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Abstract

I want to look at recent developments of representing agm-style
belief revision in dynamic epistemic logics and the options for do-
ing something similar for ranking theory. Formally, my aim will be
modest: I will define a version of basic dynamic doxastic logic using
ranking functions as the semantics. I will show why formalizing rank-
ing theory this way is useful for the ranking theorist first by showing
how it enables one to compare ranking theory more easily with other
approaches to belief revision. I will then use the logic to state an ar-
gument for defining ranking functions on larger sets of ordinals than is
customary. Secondly, I will argue that the only way to extend the ac-
count of belief revision given by ranking theory to higher-order beliefs
and revisions is by continuing the approach taken by me and defin-
ing ranking theoretical equivalents of dynamic epistemic logics. For
proponents of dynamic epistemic logic, such logics will naturally be of
interest provided they are convinced of the revision operator defined
by ranking theory.

As we know, there are known knowns; there are things
we know we know. We also know, there are known
unknowns, that is to say, we know there are some
things we do not know. But there are also unknown
unknowns, the ones we do not know we do not know.

Donald Rumsfeld, stressing the importance of higher-
order epistemic states in a Department of Defense
news briefing, 12 February 2002

1 Introduction

The philosophical project of belief revision theory is a part of formal episte-
mology, and its aim is to characterise how rational agents revise their belief
states when presented with new information. Many theories of belief revision
have been proposed in the last 20 years, of which a large number can be put
into one of two groups: those using systems of spheres as representations of
epistemic states, and those using ranking functions. The former are signif-
icantly more popular and numerous, and the project of putting statements
expressing belief and belief revision into the form of a logic has therefore only
been carried out for them. Here, I want to look at the prospects of carrying
over these technical advances to ranking theory, and the potential benefits
of such a development.
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The structure of the text is as follows. In chapter 2, I introduce agm
theory and ranking theory, chapter 3 defines the logics used, in chapter 4, I
provide some results on comparing theories of belief revision using the logics
defined in the previous chapter, chapter 5 states an argument on codomains of
ranking functions, and chapter 6 considers the role of logics in ranking theory
of higher-order beliefs and revisions. A mathematical appendix provides
definitions of mathematical tools some readers may not be familiar with. All
proofs in this text are straightforward, but given nonetheless.

2 Theories of Belief Revision

Theories of belief revision usually employ formal languages to characterise
belief states of agents as well as information that is learned by them. A belief
state is normally required to at least fix the set of sentences of the language
the agent believes, although it may be richer than that. This set of believed
sentences is called the belief set of the agent, and it is required to be closed
under logical consequence. That is, if a sentence logically follows from a set
of sentences in the belief set, it is in the belief set as well. New information
in turn is represented by a sentence of the language.

Note that I wrote of agents believing sentences, not propositions. In so
writing I mean to express that the agent believes what the sentence expresses.
As is customary in belief revision theory, I pass over this distinction quickly,
acknowledging that much of great philosophical subtlety could be said about
it.

There is a broad consensus that when the agent learns a sentence such
that she doesn’t disbelieve it (an agent is said to disbelieve a sentence iff
she believes its negation), the new belief set should be the set of sentences
that are logical consequences of the union of the old belief set and the set
containing only the new sentence. This process is called expansion.

More problematic are the cases where an agent retracts her belief in a
sentence, called contraction, and the case where an agent comes to believe
a sentence she formerly disbelieved, called revision. It is generally accepted
that these three processes are linked by the so-called Levi identity:

Revision by ϕ is equivalent to contraction with ¬ϕ and subsequent
expansion with ϕ.

The problem with contraction (and through the Levi identity, with re-
vision) is this: The most natural formalization of contracting a belief state
with a sentence ϕ would be to take the largest (with respect to the subset
relation) closed subset of the prior belief set that fails to imply ϕ. However,
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this is not a unique characterisation, as in general there are several such
sets. Using the intersection of all such sets is not an option either, as this
would only leave those sentences in the belief set that are consequences of
the negation of the sentence with which was contracted, which is clearly too
small.

2.1 AGM Belief Revision

This problem was stated much more rigorously in Alchourrón et al. (1985),
and a solution was proposed, which laid the foundation for all subsequent
work on belief revision. It is often called the “agm theory” after the first
letters of the names of the authors of this paper, viz. Charlos Alchourrón,
Peter Gärdenfors, and David Makinson. I want to present this theory in
the form of Grove (1988), as this will make it easier to compare it to other
theories discussed in the text. I will only give an informal account, for a rig-
orous definition, see Grove (1988, pp 157–163). Note that Grove is primarily
concerned with revision, not contraction. As stated, this does not make a
big difference, as any theory of revision is also a theory of contraction, on
account of the uncontroversial Levi identity (and vice versa).

Grove’s account starts like the usual Kripke-semantics for modal logics:
There is a set of worlds W , each propositional variable of the formal language
is assigned a set of worlds in which it holds, and the Boolean connectives
¬,∧ are interpreted as complementation and intersection. Grove then uses a
variant of the notion of systems of spheres introduced in Lewis (1973): For
any set of worlds X, a system of spheres, centered on X, is a set of sets of
worlds that is a wellorder (with respect to ⊆) with X as its minimal element
and W as its maximal element. It follows that the individual elements of a
system of spheres are sets of worlds which are nested like matryoshka dolls
or the layers of an onion, and are called “spheres”.

A belief state of an agent is represented by a system of spheres. The
intended philosophical interpretation is that the worlds of the innermost
sphere are the most plausible, and the worlds of each sphere are less plausible
then the ones of the spheres it contains. A system of spheres is therefore
equivalent to a plausibility order that is a wellorder. What does it mean for
a world to be more plausible than another world? As worlds represent ways
the world might be, it means that the agents holds it more plausible that
the world is that way than the other way. The agent believes a sentence iff
none of the most plausible worlds contradict it. Let a world be a ϕ-world
iff ϕ is true in it. Then this means that an agent believes ϕ iff the set of
minimal worlds (with respect to the plausibility relation) is a subset of the
set of ϕ-worlds.

3



This enables Grove to define belief revision: Given the system of spheres
representing the belief state of the agent, after revising with ϕ, the agent is
in a belief state which is represented by a system of spheres whose smallest
sphere consists of the minimal ϕ-worlds. After revising with ϕ, she therefore
believes exactly those propositions which hold in all worlds of the intersection
of the worlds in which ϕ holds with the smallest sphere (in the original system
of spheres) that contains a world in which ϕ holds.

There is a problem with this theory: We starts with the belief state as
given by a system of spheres, but after revision we only know which proposi-
tions the agents believes. Therefore, agm theory cannot give an account of
iterated revision. This criticism was voiced in Spohn (1988), and an alter-
native account of belief revision was developed there. It is now know under
the name of ranking theory, which I present in the next section.

2.2 Belief Revision in Ranking Theory

This criticism against agm theory is open to an obvious reply: agm theory
attempts to explain single revisions,and it succeeds in that. Obviously, an
account of iterated revision would have to specify which system of spheres
results from revising a belief state as given by a certain system of spheres.
Nothing said so far shows that this cannot be done.

Spohn tries to do exactly this in Spohn (1988, pp 112–115). He argues
as follows: A prima facie plausible suggestion how to define revision is this:
After revision with ϕ, the ϕ-worlds are more plausible than the non-ϕ-worlds.
In terms of system of spheres: After revising with ϕ, there is a new sphere
for the set of ϕ-worlds of each existing sphere.

One problem Spohn raises for this solution is that this makes any world
in which ¬ϕ holds less plausible than any world in which ϕ holds. One could
therefore look for another account of iterated revision in which the changes
made to the belief state are minimal. According to agm theory, the minimal
sphere after revision will be the intersection of the worlds in which ϕ holds
with the smallest sphere that contains a world in which ϕ holds. So why not
create a new sphere with these worlds, make it the innermost sphere and add
all of these worlds to all the other spheres (otherwise it wouldn’t be a sphere
system)?

(A note on terminology: Hans van Ditmarsch has called the former of
these proposals “maximal-Spohn revision” and the latter “minimal-Spohn
revision”, e.g. in van Ditmarsch (forthcoming). As Spohn clearly does not
support either of these accounts of belief revision, I’m unsure whether one
should use these terms. An alternative terminology would be the one used
in Rott (2008). He calls the former lexicographic or moderate revision and
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the latter natural or conservative revision.)
Spohn raises the following problems for these two accounts: If revision is

defined in one of these two ways, a revision cannot be reversed. That is, in
general, there is no other revision such that performing the two successively
does not change the belief state. Also, revising with ϕ1 and then with ϕ2 does
not result in the same system of spheres as revising with ϕ2 and then with
ϕ1. Particularly the first of these problems points to what Spohn perceives as
the underlying problem of the approach using systems of spheres: As spheres
are just sets of worlds, if a revision results in two spheres having the same
elements, they thereby are identical, which makes it impossible to define a
revision rule that allows for reversibility.

Spohn’s conclusion is that systems of spheres do not provide enough in-
formation about an agent’s belief state. Just as agm theory uses system of
spheres instead of belief sets to model single belief revisions, as the latter
do not provide enough information, so Spohn wants to use ranking functions
instead of systems of spheres to model iterated belief revision.

What are ranking functions? In Spohn (1988), ranking functions are
defined as functions from the set of possible worlds to the class of ordinals
such that at least one world is mapped to 0. Subsequent publications vary
the codomain of ranking functions, and this question will be discussed in
detail in section 5. The following may help picturing ranking functions: As
a ranking function assigns an ordinal number to each world, it is equivalent
to a system of spheres in which the spheres are assigned ordinals. Any
sphere contained in another sphere will be assigned a lower ordinal, but the
numbering is allowed to contain gaps. As we identify propositions with sets
of worlds, we can define a derivative ranking function from propositions to
ordinals as follows: Any proposition is mapped to the minimum of the set of
ordinals the worlds it contains are mapped to. The set of worlds a ranking
functions assigns 0 to is called the core of that ranking function. The core
of a ranking function takes the place of the smallest sphere in systems of
spheres: in ranking theory, the agent believes ϕ iff the core of the ranking
function representing her belief state is a subset of the ϕ-worlds.

What is the ranking-theoretic account of revision? This is described in
Spohn (1988, p 117). In his account of revision, Spohn wants to represent
the credibility of new information, which he measures with ordinals. His
account of revision therefore has the following form: Given a ranking function
representing the belief state of the agent, a set of worlds A representing the
proposition with which the belief state is to be revised, and an ordinal α
representing the credibility of this information, the revised ranking function
is as follows. The new rank of any A-world is the rank of A subtracted
from the old rank of the world, and the rank of any ¬A-world is α plus the
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rank of ¬A subtracted from the old rank of the world. This is called A,α-
conditionalization, and I will give a mathematically more precise definition
of it after having defined the logics. Other kinds of revision can be defined in
ranking theory representing different kinds of learning processes. One such
alternate definition of revision is Shenoy conditionalization, which will be
discussed later as well.

The ranking theoretical account of belief revision obviously allows for
iterated revisions. Furthermore, it can be proven that it has neither of the
problems posed to accounts using systems of spheres, so it solves the problems
posed to agm theory by Spohn.

3 Logics of Belief Revision

agm theory of belief revision has been put into the form of a logic called
dynamic doxastic logic (ddl). This family of logics uses systems of spheres
for its semantics, and it can accommodate a range of belief revision theories
operating with systems of spheres. (Systems of spheres are sometimes called
hypertheories, e.g. in Segerberg (1995).) ddl was mainly developed by Kris-
ter Segerberg, and I will present a variant of the version presented in Leitgeb
and Segerberg (2007).

As I also define a similar logic for ranking theory, I make significant
changes to the logic as defined in their paper, so theorems proved for their
logic may not hold in mine. I call the logics “basic dynamic doxastic logic”
(bddl), and “rankified basic dynamic doxastic logic” (rbddl). They are
basic, as there are certain restrictions already present on the syntactic level.
For definitions of full or unlimited ddl and further classifications properly
between ddl and bddl, see Segerberg (2001, pp 62–63) and Lindström and
Rabinowicz (1997). rbddl is rankified, as it is obtained from bddl by replac-
ing systems of spheres with ranking functions (plus some minor adjustments).

Ranking theory uses ordinal parameters for its revisions. To completely
represent this theory, a logic of ranking theory must syntactically represent
this parameter. If the full class of ordinals would be used for this, the syntax
would specify a proper class of syntactically well-formed expressions. To
avoid this, some countable ordinal number λ is chosen as the limit of the
ordinals used. Note that λ + 1 = {α ∈ Ord|α ≤ λ}, and that, as the choice
of λ affects semantics as well as syntax, one should properly speak of the
family of bddl or rbddl logics, with e.g. ω2-rbddl being a member of
rbddl. For convenience, I will speak just of bddl and rbddl in most of
the following, assuming λ to be some chosen ordinal limit.

I start by defining the syntax for bddl as well as rbddl.
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3.1 Syntax

First, I define the set of pure Boolean formulas pB for a set of propositional
letters P :

If p ∈ P , then p ∈ pB.

If ϕ1, ϕ2 ∈ pB, then ¬ϕ1 ∈ pB and (ϕ1 ∧ ϕ2) ∈ pB.

With this, the set of formulas FB is defined:

If ϕ ∈ pB, then ϕ ∈ FB.

If ψ1, ψ2 ∈ FB, then ¬ψ1 ∈ FB and (ψ1 ∧ ψ2) ∈ FB.

If ϕ ∈ pB, ψ ∈ FB, α ≤ λ, then Bϕ ∈ FB and [ϕ, α]ψ ∈ FB.

Other Boolean operators will be understood to be syntactic variations of the
ones presented, e.g. ψ1 → ψ2 is to be treated as ¬(ψ1 ∧ ¬ψ2). Additionally,

for any n ∈ N, [ϕ, α]nψ is used to stand for

n︷ ︸︸ ︷
[ϕ, α] . . . [ϕ, α]ψ.

3.2 Semantics of Pure Boolean Formulas

Before specifying the semantics of bddl and rbddl, here are those defini-
tions common to both:

A model is an algebraic structure containing a non-empty set of worlds
W and a valuation V on W . A valuation V on W is a function from the
propositional letters to the propositions on W , while the set of propositions
on W is the power set of W . With this, the semantics of pure Boolean
formulas is defined by a function J·KV from the pure Boolean formulas to the
propositions for any valuation V on W :

For any propositional letter p, JpKV = V (p).

For any pure Boolean formula ϕ, J¬ϕKV = W\JϕKV .

For any pure Boolean formulas ϕ1 and ϕ2, J(ϕ1∧ϕ2)KV = Jϕ1KV ∩Jϕ2KV .

7



3.3 Semantics of BDDL

In bddl, belief states are modelled by systems of spheres. Revisions are func-
tions from propositions and ordinals up to λ to relations between systems of
spheres and systems of spheres. The idea behind this is that a revision spec-
ifies for each proposition and ordinal which systems of spheres can rationally
be entertained after revising a certain system of spheres by that proposition
with that ordinal parameter. Now for the formal definitions:

A system of spheres s on W is a set of subsets of W that is a wellorder
with respect to the subset relation such that ∅ /∈ s,

⋃
s = W , and s’s order

type is in λ + 1. For a set S of systems of spheres, a revision on S is a
function from the set of propositions on W and λ+ 1 to the binary relations
on S. A revision frame is a structure 〈W,S, ?〉, where W is a non-empty set
of worlds, S is a set of systems of spheres on W , and ? is a revision on S.
A revision model is a structure 〈W,S, ?, V 〉 such that 〈W,S, ?〉 is a revision
frame and V is a valuation on W .

Truth of a formula ψ in a revision model M = 〈W,S, ?, V 〉 is defined
relative to a system of spheres s (representing the epistemic state of the agent)
and a world w (representing the factual state) denoted by M, s, w |= ψ. It
is defined as follows:
For any pure Boolean formula ϕ:

M, s, w |= ϕ iff w ∈ JϕKV

For any formulas ψ, ψ′ and pure Boolean formula ϕ:

M, s, w |= ¬ψ iff not M, s, w |= ψ

M, s, w |= (ψ ∧ ψ′) iff M, s, w |= ψ and M, s, w |= ψ′

M, s, w |= Bϕ iff
⋂
s ⊆ JϕKV

M, s, w |= [ϕ, α]ψ iff ∀s′ ∈ S(s ? (JϕKV , α)s′ →M, s′, w |= ψ)

The truth conditions for pure Boolean formulas as well as for formulas of the
form ¬ψ and (ψ ∧ ψ′) are straightforward. An agent believes a proposition
iff the proposition holds in all worlds she considers most plausible, so Bϕ is
true iff the innermost sphere of the system of spheres representing the belief
state of the agent is a subset of the set of ϕ-worlds. If the agent revises
her belief state by ϕ with parameter α, ψ holds iff ψ holds in all systems of
spheres accessible from the current one via the relation obtained by applying
the revision to ϕ and α.

One can now define a certain revision operator such that the true revi-
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sions are exactly those of agm theory. For their version of bddl, this has
been done in Leitgeb and Segerberg (2007). In this paper, there is also an
axiomatisation, but for the completeness proof, the reader is referred to an
unpublished manuscript by Segerberg from 2005. I also want to stress that
the proof might not be applicable to the variant of bddl presented here.

Note that agm theory of belief revision knows no revision parameters, so
when representing it in bddl, the revision will ignore the parameter. It may
seem to be the case that no sensible revision could be defined for bddl that
does not ignore the parameter, as systems of spheres are purely relational.
However, this is not the case – an example for such a revision can be derived
from Nayak et al. (2007, definition 3, p 2572).

A few more notions are introduced which will be used later: For any
countable ordinal α, SαW is the set of systems of spheres on W whose order
type is in α+ 1. For any functional revision ?, s?A,α is the unique s′ such that
s ? (A,α)s′.

As examples, I define lexicographic and natural revision ?lex and ?nat,
which are both functional. For any proposition A, α ≤ λ, s ∈ SλW ,

s?
lex

A,α = (({x ∩ A|x ∈ s} ∪ {x ∪ A|x ∈ s})\∅)|λ

s?
nat

A,α = (m ∪ {x ∪m|x ∈ s})|λ, where m =
⋂

(({x ∩ A|x ∈ s})\∅)

These definitions are straightforward implementations of the revisions de-
scribed earlier, except for the function ·|λ from sets of subsets of W that are
wellorders with respect to ⊆ to SλW , which is needed to make sure the range
of both relations is a subset of SλW , and defined such that for any s,

s|λ = {sα|α < λ} ∪ {W}, where sα =
⋂

(s\{sβ|β < α})

3.4 Semantics of RBDDL

The semantics of rbddl works strictly analogous to the semantics of bddl,
except that ranking functions are used instead of systems of spheres:

A ranking function on W is a function from W to λ+1 such that at least
one world is mapped to 0. The core of a ranking function is the set of worlds
the function maps to 0, written core(κ). For a set K of ranking functions, a
revision on K is a function from the set of propositions on W and λ + 1 to
the binary relations on K. A revision frame is a structure 〈W,K, ∗〉, where
W is a set of possible worlds, K is a set of ranking functions on W , and ∗
is a revision on K. A revision model is a structure 〈W,K, ∗, V 〉 such that
〈W,K, ∗〉 is a revision frame and V is a valuation on W .
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Truth of a formula ψ in a revision model M = 〈W,S, ∗, V 〉 is defined
relative to a ranking function κ (representing the epistemic state of the agent)
and a world w (representing the factual state) denoted by M, κ, w |= ψ. It
is defined as follows:
For any pure Boolean formula ϕ:

M, κ, w |= ϕ iff w ∈ JϕKV

For any formulas ψ, ψ′ and pure Boolean formula ϕ:

M, κ, w |= ¬ψ iff not M, κ, w |= ψ

M, κ, w |= (ψ ∧ ψ′) iff M, κ, w |= ψ and M, κ, w |= ψ′

M, κ, w |= Bϕ iff core(κ) ⊆ JϕKV

M, κ, w |= [ϕ, α]ψ iff ∀κ′ ∈ K(κ ? (JϕKV , α)κ′ →M, κ′, w |= ψ)

I am not concerned with axiomatising the theorems of any class of frames of
rbddl here. The reason is that this thesis defends the (non-trivial) claim
that a logic of ranking theory as defined here is useful and interesting. Only
if this is established, axiomatisation is sensible. The following references
provide starting points on axiomatisation: Aucher (2005), Hild and Spohn
(2008), Spohn (2008, chap. 8).

Again, a few more notions are introduced: For any countable ordinal α,
Kα
W = {κ : W → α + 1|∃w ∈ W (κ(w) = 0)}. [·]· : Ord2 → Ord is defined

by [α]β = min{α, β}. For any functional revision ∗, κ∗A,α is the unique κ′

such that κ ∗ (A,α)κ′. For functional revisions, the truth conditions can be
simplified as follows. If ∗ is a functional revision, then M, κ, w |= [ϕ, α]ψ iff
M, κ∗JϕKV ,α

, w |= ψ.

I define two functional revision operators, Spohn revision (also called
“A,α-conditionalization”, defined in Spohn (1988)) ∗→ and Shenoy revision
(also called “Shenoy conditionalization”, defined in Shenoy (1991)) ∗↑ as
follows. For any proposition A, α ≤ λ, κ ∈ Kλ

W , w ∈ W ,

Spohn: κ∗
→
A,α(w) =

{
κ(w)− κ(A) if w ∈ A
[α + (κ(w)− κ(W\A))]λ else

Shenoy: κ∗
↑
A,α(w) =

{
κ(w)−m if w ∈ A
[(κ(w) + α)−m]λ else

Where m = min{κ(A), α}.
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4 Relations Between BDDL and RBDDL

rbddl provides a lot of possibilities of specifying revision operators. Some
of them take full advantage of the richness of structure ranking functions
provide, and some don’t. Some are insensitive to the quantitative information
ranking functions convey, and just depend on the order of worlds. Such
revision behaviour can already be captured in bddl. In this section, I want
to make this difference precise. This in turn will enable a precise account of
which revision operators require a ranking semantics, and which do not.

I start by defining a function ξ : Kλ
W → SλW that assigns to each ranking

function the system of spheres it represents. Earlier I compared ranking
functions to system of spheres with labels – carrying on this simile, ξ is an
ordinal label eraser. For any ranking function κ:

ξ(κ) = {{w ∈ W |κ(w) ≤ α}|α ∈ Ord}

It is clear from the ordinal structure of ranking functions and systems of
spheres that ξ is well-defined. As for each system of spheres, there are several
ranking functions which represent it, I conversely define a function ζ : SλW →
℘(Kλ

W ) that assigns to each system of spheres the set of ranking functions
that represent it. For any system of spheres s:

ζ(s) = {κ ∈ Kλ
W |ξ(κ) = s}

Note that ξ and ζ are defined relative to the choice of W and λ. Earlier, I
mentioned that ranking functions are at least as informative as systems of
spheres. In the formal setting of this section, this can be put in the following
theorem:

Theorem 1. For any system of spheres s ∈ SλW there is a ranking function
κ ∈ Kλ

W such that ξ(κ) = s.

Proof. Let s ∈ SλW . For each ordinal number α, let sα be the αth sphere
by transfinite recursion: sα =

⋂
(s\{sβ|β < α}). Now let κ be the ranking

function that assigns the each world the lowest ordinal number such that the
world is an element of the sphere with this number. That is, κ is defined as the
ranking function such that for every world w, κ(w) = min{α ∈ Ord|w ∈ sa}.
It is clear from this construction that κ ∈ Kλ

W and ξ(κ) = s.

Towards the goal of making revisions of ranking functions and systems of
spheres easier to compare, formal notions of comparability and equivalence
are defined:
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A revision ∗ on a set of ranking functions K and a revision ? on a set of
systems of spheres S are comparable iff for every κ ∈ K, ξ(κ) ∈ S and for
every s ∈ S, there is a κ ∈ K such that ξ(κ) = s.

Let ∗ be a revision on a set of ranking functions K and ? be a revision
on a set of systems of spheres S that are comparable. ∗ and ? are equivalent,
written ∗ ∼ ?, iff for any valuation V , κ ∈ K, w ∈ W , and formula ψ,

〈W,K, ∗, V 〉, κ, w |= ψ iff 〈W,S, ?, V 〉, ξ(κ), w |= ψ

From this definition, it follows that any model using a revision with an
equivalent revision of the other type can be converted into a model of that
type. To go from a bddl to an rbddl model, replace the revision with an
equivalent ranking revision and replace the set of systems of spheres with the
set of ranking functions the new revision is defined on. The belief state of the
agent can now be given by any ranking function that represents the system
of spheres (the existence of which is secured by the fact that the revisions
are comparable). Going from an rbddl model to a bddl model is strictly
analogous, and the new belief state can now be obtained by use of the ξ
function.

Another application of the notion of equivalence between revisions is this:
If two revisions are equivalent, then for every formula that is true in a certain
model with this revision, there is a model of the other type with the equivalent
revision that makes the formula true as well. This means that they share the
same axiomatisations.

Although a useful notion of equivalence between revisions, the condition
it was defined with is hard to use: How should one go about when one wants
to find out whether two given revisions are equivalent? This is made more
easy by the following theorem:

Theorem 2. Let ∗ be a revision on a set of ranking functions K and ? be
a revision on a set of systems of spheres S that are comparable. If for any
proposition A, α ≤ λ, and κ1, κ2 ∈ K, κ1 ∗ (A,α)κ2 iff ξ(κ1) ? (A,α)ξ(κ2)
then ∗ ∼ ?.

To prove this theorem, I first prove the following lemma:

Lemma 1. For any ranking function κ, core(κ) =
⋂
ξ(κ).

Proof of lemma 1.
⋂
ξ(κ) =

⋂
{{w ∈ W |κ(w) ≤ α}|α ∈ Ord}

= {w ∈ W |κ(w) = 0} = core(κ)

Proof of theorem 2. Let V be any valuation, κ any ranking function on K,
ψ any formula and w any world. Let M∗ = 〈W,K, ∗, V 〉 and M? =
〈W,S, ?, V 〉. Show ∗ ∼ ? by induction on formulas:
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(ψ = ϕ, ψ = ¬ψ′, or ψ = (ψ1 ∧ ψ2)). If ψ is pure Boolean, a negation or
a conjunction, the truth definitions are identical.

(ψ = Bϕ). Show that M∗, κ, w |= Bϕ iff M?, ξ(κ), w |= Bϕ. This is
equivalent to core(κ) ⊆ JϕKV iff

⋂
ξ(κ) ⊆ JϕKV , which holds, as core(κ) =⋂

ξ(κ), which was shown in Lemma 1.
(ψ = [ϕ, α]ψ′). Show that M∗, κ, w |= [ϕ, α]ψ′ iff M?, ξ(κ), w |= [ϕ, α]ψ′,

which is equivalent to ∀κ′ ∈ K(κ ∗ (JϕKV , α)κ′ → M∗, κ′, w |= ψ′) iff ∀s ∈
S(ξ(κ) ? (JϕKV , α)s → M?, s, w |= ψ′). I show only direction ⇒, the other
follows analogously. Take any s ∈ S. If ξ(κ) ? (JϕKV , α)s, then there is a κ′

such that κ ∗ (JϕKV , α)κ′ and ξ(κ′) = s (the existence of κ′ is guaranteed by
comparability of the revisions). It follows that M∗, κ′, w |= ψ′, and, using
the induction premise, that M?, ξ(κ′), w |= ψ′.

I will put this theorem to use right away. As ranking functions are more
fine-grained than systems of spheres, any bddl revision has an equivalent
rbddl revision. This is stated precisely in the next theorem:

Theorem 3. Let ? be a revision defined on a set of systems of spheres S.
There is a revision that is equivalent to ?.

Proof. Let ? be any revision defined on a set of systems of spheres S. Let
∗ be a revision defined on K =

⋃
{ζ(s)|s ∈ S}. For any ranking functions

κ1, κ2 ∈ K, proposition A, and α ≤ λ, let κ1 ∗ (A,α)κ2 iff ξ(κ1)∗ (A,α)ξ(κ2).
By theorem 2, the revisions are equivalent.

Theorem 2 states that if a certain condition is met, two revisions are
equivalent. One might wonder whether this can be strengthened to the
proposition that the revisions are equivalent iff the condition is met. The
following theorem shows that it can’t, as the language is in a sense not ex-
pressive enough to make certain distinctions between ranking functions:

Theorem 4. There is a revision ∗ on a set of ranking functions K and a
revision ? on a set of systems of spheres S that are comparable such that
∗ ∼ ?, but not for any κ1, κ2 ∈ K, proposition A, and α ≤ λ, κ1 ∗ (A,α)κ2

iff ξ(κ1) ? (A,α)ξ(κ2).

Proof. Proof by construction of an example. Let κ be a ranking function
and κ̂ be the ranking function such that for any world w, κ̂(w) = κ(w) ∗ 2.
It is clear that ξ(κ) = ξ(κ̂). Define K = {κ, κ̂}, S = {ξ(κ)}, and the
following revisions on them. For any proposition A and α ≤ λ, ∗(A,α) =
{〈κ, κ〉, 〈κ̂, κ̂〉} and ?(A,α) = {〈ξ(κ), ξ(κ)〉}. Prove that these revisions fulfill
the conditions described:
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(∗ ∼ ?). Show that for any valuation V , κ ∈ K, formula ψ, and world w,
〈W,K, ∗, V 〉, κ, w |= ψ iff 〈W,S, ?, V 〉, ξ(κ), w |= ψ. It is easy to see that this
is true by induction: If ψ is pure Boolean, or of the form ¬ψ′, (ψ′ ∧ ψ′′), or
Bψ′, this is trivially true (see proof of theorem 2). If ψ is of the form [ϕ, α]ψ′,
the truth of the equivalence can be seen as follows: No revision changes the
belief state, so [ϕ, α]ψ′ is true iff ψ′ is true, and the equivalence holds for ψ′

on account of the induction.
(Not for all κ1, κ2 ∈ K, proposition A, and α ≤ λ, κ1 ∗ (A,α)κ2 iff

ξ(κ1) ? (A,α)ξ(κ2)). Example: for any proposition A and α ≤ λ, κ ∗ (A,α)κ̂
is false, but ξ(κ) ? (A,α)ξ(κ̂) is true.

A,α-conditionalization was introduced earlier as a revision operator of
ranking theory that was supposed to overcome defects shared by all revision
operators defined on systems of spheres. Therefore, one should expect ∗→
not to have an equivalent revision. This is indeed the case, provided W is
not trivial, in the sense of having at least three elements:

Theorem 5. If the set of worlds W has at least three elements, then there
is no revision defined on systems of spheres that is equivalent to ∗→.

Proof. Proof by construction of an example. Let a, b, and c be distinct
elements of W . Let κ1 and κ2 be ranking functions such that κ1(a) =
κ2(a) = 0, κ1(b) = κ2(b) = 1, κ1(c) = 2, κ2(c) = 3, and for any other
world w ∈ W\{a, b, c}, κ1(w) = κ2(w) = 4. Applying ∗→, it turns out
that (κ1

∗→
{b,c},1)

∗→
{a,c},1(c) = 0, and (κ2

∗→
{b,c},1)

∗→
{a,c},1(c) = 1. Using bc and ac as

propositional variables, then in a model M with ∗→ as its revision contain-
ing a valuation V such that V (bc) = {b, c} and V (ac) = {a, c}, M, κ1, w |=
[bc, 1][ac, 1]Bc andM, κ2, w |= ¬[bc, 1][ac, 1]Bc. As ξ(κ1) = ξ(κ2), there can-
not be a revision defined on systems of spheres that is equivalent to ∗→.

Theorem 3 says that any bddl revision has an equivalent rbddl revision.
That the converse is not true follows immediately from theorem 5, as stated
in the following corollary:

Corollary 1. There is a revision defined on a set of ranking functions that
has no equivalent revision.

5 The Ordinal Limit

Originally, ranking functions were introduced as certain functions from pos-
sible worlds to ordinals in Spohn (1988). In other publications, the codomain
of ranking functions has been specified differently. For example, in Spohn
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(2008) and Huber (2007) the natural numbers plus infinity are used, in Spohn
(1999) it is the natural numbers, and Aucher (2005) uses the natural num-
bers up to some fixed finite limit. Some publications even use the positive
real numbers and infinity (e.g. Hild and Spohn (2008)), but I won’t consider
this choice here.

In most of these papers, the reason for choosing whichever codomain is
chosen is a tradeoff between generality and technical convenience. However,
as ranking theory is a theory of belief revision, choosing between different
codomains of ranking functions is a philosophical choice, and as it effects
philosophically relevant differences in the theory, it needs philosophical ar-
gumentation. As the theory should be as simple as possible, the codomain of
ranking functions should be chosen as small as possible, provided this does
not introduce any unwanted consequences. This line of reasoning is suggested
in Spohn (1988, fn 16):

It would be a natural idea to restrict the range of OCFs [ordinal
conditional functions, another term for ranking functions, P.F.]
to the set of natural numbers. In fact, much of the following could
thereby be simplified since usual arithmetic is simpler than the
arithmetic of ordinals. For the sake of formal generality I do not
impose this restriction. But larger ranges may also be intuitively
needed. For example, it is tempting to use OCFs with larger
ranges to represent the stubbornness with which some beliefs are
held in the face of seemingly arbitrarily augmentable counter-
evidence.

In Spohn (2008), he comments on this footnote:

I have never elaborated this remark and do not know whether it
can be done. So, not being faced with good applications we better
stay content with the simpler notion. [of using natural numbers
plus infinity as the codomain for ranking functions, P.F.] For,
there would be a price to pay for the generality. [of using ordinals
as the codomain for ranking functions, P.F.] We shall soon start
calculating with the ranks, and then we would have to engage into
ordinal arithmetic, which is far less well-behaved than ordinary
arithmetic; for instance, ordinal addition and multiplication are
no longer commutative. This would be a severe handicap.

In the following, I want to start investigations in this area by formulating
one argument using the logic defined earlier. This is intended to further
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illustrate the logic’s usefulness. However, I want to stress that the argument
could as well be formulated without it.

In the logic given, a restriction of the codomain of ranking functions is
simply a choice of the limiting ordinal λ. In the argument to follow, I will
formally argue against the use of the ordinals up to and including ω, which
is the equivalent of using the natural numbers plus infinity. Therefore, I will
consider the choice λ = ω. The argument will use Shenoy revision, as the
situation that will be described is one in which revisions may be unsuccessful.
It works as follows: A certain epistemic situation is described such that a
good theory of belief revision should intuitively be able to describe it. I then
formally prove that this is not possible if λ = ω. After that, I will look at
options of extending the argument to higher ordinals.

The situation is this: You strongly disbelieve some proposition ϕ, e.g.
that there are 10 spatial dimensions. If someone unbeknown to you comes
along and tells you that ϕ, you will not believe it. Indeed, your conviction
is so strong that no matter how many strangers come along and tell you ϕ,
you do not change your mind. This is not because you generally completely
mistrust strangers; should they tell you something you have no beliefs about,
you will readily believe it. Although strong, your disbelief in ϕ is not dog-
matic. If a well-known theoretical physicist comes along and tells you that
recent advances in string theory have established ϕ beyond doubt, or you
read this in a well-known journal of theoretical physics, you will successfully
revise your beliefs, and believe ϕ afterwards. Although you then believe ϕ,
you disbelieve some proposition ϕ′ that implies ϕ. For example, you may dis-
believe the conjunction that there are 10 spatial dimensions and that Hadrian
succeeded Trajan as Emperor of Rome, as you may have false beliefs about
the Emperors.

Intuitively, I think this is a perfectly reasonable story. Even if you disagree
in this particular instance, I think that it is even more plausible to hold that
an account of belief revision should not prima facie exclude all cases of this
structure. I now describe how this situation is modelled in ranking theory
and the prove that this cannot be done if λ ≤ ω.

In the situation described, not all revisions are successful, so Shenoy re-
vision is used. The parameter of Shenoy revision indicates how credible the
information is. Which parameter should be used for information given by a
complete stranger? It may not be 0, as Shenoy revision with parameter 0 is
only successful in the trivial case in which you already believe the proposi-
tion you revise with. I use 1, as using a higher number would not change
matters in any important way, which will be apparent in the following. To
represent the story told, a model is needed that valuates ϕ and ϕ′ such that
any ϕ′-world is a ϕ-world, and that makes false any statement of the form
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[ϕ, 1]nBϕ for all n ∈ N but makes true the statement [ϕ, γ](Bϕ ∧B¬ϕ′) for
some parameter γ. The following formal investigations prove that there is
no such model if λ ≤ ω.

Theorem 6. If λ ≤ ω, then for any non-empty set W , K ⊆ Kλ
W , valuation

V on W , κ ∈ K, w ∈ W , ϕ, ϕ′ ∈ pB such that Jϕ′KV ⊆ JϕKV and Jϕ′KV 6= ∅,
if for all n ∈ N,
〈W,K, ∗↑, V 〉, κ, w |= ¬[ϕ, n]Bϕ

then for all γ ≤ λ:
〈W,K, ∗↑, V 〉, κ, w |= ¬[ϕ, γ](Bϕ ∧B¬ϕ′)

Proof. Let λ ≤ ω. Take any non-empty set W , K ⊆ Kλ
W , valuation V on

W , κ ∈ K, w ∈ W , ϕ, ϕ′ ∈ pB such that Jϕ′KV ⊆ JϕKV and Jϕ′KV 6= ∅, and
for all n ∈ N, 〈W,K, ∗↑, V 〉, κ, w |= ¬[ϕ, n]Bϕ.

First, prove that κ(JϕKV ) = ω, which implies that λ = ω. Assume for
contradiction that κ(JϕKV ) 6= ω, then there is a n ∈ N such that κ(JϕKV ) = n.
Let s be a world such that s /∈ JϕKV . Then κ∗

↑

JϕKV ,n+1(s) = [(κ(s) + (n+ 1))−
min{n + 1, κ(JϕKV )}]λ = [κ(s) + 1]λ ≥ 1. Therefore core(κ∗

↑

JϕKV ,n+1) ⊆ JϕKV ,

so 〈W,K, ∗↑, V 〉, κ, w |= [ϕ, n+ 1]Bϕ in contradiction to the assumptions.  
For the next step, assume for contradiction that there is a γ ≤ ω such

that 〈W,K, ∗↑, V 〉, κ, w |= [ϕ, γ](Bϕ ∧ B¬ϕ′). γ < ω immediately contra-
dicts the assumptions, so consider γ = ω. 〈W,K, ∗↑, V 〉, κ, w |= [ϕ, ω](Bϕ ∧
B¬ϕ′) is equivalent to 〈W,K, ∗↑, V 〉, κ∗↑JϕKV ,ω

, w |= (Bϕ ∧ B¬ϕ′), which im-

plies core(κ∗
↑

JϕKV ,ω
) ⊆ W\Jϕ′KV , which will be contradicted in the following.

As λ = ω, JϕKV ≤ ω, so from the definition of ∗↑, it follows that for all
w ∈ W :

κ∗
↑

JϕKV ,ω
(w) =

{
κ(w)− κ(JϕKV ) if w ∈ JϕKV
[(κ(w) + ω)− κ(JϕKV )]ω else

As proven above, κ(JϕKV ) = ω. Also, λ = ω, so for any t ∈ JϕKV , κ(t) = ω,
and therefore κ∗

↑

JϕKV ,ω
(t) = κ(t) − κ(JϕKV ) = ω − ω = 0. Therefore, as

Jϕ′KV ⊆ JϕKV , for any v ∈ Jϕ′KV , κ∗
↑

JϕKV ,ω
(v) = 0. As Jϕ′KV 6= ∅, it follows

that core(κ∗
↑

JϕKV ,ω
) * W\Jϕ′KV . 

Lemma 2. For any non-empty set W , K ⊆ Kλ
W , valuation V on W , κ ∈ K,

w ∈ W , n ∈ N, ϕ ∈ pB, ψ ∈ FB, 〈W,K, ∗↑, V 〉, κ, w |= [ϕ, n]ψ ↔ [ϕ, 1]nψ.

Proof. Take any non-empty set W , K ⊆ Kλ
W , valuation V on W , κ ∈ K,

w ∈ W , n ∈ N, ϕ ∈ pB, ψ ∈ FB. Let M = 〈W,K, ∗↑, V 〉. Show lemma by
induction on n.
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(n = 0). Show M, κ, w |= [ϕ, 0]ψ ↔ ψ, that is, M, κ∗
↑

JϕKV ,0
, w |= ψ iff

M, κ, w |= ψ. This holds, as for any proposition A, κ∗
↑
A,0 = κ.

(n = n + 1). Show M, κ, w |= [ϕ, n + 1]ψ ↔ [ϕ, 1]n+1ψ. It follows
from the induction premise that this is equivalent to M, κ∗

↑

JϕKV ,n+1, w |= ψ

iff M, κ∗
↑

JϕKV ,n
, w |= [ϕ, 1]ψ, which is equivalent to M, κ∗

↑

JϕKV ,n+1, w |= ψ iff

M, (κ∗
↑

JϕKV ,n
)∗
↑

JϕKV ,1
, w |= ψ. Show this by showing that

(†) κ∗
↑

JϕKV ,n+1 = (κ∗
↑

JϕKV ,n
)∗
↑

JϕKV ,1

For the following, observe that κ∗
↑

JϕKV ,n
(JϕKV ) = min{κ∗↑JϕKV ,n

(v)|v ∈ JϕKV } =

min{κ(v)−min{κ(JϕKV ), n}|v ∈ JϕKV }. Notice also that as n is natural, if
κ(JϕKV ) ≤ n, so is κ(JϕKV ). Prove (†) by distinguishing two cases, which will
each be split up in two cases as well.

(Case 1: w ∈ JϕKV ). (†)⇔
κ(w)−min{κ(JϕKV ), n+ 1} = κ∗

↑

JϕKV ,n
(w)−min{κ∗↑JϕKV ,n

(JϕKV ), 1} ⇔
κ(w)−min{κ(JϕKV ), n+ 1} = (κ(w)−min{κ(JϕKV ), n})
−min{min{κ(v)−min{κ(JϕKV ), n}|v ∈ JϕKV }, 1}

(Case 1a: κ(JϕKV ) ≤ n). . . .⇔
κ(w)−κ(JϕKV ) = (κ(w)−κ(JϕKV ))−min{min{κ(v)−κ(JϕKV )|v ∈ JϕKV }, 1}
⇔ κ(w)− κ(JϕKV ) = (κ(w)− κ(JϕKV ))−min{0, 1}X
(Case 1b: κ(JϕKV ) > n). . . .⇔
κ(w)− (n+ 1) = (κ(w)− n)−min{min{κ(v)− n|v ∈ JϕKV }, 1} ⇔
κ(w)− (n+ 1) = (κ(w)− n)− 1X

(Case 2: w /∈ JϕKV ). (†)⇔
[(κ(w) + (n+ 1))−min{κ(JϕKV ), (n+ 1)}]λ

= [(κ∗
↑

JϕKV ,n
(w) + 1)−min{κ∗↑JϕKV ,n

(JϕKV ), 1}]λ ⇔
[(κ(w) + (n+ 1))−min{κ(JϕKV ), (n+ 1)}]λ = [([(κ(w) + n)−

min{κ(JϕKV ), n}]λ+1)−min{min{κ(v)−min{κ(JϕKV ), n}|v ∈ JϕKV }, 1}]λ
(Case 2a: κ(JϕKV ) ≤ n). . . .⇔
[(κ(w) + (n+ 1))− κ(JϕKV )]λ = [([(κ(w) + n)− κ(JϕKV )]λ + 1)
−min{min{κ(v)− κ(JϕKV )|v ∈ JϕKV }, 1}]λ ⇔

[(κ(w) + (n+ 1))− κ(JϕKV )]λ = [([(κ(w) + n)− κ(JϕKV )]λ + 1)]λX
(Case 2b: κ(JϕKV ) > n). . . .⇔
[(κ(w) + (n+ 1))− (n+ 1)]λ = [([(κ(w) + n)− n]λ + 1)− 1]λX

From the preceding theorem and lemma, it immediately follows that:

Corollary 2. If λ ≤ ω, then for any non-empty set W , K ⊆ Kλ
W , valuation

V on W , κ ∈ K, w ∈ W , ϕ, ϕ′ ∈ pB such that Jϕ′KV ⊆ JϕKV and Jϕ′KV 6= ∅,
if for all n ∈ N,
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〈W,K, ∗↑, V 〉, κ, w |= ¬[ϕ, 1]nBϕ
then for all γ ≤ λ:
〈W,K, ∗↑, V 〉, κ, w |= ¬[ϕ, γ](Bϕ ∧B¬ϕ′)

With this, it is proven that for the situation given, λ ≤ ω is not sufficient.
In the next paragraphs, I will informally investigate how far this argument
can reasonably be extended.

It is not hard to see that the problem posed is already repaired by using
λ = ω + 1. This move is patently ad hoc, and one can argue that it is
unsatisfying as follows: There must not only be one ϕ′ that implies ϕ, but
a series of pure Boolean formulas of order type ω such that each implies the
next and revising with one does not entail not disbelieving all that imply
it. Such a demand is clearly not excessive as any conjunction implies its
conjuncts. It is straightforward that this means that λ may not be smaller
than ω∗2. This is a very mild extension; it seems to me that whoever accepts
the argument at all must accept it as well.

One can also be bolder and ask not for one revision parameter representing
an authority, but a series of higher and higher authorities of order type ω.
Imagine a company in which there are some number of levels of management.
For each level, there is a proposition such that if any number of managers
below the level tell it to you, you will not believe it. If someone of that level
or higher tells it to you, you do believe it. The first authority would get
parameter ω, the second ω ∗ 2, the third ω ∗ 3 and so on, so λ may not be
smaller than ω2.

This extension may already seem to put some strain on the intuitions
used so far, but the following goes further. One can ask: why stop at one
series of authorities? Couldn’t there be a series plus an authority that is more
credible than any of the authorities considered so far? This hyper -authority
would get credibility ω2, and as before, there could not only be one, but a
whole series of order type ω. This would then push the limit ordinal from ω2

to ω3. The game continues on another level: Why not have a series of levels
of hyper -authorities of order type ω? This would mean λ = ωω.

By now, it becomes difficult to picture the structure of ordinals and apply
it to epistemic situations. But one can push even further by arguing as
follows: Belief revision theory is the theory of rational revision of belief in
general. At least as a philosophical theory, it should not be subjected to
constraints that are based merely on the limited ability of our human minds,
nor the contingent facts of this world.

So one can carry on and conceive of gods (with respect to their epistemic
status) having credibility ωω, series of higher and higher gods (with credi-
bility ωω+n), series of hyper -gods (with credibility ωω∗2+n), series of levels of
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hyper -gods (with credibility ωω∗n), and even series of meta-hyper -gods (with
credibility ωω

n
), ending with λ = ωω

ω
.

The next (and here, last) jump to the next level brings the series of hyper -
authorities, meta-hyper -gods, and yet unnamed further classes, leading to the
series ω, ωω, ωω

ω
, . . .. Its limit is called ε0, and it is with this ordinal that I

end this line of extending the argument. It is not to be expected that the
intuitions evoked in the story I told extend beyond this point.

Of course, this whole argument depends on the assumption of Shenoy
revision, so one could argue that rather than accepting the fact that λ must
be chosen higher than ω, one should look for better accounts of revision. This
is a sensible suggestion, but there are two things to bear in mind: First, the
burden of showing the existence of such better accounts rests on the objector
against this argument. Second, although the proofs essentially use properties
of Shenoy revision, I expect them to be generalizable to classes of revisions
satisfying certain properties. Should these properties turn out to be ones
we intuitively require from non-successful revision operators, the objection
would be rebutted. Of course, here, the burden of proof lies on the defender
of the argument.

6 Ranking Theory of Higher-Order Be-

liefs and Revisions

The approaches using systems of spheres as well as the ones using rank-
ing functions discussed, whether they are put in a logic or not, are only
concerned with beliefs about factual propositions and revisions with factual
propositions. By factual propositions, I mean propositions that do not talk
about the beliefs of agents or about what would happen if the agent would
revise her belief state with a certain proposition. Also, the discussion so
far was only concerned with the epistemic status of a single agent. Stating
that Anne believes that Paul believes that ϕ is not possible. One might
object against this view of the theories discussed, and hold that although
these frameworks lack the formal flexibility to explicitly express such things,
we can the interpret propositional letters and possible worlds in any way we
please, e.g. the set of worlds V (p) could be taken to be the worlds in which
Paul believes that ϕ. Letting Anne be the agent, a bddl representation of
Anne’s belief would just be Bp.

Of course, one can interpret propositional letters to represent such meta-
information, but I hold that one shouldn’t, because if one does, agm as well
as ranking theory of belief revision will turn out to be utterly implausible.
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Here’s a very simple example: Assume you neither believe that John is bald
nor that John isn’t bald. Suppose you learn that John is bald. How does
agm revision deal with this example?

I use the propositional letter p for John’s being bald, and q for the agent’s
believing John to be bald. The following diagram visualizes the agm mod-
elling:

¬q
q

p

¬p

The concentric circles represent the initial system of spheres, the black
dot the actual world. The two strokes each divide the space of worlds in
two sections, the worlds where p or ¬p holds, and the worlds where q or ¬q
holds. The actual world is in the quadrant in which p and ¬q hold, as John
is bald, but the agent does not believe it. Also, the agent does not believe
John not to be bald, but she does believe not to believe that John is bald.
So far so good. p is true in the area shaded light gray, so after revision with
this proposition, the dark gray area becomes most plausible. As expected,
after the revision, the agent believes p, so she believes that John is bald. The
problem is now: ¬q is still true in the actual world, and ¬q means that the
agent does not believe that John is bald! The problem is that the system
has two representations of the agent’s belief in John’s being bald, and in this
case, they contradict each other. It is an simple exercise to go through the
steps of this argument if ranking theory is used instead of agm theory – they
share the same problems in this area.

One approach would be to hold that any proposition expressing higher-
order belief or revision can be reduced to one expressing first-order states
by reduction axioms. For iterated belief, one could try to defend the con-
troversial axioms of positive and negative introspection (Bϕ ↔ BBϕ and
¬Bϕ↔ B¬Bϕ). However, this approach is little promising for revision with
propositions containing belief ascriptions, as argued in Baltag and Smets
(2008, pp 38–40). Even worse is the case of multi-agent belief. To represent
beliefs of multiple agents, one usually employs multi-modal languages con-
taining a belief operator Ba for every agent a. Obviously, the truth-values
of propositions like BaBcϕ and BbBcϕ are completely independent, and no
reduction axiom can be given for such cases in general.
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A more promising approach that tackles such problems starts with a logic
of higher-order multi-agent belief, and adds the notion of belief revision to
this. This is an area of current research, and it goes by the name of “belief
revision in dynamic logic”, where “epistemic” or “doxastic” may be inserted
before “logic”. A terminological note on the difference between dynamic
doxastic logic (ddl) and dynamic epistemic logic (del): “epistemic logic” is
the name usually applied to modal logics in which the modal operators are
understood to represent knowledge or belief. “Doxastic logic” is sometimes
used to refer to these logics if the modal operators are understood to express
belief. The expressions “doxastic” and “epistemic” are derived from the greek
words for belief and knowledge, viz. “doxa” and “episteme”. “Dynamic
modal logic” is a term used to refer to modal logics with dynamic operators.
The names “ddl” and “del” somewhat continue these conventions, but
not exactly. “ddl” is used for logics in the tradition of Segerberg, similar
to bddl. “del” in turn is used for epistemic logics enriched with any of a
variety of dynamic operators, in which the modal operator can be interpreted
as belief as well as knowledge. As logics of belief revision are never based
on Kripke models, one often doesn’t talk about belief revision in del (as
does the title of the present thesis), but just about dynamic logics. Still, this
research can properly be seen as a further generalization of del approaches.
It is to be hoped that as the research program of formulating theories of
belief revision in terms of dynamic logics matures, terminological unity will
emerge. I end this digression with a suggestion in this direction from Leitgeb
and Segerberg (2007, p 189):

We predict that the two research programmes of DDL and DEL
will merge in the long run into the single logical endeavour of
DBC: dynamic logics of belief change.

6.1 Belief Revision in Dynamic Logic

In the past few years, a number of proposals have appeared that try to model
belief revision in logics derived from del, for example (Baltag and Smets,
2008, forthcoming), van Benthem (2007), and van Ditmarsch (2005). In the
following, I briefly highlight some ideas from van Benthem (2007).

Van Benthem starts with a logic of belief based on plausibility orders.
Here, a plausibility order ≤ is an order on the set of worlds, and the intended
interpretation is that w ≤ w′ iff w is considered to be at least as plausible
as w′. Plausibility orders generalize systems of spheres, as every system of
spheres can be mapped to a unique wellorder on the set of world. As van
Benthem wants to model beliefs of several agents, the plausibility orders are
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indexed to a set of agents, and as he wants to model higher-order beliefs,
they are also indexed to the set of worlds.

Syntactically, this first logic is just a multi-agent doxastic modal language,
that is, propositional letters are formulas, and for any formulas ϕ, ϕ′, and
agent index i, ¬ϕ, ϕ ∧ ϕ′ and Biϕ are formulas. For any set of agents I, a
model is a structureM = 〈W, {≤i,s}i∈I,s∈W , V 〉, where ≤i,s is the plausibility
order of i in s. Truth is now defined relative to a model and a world – note
that we don’t have to specify plausibility orders representing epistemic states,
as we had to in bddl, as these are already specified in the model. Truth for
factual propositions (p,¬ϕ, ϕ ∧ ϕ) are straightforward as in bddl. Truth of
belief statements also strictly similar and defined by

M, s |= Biϕ iff ∀t ∈ W (t ∈ min≤i,s
W →M, t |= ϕ)

We see that the reason why van Benthem can define higher-order beliefs is
that in contrast to the semantics of bddl, models here specify a plausibility
order for each world. He now adds a dynamic operator to this logic repre-
senting revision. The expression [⇑ ϕ]ψ is used to state that after revising
with ϕ, ψ holds. Truth for this is defined by:

M, s |= [⇑ ϕ]ψ iff M ⇑ ϕ, s |= ψ

where M ⇑ ϕ is obtained from M by replacing each plausibility relation ≤
with ≤⇑ ϕ, which can be defined as follows: For any w,w′ ∈ W , w ≤⇑ ϕw′
iff either ϕ is true in w, and not in w′, or w ≤ w′. ⇑ is here just used as one
example for a revision operator, others can analogously be defined.

The case sketched is just the simplest form of a dynamic logic of belief re-
vision, as belief revision is represented by a special dynamic operator. Gener-
alizing this approach, a semantic representation of changes to the plausibility
order can be devised, and a multi-purpose dynamic operator be introduced,
which is parametrized by syntactic representations of these changes. Belief
revision is then just one (or some, if a range of belief revision operators is
needed) of many possible plausibility updates. For the definitions of such
generalizations, the reader is referred to van Benthem (2007) and Baltag and
Smets (forthcoming).

6.2 Rankifying

In this text, I have described something like ⇑ before: In section 2 lexi-
cographic revision was introduced as a revision for systems of spheres. The
context in which it was mentioned was Spohn’s criticism of system of spheres
models of belief revision. This criticism applies to van Benthem’s system as
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well: The big difference between a bddl were a suitable revision (modelling
lexicographic revision) is used and the logic with ⇑ just considered is that
the latter lets one talk about higher-order beliefs and revisions. If we restrict
its syntax to bddl expressions (syntactically converting between the revision
operators), we see that on this restriction, the logics amount to the same. So
if Spohn’s arguments are correct, this approach is in trouble, too.

This is not always acknowledged. For example, in Baltag and Smets
(2008, p 23), we read:

Our models are the same as Board’s “belief revision structures”
[19], i.e. nothing but “Spohn models” as in [48], but with a
purely relational description. Spohn models are usually described
in terms of a map assigning ordinals to states. But giving such
a map is equivalent to introducing a well pre-order ≤ on states,
and it is easy to see that all the relevant information is captured
by this order.

As we have seen, Spohn’s arguments lead him to the opposite of what
Baltag and Smets say: He explicitly holds that orders (no matter what kind)
do not capture all the relevant information. Now, whether or not he’s right
with this, if there are such arguments, one should explain why one rejects
them if one doesn’t follow their conclusion. Of course, one could defend
the quoted paragraph and say that with “relevant information”, the relevant
information for the revision operator Baltag and Smets want to capture is
meant. This would of course be true. But this line of argument is not a good
option, as they explicitly want to create a logic which is not limiting in this
respect, as they hold that the different revision operators can be represented
in it.

Assuming that Spohn’s arguments are correct, what should a proponent
of dynamic logic for belief revision do? My answer is simple: Rankify! Just as
by replacing systems of spheres in bddl with ranking functions, one obtains
a logic of ranking theory with only minor adjustments, so can the plausibility
orders of dynamic logics for belief revisions be replaced by ranking functions.
This is the process I want to call rankifying.

On the other hand, a ranking theorist might see dynamic epistemic logics
for belief revision and think to herself: “I want to be able to talk about higher-
order beliefs and revisions too!”. To her, my answer is as well: Rankify!
There are a number of promising proposals for belief revision in dynamic
logics, and there seems to be no reason why a ranking theorist shouldn’t be
able to express her account of revision in them – just rankify them.
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7 Conclusion

I have shown that just like belief revision theories based on systems of spheres,
theories based on ranking functions can be put into the form of a logic. The
logic I presented has been shown to be a fruitful tool of formal epistemology
by a few results comparing the two approaches to belief revision theory,
and an argument for the use of extended codomains of ranking functions.
Furthermore, the parallels between logics using systems of spheres and logics
using ranking functions show how putting ranking theory in terms of a logic
enables one to extend ranking theory to multi-agent, higher-order beliefs and
revisions.
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Mathematical Appendix

A Relations

A binary relation R on a set S is a subset of the cartesian product of S with
itself: R ⊆ S × S. Therefore, such a relation is a set of tuples on S. As a
notational variant, I write xRy for 〈x, y〉 ∈ R. For a binary relation R on S,
the following properties are defined:

R is reflexive iff for any x ∈ S, xRx.
R is transitive iff for any x, y, z ∈ S, if xRy and yRz, then xRz.
R is antisymmetric iff for any x, y ∈ S, if xRy and yRx then x = y.
R is total iff for any x, y ∈ S, xRy or yRx (or both).

If R is a reflexive and transitive binary relation on S, then for any S ′ ⊆ S:

the minimum of S ′: minRS
′ = {x ∈ S ′|∀y ∈ S ′ : yRx→ xRy}

And for any reflexive and transitive relation R on S:

R is wellordered iff for any S ′ ⊆ S such that S ′ 6= ∅, minRS ′ 6= ∅.
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Using these properties, the following diagram defines certain classes of rela-
tions. It is to be read such that e.g. a prewellorder is defined as a reflexive,
transitive, wellordered, and total order.

Wellorder

Total Order

wellorderingjjjjjj

44jjjjjj

Well Partial Order

totality

OO

Prewellorder

antisymmetryTTTTTT

iiTTTTTT

Partial Order

totality

OO
wellorderingjjjjjjjjj

55jj

Total Preorder

antisymmetryTT

iiTTTTTTTTTT
wellorderingjj

55jjjjjjjjj

Wellpreorder

totality

OO
antisymmetryTTTTTTTTT

iiTT

Preorder

totality

OO

antisymmetryTTTTTT

iiTTTTTT
wellorderingjjjjjj

55jjjjj

Relation

reflexivity+transitivity

OO

Additionally, a relation R is functional iff for any x, there is exactly one
y such that xRy.

B Ordinal Numbers

I start with an informal introduction to ordinal numbers, and then show one
way of defining them more formally.

B.1 Informal Introduction

Natural numbers serve two purposes: they can be used to represent the size of
a finite set, and to represent the position of an element in a finite wellordered
set. To represent the position of an element in an infinite wellordered set,
transfinite ordinal numbers may be needed.

The ordinal numbers represent positions in a wellordered set. Imagine
an infinite wellordered set. Take the minimal element and assign position 0
to it. Removing the minimal element of a wellordered set results in another
wellordered set, so you can repeat the process on the set of yet unlabeled
elements and assign 1 to the minimal unlabeled element. If you do this for
all natural numbers and have not yet exhausted the set, you need transfinite
ordinal numbers. The first of these is ω, so the minimal unlabeled elements
after using up all natural numbers will be assigned position ω. The next will
be ω + 1, then ω + 2 and so on. I have not yet introduced ordinal addition,
so think of “ω + 1” as just a name for the ordinal succeeding ω. Here’s an
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example of a set transfinite ordinals are needed for: N∪ {a, b, c}, ordered as
follows: 1 < 2 < 3 < · · · < a < b < c.

B.2 Formal Definition

This is mostly taken from Levy (1979, pp 52ff) and Zuckerman (1974, pp 219ff).
The alternative definitions of subtraction can be found in Klaua (1969,
pp 173ff).

B.2.1 Ordinal Numbers

Let a set S be transitive iff
⋃
S ⊆ S. A set S is an ordinal iff it is transitive

and wellordered by ∈. The class of ordinals is called “Ord”. The ordinals
are ordered by ≤ and its corresponding strict (that is, non-reflexive) order
<, which are defined as follows: for any ordinals x and y, x < y iff x ∈ y and
x ≤ y iff x < y or x = y. It can be proven that ≤ is a wellorder.

Further can be proven that for any ordinal α, α ∪ {α} is an ordinal, and
there is no ordinal β such that α < β < α ∪ {α}. α ∪ {α} is called the
successor of α.

Repeatedly applying this generation of successors on the empty set pro-
duces the following series of ordinals: ∅, {∅}, {∅, {∅}}, . . . These are identified
with the natural numbers, starting with 0 = ∅. It can be shown that the set
of natural numbers N is itself an ordinal. If N is used as an ordinal, “ω” is
used for it.

An ordinal is a successor ordinal iff there is an ordinal β such that α is
the successor of β. An ordinal is a limit ordinal iff α 6= 0 and α is not a
successor ordinal. It follows that ω is the smallest limit ordinal.

B.2.2 Ordinal Arithmetic

For any ordinals α, β, define

Addition α + β =

{
α if β = 0⋃
{α + γ|γ < β} else

Multiplication α ∗ β =


0 if β = 0

(α ∗ γ) + α if β = γ + 1⋃
{α ∗ γ|γ < β} else
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Exponentiation αβ =


1 if β = 0

(αγ) ∗ α if β = γ + 1⋃
{αγ|γ < β} else

Note that neither addition nor multiplication is commutative. (An operation
◦ is commutative iff for any x, y, x ◦ y = y ◦ x.) It can be proven that for
any ordinals α, β such that β ≤ α, there is exactly one ordinal γ such that
β + γ = α. Therefore, for any ordinals α, β such that β ≤ α:

Subtraction α− β = the γ ∈ Ord such that β + γ = α

Alternative Definitions of Subtraction In Spohn (1988), the sub-
traction definitions of Klaua (1969) are used. For comparison, they are given
here. He defines two notions of subtraction for any ordinals α, β such that
β ≤ α. Left-sided subtraction: −β + α = the γ ∈ Ord such that β + γ = α
and right-sided subtraction: if there is a γ ∈ Ord such that γ + β = α:
α− β = min≤{γ ∈ Ord|γ + β = α}.

Zuckerman defines only one notion of subtraction, which is Klaua’s left-
sided subtraction. It seems natural to use this, as it is defined on all ordinals,
which Klaua’s right-sided subtraction is not. This is surely also the reason
why Spohn uses it. I therefore only use subtraction in the sense of left-sided
subtraction, but use the notation used by Zuckerman (which Klaua uses for
right-sided subtraction).

B.2.3 Order Types

A function f : A → B is bijective iff for any x ∈ B, there is a y ∈ A such
that f(y) = x and for any x, y ∈ A, if x 6= y, then f(x) 6= f(y).

Two relations R and S on sets A and B are order isomorphic iff there is
a bijective function f : A→ B such that xRy iff f(x)Sf(y) for any x, y ∈ A.

For any wellorder S on a set A, the order type of S is the unique ordinal
number α such that ∈ on α is order isomorphic to S. It can be proven that
this is well-defined for any wellorder.
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