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Preface

The field of graph mining has seen a rapid explosion in recent yearadeca
of new applications in computational biology, software bug localization, and
social and communication networking. This book is designed for studying va
ious applications in the context of managing and mining graphs. Graph mining
has been studied by the theoretical community extensively in the context of
numerous problems such as graph partitioning, node clustering, matchihg, a
connectivity analysis. However the traditional work in the theoretical commu-
nity cannot be directly used in practical applications because of the foljpwin
reasons:

» The definitions of problems such as graph partitioning, matching and di-
mensionality reduction are too “clean” to be used with real applications.
In real applications, the problem may have different variations such as
a disk-resident case, a multi-graph case, or other constraints asgdociate
with the graphs. In many cases, problems such as frequent sub-graph
mining and dense graph mining may have a variety of different flavors
for different scenarios.

m  The size of the applications in real scenarios are often very largecin su
cases, the graphs may not be stored in main memory, but may be avail-
able only on disk. A classic example of this is the case of web and social
network graphs, which may contain millions of nodes. As a result, it is
often necessary to design specialized algorithms which are sensitive to
disk access efficiency constraints. In some cases, the entire graph may
not be available at one time, but may be available in the form of a con-
tinuous stream. This is the case in many applications such as social and
telecommunication networks in which edges are received continuously.

The book will study the problem of managing and mining graphs from an ap-
plied point of view. It is assumed that the underlying graphs are massi/e a
cannot be held in main memory. This change in assumption has a critical
impact on the algorithms which are required to process such graphsrdthe p
lems studied in the book include algorithms for frequent pattern mining, graph
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matching, indexing, classification, clustering, and dense graph mining.iyp man
cases, the problem of graph management and mining has been studi¢kddrom
perspective of structured and XML data. Where possible, we havéeiddhe
connections with the methods and algorithms designed by the XML data man-
agement community. We also provide a detailed discussion of the application
of graph mining algorithms in a number of recent applications such as graph
privacy, web and social networks.

Many of the graph algorithms are sensitive to the application scenario in
which they are encountered. Therefore, we will study the usage of wfany
these techniques in real scenarios such as the web, social netwaikisioa
logical data. This provides a better understanding of how the algorithms in the
book apply to different scenarios. Thus, the book provides a corapsifre
summary both from an algorithmic and applied perspective.



Chapter 1

AN INTRODUCTION TO GRAPH DATA

Charu C. Aggarwal

IBM T. J. Watson Research Center
Hawthorne, NY 10532

charu@us.ibm.com

Haixun Wang

Microsoft Research Asia
Beijing, China 100190

haixunw@microsoft.com

Abstract

Keywords:

Graph mining and management has become an important topic ofekesear
cently because of numerous applications to a wide variety of data miniilig pro
lems in computational biology, chemical data analysis, drug discovelrgam-
munication networking. Traditional data mining and management algorithms
such as clustering, classification, frequent pattern mining and indeairegrow
been extended to the graph scenario. This book contains a numbermiéch
which are carefully chosen in order to discuss the broad resear@sigsgraph
management and mining. In addition, a number of important applicatibns o
graph mining are also covered in the book. The purpose of this chapier is
provide an overview of the different kinds of graph processing aimihg tech-
nigues, and the coverage of these topics in this book.

Graph Mining, Graph Management

1. Introduction

This chapter will provide an introduction of the topic of graph management
and mining, and its relationship to the different chapters in the book. The
problem of graph management finds numerous applications in a wide variety
of application domains such as chemical data analysis, computational biology,
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social networking, web link analysis, and computer networks. Diffeaippti-
cations result in different kinds of graphs, and the correspondialiectyes are

also quite different. For example, chemical data graphs are relatively lsmall

the labels on different nodes (which are drawn from a limited set of elejnents
may be repeated many times in a single molecule (graph). This results in issues
involving graph isomorphism in mining and management applications. On the
other hand, in many large scale domains [12, 21, 22] such as the web, com-
puter networks, and social networks, the node labels (eg. URLSs)stnect,

but there are a very large number of them. Such graphs are also clragleng
because the degree distributions of these graphs are highly skewiedndO

this leads to difficulty in characterizing such graphs succinctly. The n&ssiv
size of computer network graphs is a considerable challenge for mining algo
rithms. In some cases, the graphs maydgaamicandtime-evolving This
means that the structure of the graph may change rapidly over time. In such
cases, théeemporal aspeodf network analysis is extremely interesting.

A closely related field is that of XML data. Complex and semi-structured
data is often represented in the form of XML documents because of its nat-
ural expressive power. XML data is naturally represented in grapfdoa,
in which the attributes along with their values are expressed as nodes,eand th
relationships among them are expressed as edges. The expresgareopo
graphs and XML data comes at a cost, since it is much more difficult to design
mining and management operations for structured data. The design oferanag
ment and mining algorithms for XML data also helps in the design of methods
for graph data, since the two fields are closely related to one another.

The book is designed to survey different aspects of graph mining and man
agement, and provide a compendium for other researchers in the fie@. Th
broad thrust of this book is divided into three areas:

= Managing Graph Data: Since graphs form a complex and expressive
data type, we need methods for representing graphs in databases, ma-
nipulating and querying them. We study the problem of designing query
languages for graphs [14], and show how to use such languagesdein or
to retrieve structures from the underlying graphs [26]. We also explore
the design of indexing and retrieval structures for graph data. In additio
a number of specialized queries such as matching, keyword search and
reachability queries [4—7, 24] are studied in the book. We will see that
the design of the index is much more sensitive to the underlying applica-
tion in the case of structured data than in the case of multi-dimensional
data. The problem of managing graph data is related to the widely stud-
ied field of managing XML data. Where possible, we will draw on the
field of XML data, and show how some of these techniques may be used
in order to manage graphs in different domains. We will also present
some of the recently designed techniques for graph data.



An Introduction to Graph Data 3

= Mining Graph Data: As in the case of other data types such as multi-
dimensional or text data, we can design mining problems for graph data.
This includes techniques such as frequent pattern mining, clustering and
classification [1, 11, 16, 18, 23, 25, 26, 28]. We note that these meth-
ods are much more challenging in the graph domain, because the struc-
tural nature of the data makes the intermediate representation and in-
terpretability of the mining results much more challenging. This is of
course related to the cost of the greater expressive power assaitited
graphs.

m  Graph Applications: Many of the techniques discussed above are for
the case of generic graphs under a number of specific assumptions. How
ever, graph domains are extremely diverse, and this may result in a large
number of differences in the algorithms which are designed for such
cases. For example, the algorithms which are designed for the web or
social networks need to be constructed for graphs with very large size,
but with distinct node labels. On the other hand, the algorithms which
are designed for chemical data need to take into account repetitions in
node labels. Similarly many graphs may have additional information
associated with nodes and edges. Such variations make different appli-
cations much more challenging. Furthermore, the generic techniques
discussed above may need to be applied differently for different applica
tion domains. Therefore, we have included different chapters to handle
these different cases. We will study applications relating to the web, so-
cial networks, software bug localization, chemical and biological data.

One of the goals of this book is to provide the reader with a comprehensive
compendium of material in the area of graph management and mining. The
book provides a number of introductory chapters in the beginning, amd the
discusses a variety of graph mining algorithms in more detail.

2. Graph Management and Mining Applications

In this section, we will discuss the organization of the different chapters in
the book. We will discuss the different applications, and the chaptersizhwh
they are discussed. In the first two chapters, we provide an introduotibie
area of graph mining an a general survey. This chapter (Chapteoviglps a
brief introduction to the area of graph mining and the organization of this.book
Chapter 2 is a general survey which discusses the key problems anithafgo
in each area. The aim of the first two chapters is to provide the reader with a
general overview of the field without getting into too much detail. Subsequent
chapters expand on the various areas of graph mining. We discusbétiese
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Natural Properties of Real Graphs and Generators.  In order to under-
stand the various management and mining techniques discussed in the book,
it is important to get a feel of what real graphs look like in practice. Gsaph
which arise in many large scale applications such as the web and social net-
works satisfy many properties such as the power law distribution [10jsitpa

and small diameters [19]. These properties play a key role in the desidn of e
fective management and mining algorithms for graphs. Therefore, wesdisc
these properties at an early stage of the book. Furthermore, the evadfition
dynamic graphs such as social networks shows a number of interetipeypr

ties such as densification, and shrinking diameters [19]. Furthermoce,tbi@

study of graph mining algorithms requires the design of effective graph ge
erators, it is useful to study methods for constructing realistic gener@jors
Clearly, the understanding that we obtain from the study of the naturp} pro
erties of graphs in real domains can be leveraged in order to design models
for effective generators. Chapter 3 studies the laws of real largle-setwork
graphs and a number of techniques for synthetic generation of graphs.

Query Languages and Indexing for Graphs. In order to effectively han-

dle graph management applications, we need query languages which:xallow e
pressivity for management and manipulation of structural data. Furthermor
such query languages also need to be efficiently implementable. In chapter 4
a variety of query languages for graphs are presented.

A second issue is that dfficient accessf the underlying information in
order to resolve the queries. Therefore, it is useful to study the desigdex
structures for graphs. General techniques for efficiently indexiaghg are
presented in chapter 5. While chapter 5 is focussed exclusively on dipé gr
domain, we note that many of the indexing techniques for the XML domain can
also be useful for graphs. Chapter 2 explores some of the connelottween
XML indexing and graph indexing. In addition to general queries such as
similarity search, which are typically designedrmnlti-graph data setggraph
structures are naturally suited to the design of a number of differentkitids
of queries for a single massive graph. In such cases, we may havgla sin
graph, but we wish to determine important intra-node characteristics in the
graph. Such queries often arise in the context of social networks anaeh.
Examples of such queries include reachability and distance based qieries
4-7, 24]. Such queries are based onitite-node distance behaviam a large
network structure, and are often extremely challenging because theyimgle
graph may be disk-resident. In chapter 6, the literature for reachabilégyqu
processing is reviewed.

Graph Matching.  Graph matching is a critical problem which arises in the
context of a number of different kinds of applications such as schemamatc
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ing, graph embedding and other business applications [9]. In the praiflem
graph matching, we have a pair of graphs, and we attempt to determine a map-
ping of nodes between the two graphs such that edge and/or labedpamre
dence is preserved. Graph matching has traditionally been studied in the theo
retical literature in the context of tlggraph isomorphismproblem. However, in

the context of practical applications, precise matching between two gnaghs

not be possible. Furthermore, many practical variations of the problem allo
for partial knowledge about the matching between different nodegeidre,

we also need to study inexact matching techniques which allow edits on the
nodes and edges during the matching process. Chapter 7 studies mact a
inexact matching techniques for graphs.

Keyword Search in Graphs.  In the problem of keyword search, we would
like to determine small groups of link-connected nodes which are related to a
particular keyword [15]. For example, a web graph or a social netwiak be
considered a massive graph [21, 22], in which each node may contaigea la
amount of text data. Even though keyword search is defined with regpec
the text inside the nodes, we note that the linkage structure also plays an im-
portant role in determining the appropriate set of nodes. The information in
the text and linkage structure re-enforce each other, and this leadshier hig
quality results. Keyword search provides a simple but user-friendlyfauer

for information retrieval on the web. It also proves to be an effective atkth

for searching data of complex structures. Since many real life data sets ar
structured as tables, trees and graphs, keyword search overaachas be-
come increasingly important and has attracted much research interest in both
the database and the IR communities. It is important to design keyword search
techniques which maintain query semantics, ranking accuracy, and effiery
ciency. Chapter 8 provides an exhaustive survey of keywordiséecbniques

in graphs.

Graph Clustering and Dense Subgraph Extraction. The problem of
graph clustering arises in two different contexts:

= |n the first case, we wish to determine dense node clusterssingse
large graph This problem arises in the context of a number of appli-
cations such as graph-partitioning and the minimum cut problem. The
determination of dense regions in the graph is a critical problem from the
perspective of a number of different applications in social networkb, w
graph clustering and summarization. In particular, most forms of graph
summarization require the determination of dense regions in the under-
lying graphs. A number of techniques [11, 12, 23] have been designed
in the literature for dense graph clustering.
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= |nthe second case, we have multiple graphs, each of which may possibly
be of modest size. In this case, we wish to cluster graphs as objects.
The distance between graphs is defined based on a structural similarity
function such as the edit distance. Alternatively, it may be based on other
aggregate characteristics such as the membership of frequent patterns in
graphs. Such techniques are particularly useful for graphs in the XML
domain, which are naturally expressed as objects. A method for XML
data clustering is discussed in [1].

In chapter 9, both the above methods for clustering graphs have bekedstu

A particularly closely related problem to clustering is of dense subgraph ex
traction. Whereas the problem of clustering is traditionally definedstsa
partitioning of the nodeghe problem of dense subgraph extraction is a relaxed
variation of this problem in which dense subgraphs may have overlaps. Fu
thermore, many nodes may not be included in any dense component. Hee den
subgraph problem is often studied in the context of frequent pattern mifiing
multi-graph data sets. Other variations include the issue of repeated ggesen
of subgraphs in a single graph or in multiple graphs. These problems dre stu
ied in chapter 10. The topics discussed in chapters 9 and 10 are cldagdyglre
and provide a good overview of the area.

Graph Classification.  As in the case of graph clustering, the problem of
graph classification arises in two different contexts. The first contekbisof
vertex classification in which we attempt to label the nodes of a single graph
based on training data. Such problems are based on that of deterhésingd
properties of nodewith the use of training data. Examples of such methods
may be found in [16, 18]. The second context is one in which we attempt
to label entire graphs as objects. The first case arise in the context eof mas
sive graphs such as social networks, whereas the second caseimansany
different contexts such as chemical or biological compound classifi¢aion
XML data [28]. Chapter 11 studies a number of different algorithms fapigr
classification.

Frequent Pattern Mining in Graphs. The problem of frequent pattern
mining is much more challenging in the case of graphs than in the case of
standard transaction data. This is because not all frequent patteregually
relevant in the case of graphs. In particular, patterns which are higinly c
nected are much more relevant. As in the case of transactional data, arnumbe
of different measures may be defined in order to determine which graphs a
the most significant. In the case of graphs, the structural constraintstheke
problem even more interesting. As in the case of the transactional data, many
variations of graph pattern mining such as that of determining closed patterns
or significant patterns [25, 26], provide different kinds of insights tftald.
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The frequent pattern mining problem is particularly important for the graph
domain, because the end-results of the algorithms provide an overview of th
important structures in the underlying data set, which may be used for other
applications such as indexing [27]. Chapter 12 provides an exhagstivey

of the different algorithms for frequent pattern mining in graphs.

Streaming Algorithms for Graphs. Many graph applications such as
those in telecommunications and social networks create continuous streams
of edges. Such applications create unique challenges, because tgeyh
cannot be held either in main memory or on disk. This creates tremendous con-
straints for the underlying algorithms, since the standard one-passaiahstr

of streaming algorithms applies to this case. Furthermore, it is extremely diffi-
cult to explore the structural characteristics of the underlying grapiause a
global view of the graph is hard to construct in the streaming case. CHzpter
discusses a number of streaming applications for such edge stream#iaphe c
ter discusses how graph streams can be summarized in an applicatiorespecifi
way, so that important structural characteristics of the graph can beredp

Privacy-Preserving Data Mining of Graphs.  In many applications such
as social networks, it is critical to preserve the privacy of the nodesedn th
underlying network. Simple de-identification of the nodes during the release
of a network structure is not sufficient, because an adversary mayacke
ground information about known nodes in order to re-identify the othdeso
[17]. Graph privacy is especially challenging, because backgrimfiodnation
about many structural characteristics such as the node degreestursirdis-
tances can be used in order to mount identity-attacks on the nodes [1A 13]
number of techniques have recently been proposed in the literature, ugech
node addition, deletion, or swapping in order to hide such structurahctesr
istics for privacy-preservation purposes [20, 29]. The key in theskniques

is to hide identifying structural characteristics, without losing the overaltstr
tural utility of the graph. Chapter 14 discusses the challenges of graityr
and a variety of algorithms which can be used for private processingobf s
graphs.

Web Applications. Since the web is naturally structured as a graph, nu-
merous such applications require graph mining and management algorithms.
A classic example is the case of social networks in which the linkage struc-
ture is defined in the form of a graph. Typical social networking applinatio
require the determination of interesting regions in the graph such as the dens
communities. Community detection is a direct application of the problem of
clustering, since it requires the determination of dense regions of thelymnde

ing graph. Many other applications such as blog analysis, web grapfsena
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and page rank analysis for search require the use of graph miningtlafger
Chapter 15 provides a comprehensive overview of graph mining teasifqu

web applications. Since social networking is an important area, whictotann
be easily covered within the context of the single chapter on web applications
we devote a special chapter on social networking. Graph mining applisation
for social networking are discussed in chapter 16.

Software Bug Localization. Software programs can be represented as
graphs, in which the control flow is represented in the form of a graph. |
many cases, the software bugs arise as a result of “typical” distortiong in th
underlying control flow. Such distortions can also be understood in the co
text of the graphical structure which represents this control flow. &fbes,
software bug localization is a natural application is graph mining algorithms in
which the structure of the control flow graph is studied in order to determine
and isolate bugs in the underlying program. Chapter 17 provides a coempreh
sive survey of techniques for software bug localization.

Chemical and Biological Data. = Chemical compounds can be represented
as graph structures in which the atoms represent the nodes, and tise dyored
sents the links. If desired, a higher level of representation can barusgaich
sub-units of the molecules represent the nodes and the bonds between the
represent the links. For example, in the case of biological data, the arin®-a
are represented as nodes, and the bonds between them are the liekscalh
and biological data are inherently different in the sense that the graples c
sponding to biological data are much larger and require different tegésiq
which are more suitable to massive graphs. Therefore, we have dewated
separate chapters to the topic. In chapter 18, methods for mining biological
compounds are presented. Techniques for mining chemical compounds ar
presented in chapter 19.

3. Summary

This book provides an introduction to the problem of managing and mining
graph data. We will present the key techniques for both management and min
ing of graph data sets. We will show that these techniques can be véuyinse
a wide variety of applications such as the web, social networks, bioladata)
chemical data and software bug localization. . The book also presento$ome
the latest trends for mining massive graphs and their applicability across-diff
ent domains. A number of trends in graph mining are fertile areas of msear
for future applications:

= Scalability is the new frontier in graph mining applications. Applica-
tions such as the web and social networks are definedassive graphs
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in which it is impossible to explicitly store the underlying edges in main
memory and sometimes even on disk. While graph-theoretic algorithms
have been studied extensively in the literature, these techniques implic-
itly assume that the graphs can be held in main memory and are therefore
not very useful for the case of disk-resident. This is because degsac
may result in random access to the underlying edges which is extremely
inefficient in practice. This also leads to a lack of scalability of the un-
derlying algorithms.

= Many communication and social networking applications create large
sets of edges which arrive continuously over time. Such dynamic ap-
plications require quick responses to queries to a number of traditional
applications such as the shortest path problem or connectivity queries.
Such queries are an enormous challenge, since it is impossible to pre-
store the massive volume of the data for future analysis. Therefore, ef-
fective techniques need to be designed to compress and store the graph-
ical structures for future analysis.

= A number of recent data mining applications and advances such asyprivac
preserving data mining and uncertain data need to be studied in the con-
text of the graph domain. For example, social networks are structured as
graphs, and privacy applications are particularly important in this con-
text. Such applications are also very challenging since they are defined
on a massive domain of nodes.

This book studies a number of important problems in the graph domain in the
context of important graph and networking applications. We also introduce
some of the recent trends for massive graph mining applications.
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Abstract Graph mining and management has become a popular area of regeaec
cent years because of its numerous applications in a wide variety dfgaiac
fields, including computational biology, software bug localization and ederp
networking. Different applications result in graphs of different siaed com-
plexities. Correspondingly, the applications have different requirésrfenthe
underlying mining algorithms. In this chapter, we will provide a surveyibf d
ferent kinds of graph mining and management algorithms. We will alsugss
a number of applications, which are dependent upon graph repatses. We
will discuss how the different graph mining algorithms can be adaptediffer-
ent applications. Finally, we will discuss important avenues of futurearet
in the area.

Keywords:  Graph Mining, Graph Management

1. Introduction

Graph mining has been a popular area of research in recent yeaurssbec
of numerous applications in computational biology, software bug localization
and computer networking. In addition, many new kinds of data such as semi-
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structured data and XML [8] can typically be represented as graphetaled
discussion of various kinds of graph mining algorithms may be found in [58].

In the graph domain, the requirement of different applications is not very
uniform. Thus, graph mining algorithms which work well in one domain may
not work well in another. For example, let us consider the following domains
of data:

s Chemical Data: Chemical data is often represented as graphs in which
the nodes correspond to atoms, and the links correspond to bonds be-
tween the atoms. In some cases, substructures of the data may also
be used as individual nodes. In this case, the individual graphs are
quite small, though there are significant repetitions among the differ-
ent nodes. This leads to isomorphism challenges in applications such as
graph matching. The isomorphism challenge is that the nodes in a given
pair of graphs may match in a variety of ways. The number of possible
matches may be exponential in terms of the number of the nodes. In
general, the problem of isomorphism is an issue in many applications
such as frequent pattern mining, graph matching, and classification.

= Biological Data: Biological data is modeled in a similar way as chemi-
cal data. However, the individual graphs are typically much larger. Fur
thermore, the nodes are typically carefully designed portions of the bio-
logical models. A typical example of a node in a DNA application could
be an amino-acid. A single biological network could easily contain thou-
sands of nodes. The sizes of the overall database are also largghenou
for the underlying graphs to be disk-resident. The disk-residenteatur
of the data set often leads to unique issues which are not encountered
in other scenarios. For example, the access order of the edges in the
graph becomes much more critical in this case. Any algorithm which is
designed to access the edges in random order will not work very-effec
tively in this case.

= Computer Networked and Web Data: In the case of computer net-
works and the web, the number of nodes in the underlying graph may be
massive. Since the number of nodes is massive, this can lead to a very
large number oflistinct edges This is also referred to as thmassive
domain issuen networked data. In such cases, the number of distinct
edges may be so large, that they may be hard to hold in the available stor-
age space. Thus, technigues need to be designed to summarize and work
with condensed representations of the graph data sets. In some of these
applications, the edges in the underlying graph may arrive in the form of
a data stream. In such cases, a second challenge arises from thatfact th
it may not be possible to store the incoming edges for future analysis.
Therefore, the summarization techniques are especially essential for this
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case. The stream summaries may be leveraged for future processing of
the underlying graphs.

= XML data: XML data is a natural form of graph data which is fairly

general. We note that mining and management algorithms for XML
data are also quite useful for graphs, since XML data can be viewed as
labeled graphs. In addition, the attribute-value combinations associated
with the nodes makes the problem much more challenging. However,
the research in the field of XML data has often been quite independent
of the research in the graph mining field. Therefore, we will make an
attempt in this chapter to discuss the XML mining algorithms along with
the graph mining and management algorithms. It is hoped that this will
provide a more integrated view of the field.

Itis clear that the design of a particular mining algorithm depends upon the ap
plication domain at hand. For example, a disk-resident data set reqariedaic
algorithmic design in which the edges in the graph are not accessed randomly
Similarly, massive-domain networks require careful summarization of the un-
derlying graphs in order to facilitate processing. On the other hand naichle
molecule which contains a lot of repetitions of hode-labels poses uniglie cha
lenges to a variety of applications in the formgraph isomorphism

In this chapter, we will discuss different kinds of graph management and
mining applications, along with the corresponding applications. We note that
the boundary between graph mining and management algorithms is often not
very clear, since many kinds of algorithms can often be classified as bogh. T
topics in this chapter can primarily be divided into three categories. These
categories discuss the following:

»  Graph Management Algorithms: This refers to the algorithms for
managing and indexing large volumes of the graph data. We will present
algorithms for indexing of graphs, as well as processing of graphegier
We will study other kinds of queries such as reachability queries as well.
We will study algorithms for matching graphs and their applications.

= Graph Mining Algorithms: This refers to algorithms used to extract
patterns, trends, classes, and clusters from graphs. In some tteses,
algorithms may need to be applied to large collections of graphs on the
disk. We will discuss methods for clustering, classification, and frequent
pattern mining. We will also provide a detailed discussion of these algo-
rithms in the literature.

= Applications of Graph Data Management and Mining: We will study
various application domains in which graph data management and min-
ing algorithms are required. This includes web data, social and computer
networking, biological and chemical data, and software bug localization.
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This chapter is organized as follows. In the next section, we will discuss a
variety of graph data management algorithms. In section 3, we will discuss
algorithms for mining graph data. A variety of application domains in which
these algorithms are used is discussed in section 4. Section 5 discusses the
conclusions and summary. Future research directions are discussedamth
section.

2. Graph Data Management Algorithms

Data management of graphs has turned out to be much more challenging
than that for multi-dimensional data. The structural representation ohgrap
has greater expressive power, but it comes at a cost. This cost isria tér
the complexity of data representation, access, and processing, béctass
mediate operations such as similarity computations, averaging, and distance
computations cannot be naturally defined for structural data in as intuitive a
way as is the case for multidimensional data. Furthermore, traditional rela-
tional databases can be efficiently accessed with the use of block raad:w
this is not as natural for structural data in which the edges may be addasse
arbitrary order. However, recent advances have been able to tdlesame of
these concerns at least partially. In this section, we will provide a review o
many of the recent graph management algorithms and applications.

2.1 Indexing and Query Processing Techniques

Existing database models and query languages, including the relationdl mode
and SQL, lack native support for advanced data structures suckessand
graphs. Recently, due to the wide adoption of XML as the de facto data ex-
change format, a number of new data models and query languages ftikéree
structures have been proposed. More recently, a new wave of dmpica
across various domains including web, ontology management, bioinformatics,
etc., call for new data models, languages and systems for graph stcldatee

Generally speaking, the task can be simple put as the following: For a query
pattern (atree or a graph), find graphs or trees in the database tteihaorare
similar to the query pattern. To accomplish this task elegantly and efficiently,
we need to address several important issues: i) how to model the dataeand th
query; ii) how to store the data; and iii) how to index the data for efficientyque
processing.

Query Processing of Tree Structured Data. Much research has been
done on XML query processing. On a high level, there are two appesach
for modeling XML data. One approach is to leverage the existing relational
model after mapping tree structured data into relational schema [169]. The
other approach is to build a native XML database from scratch [106]. Fo
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instance, some works starts with creating a tree algebra and calculus for XM
data[107]. The proposed tree algebra extends the relational algethefiting
new operators, such as node deletion and insertion, for tree strucdtataed

SQL is the standard access method for relational data. Much efforts have
been made to design SQL's counterpart for tree structured data. if&eacr
are, first expressive power, which allows users the flexibility to exyesries
over tree structured data, and second declarativeness, which alwgstiem
to optimize query processing. The wide adoption of XML has spurred stan-
dards body groups to expand the SQL specification to include XML psougs
functions. XQuery [26] extends XPath [52] by usingIwOR' structure to ex-
press a query. ThELWOR structure is similar to SQL'SELECT-FROM-WHERE
structure, with additional support for iteration and intermediary variablé-bin
ing. With path expressions and tAREWOR construct, XQuery brings SQL-like
guery power to tree structured data, and has been recommended byrte Wo
Wide Web Consortium (W3C) as the query language for XML documents.

For XML data, the core of query processing lies in efficient tree pattern
matching. Many XML indexing techniques have been proposed [85,13%1,
59, 51, 115] to support this operation. DataGuide [85], for example; pr
vides a concise summary of the path structure in a tree-structured database
T-index [141], on the other hand, indexes a specific set of path esipres.
Index Fabric [59] is conceptually similar to DataGuide in that it keeps all la-
bel paths starting from the root element. Index Fabric encodes eadip&ibe
to each XML element with a data value as a string and inserts the encoded
label path and data value into an index for strings such as the Patricia tree.
APEX [51] uses data mining algorithms to find paths that appear frequently in
qguery workload. While most techniques focused on simple path expression
the F"B Index [115] emphasizes on branching path expressions (twigs). Nev
ertheless, since a tree query is decomposed into node, path, or twigsquerie
joining intermediary results together has become a time consuming operation.
Sequence-based XML indexing [185, 159, 186] makes tree pattermsta fi
class citizen in XML query processing. It converts XML documents as agll
gueries to sequences and performs tree query processing bydntguous)
subsequence matching.

Query Processing of Graph Structured Data.  One of the common char-
acteristics of a wide range of nascent applications including social netvgor
ontology management, biological network/pathways, etc., is that the data they
are concerned with is all graph structured. As the data increases inmslze a
complexity, it becomes important that it is managed by a database system.
There are several approaches to managing graphs in a databasposdne
sibility is to extend a commercial RDBMS engine to support graph structured
data. Another possibility is to use general purpose relational tables to store
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graphs. When these approaches fail to deliver needed perfornraneat re-
search has also embraced the challenges of designing a specialepgrapis
database. Oracle is currently the only commercial DBMS that provides @ltern
support for graph data. Its new 10g database includes the OraclelSje&tia
work data model [3], which enables users to model and manipulate grégh da
The network model contains logical information such as connectivity among
nodes and links, directions of links, costs of nodes and links, etc. Thealog
model is mainly realized by two tables: a node table and a link table, which
store the connectivity information of a graph. Still, many are concernethbat
relational model is fundamentally inadequate for supporting graph staatctur
data, for even the most basic operations, such as graph traversabstyeto
implement on relational DBMSs, especially when the graphs are largenRece
interest in Semantic Web has spurred increased attention to the Resodrce De
scription Framework (RDF) [139]. Aiplestoreis a special purpose database
for the storage and retrieval of RDF data. Unlike a relational databasplea
store is optimized for the storage and retrieval of a large number of ghtat s
ments in the form of subject-predicate-object, which are called triples. Much
work has been done to support efficient data access on the triplestores,

19, 33,91, 152, 182, 195, 38, 92, 194, 193]. Recently, the semaeticem-
munity has announced the billion triple challenge [4], which further highlights
the need and urgency to support inferencing over massive RDF data.

A number of graph query languages have been proposed since 88éy.1
For example, GraphLog [56], which has its roots in Datalog, performs-infe
encing on rules (possibly with negation) about graph paths repredented-
ular expressions. GOOD [89], which has its roots in object-oriented dsésbh
defines a transformation language that contains five basic operatiorsrsg
GraphDB [88], another object-oriented data model and query langimmge
graphs, performs queries in four steps, each carrying out opesatiosub-
graphs specified by regular expressions. Unlike previous grapty dae-
guages that operate on nodes, edges, or paths, GraphQL [9@}empdirectly
on graphs. In other words, graphs are used as the operand amctygtiof all
operations. GraphQL extends the relational algebraic operators, imglse-
lection, Cartesian product, and set operations, to graph structuraastamce,
the selection operator is generalized to graph pattern matching. Graph&L isr
lationally complete and the nonrecursive version of GraphQL is equiveden
the relational algebra. A detailed description of GraphQL and a compasfson
GraphQL with other graph query languages can be found in [96].

With the rise of Semantic Web applications, the need to efficiently query
RDF data has been propelled into the spotlight. The SPARQL query lan-
guage [154] is designed for this purpose. As we mentioned beforegpdn gr
in the RDF format is described by a set of triples, each corresponding to a
edge between two nodes. A SPARQL query, which is also SQL-like, may con
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sist of triple patterns, conjunctions, disjunctions, and optional pattertriplé
pattern is syntactically close to an RDF triple except that each of the subject,
predicate and object may be a variable. The SPARQL query procedsor w
search for sets of triples that match the triple patterns, binding the variables in
the query to the corresponding parts of each triple [154].

Another line of work in graph indexing uses important structural charac-
teristics of the underlying graph in order to facilitate indexing and query pro
cessing. Such structural characteristics can be in the form of patheqoeint
patterns in the underlying graphs. These can be usptegsrocessing filters
which remove irrelevant graphs from the underlying data at an earlg.skay
example, theGraphGreptechnique [83] uses the enumerated paths as index
features which can be used in order to filter unmatched graphs. Similarly, the
Glndextechnique [201] uses discriminative frequent fragments as index fea-
tures. A closely related technique [202] leverages on the substrudtuties
underlying graphs in order to facilitate indexing. Another way of indexing
graphs is to use the tree structures [208] in the underlying graph in toder
facilitate search and indexing.

The topic of query processing on graph data has been studied for many
years, still, many challenges remain. On the one hand, data is becoming in-
creasingly large. One possibility of handling such large data is througtt-par
lel processing, by using for example, the Map/Reduce framework. #awe
it is well known that many graph algorithms are very difficult to be paral-
lelized. On the other hand, graph queries are becoming increasingly compli-
cated. For example, queries against a complex ontology are often lengthy,
no matter what graph query language is used to express the querig¢serFur
more, when querying a complex graph (such as a complex ontologyk user
often have only a vague notion, rather than a clear understanding &énd de
tion, of what they query for. These call for alternative methods of &sging
and processing graph queries. In other words, instead of explicitlessp
ing a query in the most exact terms, we might want to use keyword search to
simplify queries [183], or using data mining methods to semi-automate query
formation [134].

2.2 Reachability Queries

Graph reachability queries test whether there is a path from a ndde
another node: in a large directed graph. Querying for reachability is a very
basic operation that is important to many applications, including applications
in semantic web, biology networks, XML query processing, etc.

Reachability queries can be answered by two obvious methods. In the first
method, we traverse the graph starting from nodsing breath- or depth-first
search to see whether we can ever reach modéne query time i$)(n + m),
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wheren is the number of nodes and is the number of edges in the graph.

At the other extreme, we compute and store the edge transitive closure of the
graph. With the transitive closure, which requif@&:?) storage, a reachability
query can be answered @ (1) time by simply checking whethé, v) is in

the transitive closure. However, for large graphs, neither of the twoatdstis
feasible: the first method is too expensive at query time, and the secarsl tak
too much space.

Research in this area focuses on finding the best compromise between the
O(n + m) query time and th€(n?) storage cost. Intuitively, it tries to com-
press the reachability information in the transitive closure and answeieguer
using the compressed data.

Spanning tree based approaches. Many approaches, for example [47,
176, 184], decompose a graph into two parts: i) a spanning tree, angj@sed
not on the spanning tree (non-tree edges). If there is a path on theisgan
tree between, andv, reachability betweem andv can be decidedly easily.
This is done by assigning each nadan interval cod€us¢q¢, tenq), SUCh that

v is reachable fronu if and only if ugart < Vstart < Ueng. The entire tree can
be encoded by performing a simple depth-first traversal of the tree. Wth th
encoding, reachability check can be don®ifl) time.

If the two nodes are not connected by any path on the spanning tree, we
need to check if there is a path that involves non-tree edges connecting the
two nodes. In order to do this, we need to build index structures in addition
to the interval code to speed up the reachability check. Chen et al. [di7] an
TriB3l et al. [176] proposed index structures for this purpose, and botheaf
approaches achiew@(m — n) query time. For instance, Chen et al.'s SSPI
(Surrogate & Surplus Predecessor Index) maintains a predeces$soL.(is)
for each node:, which, together with the interval code, enables efficient reach-
ability check. Wang et al. [184] made an observation that many large graph
in real applications are sparse, which means the number of non-treg isdge
small. The algorithm proposed based on this assumption answers reachability
queries in O(1) time using &(n + t?) size index structure, whereis the
number of non-tree edges, ahek n.

Set covering based approaches. Some approaches propose to use simpler
data structures (e.g., trees, paths, etc) to “cover” the reachability infiomnma
embodied by a graph structure. For exampley ifan reachu, thenv can
reach any node in a tree rooteduatThus, if we include the tree in the index,
we cover a large set of reachability in the graph. We then use multiple trees
to cover an entire graph. Agrawal et al. [10]'s optimal tree cover aelie
O(logn) query time, where is the number of nodes in the graph. Instead of
using trees, Jagadish et al. [105] proposes to decompose a graphimise
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disjointchains and then use chains to cover the graph. The intuition of using
a chain is similar to using a tree:dfcan reach: on a chain, them can reach
any node that comes afteron that chain. The chain-cover approach achieves
O(nk) query time, wheré: is the number of chains in the graph. Cohen et al.
[54] proposed a 2-hop cover for reachability queries. A node labeled by
two sets of nodes, callef;,, (u) and L, (u), whereL;, (u) are the nodes that
can reachu and L, (u) are the ones that can reach. The 2-hop approach
assigns thd.;,, and L,,; labels to each node such thatcan reachv if and
only if Loyt (u) N Ly, (v) # 0. The optimal 2-hop cover problem of finding the
minimum size 2-hop cover is NP-hard. A greedy algorithm finds a 2-hoprcov
iteratively. In each iteration, it picks the nodethat maximizes the value of

%, whereS(A,, w, D,,) N TC' represents the new (uncovered)
reachability that a 2-hop cluster centeredwatan cover, andA,,| + | D, is

the cost (size) of the 2-hop cluster centered aBeveral algorithms have been
proposed to compute high quality 2-hop covers [54, 168, 49, 48] in a more
efficient manner. Many extensions to existing set covering based agpmEs
have been proposed. For example, Jin et al. [112] introduces a 8dvep

approach that combines the chain cover and the 2-hop cover.

Extensions to the reachability problem. Reachability queries are one
of the most basic building blocks for many advanced graph operatiods, an
some are directly related to reachability queries. One interesting problem is
in the domain of labeled graphs. In many applications, edges are labeled to
denote the relationships between the two nodes they connect. A new type
of reachability query asks whether two nodes are connected by a pagewh
edges are constrained by a given set of labels [111]. In some otpigratons,
we want to find the shortest path between two nodes. Similar to the simple
reachability problem, the shortest path problem can be solved by brai for
methods such as Dijkstra’s algorithm, but such methods are not appropriate
for online queries in large graphs. Cohen et al extended the 2-hagiogv
approach for this problem [54].

A detailed description of the strengths and weaknesses of variousareach
bility approaches and a comparison of their query time, index size, and index
construction time can be found in [204].

2.3 Graph Matching

The problem of graph matching is that of finding either an approximate or
a one-to-one correspondence among the nodes of the two graphsofiieis
spondence is based on one or more of the following structural chasticter
of the graph: (1) The labels on the nodes in the two graphs should bentige sa
(2) The existence of edges between corresponding nodes in the tplsgra
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should match each other. (3) The labels on the edges in the two graptd shou
match each other.

These three characteristics may be used to define a matching between two
graphs such that there is a one-to-one correspondence in the sisuafuhe
two graphs. Such problems often arise in the context of a number ofeatiffer
database applications such as schema matching, query matching, and vector
space embedding. A detailed description of these different applications may
be found in [161]. Inexact graph matchingve attempt to determine a one-
to-one correspondence between two graphs. Thus, if an edge extistsen
a pair of nodes in one graph, then that edge must also exist betweernrthe co
responding pair in the other graph. This may not be very practical in real
applications in whichapproximate matches may exibtit an exact matching
may not be feasible. Therefore, in many applications, it is possible to dafine
objective function which determines the similarity in the mapping between the
two graphs. Fault tolerant mapping is a much more significant application in
the graph domain, because common representations of graphs may hgve man
missing nodes and edges. This problem is also referred tioeaact graph
matching Most variants of the graph matching problem are well known to be
NP-hard. The most common method for graph matching is that of tree-based
search techniques. In this technique, we start with a seed set of nbdtgs w
are matched, and iteratively expand the neighborhood defined by that-se
erative expansion can be performed by adding nodes to the curréatsed,
as long as no edge constraints are violated. If it turns out that the tnwda
set cannot be expanded, then we initiate a backtracking procedurécin wh
undo the last set of matches. A number of algorithms which are based upon th
broad idea are discussed in [60, 125, 180]. A survey of many of tissickl
algorithms for graph matching may be found in [57].

The problem of exact graph matching is closely related to that of graph iso-
morphism. In the case of the graph isomorphism problem, we attempt to find
an exact one-to-one matching between nodes and edges of the twes.glaph
generalization of this problem is that of finding the maximal common sub-
graph in which we attempt to match the maximum number of nodes between
the two graphs. Note that the solution to the maximal common subgraph prob-
lem will also provide a solution to the problem of exact matching between two
subgraphs, if such a solution exists. A number of similarity measures can be
derived on the basis of the mapping behavior between two graphs. If the tw
graphs share a large number of nodes in common, then the similarity is more
significant. A number of models and algorithms for quantifying and determin-
ing the common subgraphs between two graphs may be found in [34-3¥]. Th
broad idea in many of these methods is to define a distance metric based on the
nature of the matching between the two graphs, and use this distance metric in
order to guide the algorithms towards an effective solution.
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Inexact graph matching a much more practical model, because it accounts
for the natural errors which may occur during the matching processtif;laa
method is required in order to quantify these errors and the closenessdmetw
the different graphs. A common technique which may be used to quantify thes
errors is the use of a function such as the graph edit distance. Thie ggép
distance determines the distance between two graphs by measuroustiod
the edits requiredio transform one graph to the other. These edits may be node
or edge insertions, deletions or substitutions. iAexact graph matchings
one which allows for a matching between two graphs after a sequencelof su
edits. The quality of the matching is defined by the cost of the corresponding
edits. We note that the concept of graph edit distance is closely related to tha
of finding a maximum common subgraph [34]. This is because it is possible to
direct an edit-distance based algorithm to find the maximum common subgraph
by defining an appropriate edit distance.

A particular variant of the problem is when we account for the values of
the labels on the nodes and edges during the matching process. In this case
we need to compute the distance between the labels of the nodes and edges
in order to define the cost of a label substitution. Clearly, the cost of the la-
bel substitution isapplication-dependentin the case of numerical labels, it
may be natural to define the distances based on numerical distance fanction
between the two graphs. In general, the cost of the edits is also application
dependent, since different applications may use different notions of simila
ity. Thus, domain-specific techniques are often used in order to defireglihe
costs. In some cases, the edit costs may even be learned with the use of sam-
ple graphs [143, 144]. When we have cases in which the sample grapés h
naturally defined distances between them, the edit costs may be determined as
values for which the corresponding distances are as close to the sargs va
as possible.

The typical algorithms for inexact graph matching use combinatorial search
over the space of possible edits in order to determine the optimal matching
[35, 145]. The algorithm in [35] is relatively exhaustive in its approaatyg
can therefore be computationally intensive in practice. In order to solve this
issue, the algorithms discussed in [145] explores local regions of tipd gra
order to define more focussed edits. In particular, the work in [145jgses
an important class of methods which are referred tkemeel functions Such
methods are extremely robust to structural errors, and are therefmsefal
construct for solving graph matching problems. The broad idea is to io€orp
rate the key ideas of the graph edit distance into kernel functions. Semonelk
machines are known to be extremely powerful techniques for pattergnmeco
tion, it follows that these techniques can then be leveraged to the problem of
graph matching. A variety of other kernel techniques for graph matchiryg ma
be found in [94, 81, 119]. The key kernel methods include convolutesnéds
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[94], random walk kernels [81] and diffusion kernels [119]. Indam walk
kernels [81], we attempt to determine the number of random walks between
the two graphs which have some labels in common. Diffusion kernels [119]
can be considered a generalization of the standard gaussian kerunelitfidh
space.

The technique ofelaxation labelings another broad class of methods which
is often used for graph matching. Note that in the case of the matching prob-
lem, we are really trying to assign labels to the nodes in a graph. The specific
label for a node is drawn out of a discrete set of possibilities. This descre
set of possibilities correspond to the matching nodes in the other graph. The
probability of matching is defined by Gaussian probability distributions. We
start off with an initial labeling based on the structural characteristics afrihe
derlying graph, and then successively improve the solution based @ioadt
exploration of structural information. Detailed descriptions of techniqaes f
relaxation labeling may be found in [76].

2.4 Keyword Search

In the problem of keyword search, we would like to determine small groups
of link-connected nodes which are related to a particular keyword. >&ne
ple, a web graph or a social network may be considered a massive, graph
which each node may contain a large amount of text data. Even though key-
word search is defined with respect to the text inside the nodes, we note tha
the linkage structure also plays an important role in determining the appropri-
ate set of nodes. It is well known the text in linked entities such as the veeb ar
related, when the corresponding objects are linked. Thus, by findmgpgr
of closely connected nodes which share keywords, it is generallylj®se
determine the qualitatively effective nodes. Keyword search providenple
but user-friendly interface for information retrieval on the Web. It gdsoves
to be an effective method for accessing structured data. Since marlifereal
data sets are structured as tables, trees and graphs, keyword ®earshch
data has become increasingly important and has attracted much research inte
est in both the database and the IR communities.

Graph is a general structure and it can be used to model a variety of comple
data, including relational data and XML data. Because the underlying data
assumes a graph structure, keyword search becomes much more coraplex th
traditional keyword search over documents. The challenges lie in thpeetas

= Query semantics Keyword search over a set of text documents has very
clear semantics: A document satisfies a keyword query if it contains ev-
ery keyword in the query. In our case, the entire dataset is often consid
ered as a single graph, so the algorithms must work on a finer granularity
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and return subgraphs as answers. We must decide what subgraphs a
qualified as answers.

= Ranking strategy. For a given keyword query, it is likely that many
subgraphs will satisfy the query, based on the query semantics in use.
However, each subgraph has its own underlying graph structure, with
subtle semantics that makes it different from other subgraphs that sat-
isfy the query. Thus, we must take the graph structure into consideration
and design ranking strategies that find most meaningful and relevant an-
swers.

= Query efficiency. Many real life graphs are extremely large. A major
challenge for keyword search over graph data is query efficiertghw
to a large extent, hinges on the semantics of the query and the ranking
strategy.

Current approaches for keyword search can be classified into tatee
gories based on the underlying structure of the data. In each categery,
briefly discuss query semantics, ranking strategies, and represerda&j-
rithms.

Keyword search over XML data. XML data is mostly tree structured,
where each node only has a single incoming path. This property has signifi-
cant impact on query semantics and answer ranking, and it also prayriekss
optimization opportunities in algorithm design [197].

Given a query, which contains a set of keywords, the search algorghm
turns snippets of an XML document that are most relevant to the keywords
The interpretation ofelevantvaries, but the most common practice is to find
smallest subtrees that contain the keywords.

It is straightforward to find subtrees that contain all the keywords Il &ie
the set of nodes in the XML document that contain keywiqtdf we pick one
noden,; from eachL;, and form a subtree from these nodes, then the subtree
will contain all the keywords. Thus, an answer to the query can besepted
by lca(ny,--- ,ny), the lowest common ancestor of nodes- - - ,n,, in the
tree, wherey; € L;.

Most query semantics are only interestedimallesanswers. There are dif-
ferent ways to interpret the notion simallest Several algorithms [197, 102,
196] are based on the SLCA (smallest lowest common ancestor) semantics,
which requires that an answer (a least common ancestor of nodes that co
tain all the keywords) does not have any descendent that is also aerans
XRank [86] adopts a different query semantics for keyword sedncKRank,
answers consist of substrees that contain at least one occurreait®fathe
qguery keywords, after excluding the sub-nodes that already coritaifithe
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query keywords. Thus, the set of answers based on the SLCA sem@rdic
subset of answers qualified for XRank.

A keyword query may find a large number of answers, but they are not
all equal due to the differences in the way they are embedded in the nested
XML structure. Many approaches for keyword search on XML datzuifing
XRank [86] and XSEarch [55], present a ranking method. A rankinghme
anism takes into consideration several factors. For instance, moriicspec
answers should be ranked higher than less specific answers. Both &idC
the semantics adopted by XRank signify this consideration. Furthermagre, ke
words in an answer should appedoseto each other, and closeness is inter-
preted as the the semantic distance defined over the XML embedded structure

Keyword search over relational data.  SQL is the de-facto query language
for accessing relational data. However, to use SQL, one must havdddge
about the schema of the relational data. This has become a hindranae for p
tential users to access tremendous amount of relational data.

Keyword search is a good alternative due to its ease of use. The clelleng
of applying keyword search on relational data come from the fact that in a
relational database, information about a single entity is usually divided among
several tables. This is resulted from the normalization principle, which is the
design methodology of relational database schema.

Thus, to find entities that are relevant to a keyword query, the search al-
gorithm has to join data from multiple tables. If we represent each table as a
node, and each foreign key relationship as an edge between two tiustese
obtain a graph, which allows us to convert the current problem to thdgermob
of keyword search over graphs. However, there is the possibilitylbjaes:
that is, a table may contain a foreign key that references itself. Moraabne
there might be cycles in the graph, which means the size of the join is only
limited by the size of the data. To avoid this problem, the search algorithm
may adopt an upper bound to restrict the number of joins [103].

Two most well-known keyword search algorithm for relational data ar&DB
plorer [12] and DISCOVER [103]. They adopted new physical detalube-
sign (including sophisticated indexing methods) to speed up keywordhsearc
over relational databases. Qin et al [155], instead, introduced a m#thbd
takes full advantage of the power of RDBMS and uses SQL to perfogm ke
word search on relational data.

Keyword search over graph data.  Keyword search over large, schema-
free graphs faces the challenge of how to efficiently explore the gtaypdtisre
and find subgraphs that contain all the keywords in the query. To nmetsir
“goodness” of an answer, most approaches score each edgedsdnd then
aggregate the scores over the subgraph as a goodness measad3[2D)].
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Usually, an edge is scored by the strength of the connection, and a node is
scored by its importance based on a PageRank like mechanism.

Graph keyword search algorithms can be classified into two categories.
Algorithms in the first category finds matching subgraphs by exploring the
graph link by link, without using any index of the graph. Representalive a
gorithms in this category include BANKS [24] and the bidirectional search
algorithm [113]. One drawback of these approaches is that they extier
graph blindly as they do not have a global picture of the graph struatore,
do they know the keyword distribution in the graph. Algorithms in the other
category are index-based [99], and the index is used to control guedgdph
exploration, and support forward-jumps in the search.

2.5 Synopsis Construction of Massive Graphs

A key challenge which arises in many of the applications discussed below
is that the graphs they deal with are very large scale in nature. As a result,
the graph may be available only on disk. Most of the traditional graph mining
applications assume that the data is available in main memory. However, when
the graph is available on disk, applications which access the edges imrando
order may be extremely expensive. For example, the problem of finding the
minimum-cut between two nodes is extremely efficient with the use of memory
resident algorithms, but it is extraordinarily expensive when the underly
graphs are available on disk [7]. As a result algorithms need to be dgrefu
designed in order to reduce the disk-access costs. A typical technitgjob w
may often be used is to design a synopsis construction technique [7,206, 14
which summarizes the graph in a much smaller space, but retains sufficient
information in order to effectively respond to queries.

The synopsis construction is typically defined through either node or edge
contractions. The key is to define a synopsis which retains the relevaaot str
tural property of the underlying graph. In [7], the algorithm in [177]s&d in
order to collapse the dense regions of the graph, and representriheasized
graph in terms of sparse regions. The resulting contracted graph stilseta
important structural properties such as the connectivity of the grapfL6ln
a randomized summarization technique is used in order to determine frequent
patterns in the underlying graph. A bound has been proposed in [A@Efo
termining the false positives and false negatives with the use of this approac
Finally, the technique in [142] also compresses graphs by represeatsgfs
nodes as super-nodes, and separately storing “edge correctiargieinto re-
construct the entire graph. A bound on the error has been propo$&diah
with the use of this approach.

A closely related problem is that of miningyaph streams In this case,
the edges of the graph are received continuously over time. Sucharéses
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frequently in applications such as social networks, communication networks
and web log analysis. Graph streams are very challenging to mine, because
the structure of the graph needs to be mined in real time. Therefore, altypica
approach is to construct a synopsis from the graph stream, and levefag

the purpose of structural analysis. It has been shown in [73] hownorsuize

the graph in such a way that the underlying distances are preserveckfdite,

this summarization can be used for distance-based applications such as the
shortest path problem. A second application which has been studied in the
context of graph streams is thatgfaph matching140]. We note that this is

a different version of the problem from our discussion in an earligi@edn

this case, we attempt to find a set of edges in a single graph such that no two
edges share an end point. We desire to find a maximum weight or maximum
cardinality matching. The main idea in [140] is to always maintain a candidate
matching and update it as new edges come in. When a new edge arrives, the
process of inserting it may displace as many as two edges at its end points. We
allow an incoming edge to displace the edges at its endpoints, if the weight
of the incoming edge is a factdt + ) of the outgoing edges. It has been
shown in [140] that this matching is within a fact@+ 2 - v/2) of the optimal
matching.

Recently, a number of technigques have also been designed to create syn-
opses which can be used to estimate the aggregate structural propetties of
underlying graphs. A technique has been proposed in [61] for estimiugng
statistics of the degrees in the underlying graph stream. The techniques pro
posed in [61] use a variety of techniques such as sketches, samplanindpa
and distinct counting. Methods have been proposed for determining the mo-
ments of the degrees, determining heavy hitter degrees, and determirgeg ran
sums of degrees. In addition, techniques have been proposed in fiE3foom
space-efficient reductions in data streams. This reduction has betmuse
der to count triangles in the data stream. A particularly useful application in
graph streams is that of the problemRafgeRankln this problem, we attempt
to determine significant pages in a collection with the use of the linkage struc-
ture of the underlying documents. Clearly, documents which are linked to by
a larger number of documents are more significant [151]. In fact, theegin
of page rank can be modeled as the probability that a node is visited by a ran-
dom surfer on the world wide web. The algorithms designed in [151] are fo
static graphs. The problem becomes much more challenging when the graphs
are dynamic, as is the case of social networks. A natural synopsisdeehn
which can be used for such cases is the method of sampling. In [166§ it ha
been shown how to use a sampling technique in order to estimate page rank for
graph streams. The idea is to sample the nodes in the graph independently and
perform random walks starting from these nodes. These random eaaikise
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used in order to estimate the probability of the presence of a random atrfer
a given node. This is essentially equal to the page rank.

3. Graph Mining Algorithms

Many of the traditional mining applications also apply to the case of graphs.
As in the case of management applications, the mining applications are far
more challenging to implement because of the additional constraints which
arise from the structural nature of the underlying graph. In spite oétbleal-
lenges, a number of techniques have been developed for traditional mining
problems such as frequent pattern mining, clustering, and classification. |
this section, we will provide a survey of many of the structural algorithms for
graph mining.

3.1 Pattern Mining in Graphs

The problem of frequent pattern mining has been widely studied in the con-
text of mining transactional data [11, 90]. Recently, the techniquesdquént
pattern mining have also been extended to the case of graph data. The main
difference in the case of graphs is that the process of determining sugppo
quite different. The problem can be defined in different ways depgngion
the application domain:

= |n the first case, we have a group of graphs, and we wish to determine
all patterns which support a fraction of the corresponding graphs, [10
123, 181].

= In the second case, we have a single large graph, and we wish to deter-
mine all patterns which are supported at least a certain number of times
in this large graph [31, 75, 123].

In both cases, we need to account for the isomorphism issue in determining
whether one graph is supported by another. However, the problerefiof d
ing the support is much more challenging, if overlaps are allowed between
different embeddings. This is because if we allow such overlaps, themthe
monotonicity property of most frequent pattern mining algorithms is violated.
For the first case, where we have a data set containing multiple graptts, mos
of the well known techniques for frequent pattern mining with transactional
data can be easily extended. For examplpriori-style algorithms can be
extended to the case of graph data, by using a similar level-wise strategy of
generating(k + 1)-candidates fromk-patterns. The main difference is that
we need to define the join process a little differently. Two graphs of size
can be joined, if they have a structure of size— 1) in common. Thesize
of this structurecould be defined in terms of either nodes or edges. In the
case of the AGM algorithm [104], this common structure is defined in terms of
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the number of common vertices. Thus, two graphs witrertices are joined,
only if they have a common subgraph with at le@dst- 1) vertices. A second
way of performing the mining is to join two graphs which have a subgraph
containing at leastk — 1) edges in common. The FSG algorithm proposed in
[123] can be used in order to perform edge-based joins. It is alssilpp@do
define the joins in terms of arbitrary structures. For example, it is possible to
express the graphs in terms of edge-disjoint paths. In such casgsaghb

with (k + 1)-edge disjoint paths can be generated from two graphs which have
k edge disjoint paths, of whicti: — 1) must be common. An algorithm along
these lines is proposed in [181]. Another strategy which is often usedtis tha
of pattern growth technigquesn which frequent graph patterns are extended
with the use of additional edges [28, 200, 100]. As in the case of freque
pattern mining problem, we use lexicographic ordering among edges in order
to structure the search process, so that a given pattern is encownbredce.

For the second case in which we have a single large graph, a number of
different techniques may be used in order to define the support innuesé
the overlaps. A common strategy is to use the size of the maximum indepen-
dent set of the overlap graph to define the support. This is also réferis
the maximum independent set suppoitt [124], two algorithms HSIGRAM
and VSIGRAM are proposed for determining the frequent subgrajghiwva
single large graph. In the former case, a breadth-first searchagpi®used
in order to determine the frequent subgraphs, whereas a deptlpfirsieah is
used in the latter case. In [75], it has been shown that the maximum indepen-
dent set measure continues to satisfy the anti-monotonicity property. The main
problem with this measure is that it is extremely expensive to compute. There-
fore, the technique in [31] defines a different measure in order to ctantpe
support of a pattern. The idea is to computeinimum image based suppoit
a given pattern. For this case, we compute the number of unique nodes of th
graph to which a node of the given pattern is mapped. This measure cantinue
to satisfy the anti-monotonicity property, and can therefore be used intorde
determine the underlying frequent patterns. An efficient algorithm withs$ke u
of this measure has been proposed in [31].

As in the case of standard frequent pattern mining, a number of variations
are possible for the case of finding graph patterns, such as determinkiig ma
mal patterns [100], closed patterns [198], or significant patternslf9B,198].

We note that significant graph patterns can be defined in different dexys
pending upon the application. In [157], significant graphs are debgedns-
forming regions of the graphs into features and measuring the cormisgon
importance in terms gf-values. In [198], significant patterns are defined in
terms of arbitrary objective functions. A meta-framework has been gexpo

in [198] to determine the significant patterns based on arbitrary objectine f
tions. One interesting approach to discover significant patterns is to build a
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model-based search tree or MbT[71]. The idea is to use divide andiebnq

to mine the most significant patterns in a subspace of examples. It builds a
decision tree that partitions the data onto different nodes. Then at edeh n

it directly discovers a discriminative pattern to further divide its examples into
purer subsets. Since the number of examples towards leaf level is rglative
small, this approach is able to examine patterns with extremely low global
support that could not be enumerated on the whole data set. For sonfe grap
data sets which occur in drug discovery applications[71], it could minefsign
icant graph patterns, which is very difficult for most other solutions. &ihc
uses the divide and conquer paradigm, the algorithm is almost linearly kcalab
with 1 — MinSupport and the number of examples[71]. The MbT technique

is not limited to graphs, but also applicable to item sets and sequences, and
mine pattern set is both small and significant.

One of the key challenges which arises in the context of all frequent pat-
tern mining algorithms is the massive number of patterns which can be mined
from the underlying database. This problem is particularly acute in the case
of graphs since the size of the output can be extremely large. One soloition f
reducing the number of representative patterns is to report freqa#etigs in
terms oforthogonality A model calledORIGAMIhas been proposed in [93]
which reports frequent graph patterns only if the similarity is below a thfdsho
a. Such patterns are also referred taasrthogonal patternsA pattern set”
is said to be3-representativeif for every non-reported patter) at least one
pattern can be found i® for which the underlying similarity t@ is at least
a thresholds. These two constraints address different aspects of the struc-
tural patterns. The method in [93] determines the set af-althogonal and
(B-representative patterns. An efficient algorithm has been propog@d]im
order to mine such patterns. The idea here is to reduce the redundaney in th
underlying pattern set so as to provide a better understanding of theagpo
patterns.

Some particularly challenging variations of the problem arise in the context
of either very large data sets or very large data graphs. Recently, rddeeh
was proposed by [46], which uses randomized summarization in order to re
duce the data set to a much smaller size. This summarization is then leveraged
in order to determine the frequent subgraph patterns from the datadBava
derived in [46] on the false positives and false negatives with the useabf
an approach. Another challenging variation is when the frequent paiheen
overlaid on a very large graph, as a result of which patterns may therasmdve
very large subgraphs. An algorithm call€&Minerwas proposed in [110] to
determine frequent structures in very large scale graphs.

Graph pattern mining has numerous applications for a variety of applica-
tions. For example, in the case of labeled data, such pattern mining techniques
can be used in order to determisteuctural classification rulesFor example,



32 MANAGING AND MINING GRAPH DATA

the technique in [205] uses this approach for the purpose of XML dassicla
fication. In this case, we have a data set consisting of multiple (XML) graphs
each of which is associated with a class label. The method in [205] determines
the rules in which the left hand side is a structure and the right hand side is a
class label. This is used for the purposes of classification. Another appiic
of frequent pattern mining is studied in [121], in which these patterns & us
in order to creatgyBoost, which is a classifier designed as an application of
boosting. Frequent pattern mining has been found to be particularlyl irsefu
the chemical and biological domain [28, 65, 101, 120]. Frequent patigrn
ing techniques have been used to perform important functions in this domain
such as classification or determination of metabolic pathways.

Frequent graph pattern mining is also useful for the purpose of creating
graphindexes. In [201], the frequent structures in a graph colleat®mined,
so that they can be used as features for an indexing process. Theigjmilar
frequent pattern membership behavior across graphs is used to dedingha
similarity function for the purpose of filtering. An inverted representation is
constructed on this feature based representation in order to filter olat irre
vant graphs for the similarity search process. The technique of [20Alich
more efficient than other competitive techniques because of its featurd bas
approach. In general, frequent pattern mining algorithms are usefainfp
application which can be defined effectively on the basis of aggregatach
teristics. In general graph pattern mining techniques have the same rlange o
applicability as they do for the case of vanilla frequent pattern mining.

3.2 Clustering Algorithms for Graph Data

In this section, we will discuss a variety of algorithms for clustering graph
data. This includes both classical graph clustering algorithms as well as algo
rithms for clustering XML data. Clustering algorithms have significant appli-
cations in a variety of graph scenarios such as congestion detectidity fac
location, and XML data integration [126]. Within the context of graph algo-
rithms, the clustering can be of two types:

= Node Clustering Algorithms: In this case, we have one large graph,
and we attempt to cluster the underlying nodes with the use of a distance
(or similarity) value on the edges. In this case, the edges of the graph are
labeled with numerical distance values. These numerical distance values
are used in order to create clusters of nodes. A particular case is one in
which the presence of an edge refers to a similarity value of 1, whereas
the absence of an edge refers to a similarity value of 0. We note that the
problem of minimizing the inter-cluster similarity for a fixed number of
clusters essentially reduces to the problengm@iph partitioningor the
minimum multi-way cut problemThis is also referred to as the prob-



Graph Data Management and Mining: A Survey of Algorithms Apglications 33

lem of mining dense graphs and pseudo-cliques. Recently, the problem
has also been studied in the database literature as thptasi-clique
determination In this problem, we determine groups of nodes which
are “almost cliques”. In other words, an edge exists between any pair of
nodes in the set with high probability. We will study the different classes
of node clustering algorithms in a different section.

= Graph Clustering Algorithms: In this case, we have a (possibly large)
number of graphs which need to be clustered based on their underlying
structural behavior. This problem is challenging because of the need to
match the structures of the underlying graphs, and use these structures
for clustering purposes. Such algorithms are discussed both in the con-
text of classical graph data sets as well as semi-structured data. There-
fore, we will discuss both of these variations.

In the following subsections, we will discuss each of the above kindsagftgr
clustering algorithms.

Node Clustering Algorithms. A number of algorithms for graph node
clustering are discussed in [78]. In [78], the graph clustering proliera-
lated to the minimum cut and graph partitioning problems. In this case, it is
assumed that the underlying graphs have weights on the edges. It eddesir
partition the graph in such a way so as to minimize the weights of the edges
across the partitions. The simplest case is the 2-way minimum cut problem,
in which we wish to partition the graph into two clusters, so as to minimize
the weight of the edges across the partitions. This version of the problem is
efficiently solvable, and can be resolved by repeated applications ofdke
mum flow problenfl3]. This is because the maximum flow between source
and sinkt determines the minimum¢ cut. By using different source and sink
combinations, it is also possible to find the global minimum cut. A second way
of determining a minimum cut is by using a contraction-based edge-sampling
approach. This is a probabilistic technique in which we successively sample
edges in order to collapse nodes into larger sets of nodes. By swetgssim-
pling different sequences of edges and picking the optimum value [174]],
possible to determine a global minimum cut. Both of the above techniques are
quite efficient and the time-complexity is polynomial in terms of the number
of nodes and edges. An interesting discussion of this problem may beé iimun
[78].

The multi-way graph partitioning problenis significantly more difficult,
and is NP-hard [80]. In this case, we wish to partition a graph ints 2
components, so that the total weight of the edges whose ends lie in differen
partitions is minimized. A well known technique for graph partitioning is the
Kerninghan-Lin algorithm [116]. This classical algorithm is based on a hill-
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climbing (or more generally neighborhood-search technique) for detergnin
the optimal graph partitioning. Initially, we start off with a random cut of the
graph. In each iteration, we exchange a pair of vertices in two partitiossgto
if the overall cut value is reduced. In the event that the cut value icestju
then the interchange is performed. Otherwise, we pick another pairtideser
in order to perform the interchange. This process is repeated until nve e
to a optimal solution. We note that this optimum may not be a global optimum,
but may only be a local optimum of the underlying data. The main variation in
different versions of the Kerninghan-Lin algorithm is the policy which isdis
for performing the interchanges on the vertices. We note that the use ef mor
sophisticated strategies allows a better improvement in the objective function
for each interchange, but also requires more time for each interch@higas
a natural tradeoff which may work out differently depending upon tharea
of the application at hand. We note that the problem of graph partitioning is
studied widely in the literature. A detailed survey may be found in [77].

A closely related problem is that of dense subgraph determination in mas-
sive graphs. This problem is frequently encountered in large grajahseés.
For example, the problem of determining large subgraphs of web graghs w
studied in [82]. In this paper, a min-hash approach was used to deterreine th
shingleswhich represent dense subgraphs. The broad idea is to represent th
outlinks of a particular node as sets. Two nodes are considered similayif th
share many outlinks. Thus, consider a notlvith an outlink setS4 and a
node B with outlink setSg. Then the similarity between the two nodes is
defined by theJaccard coefficientwhich is defined ag4522. We note that
explicit enumeration of all the edges in order to compute this can be compu-
tationally inefficient. Rather, min-hash approacks used in order to perform
the estimation. Thisnin-hash approacks as follows. We sort the universe of
nodes in a random order. For any set of nodes in random sorted waldeter-
mine the first nodé’irst(A) for which an outlink exists fromd to Flirst(A).
We also determine the first nod&rst(B) for which an outlink exists fronB
to First(B). It can be shown that the Jaccard coefficient is an unbiased esti-
mate of the probability thak'irst(A) and First(B) are the same node. By
repeating this process over different permutations over the univérsades,
it is possible to accurately estimate the Jaccard Coefficient. This is done by
using a constant number of permutatiengf the node order. Thus, for each
node, a fingerprint of sizecan be constructed. By comparing the fingerprints
of two nodes, the Jaccard coefficient can be estimated. This appraadiec
further generalized with the use of everglement set contained entirely with
S4 andSp. By using different values of andc, it is possible to design an al-
gorithm which distinguishes between two sets that are above or below ecerta
threshold of similarity.
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The overall technique in [82] first generates a set aghingles of sizes
for each node. The process of generatingdishingles is extremely straight-
forward. Each node is processed independently. We use the min-wike ha
function approach in order to generate subsets of sizem the outlinks at
each node. This results insubsets for each node. Thus, for each node, we
have a set of shingles. Thus, if the graph contains a totahafodes, the total
size of this shingle fingerprint is x ¢ x sp, wheresp is the space required for
each shingle. Typicallgp will be O(s), since each shingle contairsodes.
For each distinct shingle thus created, we can create a list of nhodes which
contain it. In general, we would like to determine groups of shingles which
contain a large number of common nodes. In order to do so, the method in
[82] performs a second-order shingling in which the meta-shingles aatert
from the shingles. Thus, this further compresses the graph in a dataustruc
of sizec x ¢. This is essentially a constant size data structure. We note that
this group of meta-shingles has the the property that they contain a large num-
ber of common nodes. The dense subgraphs can then be extractetthdsam
meta-shingles. More details on this approach may be found in [82].

A related problem is that of determining quasi-cliques in the underlying
data. Quasi-cliques are essentially relaxations on the concept of cliqués.
case of a clique, the subgraph induced on a set of nodasniplete On the
other hand, in the case ohaquasi-clique, each vertex in that subset of nodes
has a degree of at leagtk, wherey is a fraction, and: is the number of nodes
in that set. The first work on determiningquasi-cliques was discussed in [5],
in which a randomized algorithm is used in order to determine a quasi-clique
with the largest size. A closely related problem is that of findirguently
occurring cliqguesn multiple data setsln other words, when multiple graphs
are obtained from different data sets, some dense subgraphs cexpueritly
together in the different data sets. Such graphs help in determimipgr-
tant dense patterns of behavior in different data sour&sh techniques find
applicability in mining important patterns in graphical representations of cus-
tomers. The techniques are also helpful in mining cross-graph quasesligu
gene expression data. A description of the application of the technique to the
problem of gene-expression data may be found in [153]. An efficigotighm
for determining cross graph quasi-cliques was proposed in [148].

Classical Algorithms for Clustering XML and Graph Data. In this sec-
tion, we will discuss a variety of algorithms for clustering XML and graph data
We note that XML data is quite similar to graph data in terms of how the data
is organized structurally. In has been shown in [8, 63, 126, 133] tkaigh of

this structural behavior is more critical for effective processing. &laee two
main techniques used for clustering of XML documents. These technigelies a
as follows:
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m Structural Distance-based Approach: This approach computes struc-

tural distances between documents and uses them in order to compute
clusters of documents. Such distance-based approaches are quite gen
eral and effective techniques over a wide variety of non-numerical do
mains such as categorical and string data. It is therefore natural to ex-
plore this technigue in the context of graph data. One of the earliest
work on clustering tree structured data is €lust algorithm[126],

which was designed to cluster XML schemas for efficient integration of
large numbers of Document Type Definitions (DTDs) of XML sources.

It adopts the agglomerative hierarchical clustering method which starts
with clusters of single DTDs and gradually merges the two most simi-
lar clusters into one larger cluster. The similarity between two DTDs is
based on their element similarity, which can be computed according to
the semantics, structure, and context information of the elements in the
corresponding DTDs. One of the shortcomings of the XClust algorithm
is that it does not make full use of the structure information of the DTDs,
which is quite important in the context of clustering tree-like structures.
The method in [45] computes similarity measures based on the structural
edit-distance between documents. This edit-distance is used in order to
compute the distances between clusters of documents.

Another clustering technique which falls in this general class of meth-
ods is theS-GRACEalgorithm. The main idea is to use the element-
subelement relationships in the distance function rather than the sim-
ple use of the tree-edit distance as in [45]. S-GRACE is a hierarchical
clustering algorithm [133]. In [133], an XML document is converted
to a structure graph (or s-graph), and the distance between two XML
documents is defined according to the number of the common element-
subelement relationships, which can capture better structural similarity
relationships than the tree edit distance in some cases [133].

Structural Summary Based Approach: In many cases, it is possible

to create summaries from the underlying documents. These summaries
are used for creating groups of documents which are similar to these
summaries. The first summary-based approach for clustering XML doc-
uments was presented in [63]. In [63], the XML documents are modeled
as rooted ordered labeled trees. A framework for clustering XML docu-
ments by using structural summaries of trees is presented. The aim is to
improve algorithmic efficiency without compromising cluster quality.

A second approach for clustering XML documents is presented in [8],
and is referred to asProj. This technique is a partition-based algorithm.
The primary idea in this approach is to use frequent-pattern mining algo-
rithms in order to determine the summaries of frequent structures in the
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data. The technique use&aneans type approach in which each cluster
center comprises a set of frequent patterns which are local to the partition
for that cluster. The frequent patterns are mined using the documents as-
signed to a cluster center in the last iteration. The documents are then
further re-assigned to a cluster center based on the average similarity
between the document and the newly created cluster centers from the lo-
cal frequent patterns. In each iteration the document-assignment and the
mined frequent patterns are iteratively re-assigned, until the cluster cen
ters and document partitions converge to a final state. It has been shown
in [8] that such a structural summary based approach is significantly su-
perior to a similarity function based approach as presented in [45]. The
method is also superior to the structural approach in [63] because of
its use of more robust representations of the underlying structural sum-
maries.

3.3 Classification Algorithms for Graph Data

Classification is a central task in data mining and machine learning. As
graphs are used to represent entities and their relationships in an ingreas
variety of applications, the topic of graph classification has attracted much
attention in both academia and industry. For example, in pharmaceutics and
drug design, we are interested to know the relationship between the activity o
a chemical compound and the structure of the compound, which is refedsen
by a graph. In social network analysis, we study the relationship between
the health of a community (e.g., whether it is expanding or shrinking) and its
structure, which again is represented by graphs.

Graph classification is concerned with two different but related learning
tasks.

= Label Propagation. A subset of nodes in a graph are labeled. The task
is to learn a model from the labeled nodes and use the model to classify
the unlabeled nodes.

= Graph classification. A subset of graphs in a graph dataset are labeled.
The task is to learn a model from the labeled graphs and use the model
to classify the unlabeled graphs.

Label Propagation.  The concept ofabel or belief propagatiofl74, 209,

210] is a fundamental technique which is used in order to leverage giragh s

ture in the context of classification in a number of relational domains. The
scenario of label propagation [44] occurs in many applications. As amex

ple, social network analysis is being used as a mean for targeted marketing.
Retailers track customers who have received promotions from them. Those
customers who respond to the promotion (by making a purchase) are labeled
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as positive nodes in the graph representing the social network, areltinos

do not respond are labeled as negative. The goal of target marketing is
send promotions to customers who are most likely to respond to promotions.
It boils down to learning a model from customers who have received promo
tions and predicting the responses of other potential customers in the social
network. Intuitively, we want to find out how existing positive and negativ
labels propagate in the graph to unlabeled nodes.

Based on the assumption that “similar” nodes should have similar labels,
the core challenge for label propagation lies in devising a distance function
that measures the similarity between two nodes in the graph. One common
approach of defining the distance between two nodes is to count the aver-
age number of steps it takes to reach one node from the other using a ran-
dom walk [119, 178]. However, it has a significant drawback: it taRés?)
time to derive the distances aii2{n?) space to store the distances between
all pairs. However, many graphs in real life applications are sparsishwh
reduces the complexity of computing the distance [211, 210]. For example,
Zhou et al [210] introduces a method whose complexity is nearly linear to the
number of non-zero entries of the sparse coefficient matrix. A suri&pel
propagation methods can be found in [179].

Kernel-based Graph Classification Methods. Kernel-based graph classi-
fication employs a graph kernel to measure the similarity between two labeled
graphs. The method is based on random walks. For each graph, meete
its paths, and we derive probabilities for such paths. The graph keonel
pares the set of paths and their probabilities between the two graphsd@man
path (represented as a sequence of node and edge labels) is geviaraten-
dom walk: First, we randomly select a node from the graph. During the nex
and each of the subsequent steps, we either stop (the path endsjlamhan
select an adjacent node to continue the random walk. The choices we make
are subject to a given stopping probability and a node transition probability.
By repeating the random walks, we derive a table of paths, each of wahich
associated with a probability.

In order to measure the similarity between two graphs, we need to measure
the similarity between nodes, edges, and paths.

= Node/Edge kernel. An example of a node/edge kernel is the identity
kernel. If two nodes/edges have the same label, then the kernel returns
1 otherwise 0. If the node/edge labels take real values, then a Gaussian
kernel can be used instead.

= Path kernel. A path is a sequence of node and edge labels. If two paths
are of the same length, the path kernel can be constructed as the product
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of node and edge kernels. If two paths are of different lengths, ttie pa
kernel simply returns 0.

= Graph kernel. As each path is associated with a probability, we can
define the graph kernel as the expectation of the path kernel over all
possible paths in the two graphs.

The above definition of a graph kernel is straightforward. Howevaes, it
computationally infeasible to enumerate all the paths. In particular, in cyclic
graphs, the length of a path is unbounded, which makes enumeration impos-
sible. Thus, more efficient approaches are needed to compute thé. kiérne
turns out that the definition of the kernel can be reformulated to showtaches
structure. In the case of directed acyclic graphs the nodes can bedbpolo
cally ordered such that there is no path from ngde i if : < j, the kernel
can be redefined as a recursive function, and dynamic programmingacan
dle this problem irO(|X| - |X’|), whereX and X’ are the set of nodes in the
two graphs. In the case of cyclic graphs, the kernel's feature sjene Ee-
guences) is possibly infinite because of loops. The computation of cyalahgr
kernel can still be done with linear system theory and convergencerpiep
of the kernel.

Boosting-based Graph Classification Methods. While the kernel-based
method provides an elegant solution to graph classification, it does nlat-exp
itly reveal what graph features (substructures) are relevant fesitilzation.

To address this issue, a new approach of graph classification bagedtem
mining is introduced. The idea is to perform graph classification based on a
graph’s important substructures. We can create a binary feature eded

on the presence or absence of a certain substructure (subgrapapply an
off-the-shelf classifier.

Since the entire set of subgraphs is often very large, we must focus on a
small subset of features that are relevant. The most straightforwardaagh
for finding interesting features is through frequent pattern mining. Hewev
frequent patterns are not necessarily relevant patterns. For iasiarchem-
ical graphs, ubiquitous patterns such as C-C or C-C-C are frequerhake
almost no significance in predicting important characteristics of chemical com-
pounds such as activity, toxicity, etc.

Boosting is used to automatically select a relevant set of subgraphs-as fea
tures for classification. LPBoost (Linear Program Boost) learns arlidisa
criminant function for feature selection. To obtain an interpretable rule, we
need to obtain a sparse weight vector, where only a few weights aremonz
It was shown [162] that graph boosting can achieve better accuracygtiaph
kernels, and it has the advantage of discovering key substructusksitbxat
the same time.
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The problem of graph classification is closely related to that of XML clas-
sification. This is because XML data can be considered an instangehof
graphs in which nodes and edges have features associated with them. Con-
sequently, many of the methods for XML classification can also be used for
structural graph classification. In [205], a rule-based classifidle(cARule$
was proposed in which we associate structural features on the leftsidad
with class labels on the right-hand side. The structural features on the left-
hand side are determined by computing the structural features in the graph
which are bothrequentanddiscriminativefor classification purposes. These
structural features are used in order to construct a prioritized listes wihich
are used for classification purposes. The topHes are determined based on
the discriminative behavior and the majority class label on the right hand side
of thesek rules is reported as the final result.

Other Related Work.  The problem of node classification arises in a num-
ber of different application contexts such as relational data classificatoral
network classification, and blog classification. A technique has beewgedp

in [138], which uses link-based similarity for node-classification in the cdnte

of relational data. This approach construatk featuresfrom the underlying
structure and uses them in order to create an effective model for aassifi
tion. Recently, this technique has also been used in the context of link-base
classification of blogs [23]. However, all of these techniques use ladedt
methods only. Since many of these techniques arise in the context of text data
it is natural to examine whether such content can be used in order to improve
classification accuracy. A method to perfocailective classificatiomf email
speech acts has been proposed in [39]. It has been shown thatallgsigan

of relational aspects of emails (such as emails in a particular thread) signifi-
cantly improves the classification accuracy. It has also been shown 6i [20
that the use of graph structures during categorization improves the dassifi
tion accuracy of web pages. Another work [25] discusses the probidaibel
acquisition in the context of collective classification.

3.4 The Dynamics of Time-Evolving Graphs

Many networks in real applications arise in the context of networked enti-
ties such as the web, mobile networks, military networks, and social networks
In such cases, it is useful to examine various aspects a\bleition dynam-
ics of typical networkssuch as the web or social networks. Thus, this line of
research focusses on modeling the general evolution propertiesyolavge
graphs which ar¢ypically encountered. Considerable study has been devoted
to that of examining generic evolution properties whietld across massive
networks such as web networks, citation networks and social netwsokse
examples of such properties are as follows:
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Densification: Most real networks such as the web and social networks con-
tinue to become more dense over time [129]. This essentially means that these
networks continue to add more links over time (than are deleted). This is a
natural consequence of the fact that much of the web and social media is a
relatively recent phenomenon for which new applications continue touelfo
over time. In fact most real graphs are known to exhildeasification power

law, which characterizes the variation in densification behavior over time. This
law states that the number of nodes in the network increases superlingarly w
the number of nodes over time, whereas the number of edges increpses su
linearly over time. In other words, if(¢) ande(t) represent the number of
edges and nodes in the network at titméhen we have:

e(t) o< n(t)® (2.1)

The value of the exponentlies between 1 and 2.

Shrinking Diameters: Thesmall worldphenomenon of graphs is well known.
For example, it was shown in [130] that the average path length between two
MSN messenger users is 6.6. This can be considered a verification of the
(internet version of the) widely known rule of “six degrees of sepanétio
(generic) social networks. It was further shown in [129], that thendizrs

of massive networks such as the web continue to shrink over time. This may
seem surprising, because one would expect that the diameter of therkietwo
should grow as more nodes are added. However, it is important to remember
that edges are added more rapidly to the network than nodes (as sddggeste
Equation 2.1 above). As more edges are added to the graph it becorsigsepos

to traverse from one node to another with the use of a fewer number e§edg

While the above observations provide an understanding of some kegtaispe
of specific aspects of long-term evolution of massive graphs, they dproe
vide an idea of how the evolution in social networks camumeleledn a com-
prehensive way. A method which was proposed in [131] usesnidsamum
likelihood principlein order to characterize the evolution behavior of massive
social networks. This work uses data-driven strategies in order toIrttozle
online behavior of networks. The work studies the behavior of fouefit
networks, and uses the observations from these networks in ordezat® e
model of the underlying evolution. It also shows that edge locality plays an im-
portant role in the evolution of social networks. A complete model of a ode’
behavior during its lifetime in the network is studied in this work.

Another possible line of work in this domain is to study methods for char-
acterizing the evolution of specific graphs. For example, in a social nketitor
may be useful to determine the newly forming or decaying communities in the
underlying network [9, 16, 50, 69, 74, 117, 131, 135, 171, 143}ak shown
in [9] how expanding or contracting communities in a social network may be
characterized by examining the relative behavior of edges, as theycaiged
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in a dynamic graph stream. The techniques in this paper characterize ttie stru
tural behavior of the incremental graph within a given time window, and uses
it in order to determine the birth and death of communities in the graph stream.
This is the first piece of work which studies the problem of evolutiofast
streams of graphsilt is particularly challenging to study the stream case, be-
cause of the inherent combinatorial complexity of graph structural asalys
which does not lend itself well to the stream scenario.

The work in [69] uses statistical analysis and visualization in order to pro-
vide a better idea of the changing community structure in an evolving social
network. A method in [171] performs parameter-free mining of large time-
evolving graphs. This technique can determine the evolving communities in
the network, as well as the critical change-points in time. A key property of
this method is that it iparameter-fregand this increases the usability of the
method in many scenarios. This is achieved with the use of the MDL principle
in the mining process. A related technique can also perform parameter-fre
analysis of evolution in massive networks [74] with the use of the MDL prin-
ciple. The method can determine which communities have shrunk, split, or
emerged over time.

The problem of evolution in graphs is usually studied in the context of clus-
tering, because clusters provide a natural summary for understandihg b
the underlying graph and the changes inherent during the evolutioegzoc
The need for such characterization arises in the context of massiverksiw
such as interaction graphs [16], community detection in social networks [9,
50, 135, 173], and generic clustering changes in linked information mk$wo
[117]. The work by [16] provides aavent based framewaqriwhich provides
an understanding of the typical events which occur in real networkenwh
new communities may form, evolve, or dissolve. Thus, this method can pro-
vide an easy way of making a quick determination of whether specific kinds
of changes may be occurring in a particular network. A key technique use
by many methods is to analyze the communities in the data over specific time
slices and then determine the change between the slices to diagnose the nature
of the underlying evolution. The method in [135] deviates from this two-step
approach and constructs a unified framework for the determination of commu
nities with the use of a best fit to a temporal-smoothness model. The work in
[50] presents a spectral method for evolutionary clustering, which isalsed
on the temporal-smoothness concept. The method in [173] studies techniques
for evolutionary characterization of networks in multi-modal graphs. Fipally
recent method proposed in [117] combines the problem of clusteringvand e
lutionary analysis into one framework, and shows how to determine evolving
clusters in a dynamic environment. The method in [117] uses a density-based
characterization in order to construngtno-clustersvhich are further leveraged
for evolution analysis.
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A different approach is to use association rule-based mining techni2Ries [
The algorithm takes a sequence of snapshots of an evolving graptiemait-
tempts to determine rules which define the changes in the underlying graph.
Frequently occurring sequences of changes in the underlying graptoa-
sidered important indicators for rule determination. Furthermore, thedraqu
patterns are decomposed in order to study the confidence that a paieular
guence of steps in the past will lead to a particular transition. The probability
of such a transition is referred to asnfidence The rules in the underlying
graph are then used in order to characterize the overall network evolutio

Another form of evolution in the networks is in terms of the underlyfiogy
of communication (or information)Since the flow of communication and in-
formation implicitly defines a graph (stream), the dynamics of this behavior
can be very interesting to study for a number of different applicationsh Su
behaviors arise often in a variety of information networks such as soeial n
works, blogs, or author citation graphs. In many cases, the evolution kay ta
the form of cascading information through the underlying graphs. The ide
is that information propagates through the social network through cdogact
tween the different entities in the network. The evolution of this information
flow shares a number of similarities with the spread of diseases in networks.
We will discuss more on this issue in a later section of this paper. Such evolu-
tion has been studied in [128], which studies how to characterize the evolutio
behavior in blog graphs.

4. Graph Applications

In this section, we will study the application of many of the aforementioned
mining algorithms to a variety of graph applications. Many data domains
such as chemical data, biological data, and the web are naturally stdietire
graphs. Therefore, it is natural that many of the mining applications disdus
earlier can be leveraged for these applications. In this section, we wilf stud
the diverse applications that graph mining techniques can support. We will
also see that even though these applications are drawn from diffeneraiials,
there are some common threads which can be leveraged in order to improve
the quality of the underlying results.

4.1 Chemical and Biological Applications

Drug discovery is a time consuming and extremely expensive undertak-
ing. Graphs are natural representations for chemical compoundbienical
graphs, nodes represent atoms and edges represent bondsnbatioves. Bi-
ology graphs are usually on a higher level where nodes represem agids
and edges represent connections or contacts among amino acids. Ataimpor
assumption, which is known as the structure activity relationship (SAR)iprinc
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ple, is that the properties and biological activities of a chemical compownd ar
related to its structure. Thus, graph mining may help reveal chemical and biol-
ogy characteristics such as activity, toxicity, absorption, metabolism, €. [3
and facilitate the process of drug design. For this reason, academidand p
maceutical industry have stepped up efforts in chemical and biology graph
mining, in the hope that it will dramatically reduce the time and cost in drug
discovery.

Although graphs are natural representations for chemical and bidlagy s
tures, we still need a computationally efficient representation, known-as de
scriptors, that is conducive to operations ranging from similarity searchrto
ious structure driven predictions. Quite a few descriptors have begogped.

For example, hash fingerprints [2, 1] are a vectorized represent&@ivan a
chemical graph, we create a a hash fingerprint by enumerating certais typ
of basic structures (e.g., cycles and paths) in the graph, and hashingntioe

a bit-string. In another line of work, researchers use data mining methods to
find frequent subgraphs [150] in a chemical graph database, present each
chemical graph as a vector in the feature space created by the sequdrite
subgraphs. A detailed description and comparison of various deserigdar

be found in [190].

One of the most fundamental operations on chemical compounds is similar-
ity search. Various graph matching algorithms have been employed#&m
retrieval, that is, searching a large database to find chemical compounds that
share the same bioactivity as a query compound; arsgdifold-hoppingthat
is, finding compounds that have similar bioactivity but different structuenf
the query compound. Scaffold-hopping is used to identify compoundatbat
good “replacement” for the query compound, which either has some itmndes
able properties (e.qg., toxicity), or is from the existing patented chemicaéspac
Since chemical structure determines bioactivity (the SAR principle), ddaffo
hopping is challenging, as the identified compounds must be structurally sim-
ilar enough to demonstrate similar bioactivity, but different enough to be a
novel chemotype. Current approaches for similarity matching can befigddss
into two categories. One category of approaches perform similarity matching
directly on the descriptor space [192, 170, 207]. The other catedaap-o
proaches also consider indirect matching: if a chemical compousdtruc-
turally similar to the query compoungd and another chemical compouids
structurally similar toc, thenc’ andq are indirect matches. Clearly, indirect
macthing has the potential to indentify compounds that are functionally similar
but structurally different, which is important to scaffold-hopping [18%1]L

Another important application area for chemical and biology graph mining
is structure-driven prediction. The goal is to predict whether a chersiaad-
ture is active or inactive, or whether it has certain properties, for ekanxic
or nontoxic, etc. SVM (Support Vector Machines) based methods haveg
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effective for this task. Various vector space based kernel functinokiding

the widely used radial basis function and the Min-Max kernel [172, 182

used to measure the similarity between chemical compounds that are repre-
sented by vectors. Instead of working on the vector space, anottegoca

of SVM methods use graph kernels to compare two chemical structures. For
instance, in [160], the size of the maximum common subgraph of two graphs

is used as a similarity measure.

In late 1980’s, the pharmaceutical industry embraced a new drug digcove
paradigm called target-based drug discovery. Its goal is to develoygettakat
selectively modulates the effects of the disease-associated gene progenet
without affecting other genes or molecular mechanisms in the organism. This
is made possible by the High Throughput Screening (HTS) techniquehwhic
is able to rapidly testing a large number of compounds based on their binding
activity against a given target. However, instead of increasing thaeuptioity
of drug design, HTS slowed it down. One reason is that a large number of
screened candidates may have unsatisfactory phenotypic effectastamtity
and promiscuity, which may dramatically increase the validation cost in later
stage drug discovery [163]. Target Fishing [109] tackles the abeueisby
employing computational techniques to directly screen molecules for desirable
phenotype effects. In [190], we offer a detailed description of varisuch
methods, including multi-category Bayesian models [149], SVM rank [188],
Cascade SVM [188, 84], and Ranking Perceptron [62, 188].

4.2 Web Applications

The world wide web is naturally structured in the form of a graph in which
the web pages are the nodes and the links are the edges. The linkagaetruc
of the web holds a wealth of information which can be exploited for a variety
of data mining purposes. The most famous application which exploits the link-
age structure of the web is tiRageRanlkalgorithm [29, 151]. This algorithm
has been one of the key secrets to the success of the well KBoaglesearch
engine. The basic idea behind the page rank algorithm is that the importance
of a page on the web can be gauged from the number and importance of the
hyperlinks pointing to it. The intuitive idea is to model a random surfer who
follows the links on the pages with equal likelihood. Then, it is evident that
the surfer will arrive more frequently at web pages which have a lange-n
ber of paths leading to them. The intuitive interpretation of page rank is the
probability that a random surfer arrives at a given web page duriag@om
walk. Thus, the page rank essentially forms a probability distribution ovbr we
pages, so that the sum of the page rank over all the web pages sumsito 1. |
addition, we sometimes add teleportation, in which we can transitignveb
page in the collection uniformly at random.
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Let A be the set of edges in the graph. ketdenote the steady state proba-
bility of node: in a random walk, and leg® = [p;;] denote the transition matrix
for the random-walk process. Latdenote theeleportation probabilityat a
given step, and lef; be theith value of a probability vector defined over all the
nodes which defines the probability that the teleportation takes place to node
1 at any given step (conditional on the fact that teleportation does take)plac
For the time-being, we assume that each valug @ the same, and is equal
to 1/n, wheren is the total number of nodes. Then, for a given ngdee can
derive the following steady-state relationship:

T = Z wipji- (1 —a)+a-g (2.2)
J:(Gi)eA

We note that the effect of teleportation is to smooth out the distribution of page
ranks across dense and sparse regions. This ensures that anfawelgions in
the network do not completely dominate the page rank. As we will see slightly
later, the flexibility of teleportation also allows us to bias the page rank towards
specific regions of the network.

Similar to Equation 2.2, we can derive an equationsfpfor each node;
this will result in a linear system of equations on the transition probabilities.
The solution to this system provides the page rank vegtorhis linear sys-
tem has: variables, ana different constraints, and can therefore be expressed
in n? space in the worst-case. The solution to such a linear systems requires
matrix operations which are at least quadratic (and at most cubic) in the total
number of nodes. This can be quite expensive in practice. Of counge, s
the page rank needs to be computed only once in a while in batch phase, it is
possible to implement it reasonably well with the use of a few carefully de-
signed matrix techniques. TlrageRanlalgorithm [29, 151] uses an iterative
approach which computes the principal eigenvectors of the normalized link
matrix of the web. A description of the page rank algorithm may be found in
[151].

We note that the page-rank algorithm only looks at the link structure during
the ranking process, and does not include any information about thentarf
the underlying web pages. A closely related concept is thadm€-sensitive
page ranK95], in which we use the topics of the web pages during the ranking
process. The key idea in such methods is to allowpfnsonalized teleporta-
tion (or jumps) during the random-walk process. At each step of the random
walk, we allow a transition (with probability) to a sample sef of pages
which are related to the topic of the search. Otherwise, the random walk con
tinues in its standard way with probability — «). This can be easily achieved
by modifying the vectog = (¢ ...¢,), SO that we set the appropriate com-
ponents in this vector to 1, and others to 0. The final steady-state probabilitie
with this modified random-walk defines the topic-sensitive page rank. The
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greater the probability, the more the process biases the final ranking towards
the sample sef. Since each topic-sensitive personalization vector requires
the storage of a very large page rank vector, it is possible to pre-cortte
advance only in a limited way, with the use of some representative or authori-
tative pages. The idea is that we use a limited number of such personalization
vectorsg and determine the correspondipgrsonalizecbage rank vectors

for these authoritative pages. A judicious combination of these differamt p
sonalized page rank vectors (for the authoritative pages) is used en trd
define the response for a given query set. Some examples of sudaeapes

are discussed in [95, 108]. Of course, such an approach has limitati@mms

of the level of granularity in which it can perform personalization. It basn
shown in [79] that fully personalized page rank, in which we can pricidas

the random walk towards arbitrary set of web pages will always require at
least quadratic space in the worst-case. Therefore, the approag8]iold-
serves that the use of Monte-Carlo sampling can greatly reduce thergpace
quirements without significantly affecting quality. The work in [79] pre-s$or
Monte-Carlo samples of node-specific random walks, which are alsoeef

to asfingerprints It has been shown in [79] that a very high level of accuracy
can be achieved in limited space with the use of such fingerprints. Sulpdéeque
recent work [42, 87, 175, 21] has built on this idea in a variety of stesna
and shown how such dynamic personalized page rank techniques nzatdke
even more efficient and effective. Detailed surveys on differentigcles for
page rank computation may be found in [20].

Other relevant approaches include the use of measures such laftitige
timein order to determine and rank the context sensitive proximity of nodes.
The hitting time between noddo j is defined as the expected number of hops
that a random surfer would require to reach ngdeom nodei. Clearly, the
hitting time is a function of not just the length of the shortest paths, but also the
number of possible paths which exist from nade nodej. Therefore, in order
to determine similarity among linked objects, the hitting time is a much better
measurement of proximity as compared to the use of shortest-path distAnces.
truncated version of the hitting time defines the objective function by restrict-
ing only to the instances in which the hitting time is below a given threshold.
When the hitting time is larger than a given threshold, the contribution is sim-
ply set at the threshold value. Fast algorithms for computing a truncateshtar
of the hitting time are discussed in [164]. The issue of scalability in random-
walk algorithms is critical because such graphs are large and dynamiajeand
would like to have the ability to rank quickly for particular kinds of queries. A
method in [165] proposes a fast dynamic re-ranking method, when eser f
back is incorporated. A related problem is that of investigating the behakvior
random walks of fixed length. The work in [203] investigates the problém o
neighborhood aggregation queries. The aggregation query cambelemd
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an “inverse version” of the hitting time, where we are fixing the number of
hops and attempting to determine tinamberof hits, rather than the number of
hops to hit. One advantage of this definition is that it automatically considers
only truncated random walks in which the length of the walk is below a given
thresholdh; it is also a cleaner definition than the truncated hitting time by
treating different walks in a uniform way. The work in [203] determinede®
that have the top- highest aggregate values over theihop neighbors with

the use of a Local Neighborhood Aggregation framework called LON#e T
framework exploits locality properties in network space to create an efficien
index for this query.

Another related idea on determining authoritative ranking is that dfititee
authority mode[118]. The page-rank technigque determines authority by using
linkage behavior as indicative of authority. The work in [118] propdbes
web pages are one of two kinds:

m» Hubs are pages which link to authoritative pages.
= Authorities are pages which are linked to by good hubs.

A score is associated with both hubs and authorities corresponding to their
goodness for being hubs and authorities respectively. The hubsssafiect

the authority scores and vice-versa. An iterative approach is usedlén @r
compute both the hub and authority scores. The HITS algorithm proposed in
[118] uses these two scores in order to compute the hubs and authorities in th
web graph.

Many of these applications arise in the context of dynamic graphs in which
the nodes and edges of the graph are received over time. For example, in
context of a social network in which new links are being continuouslytetta
the estimation of page rank is inherently a dynamic problem. Since the page
rank algorithm is critically dependent upon the behavior of random wiks,
streaming page rank algorithm [166] samples nodes independently intorder
create short random walks from each node. This walks can then bedierg
create longer random walks. By running several such random whlk@age
rank can be effectively estimated. This is because the page rank is simply the
probability of visiting a node in a random walk, and the sampling algorithm
simulates this process well. The key challenge for the algorithm is that it is
possible to get stuck during the process of random walks. This is betaes
sampling process picks both nodes and edges in the sample, and it is possible
to traverse an edge such that the end point of that edge is not prettenhinde
sample. Furthermore, we do not allow repeated traversal of nodesentord
preserve randomness. Such stuck nodes can be handled by keapkngf the
setS of sampled nodes whose walks have already been used for extending the
random walk. New edges are sampled out of both the stuck node anddbe no
in S. These are used in order to extend the walk further as much as poskible. |
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the new end-point is a sampled node whose walk is not in S, then we continue
the merging process. Otherwise, we repeat the process of samplingadge
of S and all the stuck nodes visited since the last walk was used.

Another application commonly encountered in the context of graph mining
is the analysis of query flow logs. We note that a common way for many users
to navigate on the web is to use search engines to discover web pagesmand th
click some of the hyperlinks in the search results. The behavior of thitingsu
graphs can be used to determine the topic distributions of interest, and semantic
relationships between different topics.

In many web applications, it is useful to determine clusters of web pages
or blogs. For this purpose, it is helpful to leverage the linkage strucfuteso
web. A common technique which is often used for web document clustering
is that ofshingling[32, 82]. In this case, the min-hash approach is used in
order to determine densely connected regions of the web. In additiorgfany
a number of quasi-clique generation techniques [5, 148, 153] candokfois
the purpose of determination of dense regions of the graph.

Social Networking. Social networks are very large graphs which are de-
fined by people who appear as nodes, and links which corresponthtowoi-
cations or relationships between these different people. The links in ¢ied so
network can be used to determine relevant communities, members with partic-
ular expertise sets, and the flow of information in the social network. We will
discuss these applications one by one.

The problem of community detection in social networks is related to the
problem ofnode clusteringof very large graphs. In this case, we wish to
determine dense clusters of nodes based on the underlying linkage r&ructu
[158]. Social networks are a specially challenging case for the clugtprob-
lem because of the typically massive size of the underlying graph. As in the
case of web graphs, any of the well known shingling or quasi-cliquergen
ation methods [5, 32, 82, 148, 153] can be used in order to determine rele-
vant communities in the network. A technique has been proposed in [167]
to use stochastic flow simulations for determining the clusters in the underly-
ing graphs. A method for determining the clustering structure with the use of
the eigen-structure of the linkage matrix in order to determine the community
structure is proposed in [146]. An important characteristic of large msne
that they can often be characterized by the nature of the underlyingagits
In [27], a technique has been proposed for counting the number gfagpitis
of a particular type in a large network. It has been shown that this charac
terization is very useful for clustering large networks. Such precisiomot
be achieved with the use of other topological properties. Thereforeaphis
proach can also be used for community detection in massive networks. The
problem of community detection is particularly interesting in the context of
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dynamic analysisf evolving networks in which we try to determine how the
communities in the graph may change over time. For example, we may wish
to determinenewly forming communitieslecaying communitie®r evolving
communities Some recent methods for such problems may be found in [9,
16, 50, 69, 74, 117, 131, 135, 171, 173]. The work in [9] also examthis
problem in the context of evolving graph streams. Many of these techsique
examine the problem of community detection and change detection in a single
framework. This provides the ability to present the changes in the undgrlyin
network in a summarized way.

Node clustering algorithms are closely related to the concepetwfrality
analysisin networks. For example, the technique discussed in [158] uses a
k-medoids approach which yieldscentral points of the network. This kind
of approach is very useful in different kinds of networks, thoughiffecknt
contexts. In the case of social networks, these central points areltypien
members in the network which are well connected to other members of the
community. Centrality analysis can also be used in order to determine the
central points in information flows. Thus, it is clear that the same kind of
structural analysis algorithm can lead to different kinds of insights inreiffe
networks.

Centrality detection is closely related to the problem of information flow
spread in social networks. It was observed that many recently deckiogal
flow analysis techniques [40, 127, 147] can be used in the contextariety
of other social networking information flow related applications. This is be-
cause information flow applications can be understood with similar behavior
models as viral spread. These applications are: (1) We would like to determin
the most influential members of the social network; i.e. members who cause
the most flow of information outwards. (2) Information in the social behavior
often cascades through it in the same way as an epidemic. We would like to
measure the information cascade rate through the social network, ame dete
mine the effect of different sources of information. The idea is that mangor
promotes the early detection of information flows, and is beneficial to the per-
son who can detect it. The cascading behavior is particularly visible in the
case of blog graphs, in which the cascading behavior is reflected inrtheofo
added links over time. Since it is not possible to monitor all blogs simultane-
ously, it is desirable to minimize the monitoring cost over the different blogs,
by assuming a fixed monitoring cost per node. This problem is NP-hard,[12
since the vertex-cover problem can be reduced to it. The main idea in [128]
is to use an approximation heuristic in order to minimize the monitoring cost.
Such an approach is not restricted to the blog scenario, but it is alsoapplic
ble to other scenarios such as monitoring information exchange in social net-
works, and monitoring outages in communication networks. (3) We would like
to determine the conditions which lead to the critical mass necessary for un-
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controlled information transmission. Some techniques for characterizing thes
conditions are discussed in [40, 187]. The work in [187] relates thetsiieiof

the adjacency matrix to the transmissibility rate in order to measure the thresh-
old for an epidemic. Thus, the connectivity structure of the underlyinghgra

is critical in measuring the rate of information dissemination in the underlying
network. It has been shown in [187] that the eigenstructure of the exuljsic
matrix can be directly related to the threshold for an epidemic.

Other Computer Network Applications. Many of these techniques can
also be used for other kinds of networks such as communication networks.
Structural analysis and robustness of communication networks is highly de-
pendent upon the design of the underlying network graph. Care§igjnl®f

the underlying graph can help avoid network failures, congestionsther o
weaknesses in the overall network. For example, centrality analysi$ ¢ab8

be used in the context of a communication network in order to determine criti-
cal points of failure. Similarly, the techniques for flow dissemination in social
networks can be used to model viral transmission in communication networks
as well. The main difference is that we model viral infection probability along
an edge in a communication network instead of the information flow probabil-
ity along an edge in a social network.

Many reachability techniques [10, 48, 49, 53, 54, 184] can be used-to d
termine optimal routing decisions in computer networks. This is also related
to the problem of determining pairwise node-connectivity [7] in computer net-
works. The technique in [7] uses a compression-based synopsisate ene
effective connectivity index for massive disk-resident graphs. iBhiseful in
communication networks in which we need to determine the minimum number
of edges to be deleted in order to disconnect a particular pair of namtafie
another.

4.3 Software Bug Localization

A natural application of graph mining algorithms is that of software bug
localization. Software bug localization is an important application from the
perspective of software reliability and testing. The control flow of paos
can be modeled in the form of call-graphs. The goal of software budjzaca
tion techniques is to mine such call graphs in order to determine the bugs in
the underlying programs. Call graphs are of two types:

m Static call graphscan be inferred from the source code of a given pro-
gram. All the methods, procedures and functions in the program are
nodes, and the relationships between the different methods are defined
as edges. Itis also possible to define nodes for data elements and model
relationships between different data elements and edges. In the case of
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static call graphs, it is often possible to ugpical examplesf the struc-
ture of the program in order to determine portions of the software where
atypical anamolies may occur.

= Dynamic call graphs are created during program execution, and they
represent the invocation structure. For example, a call from one pro-
cedure to another creates an edge which represents the invocation re-
lationship between the two procedures. Such call graphs can be ex-
tremely large in massive software programs, since such programs may
contain thousands of invocations between the different procedunes. |
such cases, the difference in structural, frequency or sequehes-be
ior of successful and failing invocations can be used to localize soft-
ware bugs. Such call graphs can be particularly useful in localizing bug
which are occasional in nature and may occur in some invocations and
not others.

We further note that bug localization is not exhaustive in terms of the kinds
of errors it can catch. For example, logical errors in a program whieh a
not a result of the program structure, and which do not affect theeseg or
structure of execution of the different methods cannot be localized with su
techniques. Furthermore software bug localization is not an exact scienc
Rather, it can be used in order to provide software testing experts wisbes
bugs, and they can use this in order to make relevant corrections.
An interesting case is one in which different program executions lead to
different structure, sequence and frequency of executions whekecific
to failures and successes of the final program execution. These=fadund
successes may be a result of logical errors, which lead to changesdtusgr
and frequency of method calls. In such cases, the software bug-ktatiz
can be modeled as a classification problem. The first step is to create call
graphs from the executions. This is achieved by tracing the progracutxes
during the testing process. We note that such call graphs may be huge and
unwieldy for use with graph mining algorithms. The large sizes of call-graphs
creates a challenge for graph mining procedures. This is becausemgiaipg
algorithms are often designed for relatively small graphs, whereasczalich
graphs may be huge. Therefore, a natural solution is to reduce thef $ize o
call graph with the use of a compression based approach. This natesallysr
in loss of information, and in some cases, it also results in an inability to use
the localization approach effectively when the loss of information is extensi
The next step is to use frequent subgraph mining techniques on the train-
ing data in order to determine those patterns which occur more frequently in
faulty executions. We note that this is somewhat similar to the technique often
utilized in rule-based classifiers which attempt to link particular patterns and
conditions to specific class labels. Such patterns are then associated with the
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different methods and are used in order to provide a ranking of the medmad
functions in the program which may possibly contain bugs. This also previde
a causality and understanding of the bugs in the underlying programs.

We note that the compression process is critical in providing the ability to
efficiently process the underlying graphs. One natural method focheglthe
size of the corresponding graphs is to map multiple nodes in the call graph
into a single node. For example, fatal reduction we map every node in
the call node which corresponds to the same method onto one node in the
compressed graph. Thus, the total number of nodes in the graph is at most
equal to the number of methods. Such a technique has been used in [136] in
order to reduce the size of the call graph. A second method which magte us
is to compress the iteratively executed structures such as loops into a single
node. This is a natural approach, since an iteratively executed stustome
of the most commonly occurring blocks in call graphs. Another technique is
to reduce subtrees into single nodes. A variety of localization strategies with
the use of such reduction techniques are discussed in [67, 68, 72].

Finally, the reduced graphs are mined in order to determine discriminative
structures for bug localization. The method in [72] is based on determining dis
criminative subtrees from the data. Specifically, the method finds all ssbtree
which are frequent to failing executions, but are not frequent irecbexecu-
tions. These are then used in order to construct rules which may bearsed f
specific instances of classification of program runs. More importantth su
rules provide an understanding of the causality of the bugs, and this-unde
standing can be used in order to support the correction of the undeesriorg.

The above technique is designed for finding structural characteristics o
execution which can be used for isolating software bugs. However, ity man
cases the structural characteristics may not be the only features which may
be relevant to localization of bugs. For example, an important feature which
may be used in order to determine the presence of bugs ireliive fre-
guencyof the invocation of different methods. For example, invocations which
have bugs may call a particular method more frequently than others. A hatura
way to learn this is to associate edge weights with the call graph. These edge
weights correspond to the frequency of invocation. Then, we use dugge
weights in order to analyze the calls which are most relevant to discriminating
between correct and failing executions. A number of methods for this afass
techniques is discussed in [67, 68].

We note that both structure and frequency are different aspects dathe
which can be leveraged in order to perform the localization. Therefbre,
makes sense to combine these approaches in order to improve the localization
process. The techniques in [67, 68] create a score for both the s&tsed
and frequency-based features. A combination of these scores issbdriar
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the bug localization process. It has been shown [67, 68] that sughpaoach
is more effective than the use of either of the two features.

Another important characteristic which can be explored in future work is to
analyze thesequence of program cajlsather than simply analyzing the dy-
namic call structure or the frequency of calls of the different methodmeSo
initial work [64] in this direction shows that sequence mining encodes excel-
lent information for bug localization even with the use of simple methods.
However, this technique does not use sophisticated graph mining tecbnique
in order to further leverage this sequence information. Thereforenibeaa
fruitful avenue for future research to incorporate sequential infoomanto
the graph mining techniques which are currently available.

Another line of analysis is the analysis of static source code rather than the
dynamic call graphs. In such cases, it makes more sense to look particular
classes of bugs, rather than try to isolate the source of the execution erro
For example, neglected conditions in software programs [43] can ciahte f
ing conditions. For example, @asestatement in a software program with a
missing condition is a commonly occurring bug. In such cases, it makes sense
to design domain-specific techniques for localizing the bug. For this perpos
techniques based astatic program-dependence graphs are used. These are
distinguished from the dynamic call graphs discussed above, in the thextse
the latter requires execution of the program to create the graphs, sletbes
case the graphs are constructed in a static fashion. Program depe igdaphs
essentially create a graphical representation of the relationships betineeen
different methods and data elements of a program. Different kinds afsedg
are used to denote control and data dependencies. The first steptsrtoide
conditional rules [43] in a program which illustrates the program depende
cies which are frequently occurring in a project. Then we search fati€s
instantiations within the project which violate these rules. In many cases, such
instantiations could correspond to neglected conditions in the software pro-
gram.

The field of software bug localization faces a number of key challenges.
One of the main challenges is that the work in the field has mostly focussed on
smaller software projects. Larger programs are a challenge, becaussrte-
sponding call graphs may be huge and the process of graph comprassyo
lose too much information. While some of these challenges may be alleviated
with the development of more efficient mining techniques for larger graphs,
some advantages may also be obtained with the use of better representations a
themodeling level For example, the nodes in the graph can be represented at a
coarser level of granularity at the modeling phase. Since the modelinggzroc
is done with a better level of understanding of the possibilities for the bisgs (a
compared to an automated compression process), it is assumed that such an
approach would lose much less information for bug localization purposes. A
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second direction is to combine the graph-based techniques with otheiveffec
statistical techniques [137] in order to create more robust classifiefstulre
research, it should be reasonable to expect that larger softwageetgroan be
analyzed only with the use of such combined techniques which can make use
of different characteristics of the underlying data.

5. Conclusions and Future Research

In this chapter, we presented a survey of graph mining and management
applications. We also provide a survey of the common applications which
arise in the context of graph mining applications. Much of the work in recent
years has focussed on small and memory-resident graphs. Much ff-the
ture challenges arise in the contextvafry large disk-resident graphther
important applications are designed in the contexnabsive graphs streams
Graph streams arise in the context of a number of applications such ak socia
networking, in which the communications between large groups of users are
captured in the form of a graph. Such applications are very challengjimgg
the entire data cannot be localized on disk for the purpose of struchaigisis.
Therefore, new techniques are required to summarize the structuilibeh
of graph streams, and use them for a variety of analytical scenariosxpéet
that future research will focus on the large-scale and stream-basedrixs
for graph mining.

Notes

1. FLWOR is an acronym foFOR-LET-WHERE-ORDER BY-RETURN.
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