
lolliCoP – A Linear Logic Implementation of a
Lean Connection-Method Theorem Prover for

First-Order Classical Logic

Joshua S. Hodas and Naoyuki Tamura?

Department of Computer Science
Harvey Mudd College

Claremont, CA 91711, USA
hodas@cs.hmc.edu,tamura@kobe-u.ac.jp

Abstract. When Prolog programs that manipulate lists to manage a
collection of resources are rewritten to take advantage of the linear logic
resource management provided by the logic programming language Lolli,
they can obtain dramatic speedup. Thus far this has been demonstrated
only for “toy” applications, such as n-queens. In this paper we present
such a reimplementation of the lean connection method prover leanCoP
and obtain a theorem prover for first-order classical logic which rivals or
outperforms state-of-the-art provers on a significant body of problems.

1 Introduction

The development of logic programming languages based on intuitionistic [11] and
linear logic [6] has been predicated on two principal assumptions. The first, and
the one most argued in public, has been that, given the increased expressivity,
programs written in these languages are more perspicuous, more natural, and
easier to reason about formally. The second assumption, which the designers have
largely kept to themselves, is that by moving the handling of various program
features into the logic, and hence from the term level to the formula level, we
would expose them to the compiler, and, thus, to optimization. In the end,
we believed, this would yield programs that executed more efficiently than the
equivalent program written in more traditional logic programming languages.
This view has been downplayed as most of these new languages have thus far
been implemented only in relatively inefficient interpreted systems.

With the recent development of compilers for languages such as λ-Prolog
and Lolli [13, 7], however, we are beginning to see this belief justified. In the case
of Lolli, we are focused on logic programs which have used a term-level list as
a sort of bag from which items are selected according to some rules. In earlier
work we showed that when such code is rewritten in Lolli, allowing the elements
in the list to instead be stored in the proof context –with the underlying rules

? This paper reports work done while the second author was on a sabbatical-leave
from Kobe University. Submitted to the Int’l Joint Conf. on Automated Reasoning.

2

of linear logic managing their consumption– substantial speedups can occur. To
date, however, that speedup has been demonstrated only on the execution of
simple, “toy” applications, such as an n-queens problem solver [7].

Now we have turned our attention to a more sophisticated application: the-
orem proving. We have reimplemented the leanCoP connection-method theorem
prover of Otten and Bibel [14] in Lolli. This “lean” theorem prover has been
shown to have remarkably good performance relative to state-of-the-art systems,
particularly considering that it is implemented in just a half-page of Prolog code.
The reimplemented prover, which we call lolliCoP, is of comparable size, and,
when compiled under LLP (the reference Lolli compiler), provides a speedup of
40% over leanCoP. On many of the hardest problems that both can solve, it is
roughly the same speed as the Otter theorem prover [8]. (Both leanCoP and
lolliCoP solve a number of problems that Otter cannot. Conversely, Otter
solves many problems that they cannot. On simpler problems that both solve,
Otter is generally much faster than leanCoPand lolliCoP.)

While this is a substantial improvement, it is not the full story. LLP is a
relatively naive, first-generation compiler and run-time system. Whereas, it is
being compared to a program compiled in a far more mature and optimized
Prolog compiler (SICStus Prolog 3.7.1). When we adjust for this difference, we
find that lolliCoP is more than twice as fast as leanCoP, and solves (within a
limited time allowance) more problems from the test library. Also, when the
program is rewritten in Lolli, two simple improvements become obvious. When
these changes are made to the program, performance improves by a further factor
of three, and the number of problems solved expands even further.

1.1 Organization

The remainder of this paper is organized as follows: Section 2 gives a brief
introduction to the connection method for first-order classical logic; Section 3
describes the leanCoP theorem prover; Section 4 gives a brief introduction to
linear logic, Lolli, and the LLP compiler; Section 5 introduces lolliCoP; Section 6
presents the results and analysis of various performance tests and comparisons;
and, Section 7 presents the two optimizations mentioned above.

2 Connection-Method Theorem Proving

The Connection Method [2] is a matrix proof procedure for clausal first-order
classical logic. (Variations have been proposed for other logics. But this is its
primary application.) The calculus, which uses a positive representation, proving
matrices of clauses in disjunctive normal form, has been utilized in a number
of theorem proving systems, including KoMeT [3], Setheo and E-Setheo [9,
12]. It features two rules, extension and reduction. The extension step, which
corresponds roughly to backchaining, consists of matching the complement of a
literal in the active goal clause with the head of some clause in the matrix. The
body of that clause is then proved, as is the remainder of the original clause.

3

Γ | Li, Π ` L1, . . . , Li−1, Li+1, . . . , Ln

Γ | Li, Π ` L1, . . . , Ln
(reduction, 1 ≤ i ≤ n)

Γ | Π `
(extension0)

Γ | Li, Π ` L11, . . . , L1m C, Γ | Π ` L1, . . . , Li−1, Li+1, . . . , Ln

C, Γ | Π ` L1, . . . , Ln
(extension1)

(provided C is ground, C = {Li, L11, . . . , L1m}, 1 ≤ i ≤ n, and m ≥ 0)

C, Γ | Li, Π ` L11, . . . , L1m C, Γ | Π ` L1, . . . , Li−1, Li+1, . . . , Ln

C, Γ | Π ` L1, . . . , Ln
(extension2)

(provided C is not ground, C[t/x] = {Li, L11, . . . , L1m} for some t, 1 ≤ i ≤ n, and m ≥ 0)

Fig. 1. A deduction system for the derivation relation of the Connection Method

For the duration of the proof of the body of the matching clause, however, the
literal that matched is added to a secondary data structure called the path. If
at a later point the complement of a literal being matched occurs in the path,
that literal need not be proved. This short-circuiting of the proof constitutes the
reduction step. Search terminates when the goal clause is empty. Finally, note
that in the extension step, if the clause matched is ground, it is removed from
the matrix during the subproof.

Figure 1 shows a deduction system for the derivation relation. Two versions
of the extension rule are given, depending on whether the matched clause is
ground or not. The third version handles the termination case. In the rules of
this system, the left-hand side of the derivation has two parts: the matrix, Γ , is
a multiset of clauses; the path, Π, is a multiset of literals. The goal clause on the
right-hand side is a sequence of literals. Note that the calculus is more general
than necessary. We can, without loss of completeness, restrict the selection of a
literal from the goal clause to the leftmost literal (i.e., restrict i = 1).

3 The leanCoP Theorem Prover

The leanCoP theorem prover of Otten and Bibel [14] is a Prolog program, shown
in Figure 2, providing a direct encoding of the calculus shown in Figure 1. (In-
deed, we originally wrote the system as an attempt to understand the behavior
of the program.) In this implementation clauses and matrices are represented
as Prolog lists. Atomic formulas are represented with Prolog terms. A negated
atom is represented by applying the unary - operator to the corresponding term.
Prolog variables are used to represent object variables. This will cause some com-
plications, discussed below.

The first evident difference is that an extra value, an integer path-depth
limit, is added to each of the Prolog predicates. This implements iterative deep-
ening based on the maximum allowed path length. This is necessary to insure
completeness in the first-order case, due to Prolog’s depth-first search strategy.

4

prove(Mat) :- prove(Mat,1).

prove(Mat,PathLim) :-

append(MatA,[Cla|MatB],Mat), \+member(-_,Cla),

append(MatA,MatB,Mat1), prove([!],[[-!|Cla]|Mat1],[],PathLim).

prove(Mat,PathLim) :-

\+ground(Mat), PathLim1 is PathLim+1, prove(Mat,PathLim1).

prove([],_,_,_).

prove([Lit|Cla],Mat,Path,PathLim) :-

(-NegLit=Lit; -Lit=NegLit) ->

(member_oc(NegLit,Path) ;

append(MatA,[Cla1|MatB],Mat), copy_term(Cla1,Cla2),

append_oc(ClaA,[NegLit|ClaB],Cla2), append(ClaA,ClaB,Cla3),

(Cla1==Cla2 -> append(MatB,MatA,Mat1)

; length(Path,K), K<PathLim,

append(MatB,[Cla1|MatA],Mat1)

), prove(Cla3,Mat1,[Lit|Path],PathLim)

), prove(Cla,Mat,Path,PathLim).

Fig. 2. The leanCoP theorem prover of Otten and Bibel

When prove/1 is called, it sets the initial path limit to 1 and calls prove/2.
This in turn selects (without loss of generality) a purely positive start clause.

The selection of the clause, Cla, is done using a trick of Prolog. Since the
predicate append(A,B,C) holds if the list C results from appending list B to list
A, append(A,[D|B],C) (in which [D|B] is a list that has D as it’s first item,
followed by the list B) will hold if D is an element of C and if, further, A is the list
of items preceding it and B is the list of items following it. Thus Prolog can, in
one predicate, select an element from an arbitrary position in a list and identify
all the remaining elements in the list (which result from appending A and B).

This technique is used to select literals from clauses and clauses from matri-
ces throughout leanCoP. While it is an interesting trick, it relies on significant
manipulation and construction of list structures on the heap. It is precisely cer-
tain uses of this trick which will be replaced by linear logic resource management
at the formula level in lolliCoP.

To insure that the selected clause is purely positive, the code checks that the
clause contains no negated terms (terms of the form -_, where the underscore is
a wildcard). This is done using Prolog’s negation-as-failure operator: \+. Once
this is confirmed, the proof is started using a dummy (unit) goal clause, !, which
will cause the selected clause to become the goal clause in the next step. This is
done to avoid duplicating some bookkeeping code already present in the general
case in prove/4, which implements the core of the prover.

Should the call to prove/4 at the end of the first clause of prove/2 fail, then,
provided this is not a purely propositional problem (That is, if it is not true that
the entire matrix is ground.) the second clause of prove/2 will cause the entire
process to repeat, but with a path-depth limit one larger.

5

The first clause of prove/4 implements the termination case, extension0,
and is straightforward. The second implements the remaining rules. This clause
begins by selecting (without loss of completeness) the first literal, Lit, from the
goal clause. If the complement of this literal (computed by the first line of the
body of the clause) matches a literal in the Path, then the system attempts to
apply an instance of the reduction rule, jumping to the last line of the clause
where it recursively proves the remainder of the goal using the same matrix and
path, under the substitution resulting from the matching process. (That is, free
variables in literals in the goal and the path may have become instantiated.)

If a match to the complement of the literal is not found on the path, or if
all attempts to apply instances of reduction have failed, then this is treated as
either extension1 or extension2, depending on whether or not the clause selected
next is ground. A clause is selected by the technique described above. Then a
literal matching the complement of the goal literal is selected from the clause.
(If this fails then the program backtracks and selects another clause.) The test
Cla1==Cla2 is used, as explained below, to determine if the selected clause is
ground, and the matrix for the subproof is constructed accordingly, either with
or without the chosen clause. If the path limit has not been reached, the prover
recursively proves the body of the selected clause under the new path assumption
and substitution, and, if it succeeds, goes on to prove the remainder of the current
goal clause. As the depth-first prover is complete for propositional logic, the path
limit check is not done if the selected clause is ground.

(Note, P -> Q ; R is an extra-logical control structure corresponding roughly
to an if-then-else statement, The difference between this and ((P , Q) ; R)
is that the latter allows for backtracking and retrying the test under another sub-
stitution or executing the other branch, whereas the former allows the test to
be computed only once and an absolute choice made at that point. It can also
be written without R, as is done in some cases here. This is, in essence, a hidden
use of the Prolog cut operator, which is used for pruning search.)

As mentioned above, the use of Prolog terms to represent atomic formulas
introduces complications. This is because the free variables of a term, intended
to represent the implicitly quantified variables of the atoms, can become bound if
the term is compared (unified) with another term. In order to avoid the variables
in clauses in the matrix from being so bound, when a clause is selected from the
matrix, a copy with a fresh set of variables is produced using copy_term, and
that copy is the clause that is used. Thus, the comparison Cla1==Cla2, which
checks for syntactic identity, succeeds only if there were no variables in the
original term Cla1 (since they would have been modified by copy_term), and,
hence, if that term was ground. (This is, however, a somewhat roundabout way
of testing whether the clause is ground.)

Because Prolog unification is unsound (as it lacks the “occurs check” for
barring the construction of cyclic unifiers), one must force sound unification
when comparing literals if the prover is to be sound. In Eclipse prolog, used
in the original leanCoP paper, this is done with a global switch, affecting all
unification in the system. In SICStus Prolog, used for the tests in this paper,

6

Γ ;B −→ B
identity

Γ ;∆ −→ > >R Γ ; ∅ −→ 1
1R

Γ,B;∆,B −→ C

Γ,B;∆ −→ C
absorb

Γ ;∆,Bi −→ C

Γ ;∆,B1 &B2 −→ C
&L1

Γ ;∆ −→ B Γ ;∆ −→ C

Γ ;∆ −→ B&C
&R

Γ ;∆1 −→ B Γ ;∆2, C −→ E

Γ ;∆1, ∆2, B−◦C −→ E
−◦L

Γ ;∆,B −→ C

Γ ;∆ −→ B−◦C
−◦R

Γ ; ∅ −→ B Γ ;∆,C −→ E

Γ ;∆,B⇒C −→ E
⇒L

Γ,B;∆ −→ C

Γ ;∆ −→ B⇒C
⇒R

Γ ;∆,B[x 7→ t] −→ C

Γ ;∆, ∀x.B −→ C
∀L

Γ ;∆ −→ B[x 7→ c]

Γ ;∆ −→ ∀x.B ∀R

(provided c is not free in the lower sequent.

Γ ; ∅ −→ C

Γ ; ∅ −→!C
!R

Γ ;∆1 −→ B1 Γ ;∆2 −→ B2

Γ ;∆1, ∆2 −→ B1 ⊗ B2
⊗R

Γ ;∆ −→ B[x 7→ t]

Γ ;∆ −→ ∃x.B ∃R
Γ ;∆ −→ Bi

Γ ;∆ −→ B1 ⊕ B2
⊕R1

provided that y is not free in the lower sequent.

Fig. 3. A proof system for a fragment of linear logic

it is done with the predicate unify_with_occurs_check. This predicate is used
within the member_oc and append_oc predicates, whose definitions have been
elided in the code above.

Many of these complications could have been avoided by using λ-Prolog,
which supports the use of λ-terms as data for representing name-binding struc-
tures, and whose unification algorithm is sound [11].

4 A Brief Introduction to Linear Logic

Linear logic was first proposed by Girard in 1987 [4]. Figure 3 gives a Gentzen
sequent calculus for a fragment of intuitionistic linear logic which forms the
foundation of the language Lolli (named for the linear logic implication operator,
−◦, known as lollipop). The calculus is not the standard one, but for this fragment
is equivalent to it, and is easier to explain in the context of logic programming. In
these sequents, the left-hand side has two parts. The context Γ holds assumptions
that can be freely reused and discarded, as in traditional logics. The assumptions
in ∆, in contrast, must be used exactly once in a given branch of a tree.

There are two implication operators, each used to add an assumption to one
of the contexts. The intuitionistic implication, written ⇒, adds an unlimited-
use assumption to Γ , while the linear implication, written −◦, is used to add
assumptions to the restricted context, ∆. In Lolli we write the two operators
as -o and =>. Because of limitations in the parser, written in Prolog, the LLP
compiler uses -<> for lollipop, so that is what we will use in code listings here.

In the absence of contraction and weakening (that is, the ability to freely reuse
or discard assumptions, respectively), all of the other logical operators split into
two variants as well. For example, the conjunction operator splits into tensor,

7

“⊗”, and with, “&”. In proving a conjunction formed with ⊗, the current set of
restricted assumptions, ∆, is split between the two conjuncts: those not used in
proving the first conjunct must be used while proving the second. To prove a &
conjunction, the set of assumptions is copied to both sides: each conjunct’s proof
must use all of the assumptions. In Lolli, the ⊗ conjunction is represented by the
familiar “,”. This is a natural mapping, as we expect the effect of a succession
of goals to be cumulative: each has available to it the resources not yet used by
its predecessors. The & conjunction, which is less used, is written “&”.

Thus, the query showing that two dollars are needed to buy pizza and soda
can be written in Lolli as:

?- (dollar -o pizza) => (dollar -o soda) =>

(dollar -o dollar -o (pizza,soda))

which would succeed. If we wished to allow ourselves a single, infinitely reusable
dollar, we would write:

?- (dollar -o pizza) => (dollar -o soda) =>

(dollar => (pizza,soda))

which would also succeed. Finally, the puzzling query:

?- (dollar -o pizza) => (dollar -o soda) =>

(dollar -o (pizza & soda))

would also succeed. It says that with a dollar it is possible to buy soda and
possible to buy pizza, but not both at the same time. (To some this feels more
like a disjunction than a conjunction, but it is not quite that either.)

It is important to note that while the implication operators add clauses to
a program while it is running, they are not the same as the Prolog assert
mechanism. First, the addition is scoped over the subgoal on the right of the
implication, whereas a clause asserted in Prolog remains until it is retracted.
So, for example, the following query will fail:

?- (dollar => dollar), dollar.

Assumed clauses also go out of scope if search backtracks out of the subordinate
goal. Second, whereas assert automatically universalizes any free variables in
an added clause, in Lolli clauses added with implication can contain free logic
variables, which get bound when the clause is used to prove some goal. Therefore,
whereas the Prolog query:

?- assert(p(x)), p(a), p(b).

will succeed, because x is universalized, the seemingly similar Lolli query:

?- p(x) => (p(a), p(b)).

will fail, because the attempt to prove p(a) causes the variable to become in-
stantiated to a. If we desire the other behavior, we must quantify explicitly:

?- (forall x\p(x)) => (p(a), p(b)).

8

What’s more, any action at all that causes a variable to become instantiated will
affect instances of that variable in added assumptions. For example, the query:

?- p(x) => r(a) => (r(x), p(b)).

will fail, since proving r(x) causes the variable to be instantiated to a, both in
that position, and in the assumption p(x). Our implementation of lolliCoP will
rely crucially on all these behaviors.

Though there are two forms of disjunction, only one, “⊕” is used in Lolli. It
corresponds to the traditional one and is therefore written with a semicolon in
Lolli as in Prolog.

There are also two forms of truth, >, and 1. The latter, which Lolli calls
“true”, can only be proved if all the assumptions have already been used. In
contrast, the formula > is true even if some resources are, as yet, unused. This
operator, can be used to reintroduce the ability to discard unused assumptions.
Therefore, Lolli calls it “erase”. If a > occurs as one of the conjuncts in a ⊗
conjunction, then the conjunction may succeed even if the other conjuncts do
not use all the linear resources. The > is seen to consume the leftovers.

It is beyond the scope of this paper to demonstrate the applications of all
these operators. Many good examples can be found in the literature, particularly
in the papers on Lygon and Lolli [5, 6]. The proof theory of this fragment have
also been discussed extensively in prior works [6], and is also beyond the scope of
this paper. Of crucial importance is that there is a straightforward goal-directed
proof procedure (conceptually similar to the one used for Prolog) that is sound
and complete for this fragment of linear logic.

5 The lolliCoP Theorem Prover

Figure 4 gives the code for lolliCoP a reimplementation of leanCoP in Lolli/LLP.
The basic premise of its design is that, rather than being passed around as a list,
the matrix will be loaded as assumptions into the proof context and accessed
directly. In addition, ground clauses will be added as linear resources, since the
calculus dictates that in any given branch of the proof, a ground clause should
be removed from the matrix once it is used. Non-ground clauses are added to the
intuitionistic (unbounded) context. In either case (ground or non-ground) these
assumptions are stored as clauses for the special predicate cl/1. Literals in the
path are also stored as assumptions added to the program. They are unbounded
assumptions added as clauses of the special predicate path. Clauses are still
represented as lists of literals, which are represented as terms as before. (Lolli
supports the λ-terms of λ-Prolog, but LLP does not.)

The proof procedure begins with a call to prove/1 with a matrix to be
proved. This predicate first reverses the order of the clauses (so that when they
are added recursively the resultant list will be searched in their original order)
and then calls pr/1 to load the matrix into the proof context. First, however,
it checks whether the entire matrix is ground or not. If it is, a flag predicate is

9

prove(Mat) :- reverse(Mat,Mat1),

(ground(Mat) -> propositional => pr(Mat1)

; pr(Mat1)

).

pr([]) :- p(1).

pr([Cla|Mat]) :- (ground(Cla) -> (cl(Cla) -<> pr(Mat))

; (cl(Cla) => pr(Mat))

).

p(PathLim) :- cl(Cla), \+member(-_,Cla),

copy_term(Cla,Cla1), prove(Cla1,PathLim).

p(PathLim) :- \+propositional,

PathLim1 is PathLim+1, p(PathLim1).

prove([],_) :- erase.

prove([Lit|Cla],PathLim) :-

(-NegLit=Lit; -Lit=NegLit) ->

(path(NegLit), erase ;

cl(Cla1), copy_term(Cla1,Cla2), append(ClaA,[NegLit|ClaB],Cla2),

append(ClaA,ClaB,Cla3), (Cla1==Cla2 -> true ; PathLim>0),

PathLim1 is PathLim-1, path(Lit) => prove(Cla3,PathLim1)

) & prove(Cla,PathLim).

Fig. 4. The lolliCoP theorem prover

assumed (using =>) to indicate that this is a propositional problem, and that
iterative deepening is not necessary.

The predicate pr/1 takes the first clause out of the given matrix, adds it to
the current context as either a limited or unlimited assumption (depending on
whether the clause is ground or not, respectively), and then calls itself recursively
as the goal nested under the implication. Thus, each call to this predicate will be
executed in a context which contains the assumptions added by all the previous
calls. Eventually, when the end of the given matrix is reached, the first clause
of pr/1 is used to call p/1 with an initial path-length limit of 1, so that a start
clause can be selected, and the proof search begun.

The clauses for p/1 take the place of the clauses for prove/2 in leanCoP.
They are responsible for managing the iterative deepening, and for selecting the
start clause for the search. Note that both processes are significantly simpler.
A clause is selected just by attempting to prove the predicate cl/1 which will
succeed by matching one of the clauses from the matrix which has been added
to the program. Once the program finds a purely positive start clause, it is
copied and its proof is attempted at the current path-length limit. Should that
process fail, the second clause of p/1 is invoked. It checks to see that this is not
a purely propositional problem, and if it is not, makes a recursive call with the
path-length limit one higher.

10

The predicate prove/2 now takes the role of prove/4 in leanCoP. Because
the matrix and path are stored in the proof context, they no longer need to be
passed around as arguments. The first case, corresponding to extension0, now
has a body consisting of the erase (or >) operator. Its purpose is to discard any
linear assumptions (i.e. ground clauses in the matrix) that were not used in this
branch of the proof. This is necessary since we are building a prover for classical
logic in which assumptions can be discarded.

The second clause of this predicate is, as before, the core of the prover,
covering the remaining three rules. It begins by selecting a literal from the goal
clause and forming its complement. If a literal matching complement occurs as
an argument to one of the assumed path/1 clauses, then this is an instance of
the reduction rule and this branch is terminated. As with the extension0 rule,
erase is used to discard unused assumptions.

Otherwise, the predicate cl/1 extracts a clause from the matrix, which is
then copied and checked to see if it contains a match for the complement of
the goal literal. If the clause is ground or if the path-length limit has not been
reached, the current literal is added to the path and prove/2 is called recursively
as a subordinate goal (within the scope of the assumption added to the path) to
prove the body of the selected clause.

If this was an instance of the reduction rule, or if it was an instance of
extension1 or extension2 and the proof of the body of the matching clause suc-
ceeded, the call to prove/2 finishes with a recursive call to prove the rest of the
current goal clause. Because this must be done using the same matrix and path
that were fed to the other branch of the proof, the two branches are joined with
a & conjunction. Thus the context is copied independently to the two branches.

It is important to notice that, other than checking whether the path-length
limit has been reached, there is no difference between the cases when the selected
clause is ground or not. If it was ground, it was added to the context using linear
implication, and, since it has been used (to prove the cl/1 predicate), it has
automatically been removed from the program, and, hence, the matrix.

It is also important to note that, as mentioned before, we rely on the fact
that free variables in assumptions retain their identity as logic variables and
may become instantiated subsequently. In particular, the literals added to the
path may contain instances of free variables from the goal clause from which
they derive. Anything which causes these variables to become instantiated will
similarly affect those occurrences in these assumptions. Thus, this technique
could not be implemented using Prolog’s assert mechanism.

6 Performance Analysis

We have tested lolliCoP and lolliCoP2 (described in the next section) on the 2200
clausal form problems in the TPTP library version 2.3.0 [15, 8]. These consist of
2193 problems known to be unsatisfiable (or valid using positive representation)
and 7 propositional problems known to be satisfiable (or invalid). Each problem

11

is rated from 0.00 to 1.00 relative to its difficulty. A rating of “?” means the
difficulty is unknown). No reordering of clauses or literals have been done.

The tests were performed on a system with a 500MHz Pentium III processor
and 128M bytes of memory. The programs were compiled with version 0.50 of
LLP which generated abstract machine code executed by an emulator written in
C. The time limit for all proof attempts was 300 seconds.

Table 1. Overall performance of Otter, leanCoP, and lolliCoP

Total Otter leanCoP lolliCoP lolliCoP2

Solved 2200 1602 (73%) 750 (34%) 811 (37%) 878 (40%)

0 to < 1 second 1209 390 548 609
1 to < 10 seconds 142 185 126 119
10 to <100 seconds 209 121 94 94
100 to <200 seconds 31 31 23 33
200 to <300 seconds 11 23 20 23

Problems rated 0.00 1308 1230 (94%) 673 (51%) 709 (54%) 736 (56%)
Problems rated >0.00 733 249 (34%) 60 (8%) 80 (11%) 117 (16%)
Problems rated ? 159 123 (77%) 17 (11%) 25 (16%) 25 (16%)

The overall performance of lolliCoP and lolliCoP2 leanCoP [14], and Otter
3.1 (with MACE 1.4) [8, 10] are shown in Table 1. Due to the time needed
to run these systems on the entire library, the results are those provided by
their respective authors (in the case of leanCoP they come from a manuscript in
preparation). The results for Otter [8] were produced on a 400MHz Pentium
II. Those for leanCoP was produced on a SUN Ultra10 using ECLiPSe Prolog
3.5.2. Both these machines are somewhat slower than the machine we used.

It is interesting to note that lolliCoP solved 55 problems, and lolliCoP2 76,
which Otter can not solve. Most of these (45 for lolliCoP and 62 for lolliCoP2)
are rated higher than 0.00. Fig. 5 depicts the overlap of problems solved by
each system. In this case the numbers for leanCoP are based on our own testing,
described in the next subsection.

6.1 Performance comparison

In order to get a more detailed comparison, we tested all the systems on the
117 problems rated greater than 0.0 which lolliCoP2 can solve. Because Otter
3.1 is not yet available, we used Otter 3.0.6 instead. It was tested on the same
machine used for lolliCoP and lolliCoP2 (Pentium III 500MHz, 128MB RAM).
leanCoP was tested under SICStus Prolog compiler version 3.7.1 (compact-code)
on a 128 MB Pentium III 550MHz system. Therefore, the timings for leanCoP in
this section have been scaled by a factor of 1.10. Table 2 gives the results of this
comparison. (Otter results labeled “error” refer to an empty set-of-support.)

12

Table 2. Problems solved by lolliCoP2 and rated higher than 0.00

Problem Rating Otter leanCoP lolliCoP lolliCoP2
BOO012-1 (0.17) 3.51 8.97 8.05 1.40
BOO012-3 (0.33) 18.46 261.27 69.01 10.41
CAT002-4 (0.17) 2.80 >300 >300 254.05
CAT003-2 (0.50) >300 17.40 13.23 4.69
CAT003-3 (0.11) >300 2.70 1.87 0.37
CAT012-4 (0.17) 0.26 21.92 16.33 5.02
COL002-3 (0.33) >300 0.01 0.03 0.02
COL075-1 (0.50) >300 >300 >300 66.02
FLD002-3 (0.67) 1.23 221.21 177.81 47.87
FLD003-1 (0.67) >300 >300 290.08 77.59
FLD004-1 (0.67) >300 >300 >300 220.70
FLD009-3 (0.33) >300 >300 >300 79.72
FLD013-1 (0.67) >300 0.51 0.53 0.16
FLD013-2 (0.67) >300 >300 >300 116.84
FLD013-3 (0.33) >300 >300 >300 168.89
FLD013-4 (0.33) 3.45 >300 >300 296.93
FLD016-3 (0.33) 13.37 >300 >300 170.71
FLD018-1 (0.33) >300 >300 >300 111.74
FLD019-1 (0.33) >300 >300 >300 215.89
FLD022-3 (0.33) 13.33 >300 >300 170.85
FLD023-1 (0.33) >300 0.68 0.52 0.14
FLD025-1 (0.67) >300 0.51 0.53 0.16
FLD025-3 (0.33) >300 >300 >300 143.58
FLD028-3 (0.33) 15.05 >300 >300 205.61
FLD030-1 (0.33) 0.43 0.02 0.02 0.00
FLD030-2 (0.33) >300 0.48 0.39 0.11
FLD031-1 (0.33) >300 >300 >300 294.18
FLD032-1 (0.33) >300 >300 >300 271.46
FLD035-3 (0.33) 14.80 >300 >300 281.98
FLD036-3 (0.33) 14.72 >300 >300 148.27
FLD037-1 (0.33) >300 1.79 1.37 0.35
FLD060-1 (0.67) >300 0.65 0.56 0.16
FLD060-2 (0.67) >300 >300 >300 139.17
FLD061-1 (0.67) >300 0.73 0.63 0.18
FLD061-2 (0.67) >300 >300 >300 170.52
FLD064-1 (0.67) >300 >300 >300 126.17
FLD067-1 (0.33) >300 1.62 1.31 0.35
FLD067-3 (0.33) 21.76 205.30 165.19 44.82
FLD069-1 (0.33) >300 >300 >300 137.91
FLD070-1 (0.33) >300 2.76 0.74 0.20
FLD071-3 (0.33) 2.79 0.40 0.38 0.09
GEO026-3 (0.11) 2.33 22.39 21.17 2.57
pGEO030-3 (0.44) 8.48 >300 299.76 33.79
GEO032-3 (0.25) 1.19 >300 >300 35.11
GEO033-3 (0.38) 5.13 >300 >300 43.14
GEO041-3 (0.22) 0.24 46.51 36.31 3.94
GEO051-3 (0.25) 7.80 >300 >300 62.24
GEO064-3 (0.12) 0.36 >300 >300 60.19
GEO065-3 (0.12) 0.34 >300 >300 60.17
GEO066-3 (0.12) 0.36 >300 >300 60.21
GRP008-1 (0.22) 0.79 1.09 0.80 0.14
HEN007-6 (0.17) 0.13 >300 >300 232.75
LCL045-1 (0.20) 107.10 1.44 1.00 0.56
LCL097-1 (0.20) 0.30 0.75 0.22 0.13
LCL111-1 (0.20) 0.16 0.22 0.15 0.08
LCL130-1 (0.20) 0.02 0.03 0.01 0.01
LCL195-1 (0.20) error 20.63 16.96 7.69
LCL230-1 (0.40) error 229.56 148.02 68.03
LCL231-1 (0.40) error >300 210.14 94.68

Problem Rating Otter leanCoP lolliCoP lolliCoP2
NUM009-1 (0.12) 3.53 83.24 54.12 4.85
NUM283-1.005 (0.20) 0.48 0.30 0.22 0.18
NUM284-1.014 (0.20) 0.95 198.68 160.09 141.04
PLA004-1 (0.40) >300 4.41 3.54 2.70
PLA004-2 (0.40) >300 6.61 5.60 4.28
PLA005-1 (0.40) >300 0.50 0.40 0.26
PLA005-2 (0.40) >300 0.15 0.07 0.04
PLA007-1 (0.40) >300 0.15 0.15 0.08
PLA008-1 (0.40) >300 276.50 224.36 156.78
PLA009-1 (0.40) >300 0.07 0.06 0.04
PLA009-2 (0.40) >300 2.31 1.90 1.32
PLA010-1 (0.40) >300 276.08 223.14 155.98
PLA011-1 (0.40) >300 0.17 0.10 0.05
PLA011-2 (0.40) >300 0.50 0.39 0.27
PLA012-1 (0.40) >300 72.69 57.31 40.54
PLA013-1 (0.40) >300 0.25 0.19 0.11
PLA014-1 (0.40) >300 2.27 1.76 1.33
PLA014-2 (0.40) >300 2.34 1.93 1.46
PLA016-1 (0.40) >300 0.07 0.07 0.05
PLA019-1 (0.40) >300 0.07 0.06 0.04
PLA021-1 (0.40) >300 0.20 0.15 0.08
PLA022-1 (0.40) >300 0.43 0.36 0.26
PLA022-2 (0.40) >300 0.03 0.02 0.01
PLA023-1 (0.40) >300 80.05 63.38 44.67
PUZ034-1.004 (0.67) error 17.45 13.69 10.85
RNG006-2 (0.20) 5.08 0.29 0.39 0.07
RNG040-1 (0.11) 0.06 0.01 0.01 0.00
RNG040-2 (0.22) 0.08 0.23 0.21 0.04
RNG041-1 (0.22) 0.21 48.21 39.63 6.99
SET014-2 (0.33) 189.21 191.85 147.66 30.55
SET016-7 (0.12) >300 12.09 9.09 1.15
SET018-7 (0.12) >300 12.27 9.20 1.15
SET041-3 (0.44) >300 65.92 49.74 5.34
SET060-6 (0.12) 0.23 0.06 0.03 0.00
SET060-7 (0.12) 0.29 0.06 0.04 0.01
SET083-7 (0.12) 26.24 44.47 38.13 5.90
SET085-6 (0.12) 13.64 >300 >300 71.52
SET085-7 (0.25) 69.62 50.68 36.87 5.71
SET119-7 (0.25) 189.36 66.55 53.24 7.33
SET120-7 (0.25) 192.48 66.41 53.25 7.33
SET121-7 (0.25) 188.44 79.96 61.29 8.33
SET122-7 (0.25) 191.02 80.07 61.30 8.34
SET152-6 (0.12) 0.45 3.85 2.86 0.41
SET153-6 (0.12) >300 0.78 0.61 0.10
SET187-6 (0.38) >300 19.81 14.87 2.50
SET196-6 (0.12) 11.34 >300 >300 214.16
SET197-6 (0.12) 11.41 >300 >300 214.20
SET199-6 (0.25) >300 >300 >300 223.02
SET231-6 (0.12) >300 14.18 10.69 1.78
SET234-6 (0.25) >300 >300 >300 274.04
SET252-6 (0.25) 64.82 >300 >300 221.27
SET253-6 (0.25) >300 >300 >300 221.92
SET553-6 (0.25) 38.86 >300 >300 223.53
SYN048-1 (0.20) 0.00 0.00 0.00 0.00
SYN074-1 (0.11) 0.98 >300 >300 81.86
SYN075-1 (0.11) 0.17 >300 292.80 54.17
SYN102-1.007:007 (0.33) 1.04 43.29 43.46 25.31
SYN311-1 (0.20) error 135.55 110.66 50.30

13

Otter lolliCoP2

lolliCoP

507 24 699 10 3

65

1308 TPTP Problems rated 0.00

Otter lolliCoP2

lolliCoP

leanCoP

194 20 332 43 2 17

422

733 TPTP Problems rated >0.00

Fig. 5. Otter, leanCoP and lolliCoP compared with respect to problem rating

As mentioned in the introduction, although the table shows lolliCoP as almost
consistently outpacing leanCoP these results do not tell the entire story. Because
LLP is a first-generation implementation, the code generator is not nearly as
sophisticated as SICStus’, nor is its runtime system. To adjust for this factor we
also executed a version of leanCoP using the LLP compiler and runtime system
(since Lolli is a superset of Prolog). In this test, looking only at the problems
that it succeeded in solving, leanCoP took 2.3 times as long as lolliCoP providing
a more accurate measure of the benefits accrued from the linear-logic features.

Table 3a compares the performance of all four systems on the 33 problems
that they can all solve. Total CPU time is shown, along with a speedup ratio
relative to leanCoP (under SICStus). On just these problems, lolliCoP has al-
most the same performance with Otter. However, comparing the result of 55
problems solved by both Otter and lolliCoP (but not leanCoP) Otter is 50%
faster as shown in Table 3b. Finally, Table 3c shows a similar analysis for the 76
problems that lolliCoP and leanCoPcould both solve.

Table 3. Comparison of Otter, leanCoP, and lolliCoP

(a) 33 problems solved by Otter, leanCoP, and lolliCoP

Otter leanCoP lolliCoP lolliCoP2
Total CPU time 1218.15 1749.73 1249.25 369.43
Average CPU time 36.91 53.02 37.86 11.19
Speedup Ratio 1.44 1.00 1.40 4.74

(b) 55 problems solved by Otter and lolliCoP

Otter lolliCoP lolliCoP2
Total CPU time 1226.80 1841.81 457.39
Average CPU time 35.05 52.62 13.07
Speedup Ratio 1.50 1.00 4.03

(c) 76 problems solved by leanCoP and lolliCoP

leanCoP lolliCoP lolliCoP2
Total CPU time 3033.66 2239.43 935.56
Average CPU time 39.92 29.47 12.31
Speedup Ratio 1.00 1.35 3.24

14

7 Improvements to the lolliCoP Prover

In the design of leanCoP, Otten and Bibel seem to have been focused primarily on
keeping the code as short as possible. In the process of reimplementing the system
in Lolli, a simple but significant performance improvement became apparent,
which we discuss here.

The most obvious inefficiency in the system as described thus far is that
copy_term is called in order to create a new set of logic variables in a selected
clause, even when the clause is ground, since that test is not made till later on.
Given the size of some of the clauses in the problems in the TPTP library, this
can be quite inefficient. While the obvious solution would be to move the use
of copy_term into the body of the if-then-else along with the path-limit check,
Lolli affords a more creative solution. With it it is possible to eliminate the
groundness check from the core code of the prover entirely.

In lolliCoP we already check whether each clause is ground or not at the time
the clauses are added into the proof context in pr/1. This is done so that the
ground clauses can be added as limited resources while the non-ground clauses
are added as unlimited ones. This check removes the need for special treatment
of that behavior in prove/2. We can further take advantage of that check by not
only adding the clauses differently, but by adding different sorts of clauses. In
lolliCoP a clause c (ground or not) is represented by the Lolli clause cl(c). We
can continue to represent ground clauses in the same way, but when c is non-
ground, instead represent it by the Lolli clause: cl(C1) :- copy_term(c,C1).
When this clause is used, it will return not the original clause, but a copy of it.
To be precise, we replace the second clause of pr/1 with a clause of the form:

pr([C|Mat]) :-

(ground(C) -> (cl(C) -<> pr(Mat)

; (forall C1\ cl(C1) :- copy_term(C,C1)) => pr(Mat)).

Note the use of explicit quantification over the variable C1.
In lolliCoP2 the loaded clauses are further to take a second parameter, the

path-depth limit. The Lolli clauses for ground clauses simply ignore this param-
eter. The ones for non-ground clauses check it first and proceed only if the limit
has not yet been reached. In this version of the prover there is no check whatso-
ever for the ground status of a clause in the core (prove/2). Space constraints
keep us from including the full program.

Taken together these small improvements triple the performance of the sys-
tem. While the first optimization can be added, more awkwardly, to leanCoP, it
is not possible to do away entirely with the groundness check in that setting.

8 Conclusion

Lean theorem proving began with leanTAP [1], which provided an existence proof
that it was possible to implement interesting theorem proving techniques using
clear short Prolog programs. It was not expected, however, to provide particu-
larly powerful systems. Recently, leanCoP showed that these programs can be at
once perspicuous and powerful.

15

However, to the extent that these programs rely on the use of term-level
Prolog data structures to maintain their proof contexts, they require the use of
list manipulation predicates that are neither particularly fast nor clear. In this
paper we have shown that by representing the proof context within the proof
context of the meta-language, we can obtain a program that is at once clearer,
simpler, and faster.

Source code for the examples in this paper, as well as the LLP compiler can
be found at http://www.cs.hmc.edu/~hodas/research/lollicop.

References

1. B. Beckert and J. Posegga. leanTAP: lean tableau-based theorem proving. In 12th
CADE, pages 793–797. Springer-Verlag LNAI 814, 1994.

2. W. Bibel. Deduction: Automated Logic. Academic Press, 1993.
3. W. Bibel, S. Brüning, U. Egly, and T. Rath. KoMeT. In 12th CADE, pages

783–787. Springer-Verlag LNAI 814, 1994.
4. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
5. James Harland, David Pym, and Michael Winikoff. Programming in Lygon: An

overview. In M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software
Technology, pages 391–405, Munich, Germany, 1996. Springer-Verlag LNCS 1101.

6. J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear
logic. Information and Computation, 110(2):327–365, 1994. Extended abstraction
in the Proceedings of the Sixth Annual Symposium on Logic in Computer Science,
Amsterdam, July 15–18, 1991.

7. J. S. Hodas, K. Watkins, N. Tamura, and K.-S. Kang. Efficient implementation of a
linear logic programming language. In Proceedings of the 1998 Joint International
Conference and Symposium on Logic Programming, pages 145–159, June 1998.

8. Argonne National Laboratory. Otter and MACE on TPTP v2.3.0. Web page at
http://www-unix.msc.anl.gov/AR/otter/tptp230.html, May 2000.

9. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. Setheo: a high-performance
theorem prover. Journal of Automated Reasoning, 8(2):183–212, 1992.

10. W. MacCune. Otter 3.0 reference manual and guide. Technical Report ANL-94/6,
Argonne National Laboratory, 1994.

11. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

12. M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and K. Mayr.
Setheo and E-Setheo—the CADE-13 systems. Journal of Automated Reasoning,
18:237–246, 1997.

13. G. Nadathur and D. J. Mitchell. Teyjus—a compiler and abstract machine based
implementation of lambda Prolog. In 6th CADE, pages 287–291. Springer-Verlag
LNCS 1632, 1999.

14. J. Otten and W. Bibel. leanCoP: lean connection-based theorem proving. In
Proceedings of the Third International Workshop on First-Order Theorem Prov-
ing, pages 152–157. University of Koblenz, 2000. Electronically available at
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-5-2000/.

15. G. Sutcliffe and C. Suttner. The TPTP problem library—CNF release v1.2.1.
Journal of Automated Reasoning, 21:177–203, 1998.

