and Kozine [31] have presented a
variety of useful results on system reliability with imprecise probability, mostly by



10
0.8
0.6
0.4+ N
—— Upper bound <
—— Lower bound i___k_
0.2 | gy N
| N,
--------- KM -
0 250 500 750 1000 1250 1500

Figure 1: Survival functions; upper and lower, Berliner-Hill, and Kaplan-Meier.

solving the often complex optimisation problems to find optimal bounds for the reli-
ability characteristics corresponding to classes of reliability probabilities or lifetime
distributions per component, where the classes are often only defined by rather few
specified characteristics, and dependence structures of components in the systems
may not be fully known. Often, however, bounds for system reliability character-
istics become very wide if no knowledge at all is assumed about the dependence
of the components’ lifetimes, making such methods of less practical relevance for
larger systems. It is important that the mathematical methodology, provided by
the work of these authors, shows that larger scale applications are possible for as far
as computation is concerned, since computational complexity is a main disadvantage
of imprecise probability, as often complex constrained optimisation problems need
to be solved. In general for such methods, if bounds become very wide it is due
to the restricted information and assumptions put into the models. An interesting
direction of extending such work is the study of possibilities to model, with im-
precision, varying forms of partial knowledge about components’ dependencies, and
possibly also of system structure for large systems. In practice, it is often not likely
that experts have no useful information on dependence of components’ lifetimes, yet
indeed they may not have complete knowledge or time to fully reflect on this and
quantify all their knowledge.

3.4 Reliability decisions

Imprecise probabilities, or corresponding statistical inferences, are often not the
final goal of reliability analyses. In many practical situations, such analyses are
performed because decisions are required, e.g. on replacement of a unit or release of a



system. If imprecise probabilities reflect indeterminacy, then there is often a natural
justification to use either the lower or upper probability from a cautious perspective.
Of course, if all probabilities between the lower and upper probability would lead to
(about) the same decision, such a decision is strongly supported and quite robust
with regard to the aspects about which we did not have perfect information. On
the other hand, if decisions corresponding to such probabilities would vary widely,
then this would indicate that the information at hand may not be sufficient to
suggest a clearly optimal decision. This could be regarded as a disadvantage, but
seems a realistic reflection of the fact that on some occassions more information, or
more modelling assumptions, may be required. Decision theory is well developed
for models in robust (Bayesian) statistics, which can also be employed for several
imprecise probability models.

There are situations in which it is natural to focus only on either a lower or
upper probability. For safety critical systems, one may for example only wish to
focus on lower probabilities of zero failures. For example, nonparametric predictive
inference [9] gives imprecise probabilities for r failures in m future observations (e.g.
not functioning of a safety critical system when required), based on n tests without
failures, as (using straightforward notation):

P((m,r)n) = )

and
(1

P((m,)|n) = { o

This upper probability for » = 0 is equal to 1, for all n and m, which seems reasonable
as tests without observed failures imply that there is no clear evidence against the
possibility that the system might be without faults. However, the lower probability
of r = 0 failures in m future observations, based on n tests with 0 failures, is
probably most relevant from a cautious point of view. This lower probability is
equal to n/(n + m), which decreases with m. Suppose that one requires fairly high
reliability, say lower probability of at least 0.99 to have zero failures in m future
observations. Let us assume that the safety critical system is only approved if n
tests have shown zero failures, else faults will be removed leading to a test-fix-test
situation which could only be modelled by including further structural assumptions,
which we do not consider here. This implies that the required number of tests to
achieve this reliability would be n > 99m, and no test should reveal a failure. Clearly,
this implies that the number of future occassions on which the system is required
to function successfully, directly influences the required number of successful tests.
If the safety system only needs to be used (at most) once after testing, so m = 1,
then n = 99 tests without failure would be sufficient. Indeed, a large number
of tests is required to achieve reasonable confidence in such high reliability, when
expressing reliability in terms of the lower probability, reflecting that there are only
few mathematical assumptions in this approach. We believe that both such a high
number of required successful tests, and the dependence of this number of tests on

for r =0,
for r > 0.



the number of future observations, are fully in line with intuition of engineers, unless
their engineering expertise is explicitly taken into account. A reliability requirement,
such as the lower probability of at least 0.99 in this example, will typically be based
on a variety of factors, such as costs, environmental factors, or risk to human life.

4 Challenges for research and application

In the sections above several research challenges have already been mentioned, in-
cluding aspects with regard to large statistical models, further development of life-
time models, and combination of experts’ judgements. Clearly, practical methods
for elicitation of imprecise probabilities must be developed, where possible with
user-friendly elicitation packages and interfaces allowing judgement quantifications
at a level the experts feel comfortable with, and with a variety of feedback possi-
bilities enabling detailed understanding of the consequences of assessed probability
quantifications.

As briefly mentioned before, main difficulties for applications of statistical mod-
els with imprecise probabilities are with regard to computation. Indeed, for many
inferences complex constrained optimisation problems need to be solved to calculate
the optimal bounds of inferential measures relating to classes of probability distri-
butions, where also these classes may be defined via some constraints on summaries
of these distributions. The recent work by Utkin and co-authors has provided great
progress on this aspect, yet much more needs to be done. For example, modern
Bayesian methods often require simulation-based computational methods [17], and
it is not immediately clear, from theoretical perspective, how such methods could
be generalized to allow imprecise probabilities, let alone how to actually develop
algorithms for such computations. Interesting theoretical results on Markov chains
with imprecise probabilities have recently been presented by Kozine and Utkin [21],
and these may well provide a step in the direction towards such simulation-based
computational methods. In addition, for many reliability applications Markov mod-
els have been used successfully, e.g. to describe state transitions in maintenance
models, and the results by Kozine and Utkin form a basis for further research on
such models with imprecise probabilities.

A topic that has, as far as we know, not yet been studied at all is design of ex-
periments with uncertainty quantified via imprecise probabilities. In such research,
it is likely that well-known design optimisation criteria should be combined with the
aim to reduce imprecision optimally by taking observations at points where large
imprecision may prevent clear decisions to be taken. In reliability, such research
could for example be relevant for design of accelerated life tests (e.g. [24]), where
imprecision might realistically reflect indeterminacy with regard to modelling of the
acceleration.

There is no doubt that actual applications of imprecise probability methods in
reliability will bring to light many more interesting research problems, and require a
wide variety of research skills to tackle varying problems. From this perspective, the
wide range of backgrounds of researchers active in this field may be of great benefit



for future development. We strongly hope that reliability engineers will collaborate
with statisticians in the development of models and methods, to ensure applications
in a field where uncertainty often plays a key role in decision making.
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