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Abstract

This paper develops a framework for developing forecasts of future mortality rates.
We discuss the suitability of six stochastic mortality models for forecasting future
mortality and estimating the density of mortality rates at different ages. In partic-
ular, the models are assessed individually with reference to the following qualitative
criteria that focus on the plausibility of their forecasts: biological reasonableness; the
plausibility of predicted levels of uncertainty in forecasts at different ages; and the
robustness of the forecasts relative to the sample period used to fit the model. An
important, though unsurprising, conclusion is that a good fit to historical data does
not guarantee sensible forecasts. We also discuss the issue of model risk, common
to many modelling situations in demography and elsewhere. We find that even for
those models satisfying our qualitative criteria, there are significant differences be-
tween both central forecasts of mortality rates at different ages and the distributions
surrounding those central forecasts.
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1 Introduction

The last twenty years has seen a growing range of models for forecasting mortality.
Early work on stochastic models by McNown and Rogers (1989) and Lee and Carter
(1992) has been followed by:

• developments on the statistical foundations by, for example, Lee and Miller
(2001), Brouhns et al. (2002), Booth et al. (2002a), Czado et al. (2005),
Delwarde et al. (2007), and Li et al. (2009); and

• the development of new stochastic models by Booth et al. (2002a,b, 2005),
Cairns et al. (2006b) (CBD), Renshaw and Haberman (2006), Hyndman and
Ullah (2007), Cairns et al. (2009), Plat (2009) and Debonneuil (2010).

These stochastic models vary significantly according to a number of key elements:
number of sources of randomness driving mortality improvements at different ages;
assumptions of smoothness in the age and period dimensions; inclusion or not of
cohort effects; estimation method.

A number of studies have sought to draw out more formal comparisons between
a number of these models. Some of these limit themselves to comparison of some
variants of the Lee-Carter model (Lee and Miller, 2001, and Booth et al., 2002a,b,
2005). Hyndman and Ullah (2007) compare out-of-sample forecasting performance
of Lee-Carter and its Lee-Miller and Booth-Maindonald-Smith variants with a new
class of multifactor models. CMI (2005, 2006, 2007), compare the Lee-Carter, Ren-
shaw and Haberman and P-splines models. Extension of these types of analysis has
been extended to a wider range of models with substantially different characteristics
by the present authors, of which this paper is one part.

Cairns et al. (2009) focused on quantitative and qualitative comparisons of eight
stochastic mortality models (see 1 in Section 2), based on their general character-
istics and ability to explain historical patterns of mortality. The criteria employed
included: quality of fit, as measured by the Bayes Information Criterion (BIC); ease
of implementation; parsimony; transparency; incorporation of cohort effects; ability
to produce a non-trivial correlation structure between ages; robustness of parameter
estimates relative to the period of data employed.

Complementing this, Dowd et al. (2010a,b) carry out a range of formal, out-of-
sample backtesting and goodness-of-fit tests using English and Welsh males mortal-
ity data. They find that some models fare better under some criteria than others,
but that no single model can claim superiority under all the criteria considered. In
any event, different patterns of mortality improvements in different countries means
that models that are best for one country might not be as suitable for another.
Finally, this paper focuses on the ex ante plausibility and robustness of forecasts
produced by the different models.
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Some of the models considered here include a cohort effect that models and projects
randomness linked to a cohort’s year of birth. As remarked above there are signif-
icant differences in the pattern of improvements in different countries, and in some
cases this is linked to the presence of a significant cohort effect. Cohort effects
reflect a gradual build up of medical, lifestyle and environmental factors that are
common to a specific birth cohort (such as exposure to the 1918 flu pandemic, the
development of vaccination programmes, healthy diet after World War II, and edu-
cational attainment; see, also, Tuljapurkar and Boe, 1998, Section 4.1). A number
of countries are known to have significant cohort effects (England & Wales, France,
Germany, Japan and Italy: see Richards et al., 2007, and Cocevar, 2007). Booth
et al. (2002b) discuss a possible cohort effect in Australian data, but argue that
a multifactor age-period extension of the Lee-Carter model captures the historical
pattern in an adequate way without the need for a cohort effect in the model. We
argue the opposite: if there exists heterogeneity in the population in a way that
is linked directly or indirectly to year of birth then cohort effects will, at least in
theory, be present in the aggregate population mortality data.

Consider smoking as an example. Smoking prevalence is strongly linked to year of
birth, being influenced by fashion during a cohort’s early adulthood. Some gener-
ations have experienced a high uptake of smoking, while others have not. Cohort
smoking prevalence does not remain constant through time, but tends to decline
gradually as the cohort ages, with some diffusion between adjacent cohorts and in
response to government health campaigns. For further details, see Chatterjee (2008)
and references therein: these studies conclude, first, that smoking takes an average
of 5 to 7 years off an individual’s life expectancy, and, second, that, after giving
up smoking, mortality rates revert gradually to non-smoker levels. Given how the
pattern of smoking depends on cohort and age, and the impact of smoking status
on mortality rates, the presence of a cohort effect in a mortality model seems a
reasonable assumption.

Building on the analyses of historical data of Cairns et al. (2009) and Dowd et
al. (2010a,b), the present paper focuses on ex ante qualitative aspects of mortality
forecasts and the distribution of results around central forecasts. Specifically, we
introduce a number of qualitative criteria that focus on the plausibility of forecasts
made by different models.

Often in this paper, we will refer to the concept of biological reasonableness (which
was first raised in Cairns et al. 2006a). The concept is not intended to refer to
criteria based on hard scientific (biological or medical) facts. Instead, it is intended
to cover a wide range of subjective criteria, related to biology, medicine and the
environment. What the modeller needs to do is look at the results and ask the
question: what mixture of biological factors, medical advances and envorinmental
changes would have to happen to cause this particular set of forecasts? As one
example, the blue set of projections in Figure 6 at age 85 looks rather more unusual
than the red or grey sets of projections under a particular model. Under the blue
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scenario, we would have to think of a convincing biological, medical or environmental
reason why, with certainty, age 85 mortality rates are going to deteriorate to 1960’s
levels. If the modeller cannot think of any good reason why this might happen, then
she must rule out the model (at least with its current calibration) on grounds of
biological unreasonableness.

Besides biological reasonableness, we also consider the issue of the plausibility of
forecast levels of uncertainty in projections at different ages. The objective here is
to judge whether or not the pattern of uncertainty at different ages is consistent with
historical levels of variability at different ages: we can sometimes conclude that a
particular model is less plausible on the basis of forecast levels of uncertainty.

An important additional issue concerns the robustness of forecasts relative to the
choice of sample period and age range. If we make a small change either to the
sample period (for example, when we add in the latest mortality data) or to the age
range, we would normally expect to see, with a robust model, only modest changes
in the forecasts at all ages. Where a model is found to lack robustness with one
sample population, there is a danger that it will lack robustness if applied to another
sample population and should, therefore, either be used with great care or not used
at all.

Although application of such a wide ranging set of model selection criteria will
eliminate some models, we will demonstrate that mortality forecasting is no different
from many other modelling problems where model risk is significant: mortality
forecasters should acknowledge this fact and make use of multiple models rather
than pretend that it is sufficient to make forecasts based on any single model.

1.1 Plan for this paper

We will consider qualitative assessment criteria that allow us to examine the ex ante
plausibility of the forecasts generated by six stochastic mortality models, illustrating
with national population data for England & Wales (EW) for an age group consisting
of 60-89 year old males and estimated over years 1961-2004. This is supplemented
by a more brief discussion of forecasts for the equivalent US dataset. We focus
on higher ages because our current principal research interest is the longevity risk
facing pension plans and annuity providers.

We will concentrate on six of the models discussed by Cairns et al. (2009): these are
labelled in Table 1 as M1, M2, M3, M5, M7 and M8. Models M2, M3, M7 and M8
include a cohort effect and these emerged in Cairns et al. (2009) as the best fitting,
in terms of BIC, of the eight models considered on the basis of male mortality data
from EW and the US for the age group under consideration. M2 is the Renshaw
and Haberman (2006) extension of the original Lee-Carter model (M1), M3 is a
special case of M2, and M7 and M8 are extensions of the original CBD model (M5).
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The original Lee-Carter and CBD models had no cohort effect, and provide useful
benchmarks for comparison with the four models involving cohort effects. M4 is not
considered any further in this study because of its low BIC and qualitative rankings
for these datasets in Cairns et al. (2009, Table 3). (M4 focuses on identifying
the smooth underlying trend. However, this means that it is not as good as the
other models at capturing short-term deviations from this trend.) Although M3 is
a special case of M2, we include it here because it had a relatively high BIC ranking
for the US data, and because it avoids a problem with the robustness of parameter
estimates for M2 identified by CMI (2007), Cairns et al. (2009), and Dowd et al.
(2010a,b). M6 was also dropped from the original set of eight models: M6 is a
special case of M7, and M7 was found to be stable and to deliver consistently better
and more plausible results than M6.

The structure of the paper is as follows. In Section 2, we specify the stochastic
processes needed for forecasting the term structure of mortality rates for each of
the models. Results for the different models using EW male mortality data are
compared and contrasted in Section 3. Section 4 examines two applications of the
forecast models, namely applications to survivor indices and annuity prices, and
makes additional comments on model risk and plausibility of the forecasts. Each
model is then tested for the robustness of its forecasts in Section 5. Finally, in
Section 6, we summarise an analysis for US male mortality data: our aim is to draw
out features of the US data that are distinct from the EW data. Section 7 concludes.

Model formula

M1 log m(t, x) = β
(1)
x + β

(2)
x κ

(2)
t

M2 log m(t, x) = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γ

(3)
t−x

M3 log m(t, x) = β
(1)
x + n−1

a κ
(2)
t + n−1

a γ
(3)
t−x

M5 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄)

M7 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x

M8 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x(xc − x)

Table 1: Formulae for six out of the original eight mortality models investigated by
Cairns et al. (2009). The functions β

(i)
x , κ

(i)
t , and γ

(i)
t−x are age, period and cohort

effects, respectively. x̄ is the mean age over the range of ages being used in the
analysis. σ̂2

x is the mean value of (x− x̄)2. na is the number of ages.
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2 Forecasting with stochastic mortality models

We take six stochastic mortality models which, on the basis of fitting to historical
data, appear to be suitable candidates for forecasting future mortality at higher
ages, and prepare them for forecasting. To do this, we need to specify the stochastic
processes that drive the age, period and (if present) cohort effects in each model.

We define m(t, x) to be the death rate in year t at age x, and q(t, x) to be the
corresponding mortality rate, with the relationship between them given by q(t, x) =
1− exp[−m(t, x)]. The models considered are outlined in Table 1.

All but M5 require the use of one or more identifiability constraints (see Appendix
A, Section A.1), and age-, period- and cohort-effect parameter values are estimated
using a Newton-Raphson type of iterative scheme (see Appendix A, Section A.2).

The six models investigated in this paper, while representative of the class of time-
series age-period-cohort models, are not the only models in their class. For example,
we do not consider the models proposed by Booth et al. (2002a,b) (a multifactor age-
period extension of M1) and Hyndman and Ullah (2007) (a similar type of extension
to M1 that smooths the mortality data across ages before fitting the model).

2.1 Age effects

The age effects, β
(i)
x , are either non-parametric and estimated from historical data

(M1-M3), or assume some particular functional form (M5-M8). Further, we focus on
forecasts of mortality within the same range of ages used to estimate the underlying
models, so it is not necessary in this paper to simulate or extrapolate the age effects.

2.2 Period effects

Random-walk processes have been widely used to drive the dynamics of the period
effect ever since the introduction of the original Lee-Carter (1992) model. The
method used to estimate the model has been refined by subsequent authors in order
to improve the fit and place the model on more secure statistical foundations (see,
for example, Brouhns et al., 2002, Booth et al., 2002a, Czado et al., 2005, and de
Jong and Tickle, 2006).

Following CBD, we use a multivariate random walk with drift and correlated inno-
vations to drive the dynamics of the period effect: that is,

κ
(i)
t = κ

(i)
t−1 + µ(i)

κ + σ(i)
κ Z(i)

κ (t)

where the µ
(i)
κ are the drifts, the σ

(i)
κ are the volatilities, and the Z

(i)
κ (t) are standard

normal innovations that are correlated across the components, i, but independent
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through time. This model appears to be consistent with the data (see the plots

of the κ
(i)
t in Cairns et al. (2009)). However, more general ARIMA models might

provide a better fit statistically to some datasets. For example, CMI (2007) uses an
ARIMA(1,1,0) process for the period effect in the Lee-Carter model (M1) and an
ARIMA(2,1,0) process for the period effect in the Renshaw and Haberman model
(M2).

2.3 Cohort effects

The principal challenge we face in building a stochastic mortality model that can be
used for forecasting lies in specifying the dynamic process driving the cohort effect.
As a simple starting point, we follow previous studies (e.g., Renshaw and Haberman,

2006, and CMI, 2007), and assume that the cohort effect, γ
(i)
t−x, has dynamics that

are independent of the period effect, κ
(i)
t .

Fitted values for the cohort effects for models M2, M3, M7 and M8 can be seen in
Figure 1 (dots). It is clear from looking at these plots, that a simple random-walk
process is unlikely to be appropriate, leading us to consider a variety of alternatives.

For each of models M2, M3, M7 and M8, we considered a full range of ARIMA(p, d, q)
models with d = 0, 1, 2 and p, q = 0, 1, 2, 3, 4 as candidates for the cohort effects.
In the case of M8, we also considered an AR(1) model around a linear drift. The
Bayes Information Criterion (BIC) was calculated for each ARIMA model and,
based on this information, we drew up a short list of suitable candidates for each
of M2, M3, M7 and M8. In some circumstances ARIMA models with the highest
BIC were rejected because they gave rise to implausible forecasts. In these cases,
the preferred ARIMA models tended to be simpler (lower p and q values) in order
to produce more plausible forecasts. Only M7 produced a clear single option for
the cohort effect (AR(1)). For each of M2, M3 and M8, we analysed two versions
denoted M2A, M2B, M3A, M3B, M8A and M8B (see Cairns et al., 2008, for further
details).

The models are summarised in Table 2.

2.4 Estimation of cohort effects

Our main focus in this paper is making forecasts based on data for EW males aged
60 to 89 over the period 1961 to 2004. If we genuinely have the true model and a very
large population, then the single observation for age 60 in 2004 will be sufficient for
us to get an accurate estimate of the 1944 (i.e. 2004−60) cohort effect. In reality, we
are exposed to model risk, and even the EW males population has significant noise
in its death counts. To counter these effects, Cairns et al. (2009) proposed that
cohorts with fewer than 5 observations be excluded from the estimation procedure,
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Model γc = Model for the cohort effect

M2A γ
(3)
c ARIMA(0, 2, 1) γc = 2γc−1 − γc−2 + φ0Zγ(c) + φ1Zγ(c− 1)

M2B γ
(3)
c ARIMA(1, 1, 0) γc = γc−1 + µγ + αγ(γc−1 − γc−2 − µγ) + φ0Zγ(c)

M3A γ
(3)
c ARIMA(0, 2, 1) γc = 2γc−1 − γc−2 + φ0Zγ(c) + φ1Zγ(c− 1)

M3B γ
(3)
c ARIMA(1, 1, 0) γc = γc−1 + µγ + αγ(γc−1 − γc−2 − µγ) + φ0Zγ(c)

M7 γ
(4)
c ARIMA(1, 0, 0) ≡ AR(1) γc = µγ + αγ(γc−1 − µγ) + φ0Zγ(c)

M8A γ
(3)
c AR(1) around a linear drift γc − δ1c = µγ + αγ(γc−1 − δ1(c− 1)− µγ) + φ0Zγ(c)

M8B γ
(3)
c AR(1) with no drift γc = µγ + αγ(γc−1 − µγ) + φ0Zγ(c)

Table 2: ARIMA models for the cohort effect for models M2, M3, M7 and M8. The
Zγ(c) are independent and identically distributed standard normal innovations, that

are independent of the period effect innovations, Z
(i)
κ (t).

to prevent overfitting of the cohort effect for these cohorts. In this case, therefore,
the four most recent (1941 to 1944) and earliest (up to 1880) cohorts were excluded
(see Cairns et al., 2009, Section 2.1). To ensure the eight models in Cairns et al.
(2009) were considered on a consistent basis, the Lee-Carter and CBD models that
have no cohort effect were also fitted to the same dataset.

2.5 Interplay between age, period and cohort effects

A recurring theme in this paper is the possibility that cohort effects might be par-
tially or completely replaced by well-chosen age and period effects. As an example,
with M3, a linear cohort effect can be completely replaced by linear adjustments to
the age and period effects. In other cases, application of an identifiabilty constraint
transforms the cohort effect but does not eliminate it. In further cases, there is no
identifiability constraint that can be applied. Nevertheless, from time to time, we
remark that an observed cohort effect points us towards the use of a more complex
model that has additional age and period effects, maybe with a simplified cohort
effect. This discussion then raises the question of whether a cohort effect is needed
at all, given the possibility that it could be replaced by additional age-period ef-
fects. However, this brings us back, first, to what type of effects we believe to be
appropriate for inclusion in a stochastic mortality model, and, second, to the relative
parsimony of the models that we attempt to fit.

It is appropriate at this point to review two distinct philosophies underlying model
building. Any model, however sophisticated, can only ever be a crude and imperfect
representation of reality. But is it better to start with a simple model and expand
it as its weaknesses emerge? Or is it better to begin with a very general model and
attempt to simplify the model in the light of results obtained, recognising that the
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principle of parsimony dictates that a simple but well-specified model is preferred to
a more complex model? Mortality modelling has traditionally adopted the former
approach, but other disciplines, such as economics and finance, have adopted the
latter, so-called general-to-specific modelling framework (see, e.g., Campos et al.
(2005) and Bauwens and Sucarrat (2008)). Clearly, general-to-specific modelling
has advantages, since more general models are able to encompass simpler models,
whereas the opposite will not be true.

Returning again to mortality modelling, the general-to-specific approach would be-
gin by considering a wide range of factors that the model builder believes could de-
termine mortality rates in the population of interest. These would certainly include
gender, year of birth, current age, education, occupation, health status, lifestyle
indicators, ethnicity and so on. Given the difficulties of measuring some of these
factors and given the computational problems of estimating models with such a large
number of factors, the model builder will inevitably be drawn to choosing a simpler
model that still tries to capture the influence of (at least some of) the wider group
of factors.

For the national populations considered here, we have what we believe to be reliable
deaths and exposures data by age, calendar year and gender. Age and calendar year
allows us to identify individual cohorts. Subdivisions by covariates such as social
class, educational attainment and smoking status tend to be much less reliable, at
least over long periods of time, and so these covariates tend not to be included in
studies focusing on population mortality forecasting.

The relevance of the general-to-specific approach here is as follows. We have argued
in Section 1 why there should be a cohort effect in all populations. The approach
therefore suggests that we should first include it as a component in at least some
models and then test if this effect is significant or not. Additionally, we need to
consider if a well-designed and significant cohort effect results in a more parsimonious
model than, say, a model with additional age-period effects.

3 Forecasts and model comparisons

We now proceed to compare the forecasting results for EW for the nine models
M1, M2A, M2B, M3A, M3B, M5, M7, M8A and M8B. (Corresponding results for
US males are presented and discussed in Section 6.) To do this, we will present fan
charts of the forecasts produced by the models. Each fan chart illustrates the forecast
output from the stochastic mortality models by dividing the simulated densities into
5% quantile bands. Fan charts give us the opportunity to explore any distinctive
visual features of each model’s forecasts, as well as any differences between them.
This, in turn, will give us a first indication of the degree of model risk. These visual
comparisons are supplemented by a range of quantitative and qualitative diagnostics
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which will increase our confidence in some models and question the suitability of
others for our purposes.

We consider the plausibility of model forecasts by assessing the biological reasonable-
ness of: the projections of the future term-structure of mortality; projected period
and cohort effects; and forecast levels of uncertainty relative to historical levels of
uncertainty. These three criteria are, of course, closely related, but it is useful to
think about each separately. Although ‘plausibility’ is a rather subjective concept
that is difficult to define, the forecasts produced by some of the models turn out
to be so obviously implausible that they can be ruled out for use with this spe-
cific dataset. In Section 5, we consider a fourth criterion, namely, the robustness of
model forecasts in the face of changes to the historical data sets used to calibrate the
model; this continues a discussion initiated by Cairns et al. (2009) who considered
the robustness of parameter estimates.

An examination of Figures 1 to 3 reveals the following:

• Figure 1 shows fan charts for the cohort effects for each model. (M1 and M5
have no cohort effect and are not plotted.) We can see that M2A’s and M3A’s
fans have a distinctively different shape from the other models, and expand
without limit. The same is true for M2B’s and M3B’s fans, although this is
less obvious from the plots. These are a result of the second- and first-order
differencing in these models, respectively. The fans for M2B and M3B seem
plausible, whereas the fans for M2A and M3A seem less so, because of the
rapidity with which they spread out.

The differences between the fan charts for M8A and M8B reflect differences in
the trend in γ

(3)
c (which trend the latter model sets to zero). Both models’ fans

converge to a finite width, a consequence of using a stationary AR(1) process
for the cohort effect. However, model M8A’s fan is slightly narrower, and this
reflects the fact that the lack of a constraint on the drift allows the estimation
procedure to achieve a tighter fit than is the case with M8B.

The different structure of each model inevitably means that each chart is visu-
ally distinctive. This might be a sign that model risk is significant, although
this cannot be fully established before we investigate some key output vari-
ables.

• In Figure 1, M2A, M3A and M8A all incorporate a linear trend. As remarked
earlier (Section 2.3), a linear trend can be converted into a mixture of age-
period effects. If these cannot be merged into existing age-period effects, this
might imply that the model is deficient in the following sense: the age-cohort
effect is being used to compensate for an inadequate number of age-period
components. It might not be sufficient, for example, to augment the Lee-
Carter model, M1, solely by the addition of an age-cohort component, as in
M2A. Rather, it might be more appropriate to extend the Lee-Carter model



3 FORECASTS AND MODEL COMPARISONS 11

1900 1920 1940 1960 1980

−
40

−
20

0
10

M2A

ga
m

m
a3

1900 1920 1940 1960 1980

−
40

−
20

0
10

M2B

ga
m

m
a3

1900 1920 1940 1960 1980

−
40

−
20

0
10

M3A

ga
m

m
a3

1900 1920 1940 1960 1980

−
40

−
20

0
10

M3B

ga
m

m
a3

1900 1920 1940 1960 1980

−
0.

05
0.

05

M7

ga
m

m
a4

1900 1920 1940 1960 1980

−
0.

04
−

0.
02

0.
00

M8A

ga
m

m
a3

1900 1920 1940 1960 1980

−
0.

04
−

0.
02

0.
00

M8B

ga
m

m
a3

Figure 1: England & Wales, males: Fan charts for the projected cohort effect. For
M1 and M5, there is no cohort effect so no fan charts have been plotted. The dots
show estimates of the cohort effect fitted to the historical dataset.
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Figure 2: England & Wales, males: Mortality rates, q(t, x), for models M1, M2A,
M2B, M3A, M3B, M5, M7, M8A and M8B for ages x = 65 (grey), 75 (red), and 85
(blue). The dots show historical mortality rates for 1961 to 2004.
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by adding an age-period component as well as, or instead of, an age-cohort
component, with a further requirement that any cohort effect has no drift. We
do not consider such an extension in this paper.

• Figure 2 shows fan charts for mortality rates at ages 65, 75 and 85 for each
of the nine models. In each case, except for M1 and M5, the central trend at
age 65 seems relatively smooth, while, at age 85, it wobbles around until 2025
(most obviously, see the upwards kink in the age 85 fan in 2025 in the M3A/B
plots). This is because the central trend is linked to the estimated cohort

effect, γ
(3)
c (γ

(4)
c for M7). The cohort effect has been estimated for years of

birth up to 1940. At age 85, the mortality rate is influenced by the estimated
cohort effect right up to 2025 when the 1940 cohort reaches age 85. After 2025,
age-85 mortality rates depend on smooth projections of the cohort effect. At
age 65, the smoother projected cohort effect is evident almost immediately.

• Figure 2 allows us to make an interesting comparison between model M1,
on the one hand, and M5, M7, M8A and M8B, on the other. With M1,
the age-85 fans are narrower than the age-65 fans. The opposite is true for
models M5, M7, M8A and M8B. For these models, the predicted uncertainty
is consistent with the greater observed volatility in age-85 mortality rates
between 1961 and 2004 than in age-65 mortality rates over the same period.
The contrasting result for M1 occurs because it has a single stochastic period
effect, κ

(2)
t . For M1, the widths of the fans is proportional to the age effect,

β
(2)
x and this is unlikely to satisfy the criterion of biological reasonableness.

The shape of the fitted β
(2)
x curve tends to be influenced primarily by relative

rates of improvement at different ages over the historical observation period.
Historical improvements have been lower at higher ages, forcing β

(2)
x to be

lower at higher ages (see Cairns et al, 2009, Figure 7), so causing the fans at
higher ages to be narrower, rather than wider.

Similarly, fans for M2A, M2B and M3A are noticeably wider at age 65 than
age 85.

• Figure 3 allows us to make a more detailed comparison of the mortality fans
produced by the different models by overlaying the fans for six out of the nine
model variants under consideration: M1, M2B, M3B, M5, M7 and M8B.

At age 65 (bottom graph), all but the M2B fans have roughly equal width. The
central trends, however, are noticeably different. For example, the difference
in trend between M5 (grey) and M7 (red) equates to a difference in the rate
of improvement in the age-65 mortality rate of 0.3% per annum.(Specifically,
for age 65, the M5 improvement rate was 2.1% per annum, while for M7 the
improvement rate was 1.8% per annum.)

The differences in trend are even bigger at age 85 (M5 versus M7: 0.6% per
annum). But at age 85, we also see a noticeable difference between the spreads
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Figure 3: England & Wales, males: Mortality rates, q(t, x), for models M1 (green),
M2B (yellow), M3B (cyan) M5 (grey), M7 (red), and M8A (blue) with fans overlaid
for ages x = 65, 75, and 85. The dots show historical mortality rates for 1961 to
2004.
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of the M1, M3B, M5, M7 and M8B fans. M1 has the narrowest fan for reasons
already mentioned earlier. M5, M7 and M8B are closer in terms of the width
of the fans. M7, with three random period effects, has the widest fan, with the
high degree of uncertainty at age 85 resulting from a mixture of the variances
of and covariances between the κ

(i)
t and β

(i)
x terms.

• Similar comparisons were made of M2A versus M2B, M3A versus M3B, and
M8A versus M8B (see Figure 2). In all cases, we found that the choice of
model did have at least a moderate impact on forecasts. In each case, central
projections at age 65 were most susceptible to the choice of model, reflecting
differences in the central trend in the cohort effect (Figure 1). Fans for mor-
tality rates at ages 65 and 75 under M2A were much wider than those under
M2B (the same holds for M3A and M3B), reflecting the greater uncertainty
under the ARIMA(0,2,1) model. In contrast, fan widths under M8A and M8B
were reasonably similar, reflecting earlier remarks about future uncertainty in
the M8 cohort effect.

In terms of the suitability of the models for the dataset under consideration, we
can summarise as follows: The figures reveal reasonable consistency of forecasts
between M3B, M5, M7 and M8B, all of which pass the plausibility criterion, but
with sufficient differences for model risk to be recognised as a significant issue. The
figures also lead us to question the plausibility of the forecasts produced by M1 and
M2 for this dataset, since they imply that forecasts of mortality at age 85 are less
uncertain than at age 65, contrary to historical evidence.

4 Applications: Survivor index and annuity price

In this section, we switch our attention from forecasts of the underlying mortality
rates, q(t, x), to two “derivative” quantities that utilise these forecasts. The first
of these is a survivor index, and the second is the price of an annuity (which is, in
turn, derived from the survivor index). Forecasts of these will provide additional
evidence of possible model risk.

Figure 4 shows the fan charts produced by each model of the future value of the
survivor index S(t, 65); this measures the proportion from a group of males aged 65
at the start of 2005 who are still alive at the start of 2005+t. Note that S(t, 65)

requires no forecasts of the cohort effect as the relevant cohort effect, γ
(3)
1940, is known

at the start of 2005. As a consequence, models M2A and M2B produce identical
results. The same applies to M3 and M8.

The fans for M1, M2B, M3B, M5, M7 and M8B are superimposed in Figure 4 to
aid comparison. There are some differences between the trends and more significant
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Figure 4: England & Wales, males: Fan charts for the survivor index S(t, 65) for
the cohort aged 65 at the start of 2005, for models M1 (green), M2B (yellow), M3B
(cyan), M5(grey), M7(red) and M8B (blue).
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Figure 5: England & Wales, males: Cumulative distribution function of the present
value of an annuity payable annually in arrears for a maximum of 25 years to a male
aged 65 at the start of 2005, assuming a rate of interest of 4% per annum.
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differences between the dispersions: for example, the M7 fan is twice as wide as the
M1 fan. Again, therefore, model risk cannot be ignored.

The survivor index can be used to calculate the present value of a term annuity
payable annually in arrears for a maximum of 25 years to a male aged 65 at the
start of 2005. The price is equal to the present value of the survivor index, which,
assuming a constant interest rate, is given by:

P =
25∑

t=1

vtS(t, 65)

where v is the discount factor. If we assume a rate of interest of 4% per annum, then
the simulated empirical distribution function of P under each of the nine models is
plotted in Figure 5. We can see that there are only moderate differences between the
models. (see Table 3). This is an interesting finding: although the models can give
quite different mortality forecasts, these differences can be attenuated when used in
applications.

The analysis was repeated for 2% and 10% interest, and we found that the broad
conclusion above was robust: there were only moderate differences between models,
with minor changes in the relative positions of the six distributions of the present
value.

The calculations were repeated for the present value of a term annuity payable
annually in arrears for a maximum of 30 years to a male aged 60 at the start of
2005:

P =
30∑

t=1

vtS(t, 60).

The general conclusions from this additional experiment are much the same as for
the age 65 cohort. However, we can make the additional observation that the choice
of model for the cohort effect under models M2, M3 and M8 has only a moderate
impact on the value of an annuity at age 60.
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Coefficient
Model Mean St. Dev. of variation
M1 11.393 0.201 1.76%
M2A/M2B 11.796 0.217 1.83%
M3A/M3B 11.673 0.210 1.80%
M5 11.415 0.255 2.23%
M7 11.264 0.279 2.48%
M8A/M8B 11.357 0.259 2.28%

Table 3: England & Wales, males: Mean, standard deviation and coefficient of
variation (the standard deviation divided by the mean) of the random present value
P =

∑25
t=1 vtS(t, 65).

Coefficient
Model Mean St. Dev. of variation
M1 13.428 0.222 1.65 %
M2A 13.804 0.260 1.89 %
M2B 13.612 0.340 2.50 %
M3A 13.648 0.257 1.88 %
M3B 13.582 0.257 1.89 %
M5 13.427 0.263 1.96 %
M7 13.201 0.304 2.30 %
M8A 13.393 0.272 2.03 %
M8B 13.312 0.276 2.07 %

Table 4: England & Wales, males: Mean, standard deviation and coefficient of
variation of the random present value P =

∑30
t=1 vtS(t, 60).
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5 Robustness of projections

We now assess the projections from models M1, M2B, M3B, M5, M7, M8A and
M8B for robustness relative to the sample period used in estimating the model. For
each model, we compare three sets of simulations:

• Scenario 1: (A) The underlying model is first fitted to mortality data from

1961 to 2004. (B) The stochastic model for the κ
(i)
t period effects and the γ

(i)
t−x

cohort effects is then fitted to the full set of values resulting from (A) (44 κ
(i)
t ’s

and 60 γ
(i)
t−x’s).

• Scenario 2: (A) The underlying model is first fitted to mortality data from

1981 to 2004. (B) The stochastic model for the κ
(i)
t period effects and the γ

(i)
t−x

cohort effects is then fitted to the full set of values resulting from (A) (24 κ
(i)
t ’s

and 45 γ
(i)
t−x’s).

• Scenario 3: (A) The underlying model is first fitted to mortality data from

1961 to 2004. (B) The stochastic model for the κ
(i)
t period effects and the γ

(i)
t−x

cohort effects is then fitted to a restricted set of values resulting from (A) (the

final 24 κ
(i)
t ’s and the final 45 γ

(i)
t−x’s).

Typical results are presented here for models M2B, M3B and M7 (Figures 6 to 8
respectively). In each plot, Scenario 1 is represented by grey fans, Scenario 2 by
blue fans and Scenario 3 by red fans.

If the period and cohort effects were, in fact, observable, then we would be using the
same 24 κ

(i)
t ’s and the same 45 γ

(i)
t−x’s to generate the red and the blue fans under

scenarios 2 and 3, implying that the red and blue fans should be the same. In reality
the age, period and cohort effects need to be estimated, and noise in the data and
given that the models are approximations to a more complex reality means that
estimates of these effects will be sensitive to the choice of scenario. The subsequent
estimation errors then feed through to differences between the scenario 2 and 3
forecasts. However, if a model is robust, then we would expect these differences to
be modest, and for the red and blue fans to have similar median trajectories and
similar spreads.

Our investigations allow us to make the following observations (see Figures 6 to 8
by way of example):

• In most cases, the central trajectory of the mortality fans is closely connected
to the start and end years used to fit the simulation model for the period effects.
(Indeed, for a pure random walk process, the median forecast is a straight line
extrapolation of the line connecting the first and the last observations.) For
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Figure 6: England & Wales, males: Model M2B. Cohort effect and mortality rates
for ages 65, 75 and 85. Dots and grey fans: historical data from 1961 to 2004 used
to estimate the historical β

(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 44 κ

(2)
t values

and the 60 γ
(3)
c values. Dots and red fans: historical data from 1961 to 2004 used to

estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent

κ
(2)
t values and the 45 most-recent γ

(3)
c values. Crosses and blue fans: historical

data from 1981 to 2004 used to estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting

model uses the full 24 fitted κ
(2)
t values and the full 45 fitted γ

(3)
c values.
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Figure 7: England & Wales, males: Model M3B. Cohort effect and mortality rates
for ages 65, 75 and 85. Notes: see Figure 6.
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Figure 8: England & Wales, males: Model M7. Cohort effect and mortality rates
for ages 65, 75 and 85. Notes: see Figure 6.
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example, if the central projections in the grey fans are extrapolated backwards
from 2004, then the extrapolation starts off below the dots but then reconnects
around about 1961. For the red and blue fans, this backwards extrapolation
will be approximately aligned with the line connecting the 1981 and 2004
observations.

Since the historical data display an apparent change in trend (whether or not
this change in trend is genuine, or just the result of statistical variation), it
is inevitable that, for all models, fans based on data from 1961 to 2004 will
differ from those based on data from 1981 to 2004.

• In most cases, the grey fans are wider than the red and blue fans, reflecting
the greater volatility in mortality rates that can be seen in the years 1961 to
1980. Greater volatility in the mortality data leads to greater volatility in the
estimates of the underlying period effects, κ

(i)
t . This, in turn, leads to higher

estimates for the variances in the random-walk model for the period effects.
Finally, this leads to greater uncertainty in future mortality rates. The red and
blue fans draw on estimates of the period effects that cover the less-volatile
years.

• For M2B (Figure 6), we can also see very significant differences between the
red and blue fans, most obviously at age 85 where there is a clear problem
with the blue fan. The explanation for the implausible shape of the blue fan at
age 85 lies partly with the fitted values for β

(3)
x . Using data from 1961 to 2004,

the fitted β
(3)
x is entirely positive (see Cairns et al., 2009, Figure 4). When we

use data from 1981 to 2004 (see Cairns et al., 2009, Figure 4), the fitted β
(3)
x is

very different, taking negative values below age 77 and positive values above
(and these are larger in magnitude as well). Figure 6 also shows that γ

(3)
c is

increasing more steeply after year of birth 1925. When this is combined with
the negative values for β

(3)
x up to age 77, this implies falling cohort mortality.

But as the post-1925 steepening in γ
(3)
c feeds through to the higher ages during

the forecasting period 2004 to 2024, it combines with positive values for β
(3)
x

resulting in sharply deteriorating mortality (Figure 6, blue fans). In contrast,

when we use data from 1961 to 2004, since β
(3)
x is positive at all ages, the

post-1925 steepening in γ
(3)
c means that mortality rates continue to fall at

high ages within the forecasting period 2004-2024 (Figure 6, red fans). Thus,
the finding in Cairns et al. (2009), that changing from 1961-2004 data to
1981-2004 data resulted in substantially different estimates for the age, period
and cohort effects has been shown to have a material impact on key forecasts
based on this model.

This lack of stability would appear to be linked to the shape of the likelihood
function for model M2 using this dataset. First, the fitting algorithm is gener-
ally slow to converge indicating that the likelihood surface is quite flat in some
dimensions. Second, we investigated (but do not report here in detail) how the
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parameter estimates evolve when we add one calendar year’s data at a time.
Occasionally, we see that the parameter values jump to a set of values that
are qualitatively quite different from the previous year’s estimates, confirming
that the likelihood function has multiple maxima with significantly different
parameter values. It therefore seems likely that the blue fan relates to one
maximum and the red fan to another. Similar problems with the robustness
of M2 have been reported by CMI (2007) and Dowd et al. (2010a,b).

So we can conclude that for the dataset under consideration and for this imple-
mentation of M2, the forecasts are not robust relative to how much historical
data are used.

• For M7 (Figure 8), the fans look stable. In particular, the red and blue fans
are very similar in terms of trajectory and spread. The greater spread of the
grey fans reflects a greater volatility in the κ

(i)
t prior to 1981. Cairns et al.

(2009, Figure 8) had indicated that M7 appeared to be stable relative to the
period of data employed. The results here reinforce this conclusion.

We can see that the grey mortality fans also have a different mean trajectory
from the red and blue fans. However, we consider this to be ‘normal’ variation
given the changing trends in the data.

For M1, M3B, M5, M8A and M8B, we can come to similar conclusions as
M7 for the EW males 1961-2004 and 1981-2004 datasets. In the case of M3B
(Figure 7), the fitted and projected cohort effects appears to lack robustness.
However, this is simply a result of differences in the identifiability constraint
(see Appendix A.1), which has no impact on forecasts of mortality rates.

In summary, for the dataset used here, it appears that M1, M3, M5, M7 and M8 all
appear to be reasonably robust relative to the historical data used. M2B forecasts,
in contrast, look to be unstable.

6 Results for US males

In this section, we report briefly on a repeat analysis of US males data from 1968
to 2003. (For a more detailed discussion, see Cairns et al., 2008.) Our aim in this
repeat analysis is to see if the conclusions that we have drawn in Sections 3 to 6 are
specific to the England & Wales males dataset or if they might apply more generally
to the US population for the same age range and gender.

Much of our analysis threw up similar results to those in earlier sections:

• Models M1, M3, M5 and M7 all continued to produce plausible forecasts.
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• Models M1, M3, M5 and M7 all continued to produce similar robust forecasts.
For example, the US equivalent of Figure 3 produced a similar set of results
for these models, except that the fans for the different models were slightly
more spread out.

• Model M2 continued to exhibit robustness problems.

However, our analysis of the final model, M8, revealed some dangers associated with
the use of this model. For the remainder of this section, therefore, we focus on model
M8 which generates such different results compared with EW males data that we
question the validity of M8 for this dataset.

Cairns et al. (2009) noted that, when M8 was applied to US data, projections of
mortality rates even for cohorts born before 1943 looked implausible, with mortality
rates increasing rather than continuing to fall. Sensitivity tests suggest that the
downturn in the fitted γ

(3)
c around 1920 (see Figure 9, bottom) causes the mortality

improvements at ages 75 and 84 (rates at age 85 were not available prior to 1980)
to go into reverse, until the 1920 to 1940 fitted cohort effects have worked their way
through. It is possible, although unlikely, that this is a genuine effect. A much
more likely explanation is that M8 lacks the necessary factors to fit what are age-
period effects adequately, and that it compensates for this by overfitting the cohort
effect with implausible consequences. A related point concerning M2A and M8A
was discussed in Section 3. In this case, however, the lack of a second or third
age-period component had less serious consequences.

For the US data, a random-walk process with drift fits better than a stationary
AR(1) process (with α < 1) around a linear trend (indeed our estimation package
struggled to fit any stationary ARIMA model).

Results for model M8A with α fixed at 0.9999 (in effect, a random-walk model)
are shown in Figure 9, and these confirm that M8 produces some rather strange
mortality forecasts at higher ages. The sharp increase in mortality rates at ages 75
and 84 up to 2014 and 2023, respectively, is solely due to the estimated values of
γ

(3)
c and does not depend on the form of model used to explain the future cohort

effect.

The change in direction of the fans (for example, around 2014 for the age 75 fan)

corresponds to a change in direction of the γ
(3)
c process that occurs around 1940 (at

the beginning of the projection period: see Figure 9, bottom).

Model fitting and projection under M8A were carried out using some alternative
historical data periods (similar to the EW robustness analysis) and these showed
that the model produced similar, implausible projections.
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Figure 9: US, males: Model M8A. Top: Fan charts for mortality rates at ages 65,
75 and 84 with the autoregressive parameter set to α = 0.9999. Bottom: Fan charts
for the cohort effect, γ

(3)
c , under model M8A with the autoregressive parameter set

to α = 0.9999.
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7 Conclusions

One of the main lessons from this investigation into forecasting with stochastic mor-
tality models is the danger of ranking and selecting models purely on the basis of
how well they fit historical data: it is quite possible for a model to give a good fit to
the historical data, and still give inadequate forecasts. We propose here new qualita-
tive criteria that focus on a model’s ability to produce plausible forecasts: biological
reasonableness of forecast mortality term structures, biological reasonableness of in-
dividual stochastic components of the forecasting model (for example, the cohort
effect), reasonableness of forecast levels of uncertainty relative to historical levels of
uncertainty; and robustness of forecasts relative to the sample period used to fit the
model.

Had we only considered the quality of fit using historical data, we would have chosen
model M8 for modelling EW males mortality, since it had the highest BIC amongst
the 8 models we have examined (Cairns et al. (2009, Table 3)). Model M8 is a
particular extension of the CBD class of models allowing for a cohort effect, and
was, in fact, specifically designed to fit the historical data well. It was also designed
to satisfy a range of qualitative criteria, such as ease of implementation, parsimony,
and robustness of parameter estimates relative to the period of data employed.
However, when the model was used for forecasting, the forecasts for US males were
so implausible that M8 can be dismissed as an acceptable model for this specific
dataset on this ground alone.

M2 had also been found to fit historical data well (Cairns et al. 2009). However,
at least in the way that it has been implemented here, M2 lacks robustness in its
forecasts. Other implementations or extensions of M2 might be more stable.

On the basis of the additional forecast-related criteria, we found that for the datasets
considered here:

• Ignoring parameter uncertainty, the Lee-Carter model, M1, produces forecasts
at higher ages that are ‘too precise’: that is, having too little uncertainty
relative to historical volatility as well as predicted uncertainty at lower ages.
This problem was not evident from simply estimating the parameters of the
models, but only became apparent when the models are used for forecasting.

• Model M3 performed in a satisfactory way. It produces biologically plausible
results and seems to be a robust model.

• Models M5 and M7 both performed well in the forecasting experiments in this
paper. Both produce biologically plausible results and seem robust.

We started in Cairns et al. (2009) with eight possible stochastic mortality models.
Fitting the models to historical data and assessing the results against a set of quan-
titative and qualitative model-fitting criteria allowed us to reduce this number to
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six. Examining the forecasts produced by these models and assessing them against
a set of qualitative forecast-related criteria has enabled us to further assess their
suitability for a particular dataset and forecasting application. We would recom-
mend a similar methodology be conducted to identify suitable forecast models for
other datasets of interest since results and conclusions are likely to vary by gender,
age range and nationality. Finally, in addition to analysing the ex ante forecasting
performance of stochastic mortality models, it is important to examine the related,
but distinct, issue of their ex post forecasting performance. This issue of backtesting
forecast performance is addressed in a companion piece (Dowd et al., 2010b).
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A Historical parameter estimation and identifia-

bility constraints

A.1 Identifiability constraints

By way of example, consider M1. Suppose we multiply all of the historical κ
(2)
t ’s by a

constant b, and simultaneously divide all of the β
(2)
x ’s by b. Rescaling the parameters

of M1 in this way has no impact on the fitted q̂(t, x). Furthermore, when we refit

the random walk model, the simulated future κ
(2)
t ’s are obviously different, but the

simulated future q(t, x)’s are not. In addition to rescaling of the κ
(2)
t ’s, they can also

be shifted with the same consequences.

The possibility of rescaling and shifting the parameters with no effect on the q(t, x)
means that we have an identifiability problem, which we tackle by introducing iden-
tifiability constraints. Besides M1, identifiability constraints are also required for
M2, M3, M7 and M8.

The identifiability constraints we have used in this paper are as follows:

• M1 ∑
t

κ
(2)
t = 0, and

∑
x

β(2)
x = 1.

• M2 ∑
t

κ
(2)
t = 0,

∑
x

β(2)
x = 1,

∑
x,t

γ
(3)
t−x = 0, and

∑
x

β(3)
x = 1.

• M3 ∑
t

κ
(2)
t = 0,

∑
x,t

γ
(3)
t−x = 0,

and a third constraint that tilts the β
(1)
x ’s to keep the overall shape of the

fitted β
(1)
x ’s as close as possible to the historical average of the log death rate

at age x.

• M7
c1∑

c=c0

γ(4)
c = 0,

c1∑
c=c0

cγ(4)
c = 0, and

c1∑
c=c0

c2γ(4)
c = 0

where c0 and c1 are first and last years of birth that we fit the cohort effect to.

The first two constraints are designed to facilitate the fitting of a mean-
reverting model to γ

(4)
c , since the resulting estimates have no linear drift over

the full historical period.
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• M8 ∑
x,t

γ
(3)
t−x = 0.

For further details, see Cairns et al. (2009).

A.2 Parameter estimation

We provide here some brief remarks on how the β
(i)
t ’s, κ

(i)
t ’s and γ

(i)
c ’s are estimated.

The approach to estimation is the same for each model. By way of example, there-
fore, consider model M3: log m(t, x) = β

(1)
x + n−1

a κ
(2)
t + n−1

a γ
(3)
t−x. Our objective is

to maximise the Poisson likelihood of the historical data over all of the age, period
and cohort effects (see, for example, Cairns et al., 2009). (For an alternative to the
Poisson model, see Li et al. (2009).)

We use an iterative scheme which proceeds as follows. Within each iteration:

• Update each of the β
(1)
x ’s in turn, using a single-step of a Newton-Raphson

algorithm using the first and second partial derivatives of the likelihood with
respect to β

(1)
x . For a given x, this amounts to increasing the likelihood over

age x cells only. The likelihood for all other ages is unaffected.

• Update each of the κ
(2)
t ’s in turn, using a single-step of a Newton-Raphson al-

gorithm. For a given t, this amounts to increasing the likelihood over calendar
year t cells only. The likelihood for all other calendar years is unaffected.

• Update each of the γ
(3)
c ’s in turn, using a single-step of a Newton-Raphson

algorithm. For a given c, this amounts to increasing the likelihood over cells,
(t, x), that have a common year of birth, t − x = c, only. The likelihood for
all other cohort years of birth is unaffected.

• Apply the identifiability constraints (Section A.1).

The iterative scheme is repeated until the log-likelihood converges to within a spec-
ified degree of tolerance.

For further details of the Newton-Raphson updating, see, for example, Brouhns et
al. (2002) or Renshaw and Haberman (2006).


