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A MULTIPLICATION OF E-VARIETIES OF REGULAR E-SOLID
SEMIGROUPS BY INVERSE SEMIGROUP VARIETIES

MARTIN KURIL

ABSTRACT. A multiplication of e-varieties of regular F-solid semigroups by
inverse semigroup varieties is described both semantically and syntactically.
The associativity of the multiplication is also proved.

1. INTRODUCTION

We investigate here an operator on the lattice of all e-varieties of regular semi-
groups. In [7] we defined semantically a partial multiplication on this lattice:
U OV is defined if U is an e-variety of regular semigroups and V is an e-variety
of inverse semigroups. The definition is based on a certain semidirect product of
regular semigroups by inverse semigroups. In the case that & i1s an e-variety of
orthodox semigroups we also described our multiplication syntactically in terms
of biinvariant congruences for orthodox semigroups introduced in [5] by Kadourek
and Szendrei.

In this paper we present a syntactical description of our multiplication in the
case that the first factor 1s an e-variety of regular F-solid semigroups. The de-
scription is essentially based on the notion of biinvariant congruences for regular
E-solid semigroups given in [6] by Kadourek and Szendrei. Moreover, we prove the
associativity: ¥ O (VO W) = (U OV)OW for any e-variety U of regular E-solid
semigroups and any inverse semigroup varieties V, W.

For basic notions in the theory of semigroups the reader is referred to [4].

2. SEMANTICS

Let S = (S,-) be a semigroup. The set of all endomorphisms of S is denoted
by End(S). Let E(S) stand for the set of all idempotents of S. Denote by C(S)
the subsemigroup of S generated by E(S) provided that F(S) # 0. Clearly, for
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any element a € 5, there 1s at most one element b € S satisfying aba = a, bab =
b, ab = ba. If such an element b really exists then we denote it by a~ 1.

In [7] we used the following non-standard semidirect product of semigroups:

Let T = (T,-) be an inverse semigroup. For @ € T, the unique inverse of
a is denoted by a'. Let ¢ : (T,) — (End(S),o), where o is the composition
(a0 B)(s) = a(B(s)) (o, f € End(S), s € S), be a homomorphism.

Put S x, T ={(s,t) € S x T| ¢(tt')(s) = s} and define

(

(5,0) - (u, v) = ((tv't") (s) - (1) (u), 1 - v)
for (s,%), (u,v) € S x, T.
2.1 Result. ([7], 2.1 Lemma, 2.2 Lemma)
(1) (S %, T,-) is a semigroup
(i) If S is regular, then S x, T' is also regular.

Notice that this non-standard semidirect product of semigroups is in essence
the so called A -semidirect product of inverse semigroups introduced by Billhardt

in [1].

2.2 Result. ([7], 2.3 Lemma) Let (s,t) € S X, T. Then (s,t) is an idempotent
in S x, T if and only if s € E(S) andt € E(T).

2.3 Lemma. Let (s,t) € S x,T. Then (s,t) € C(S x,T) if and only if s € C(5)
andt € E(T).

Proof.

1. Let (s,t) € C(S xu T). Then (s,t) = (e1, f1) ... (ex, frx) for some (e, f1), ...,
(er, fu) € E(S x, T). We know that e1,...,ep € E(S) and f1,..., fx € E(T)
(see 2.2). Put (w;,v;) = (e1, f1)...(ei, fi) (¢ = 1,..., k). We will show that
u € C(S) and v; € E(T) (i = 1,...,k). Clearly, e; € C(S), f1 € E(T). Let
1 <i<kandu_1 €C(S),vi1 € F(T). We have @(v;_1 fifivi_)(ui—1) €
C(S), since p(vi—1fiflvi_y) € End(S). Further, ¢(vi—1)(e;) € E(S). We see
that w; = @(vi—1 fi flvi_ ) (wi—1) - p(vic1)(e;) € C(S). Finally, v; = v;_1 - fi €
E(T).

2. Let s € C(S) and t € E(T). Then s = ey ...e; for some ey,... e € E(S).
Put fi = o(t')(e;) (i = 1,...,k). Clearly, f € E(S) (i = 1,...,k) and
s = fi...fu. Further, (fi,t) € S x, T, since o(tt')(fi) = fi (i =1,...,k).
Using 2.2 we obtain (f;,t) € (S xo,T) (i =1,...,k). We will prove that
(fi,0) ... (fi,) =(f1.. . fi,t) i=1,...0k). Let 1 < i< k. Then

(fr,0) . (fier, O ) = (Fr -+ fimas )(fi;t)
= (p(Ut't) (fr - fiza) - (1) (i), %)
= () (i fior) - o) (), )
(fl fla )
For i =k we get (s,t) = (f1...fs,t) = (f1,1) ... (fu,t) € C(S X, T). O
A semigroup S is called regular E-solid if it is regular and C(S) is completely
regular.
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2.4 Lemma. If S is regular E-solid, then S x, T' is also regular E-solid.

Proof. We know that S x,, T is regular (see 2.1(ii)). We have to show that
C(S%x,T) is completely regular. Let (s,t) € C(Sx,T). Then s € C(S),t € E(T),
by 2.3. Since S is regular F-solid, there exists a € C'(S) such that sas = s, asa =
a,sa = as. Put b = ¢(tt')(a). Then b € C(S) and sbs = s,bsb = b, sb = bs.
Clearly, (b,t) € S x, T. Using 2.3 we obtain (b,t) € C'(S x, T'). Further,

(5,) (b, 1) (s, 1) = (p(ttt't')(s) - (1) (), 1%)(s,1) = (sb,1)(s,1)
= (p(ttt't')(sb) - p(t)(5),t?) = (sbs,t) = (s,1).

Similarly, (b,t)(s,t)(b,t) = (b,t) and (s,t)(b,t) = (b,t)(s,1). d
For any class V of regular semigroups, we will denote by H(V), S, (V) and P(V),
respectively, the classes of all homomorphic images, regular subsemigroups and
direct products of semigroups in V.
We adopt the following notations for classes of regular semigroups:
R — the class of all regular semigroups;
ES — the class of all regular E-solid semigroups;
I — the class of all inverse semigroups.

A class V C R satisfying H(V) C V, S, (V) CV and P(V) CV is called an e-
variety. The classes R, ES, I are examples of e-varieties. The concept of e-variety
was introduced by Hall in [3]. Simultaneously and independently Kadourek and
Szendrei in [5] have considered e-varieties of orthodox semigroups, which they
called bivarieties of orthodox semigroups.

Denote by (V) the least e-variety of regular semigroups containing the class
YV CR.

Let #f C R and V C I be e-varieties. In [7] we defined a multiplication O in the
following way:

UOV={Sx,TISeld,TeV,¢:(T,-) — (End(5), o) is a homomorphism}) .

2.5 Result. ([7], 2.5 Lemma) Let I # (). Let S; be a semigroup for i € I. Let
T; be an inverse semigroup for ¢ € I. Finally, let ¢; : (T;,) = (End(S;),0) be a
homomorphism for i € I. Then

TIes: %o, ) =] S %o [] T3,
iel i€l i€l
where the homomorphism
p: (17 ) = (End(JT 50), )
iel i€l
is given by
p((ti)ier)((si)ier) = (wilti)(si))ier -

The isomorphism is given by

((siyti))ser — ((si)ier, (ti)ier) -
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2.6 Result. ([6], Proposition 2.3) Let V C ES. Then

(i) S H(V) C HS, (V)
(ii) (V)= HS,P(V).

2.7 Lemma. Let Y C ES and V C 1 be e-varieties. Then

UV =HS,{Sx,T|SelU,TeV,
¢ :(T,-) = (End (S),0) is a homomorphism}).

Proof. Put W={Sx,T|SelU,T eV, ¢:(T,)— (End(S),0) is a homomor-
phism}. Tt follows from 2.4 that W C ES. Then & OV = HS, P(W) by 2.6(ii).
It is clear that HS,(W) C HS,P(W). Further, P(W) C H(W), by 2.5. Then
HS,P(W) C HS, H(W). This together with 2.6(i) gives HS, P(W) C HS,(W).

(I

3. SYNTAX

Recall the notions of biidentities and biinvariant congruences in the class of
regular F-solid semigroups introduced by Kadourek and Szendrei in [6].

A unary semigroup is an algebra S = (S, -,") with an associative multiplication
and with a unary operation ’.

Let Y be a non-empty set. We add new symbols ( and )’ to the set ¥ and
obtain a set Y5 =Y U{(,)’}. Let us denote the free semigroup on the alphabet A
by AT. Let U(Y) be the smallest one among the subsets 7" in Y0+ which satisfy

i) ycr

(il) w,v € T impliesuv € T
(iii) we T implies (u) € T.

The set U(Y) will be often considered as a unary semigroup with a binary
operation given by the concatenation of words and with a unary operation  :
U(Y) = U(Y) given by u — (u)’. The unary semigroup U(Y) is the free unary
semigroup on the set Y.

In order to reduce the number of brackets in formulas, we will omit them if it
causes no confusion. For example, we will often write «’ instead of (u)’.

Consider a set Y’ disjoint from Y and a bijection’ : Y — Y’ y — ¢/. The union
Y UY’ will be denoted by Y. For any y € Y, we will identify (y)" with ¢, and so
Y becomes a subset in U(Y).

If S is an inverse semigroup and a € S then the unique inverse of a is denoted
by @’. In this way a unary operation ' on S is given and the inverse semigroup
S = (S,-) can be considered as a unary semigroup S = (5,-,). Moreover, this
unary semigroup satisfies the identities

(id1) (&) ==
(id2)  (ay) =y’
(id3) ze'z=2x
(id 4)

zxx'yy = yy'za’.
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Conversely, if S = (S,+,) is a unary semigroup satisfying the identities (id 1)
— (id 4) then S = (S, ) is an inverse semigroup and the unique inverse of a € S
is the element a’. Speaking about varieties of inverse semigroups we have in mind
varieties of unary semigroups satisfying the identities (id 1) — (id 4).

In fact, the e-varieties contained in I are precisely the varieties of inverse semi-
groups. We can use the terms ’variety’ and ’e-variety’ interchangeably in this
context.

Given an infinite set Y, we will denote by (V') and ¢(Y'), respectively, the fully
invariant congruences on U(Y") corresponding to the varieties of all groups and all
inverse semigroups. 1(Y’) stands for the identity element of the group U(Y)/~(Y).

3.1 Lemma. Let u € U(Y). Then uy(Y) = 1(Y) if and only if u? 1(Y) u.
Proof.

1. Let uy(Y) = 1(Y). In view of the well-known solution of the word problem
for free groups it suffices to show the following facts:

(a) (vw)? oY) vw = (vez'w)? (V) vzz'w, (v,w e U(Y),z€Y);
(b) V2 u(Y)v = (vee!)? (V) vz, (veU(Y),z€Y);
(¢) w? o ((Y)w= (22/w)? (V) z2'w, (weU(Y),z€Y);

Now the proofs follow:
(a) wzz'wvzz'w oY) vv'vzz wozz ww'w
L vzz'vvwvww 22w

L vzz'v'v ww'z2’w

L vo'v 22’22 ww'w

12

(Y)
(Y)
(Y)
(Y)
(b) wzz'vzz'y

L
L

UU UZZ UZZ

UZZ U UUZZ

(Y)
(Y)
(Y)
(Y)

12

Y
Y
Y
Y
(V) vzd!

(c) Tt is similar to the case (b).
2. Let u? ((Y) u. It is clear that uy(Y) = 1(Y). O

Let U, (Y) be the smallest one among the subsets 7 in U(Y") which satisfy
(i) YCT
(il) w,v € T impliesuv € T
(i) weT and uy(Y) = 1(Y) implies v’ € T'.
The set U, (Y) will be often considered as a semigroup with an operation given
by the concatenation of words. In fact, the semigroup U,(Y) agrees with the
semigroup F'*°(Y) from [6]. There is only an unessential technical difference

between U, (Y') and F'*°(Y'). In [6], U'(Y) stands for the free unary semigroup
on the set Y. The unary operation is denoted by ~! in U/(Y) and F'*(Y) is



284 MARTIN KURIL

the smallest subsemigroup in U’(Y) containing the set Y and closed under the
partial operation assigning the word (u)~! to any word u with r(u) = 1 (see [6],
Section 2, for the definition of r(u)). If we consider the unary homomorphism
n:U(Y) = U(Y) extending the mappingy — v,y — ¢ = (y)' (y € Y) then, for
any u € U'(Y), the condition r(u) = 1 is equivalent to n(u)y(Y) = 1(Y) and the
restriction of 5 to F'*°(Y’) is an isomorphism between F'*°(Y) and U, (V).

If (S, ) is a regular semigroup, then a mapping ¥ : Y — S is called matched if

U(y) - I(y') - I(y) = d(y) and d(y) - I(y) - ¥(y') = I(y/) forally € Y.
To any matched mapping ¥ : Y — S, where S is a regular F-solid semigroup, we
now define a homomorphism 6 : U, (V) — S as follows. We proceed by induction

with respect to the complexity of words from U, (Y), and we put

() 0(:) = 0(2) (- € T)

(il) O(uv) = O(u)d(v) (u,v € U (Y))

(iii) O(u) = (0(w)™" (v € Up(Y),uy(Y) = L(Y)),
where (6(u))~! denotes the group inverse of f(u) in the maximal subgroup of S
containing 6(u). Of course, we must show that this 6(u) really lies in a subgroup
of S. This will be the content of the next result. We will then see that 6 is

well defined and we will call the homomorphism ¢ the extension of the matched
mapping ¢ : Y — S to U, (V).

3.2 Result. ([6], Lemma 2.1) The above definition is correct, that is, for any
u € Up (V) withuy(Y) = 1(Y), the element #(u) lies in a subgroup of S, provided
that S is a regular E-solid semigroup.

By a biidentity over Y we will mean any pair v = v of words u,v € U, (V). We
will say that a biidentity u = v is satisfied in a regular E-solid semigroup S if, for
any matched mapping ¥ : Y — S, we have 6(u) = 0(v) where 6 : U, (Y) — S is
the extension of ¥ to U,(Y). As usual, we will say that a biidentity is satisfied in
a class V of regular E-solid semigroups if it is satisfied in each member of V.

Given a class V of regular E-solid semigroups, put

oV, Y) ={(u,v) € U.(Y) x Up(Y)| the biidentity v = v is satisfied in V}.
For any set ¥ C U, (V) x Up(Y) of biidentities, put
[X] = {S € ES| S satisfies all biidentities in 3}.

We will write u(y1, 91, .., ¥n,y,) to indicate that only elements yi,...,y, €
Y.y, ..y, €Y' may occur in u € U (V). It u=uly, ¥l - ¥n,¥) € Ur(Y)
and p1,q1, ..., Pnydn € Up(Y) then w(pi,q1,...,0n,qn) is obtained by substi-
tuting p1,q1, ..., Pn,qn into u for yi1,y4,..., Un,y, respectively. It is clear that
w(p1,q1s- -, Pnygn) € U(Y). Ttis easy to see that if (p;ig;)y(Y) = 1(Y) (1 <i<n)
then u(p1,q1,...,Pn, qn) € Ur(Y).

A congruence p on U,(Y) will be called biinvariant if o(ES,Y) C p and it has
the following property: whenever u,v,p1,q¢1,...,Pn, ¢n € Ur(Y) such that

WYL, Y1 Yns Un) POYL YL - Yns U)
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and
piqipi 0(ES,Y) pi, qipiqi o(ES,Y) ¢; for i = 1,2,...,n
then also
U(PLyqiy - Py @n) PU(PL 41, -+ -5 Prs Gn)-

Observe that the second assumption implies (p;g;)y(Y) = 1(Y) for i = 1,...,n,
as the class of all groups is contained in ES| so that this definition is correct.

The set of all fully invariant congruences on the unary semigroup U(Y) will be
denoted by FIC'U(Y) and the set of all biinvariant congruences on the semigroup
U, (Y) will be denoted by BIC U, (Y).

Now, we can present the syntax of our multiplication.

Let X = {#1,22,...} be a set of variables. Given p € FIC U(X), define a new
alphabet X, =U(X)/p x X.

Define a left action * of U(X) on U(X,) by
u* (vp, 7) (uvp, x)
uxab = (uxa)(uxb)
uxd = (uxa)

foru,v e U(X),x € X,a,b € U(X,).
We will frequently use the following lemma without references.
3.3 Lemma. Let p € FICU(X),u,v € U(X). Then
(1) wpvimpliesuxa=v+*a forallaec U(X,)
(i) wx*(v*a)=(uwv)*aforallacU(X,).
Proof. The assertions are clear. d

3.4 Lemma. Let p€ FICU(X),u e U(X). If a € U,(X,), then uxa € U, (X,).

Proof. By induction with respect to a. Let v € U(X), 2 € X. Then u« (vp,z) =
(uvp,z) € Up(X,), ux (vp,2) = (wvp,z) € Ur(X,).
Let bye € Up(X,), uxb,uxc € Uy (X,). Then u+be= (uxb)(uxec) € U (X,).
Let b€ U, (X,),0v(X,) = L(X,), uxb € U, (X,). Then uxb’ = (uxb)’ € U, (X,),
since (uxb)v(X,) = 1(X,) (v(X,) € FICU(X,) and ¢ — u#cis an endomorphism
on U(X,)). O

Now, let p € FIC U(X), p D ¢(X). Define
7, U(X) = U(X,)

by
Ro(@) = (aa'p,)
mo(uwv) = (uwvv'u * 7w, (u))(u* m,(v))
mo(u) = w7,y (u)

where z € X, u,v € U(X).
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3.5 Remark. The mapping 7, is defined unambiguously:
Let u,v,w € U(X). Suppose that the values m,(u), 7,(v), 7,(w
7, (vw) are determined unambiguously. We show that 7,((uv)w) = m,(u(vw)):

() = () ()’ ) (s 7, ()
= (uwvww'v'u’ * ((uvv u' #m,(u))(u* ﬂp(v)))) (uv * m,(w))

(
(uvww’v’u’uvv u' % m,(u)) (uvww viu'u x mp(v)) (uv * m,(w))
= (wvww'v'u’ * 7Tp( u)) (u'vvww'v' « w,(v)) (uv * m,(w))

= (wvww'v'v * w,(u)) (vvww'v' * m,(v)) (uv * T, (w)),

() (o) 5 7)) (15 7, (00)

(oo + () (= (o’ = (1) 0 0 7, (1))

= (wvww'v'v * w,(u)) (vvww'v' * m,(v)) (uv * T, (w)).
The following lemma will be also often used without references.

3.6 Lemma. Let p € FICU(X),p D «(X),u € U(X). Then uu' *m,(u) = m,(u).

=
-
<
=
&
=
o

mp(u(ow) = (u

uvTww

Proof. By induction with respect to u. Let # € X. Then
o'« m,(x) = xva' « (x2'p, 2)
= (zx'xx'p, x)
= (za'p,x)
=m,(z).
Let u,v € U(X), v * m,(v) = m,(v). Then
uv(uv) « m,(uv) = wov'u * ((uwvv'v’ * m,(u))(u* 7, (v)))
= (wvr'w' vov' v’ « m,(u)) (upr' vy * m,(v))
= (wvv'u' * m,(u)) (wruvy’ * m,(v))
= (wvv'u’ x m,(u))(u * (v’ * 7, (v)))
= (wwv'u' x 7w, (u))(u * m,(v))
= m,(uv).
Let w € U(X). Then
w () oy (u) = wu (u x (mp(u))’)
= duu’ * (m,(u))
= ' x (my(u))’
= Fp( ). O
3.7 Lemma. Let p € FICU(X),p D «(X),u,v € U(X). If ut(X) v, then
mp(u) L(Xp) mp(v).
Proof. Having in mind that the variety I 1s the class of all unary semigroups

satisfying the identities (id 1) — (id 4) we prove the lemma in the following seven
steps.

Lo mp(()) o(Xp) mp(u) (w € U(X))
mp((w)') = (W) # (mp(u'))’
= ux (U (my(w)))
= ((uu x my(u))')’
= ((mp(u))')’
UXp) mp(u).
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"u) (u,v € U(X))

(Fp(uv))’
T ((uvv u'xmp () (ux mp(v)))'
L mp(u)) (v o (v)))f

s oo oy
w'uov’ * m,(v)) (vu *7Tp( u))’

v (Vf *(Fp(v)) N *(U * (mp(w))))

\_/_\_]
*/—\

N
2

=
-
—
<
:\ :\
& <
=
= -~
» Py

@

PN
o

el

Tp(ww') = (ww'(w')'w' * o (w)) (w * mp(w'))
ww'ww' * mp(w)) (ww' * 7, (w))’

p(w)(mp(w))".

=

Further,

7, (wu'vv') = (vu'vv' (vo') (un') * m,(un! ))(uu * ,(v0'))
= (uu’vv’vv’uu 7o (un')) (urvv' (vv') * w,(vu'))

(uu v’k m, (uu')) (wu' v’ w w, (v )

v« m,(u) (7, (u)) 7o (v) (7, (v

vo'un’ x my(v)(7, (v))
ur'vv’ « m,(v) (7, (v))
X,) uuvv' * w,(u)(m,
= 7, (uu'vv').

- ue(X) v and m,(u) o(X,) m,(v) implies 7, (wu) 1(X,) 7, (wv) (u,v,w € U(X))
7T, (wu) = (wuv'w « m,(w))(w* m,(u))

ﬂf,(wv) = (wov'w' * m,(w))(w * m,(v))

Since u ¢(X) v, we have wuu'w’ * 7,(w) = wvv'w' * w,(w).

Since m,(u) t(X,) m,(v), we have w* m,(u) «(X,) w* m,(v).

So, m,(wu) t(X,) 7p(wv

).
. ue(X)vand T,(u ) (X ,) mp(v) implies 7, (uw) «(X,) 7,(vw) (u,v,w € U(X))
7, (uw) = (uww'u’ « m,(u) (u * T, (w))

o) = (v x 7y (0)) (o % 7, 10)

Since m,(u) t(X,) m,(v), we have vww'v' * m,(u) o(X,) vww'u' * m,(v). Fur-
ther, from u ¢(X) v we get vww'v' * 7,(v) = vww'v' * m,(v). So, vww'u *
7, (u) o(X,) vww'v' «m,(v). Finally, usm,(w) = vkm,(w), since ut(X)v. Now,
we see that 7,(uw) ¢(X,) 7, (vw).

7, (v’ un)

™
™

o~
—_
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7. ue(X)vand 7,(u) ¢(X,) 7,(v) implies w,(u) ¢(X,) m,(v") (v, v € U(X))
mp(w) = ux (mp(u))
mol) = o' & (my (0]
Since u ¢(X) v, we get v’ «(X) v' and then o' * (7,(u)) = v’ * (7,(u))’. Since
Ro10) 1(X,) (1), we get (mp(u))’ 1(X,) (7p(0) and o' % (m, ()} (X,) o'
(mp () 80, 7p(0) 1(X,) mp(07). .

3.8 Corollary. Let p € FICU(X),p D ¢«(X),u € U(X). If uy(X) = 1(X), then
mp(u)y(X,) = 1(X,).

Proof. Let u € U(X),uy(X) = 1(X). We know that u? +(X) u (see 3.1). From
3.7 we get m,(u?) ¢«(X,) mp(u). Further,

mp(u?) = (wunu! s 7y (u)) (¢ 7y ()
= (v mp(u))(uun 7))
= (w5 7 () (w5 75 ()
= (my(w)*.

Thus, (s (u))? 1(X,) (), 7o (w)y(X,) = 1(X,). O

3.9 Corollary. Let p € FICU(X),p D «(X),u € U(X). Ifu € U (X), then
mp(u) € Up(X,).
Proof. By induction with respect to . Let # € X. Then n,(z) = (z2'p, ) €
U (X,),
Rale) = o' s (za'p, 2) = (e'2'p, ) = (ep, ) € Un(X,).
Let u,v € U, (X), 7, (u), mp(v) € Up(X,).
o) = (o 7, ()4 7, (0)
We know that wvv'n’ * m,(u) € U, (X,),u m,(v) € U.(X,) (see 3.4). Thus,
7, (uv) € Up(X,).
Let u € U, (X), uy(X) = 1(X), 7, (v) € Ur(X,).
ro) = '+ (7))
We know that 7,(u)y(X,) = 1(X,) (see 3.8). Then (n,(u))" € U,(X,). Using 3.4
we obtain 7,(u') € U, (X,). O

Now, let p € FICU(X),p D «(X),0 € BIC U,(X,). Define

cOp CU(X) x Up(X)

by
u(cOp)v <= upvand m,(u) o 7,(v)

(u,v € U, (X)).

The correctness of the definition is based on 3.9.

3.10 Remark. If p € FICU(X),p D «(X),0 € BICU,(X,), then c Op €
BIC U, (X). We will prove it in 4.10.
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4. RELATIONSHIPS BETWEEN SYNTAX AND SEMANTICS

4.1 Result. ([6], Corollary 2.11) For any infinite set Y, the rules
Vs o(V,Y) and p o [4]

define mutually inverse order—reversing bijections between all e-varieties of regular
E-solid semigroups and all biinvariant congruences on U, (Y).

We will denote the one—to—one correspondence from 4.1 simply by the symbol
4. Since 1t causes no confusion, we will use the symbol + also for the well-known
one—to—one correspondence between all varieties of unary semigroups and all fully
invariant congruences on the free unary semigroup U(Y).

Now, we recall the notion of a bifree object. Let V be a class of regular semi-
groups. By a bifree object in V on a non—empty set Y, we mean a pair (5,¢)
where S € V and ¢+ : Y — S is a matched mapping such that the following uni-
versal property is satisfied: for any semigroup 7' € V and any matched mapping
¥ :Y — T, there exists a unique homomorphism 1 : S — 7" such that 1 o1 = 9.
In cases when the mapping ¢ is obvious, we omit i1t and we term simply S to be a
bifree object in V on Y. Note that in any class of regular semigroups, there exists,
up to isomorphism, at most one bifree object on any non—empty set.

4.2 Result. ([6], Theorem 2.5) If' Y is an infinite set and V is a class of regular
E-solid semigroups closed under taking regular subsemigroups and direct products

then U, (Y)/o(V,Y) is a bifree object inV on Y.
4.3 Lemma. Let p € FICU(X),0 € BIC U,(X,). Then the mapping
v U(X)/p = (End(Ur(X,)/0),0)
given by
p(up)(ac) = (uxa)o (v e U(X),a € Up(X,))
is a correctly defined homomorphism.
Proof.

1. correctness of the definition:
It follows from 3.4 that v € U(X) and a € U,(X,) implies u * a € U, (X,).
Now, let u,v € U(X),a,b € U, (X,),upv,ach. We will show that usxaowv+b.
We have uxa = vxa. Since 0 € BICU,(X,), we get vkaocv*b. So, uxacv*b.

2. p(up) : Up(X,)/o = Uy (X,)/0 is an endomorphism (for any v € U(X)):
Let a,b € U,(X,). Then
p(up)((ac)(bo)) = @(up)(abo) = (ux (ab))o = (u* a)(u*b)o
= ((ux a)o)((u x b)) = p(up)(ac)p(up)(bo).
3. ¢ is a homomorphism:
Let u,v € U(X),a € Ur(X,). Then
p(up)(p(vp)(ac)) = p(up)((v * a)o) = (ux (v x a))o = ((uwv) * a)o
= ¢(uvp)(ac) = p((up)(vp))(ac).
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d

4.4 Lemma. Let p € FICU(X),p D «(X),0c € BIC U.(X,). Further, let
¢ U(X)/p = (End(U.(X,)/c),0) be the homomorphism from 4.3. Finally, let
V:X =5 U (X,)/o x, U(X)/p be given by

y = (mp(y)o,yp) (y€ X).
Then

(i) ¥ is a matched mapping
(i1) O(u) = (7,(u)o, up) for all u € U, (X)
(where @ is the extension of the matched mapping ).

Proof. Note that U(X)/p € LU, (X,)/0c € ES, U, (X,)/0 x, U(X)/p € ES (see
4.1,4.2 and 2.4).

(i) Choose # € X. Then 9(x)d(x")d(z) =
= ((v2'p, 2)0" 2p) ((2'p, 2}/

= (p(ze’za's) ((e2'p, £)0)0 (o) (&' p, 2)10), a2'p) ((a2'p, )0, 2p)
= (2" * (22'p, 2)) (2 (+'p, 2) )0, 22'p) (22’ p, ), 2p)

= ((ev'p, 2)(22'p, 2) o, 22'9) ((22'p, 2)0, 2p)

= (p(za'e'aa'p) (22", 2)(w2'p, 2) o)plaa'p) (22 p, 2)0), z2'zp)
= ((za' * (xa'p, x)(xa'p, x)") (xa' x (x2'p, x))o, xp)

= ((ea'p, 2)(e'p, ) (22'p, )0, 2p)

= ((v2'p. )0 p)

=J(z).

Similarly, 9(z')9(z)d(x") = I(z’).

(i1) We proceed by induction with respect to u. Let u,v € U, (X),0(u) =
(mo(uw)o, up), 8(v) = (m,(v)o,vp). Then O(uv) = 0(u)f(v)
= (mp(w)o, up)(mo(2)0’ )

v )y (1)) p(200) (75 (0)), wp)

(wov'u’ * m,(u)) (u* m,(v))o, uvp)

7, (uv)o, uvp).

v € U (X),uy(X) =1
X,) by 3.9 and 7, (u)y(X
(u')o,u'p). In view of (v’
(), up) (), ')
()0, up) (7, (u)o, up) )
(W), up) (1), w'p) = (. (u/)o, u

(( (

u) = (m,(u)o,up). Note that m,(u) €
(X,) by 3.8. We want to prove #(u') =
(0(u))~! we have to show that

—_

[ 2T - T

N nnnlgssssIc i
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Similarly, (7,(u')o, w' p)(7,(u)o, up)(7,(u')o, v'p) = (w,(u')o,u'p). Further,

(my ), up) ()0, ) =

= (plu'uu'p)(mo () ) p(up) (m, (W) ), uit'p)

= ({5 o)) (0 (u  (my () ) o, )

= (o 0) (my{0))', ),
,U)p) =

(my (), (mp ()
= T (atwa wp) ()0 o ) (7 ()0, ).
We know that u? ¢(X) u (see 3.1). So, u t(X) v/ upu'.
Then (7, (u')o, u'p)(7,(u)o, up) =
= (a3 (0 () )) 0 o, ()))r, ')
= ((u(w?) * 7)) (w7 7)), )
= ((mp (1)) my ()7, w'p)
= (o (w){(my (1))’ ),
since 0 O o(ES, X,) and 7, (u)(w,(v)) o(ES, X,) (7,(u)) m,(u). O

4.5 Corollary. Let p € FICU(X),p D «(X),0 € BICU,(X,). Let Y C ES be
an e-variety and V C 1 be a variety such that U <> o,V < p. Then

cOpDe OV, X).

Proof. Let u,v € U, (X),u o OV, X)v. We will show that u (cOp) v, ie upwv
and 7,(u)omw,(v). Note that U, (X,)/c € U, U(X)/p €V (see 4.1 and 4.2). We use
the homomorphism ¢ : U(X)/p — (End (U, (X,)/0), o) from 4.3 and the matched
mapping ¥ : X — U, (X,)/c x, U(X)/p from 4.4. Now, U, (X,) /o x, U(X)/p €
UOV. Thus the biidentity u = v is satisfied in U, (X,)/0 %, U(X)/p, and therefore
O(u) = 0(v) (where @ is the extension of the matched mapping ¥J). Hence, by 4.4(ii),

(my (1), up) = (m, (0)0, 0p). 0
4.6 Lemma. Let S € ES, T € 1,9 : (T, ) — (End (5),0) be a homomorphism,
¥: X = 5 x, T be a matched mapping such that

dwi) = (si,ti)

) = (pi,qi) (fori=1,2,...).

Let p € FICU(X),p D «(X). Suppose that all identities from p are satisfied in T'.
Let 95 : X — T be given by

rs — ;.
Let 4 : X_p — S be given by
(up, i) = p(02(u))(s:)
(up, i) = p(Oa(uzi))(ps)  (for (up, i) € X,),

where 03 : U(X) — T is the unary homomorphism extending 5.
Finally, let 6 : U, (X) — S x,T be the extension of the matched mapping ¥#. Then

(i) the mapping ¥y is matched
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(i) 61(uxa) = @(02(w))(01(a)) foralluec U(X),a € U,(X,) (61 denotes the
extension of the matched mapping V)

(iii) B(u) = (61(7,(u)), 02(u)) for all v € U, (X).

Proof.

(i) Let u,v € U(X), upv. We have to show that f5(u) = f2(v). But all identities
from p are satisfied in T', which implies 05 (u) = 02(v).
Now, let (up, ;) € X,. We have to show that
D1 ((up, xi)) 01 ((up, x:) )01 ((up, ) = 79 ((up, zi)) and

Vi ((up, 2i) )01 ((up, 1)) 01 ((up, i)’) = D1 ((up, 2i)') ie.

(02 (u)) (s:) (02 (ww:)) (pi) (02 (1)) (5:) = @(02(u))(si) and

Egz(Ul‘z )(pi)p(02 () (s:) (02 (wwi)) (pi) = p(02(uzi))(pi) ie.

P(0:(u) ,

) ux;
02(u))(sip(ti)(pi)si) = p(02(u))(si) and

(p(ti)(pi)sip(ts)(pi) = (02(w)) (@ (t:)(pi))-
We know that (s;,t;)(pi, ¢:)(si,t:) = (s5,t:) and (ps, i) (i, t:) (pi, i) = (s, @)
We get (o(tigititiqititiqiqit) (si) e (tiqititiqitits) (pi)p(tiai) (si), tiqiti) = (s, 4s)
and (p(qitiqiqitiqiqititial) (pi) w(aitiqiqitiaiqi) (si)p(qiti) (pi), aitiqi) = (i, i)
Thus qi —t SZSD(t )(pz)sz = 54, ngp(t )(Sz)pz =Ppi.
The last equahty implies ¢ (t;)(p:)sie(t:)(ps) = (i) (pi)-

(ii) We proceed by induction with respect to a. Let (vp, ;) € X,. Then

01 (u* (vp, x:)) = 01 ((uvp, x;)) = @(02(uv))(s;)
= @(02(u)) (¢(02(v))(si)) = (02 (w)) (01 ((vp, i)

and
O (ux (vp, w:)') = 01 ((wvp, w:)') = (O2(wvwi))(pi)
= (02 (u) (@ (02 (vai)) (pi) = p(02(u)) (01 ((vp, 2:)")).

Let 0,6 € U-(%), 010 ¢ 0) = (0(00) 01 ) 30+ 8) = 03(0) (010
Or(u*ab) =01 ((uxa)(uxb)) =01 (u*a)f(uxb)

= p(02(u))(01(a)) (02 (u))(01(b)) = @(02(u))(01(a)b1 (b))

= (02(u))(01(ab)).
Let a € U, (X,), av(X,) = 1(X,), 01(u * a) = ¢(f2(u))(61(a)). Then
O1(uxa’) =01 ((uxa)) = (p(02(u)) (01 (a))) "

= @(02(w)((01(a)) ") = (02 (u)) (01 (a’))

(iii) By induction:

(01 (mp(x:)), 02(2:)) = (O1((mizip, i), 02(x:)) = (p(O2(2ix))(s0), t4)
= (p(titi) (i), ti) = (si,8:) = O(s),

(01 (mp(x])), O=(2f)) = (O1((ip, z:)'), 2 (x}))
= (p(O2(zix:))(pi), i) = (p(qiq}) (i), 4:)
= (pi, i) = 0(x}).

Let u,v € U, (X), 0(u) = (61(m,(u)), 02(u)), 0(v) = (61(m,(v)), 02(v)). Then
O(uv) = 0(u)f(v)
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= (01(mp(u)), O2(u)) (01 (s (v)), O2(v))
= (p(02 (wvv"u')) (01 (7, () (02 (1)) (01 (7o (v))), O2(u)B2(v)).
It was proved in section (ii) that (62 (uvv'u’))(01(7,(u))) = 61 (uve'u’ *

(
mp(u), p(02(u))(01(my(v))) = Or(u * 7y (v)).

Now,

B(uv) = (01 ((vvv'v * m,(u))(u * mp(v))), B2 (uv))
= (01(my(uv)), 02 (uv)).
Finally, let v € U, (X), uy(X) = 1(X),8(u) = (61(7,(u)), 82(u)). We have
to show that
(91 (my (), 62 ) (01
(01 (my '), Oa(u)) (0
(01 (mp(u)), b2 (u ))(91(
We see that (61 (7,
= (p(b2(ur'uu’)) (0
(01 (1)), 02 (u)
(01 (m, ()01 (7, (1)), D)) (61, (u
({0 () (0 ()01 (7, ()
Oz (uu'u))
= (01 (my ()0
— (01 (my ()
Similarly, (¢
= (91(7Tp( )

~
~—

))

),Hz(uu ),

(Hz(u uu u))(
Oy (u' * (7, (u)
61 (un’ * (m,(u)

01 ((m,(u))")01 (mp( )

0y (m ( )b (7 (U))) 92(““))

used the following facts:

(X)) u (see 3.1),u? pu,upu’,02(u) € E(T),0:(u') € E(T). O

4.7 Corollary. Let p € FICU(X),p D «(X),0 € BICU,(X,). Let S€ ES,T €
I. Suppose that all identities from p are satisfied in T' and all biidentities from o
are satisfied in S. Finally, let ¢ : (T,-) — (End (S), o) be a homomorphism. Then
oOpCoe({S %, T} X).

Proof. Let u,v € U, (X),u(cOp)v,9 : X — 5 x, T be a matched mapping.
We have to show that 6(u) = 6(v), where 6 : U.(X) — S x, T is the extension
of #. We know that u p v, 7,(u) o 7,(v). Consider the mappings @, and ¥, from
4.6. The mapping ¥, is matched by 4.6(i). Let 61 : U,(X,) — S be the extension
of ¥; and 0y : U(X) — T be the unary homomorphism extending ¥2. Then
61 (mp(u)) = b1(m,(v)) and #2(u) = 02(v). Thus §(u) = 8(v) (by 4.6(iil)). |

D AAA/—\/—\

s, o
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4.8 Result. ([2], Lemma 1) Let ¢ : Q — W be a surjective homomorphism of
regular semigroups and let a,b € W, aba = a,bab = b. Then there exist ¢,d € Q)
such that ede = ¢,ded = d and ¥(c) = a,¥(d) = b.

4.9 Corollary. Let p € FICU(X),p D «(X),0 € BICU,(X,). Let Y C ES be
an e-variety, V C 1 be a variety such that U < ¢,V < p. Then

cOpCoe OV, X).

Proof. Let u,v € U,(X),u(cOp)v,W € YOV and let 4 : X — W be a
matched mapping. We will show that 6(u) = 6(v), where 6 : U, (X) — W is the
extension of ¥. It follows from 2.7 that there exist S € &,T € V, a homomorphism
¢ (T,-) — (End (5),0), a regular subsemigroup @) in S x, T and a surjective
homomorphism ) : Q — W. By 4.8, there is a matched mapping ¥ : X — Q
such that ¥(J(y)) = d(y) for all y € X. Then ¢ (f(w)) = 6(w) for all w € U,(X)
(0 : U (X) = @Q is the extension of ¥). Now, we use 4.7. We have 0(u) = 0(v).
Thus $(3(w) = $(0(0)), 0(u) = 0() 0
4.10 Theorem. Let p € FICU(X),p D ¢(X),0 € BIC U, (X,). Let U CES be
an e-variety, V C 1 be a variety such that U < ¢,V < p. Then

(i) e Ope BIC U, (X)
i)y OV & e0p
(iii) The mapping ¢ : U, (X)/o O p — U, (X,)/0 %, U(X)/p defined by

U(ulo B p)) = (o (wo.up)
where ¢ is the homomorphism from 4.3, is an embedding.

Proof.

(i) and (ii) Note that & OV C ES (see 2.4). By 4.5 and 4.9 we have ¢ O p =
oU OV, X). Thus e Ope BICU,(X) andU OV < cOp by 4.1.

(iii) Tt follows immediately from the definition of o O p that ¢ is a correctly de-

fined injective mapping.

¥ 18 a homomorphism:

Let w,v € U, (X). Then

Y((u(e T p)) (o0 T p)) = b(uv(o O p)
= (7, (uv)o, uvp) = ((uvv'v'sm,(u)) (uxT,(v))o, uvp)
= (p(uwvv'v'p)(m,p(u)a)p(up)(m,(v)o), uvp)
= (7 (u)er, up) (1o (), vp)

= ¥(u(e O p))(v(e T p)). U

4.11 Remark. Theorem 4.10 together with Result 4.2 show that bifree objects
in 4/ OV are isomorphic to some subsemigroups in suitable semidirect products of
bifree objects in U by free objects in V, for any e-variety Y C ES and any variety
VCIL
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This section is concluded with a corollary of Theorem 4.10. First, the following
result ensures that if &/ and V are varieties of inverse semigroups then ¥ OV is
also a variety of inverse semigroups.

4.12 Result. ([1], Proposition 1) Let S,T be inverse semigroups, ¢ : (T,-) —
(End (S), o) be a homomorphism. Then S x,, T' is also an inverse semigroup.

4.13 Corollary. Let p € FICU(X),p D «(X),0 € FICU(X,),0 D «(X,). Let
U,V C 1 be varieties such that U <+ o,V < p. Denote by o O p the fully invariant
congruence on U(X) corresponding to the variety Y OV. Then

u(cOp)v<=upvand n,(u) o m,(v) (forall u,v € U(X)).

Proof. Let oy be the biinvariant congruence on U,(X,) corresponding to the e-
variety U. Tt follows from 4.10(ii) that oo0p is the biinvariant congruence on U, (X)
corresponding to the e-variety /OV. Clearly, oo = cN(U,(X,) x U, (X,)),c00p =
(cOp)N({U(X) x Up(X)). Let u,v € U(X). There are ug, vy € U,(X) such
that wg ¢(X) u, vg ¢(X) v. Then ug p u,vg pv,up (¢ Op) u,vg (6 Op) v. Further,
p(uo) (X)) mp(u), mp(vo) o(X,) mp(v) (by 3.7). Thus mp(uo) o mp(u), mp(ve) o mp(v).
Now,
u(cOp)v < uy (e Op) vy

< g (09 O p) vo

& up p oo and m,(ug) oo T,(vo)

S upvand 7,(ug) o m,(vo)

S upvand 7,(u) o mH(v).
We used also the facts that 7,(uo), 7,(vo) € U, (X,) (by 3.9). |

5. ASSOCIATIVITY

We specify our notation in this section. Let Y be a countable set, p € FICU(Y),
p D uY). Put
Y, =U(Y)/pxY
and define
R(Y,p) U(Y) = U(Y,)
in the same way as the mapping 7, in the section 3 (of course, we replace the set
X ={x1,®2,...} by an arbitrary countable set V).

Throughout this section, let #f C ES be an e-variety and V, W C I be varieties.
We will prove syntactically that

av)ow=uorpaow).

Note that YV O W is a variety of inverse semigroups by 4.12 and so the right side
of the equation mentioned above is meaningful.
Let
pEFICUX),pDu(X),pe W,
c € FICU(X,),0c DuX,),0c &V,
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7€ BIC Up(Xon,), 7 < U,
7 € BIC U, ((X,)s), 7 < U.

In view of 4.10 we have to prove that
(r"Oo)Qp=7r0(cOp).

Choose u,v € U,(X). Then (by the definition of O and by 4.13)

uw(rO(cOp))v<= u(cOp)v
(X, o Op)(u) 7 m(X, 0O p)(v)
S UuUpv

(X, p)(u) o 7(X, p)(v)
(X, o Op)(u) 7 m(X, 0O p)(v)

and
uw((7Oc)0p)v < upv
(X, p)(w) (7' O o) m(X, p)(v)
S uUpv
m(X, p)(u) o 7(X, p)(v)
m(Xp, ) (x(X, p)(w)) 7' 7 (X, 0) (7 (X, p)(v)).

Clearly, it suffices to prove that
(X, o Op)(u) 7 m(X, 0O p)(v)

1s equivalent to

T(Xp, ) (w(X, p)(u)) 7 7 (X, o) (7(X, p)(v)) -

Define o : Xog, = (X,)0 by

(w(e Op),x) = (7(X, p)(w)e, (wp, z))
(welU(X),z€X).
5.1 Lemma. « is a correctly defined injective mapping.

Proof.

1. Let u,v € U(X),u (¢ Op) v. We want to show: up v, n(X,p)(u) o w(X, p)(v).
It follows immediately from 4.13.

2. Let u,v € U(X),z,y € X,(m(X, p)(u)o, (up,x)) = (7(X, p)(v)o, (vp,y)). We
want to show that (u(ec O p), z) = (v(e O p), y).

(up,z) = (vp,y) implies u p v,z = y.
(X, p)(u)o = (X, p)(v)o together with u pv implies u (6 O p) v (see 4.13)0

Now, we extend the mapping
o Xoop, = (X))o
to the unary homomorphism

o U(Xonp) = U((X))s) -
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5.2 Lemma. o(uxm(X,o0p)(v)) = (vov'u's7(X, p)(u))*7(X,, o) (usm (X, p)(v))
for any u,v € U(X).

Proof. By induction with respect to v:

1.

=a(ux* (zz'(c0p),z))
o, (uxa'p, x))
(22, (wra'p, )
= (ued'u * w(X, p)(u)) * (v w(X, p)(zz'))o, (uxx'p, x)).
Now, u* (X, p)(za') =

Let 2 € X. Then a(u* n(X, o O p)(x)
= o((ure'(o O ), )) = (7(X, p) (uas’
= ((uxa'za'v' * (X, p)(u))(u * F(X,)p

)
So, a(u* (X, 0 O p)(
= (ued'v * w(X, p)(u
= (uez'v' * 7(X, p)

) =

((uxa'p, x)(uxe'p, x) o, (uxa'p, x))
m(Xp, ) (u s 7(X, p) ().

Let v,w € U(X). We suppose that
aluxm(X, o0 p)(v)) = (wov'u * 7(X, p)(u))
aluxm(X, 00O p)(w))
for all u € U(X).
Now, choose an arbitrary u € U(X). Then a(ux n(X,c 0O p)(vw)) =
= a((vvww'v' * 7(X, 0 O p)(v)) (uv * m(X, o O p)(w)))
= ((wvww'v'vv'vww'v'u’ * m( X, p)(uwvww'v'))*

*1(X,, o) (uwvww'v' « (X, p)(v)))

((wvww'v'u' * 7(X, p)(uv)) * T(X,, o) (uv * (X, p)(w))).
Now, uvww'v'vv'vww'v'u' x (X, p)(vvww'v') =
= woww'v' (uwvww'v') * w(X, p)(uwvww'v')

=m(X, p)(uvww'v')
= (wvww' v vww'v'u' « (X, p)(u)) (u * 7(X, p)(vww'v'))
= (wwv'vww' ww'v'u' « (X, p)(u)) (u * 7(X, p)(vww'v'))
= (wvww'v'u * T(X, p)(w))(u * 7(X, p)(vww'v'))
and wvww'v'u' x 7(X, p)(uv) =
(wvwwv' wuvv’ v« (X, p)(u)) (voww' v'u'u + (X,
(wvwwv'ov' v un x 7( X, p)(u)) (v’ woww'v' « (X,
= (wvww'v'u' * T(X, p)(w)) (wvww'v' * (X, p)(v)).
So, a(u* (X, 0 O p)(vw)) = (wvww'v'u' * w(X, p)(u))*
*((ux (X, p) (vww' ) * 7(X,, o) (uvww'v' « 7(
((uwvww'v' « (X, p)(v)) * 7(X,, o) (wv * 7(X, p)(
We will show that (vvww'v’ x m(X, p)(v))(uv * (X, p
(v x 7(X, p) () (worwns = 7(X, p)(0)) o(X,)
(X)) u* (X, p)(vww'v'): (uvww'v' * 71'())(, p) () (uv * 7(X, p)(w))

1(X,) (wvww'v' * (X, p)(v)) (uv * 7(X, p)(w))
((woww's + 7(X, p) (0)) (v  7(X, p) ()’
= wx n(X, p) (vi0) (X, p) ()’
= wx (vio(ww) * 7(X, p) (v0)) (v x (v0) * (7(X, p) (v0))")
= ux (vw(vw) vw(vw) * (X, p)(vw))(vw x 7(X, p)((vw)"))

* m(X,, 0)(u*x (X, p)(v)),
(vww'u’ * (X, p)(u)) * 7(X,, o) (ux 7(X, p)(w))
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=ux (X, p)(vw(vw)')

(X)) wr (X, p)(vww'v')

(note that (X, p)(vw(vw)') +(X,) n(X, p)(vww'v') by 3.7 and the mapping
a > u xa is an endomorphism on U(X,)).

Since ¢ D +(X,), we get a(u* (X, o O p)(vw)) =

= (wvww'v'u * w1 (X, p)(u))* 7(X,, o) ((vvww'v' «7(X, p)(v)) (wvx (X, p)(w)))
= (wvww'v'v * 7(X, p)(u)) * 1(X,, o) (v * T(X, p)(vw)).

3. Let v € U(X). We suppose that a(us 7(X,c0p)(v)) = (uvv'v’ xw(X, p)(u))*
*m(X,, o) (u* 7(X, p)(v)) for all u € U(X).
Now, choose an arbitrary u € U(X). Then
alux (X, 0 Op)(v) = a((w' « (X, o O p)(v)))
= ((uv'vv'vu’ * 7(X, p)(uv')) x 7(X,, o) (uv' * (X, p)(v)))’
= (et ou’ x (X, p)(ut')) * (1(X,, ) (w5 7(X, p)(0)))
= (v uv'vu’ * (X, p)(u)) (u vl uv’ x (7(X, p)(v)))*

u))
#(m(Xp, o) (u x w(X, p)(v)))
U())( / / /

= (wuv'vv'vu’ * (X, p)(u)) (ue’uv've’ x 7(X, p)(v)) *
*(m(X,, o) (uv * w(X,
= (uwv'vu x 7
*(m(X,, o) (uv * 7

( )
) (
= (uwv'vu’ x (X, p)(u)
( )

(v))'
uo’ # 7(X, p) () % ((X,, o) (w0 % 7(X, p)(v)))')
— (wv/vu « %(X, p)(u (' * =X, p) (1))

= (uwv'vu’ * 7(X, p)(u)) (ux (X, p)(v)). O

5.3 Corollary. a(n(X,o 0 p)(w)) = 7(X,, 0)(7(X, p)(w)) for any w € U(X).

X,,
X

Proof. Using 5.2 we obtain
a(m(X, o0 p)(w)) = a(ww x 7(X, o 0 p)(w))
= (ww'ww'ww’ x 7(X, p (
= (ww'ww’ x (X, p)(w)
= (ww' x (X, p)(w)) (ww' * 7(X, p)(w (X,,
= 7(X, p)(w)(x(X, p)(w))" * w(X,, o) (7 (X, p)(w))
= 7(X,, @) (7(X, p)(w)). 0
5.4 Theorem. Let i C ES be an e-variety and V, W C I be varieties. Then

UOVOW)=UOV)OW.

g
S\
*
E)
>
=23
£
h~Y *
5
=
2

Proof. Tt follows from 5.1 that #(X,o O p)(u) 7 7(X, o O p)(v) is equivalent to
a(m(X,oe0p)(u)) ™ a(n(X,o 0 p)(v) (u,v € Up(X)). Now, we use 5.3 and the
proof is complete. O
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