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VoteTrust: Leveraging Friend Invitation Graph to
Defend against Social Network Sybils

Zhi Yang, Jilong Xue, Xiaoyong Yang, Xiao Wang, and Yafei Dai

Abstract—Online social networks (OSNs) suffer from the creation of fake accounts that introduce fake product reviews, malware and
spam. Existing defenses focus on using the social graph structure to isolate fakes. However, our work shows that Sybils could befriend
a large number of real users, invalidating the assumption behind social-graph-based detection. In this paper, we present VoteTrust, a
scalable defense system that further leverages user-level activities. VoteTrust models the friend invitation interactions among users as
a directed, signed graph, and uses two key mechanisms to detect Sybils over the graph: a voting-based Sybil detection to find Sybils
that users vote to reject, and a Sybil community detection to find other colluding Sybils around identified Sybils. Through evaluating
on Renren social network, we show that VoteTrust is able to prevent Sybils from generating many unsolicited friend requests. We also
deploy VoteTrust in Renen, and our real experience demonstrates that VoteTrust can detect large-scale collusion among Sybils.

Index Terms—Online Social Network, Sybil Attack, Sybil Detection, Spam
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1 INTRODUCTION

Recently, OSNs have come under Sybil attacks [1]. In this
attack, a malicious user creates multiple fake identities,
known as Sybils [1], to unfairly increase their power
and influence within a target community. Researchers
have observed Sybils forwarding spam and malware on
Renren [2], Facebook [3] and Twitter [4].

To defend against Sybils, prior Sybil defenses [5]–[9]
leverage the positive trust relationships among users,
and rely on the key assumption that Sybils can befriend
only few real accounts [10]. Unfortunately, we find that
people in real OSNs still have a non-zero probability
to accept friend requests of strangers, leaving room for
Sybils to connect real users through sending a large
amount of requests.

In this paper, we further explores the negative distrust
relationships (e.g., in the form of rejected friend requests)
among users, as Sybils have more distrust relationships
than trust ones with real users. However, this feature
cannot be directly applied because attackers could obfus-
cate their Sybils from the detector by generating many
fake trust relationships among Sybils.

To prune the fake relationships, we model the friend
invitation interactions among users as a signed, directed
network, with an edge directed from the sender to the
receiver and a sign (1/ − 1) indicates whether a friend
request is accepted. This graph is referred to as the friend
invitation graph, as illustrated in Fig. 1. The fundamental
rationale of our approach is to leverage the unique struc-
tural features of Sybil community in this signed graph:
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Fig. 1. Illustration of the friend invitation graph and the
structure of Sybil community .

the colluding Sybils as a whole has a limited number of
incoming links and more negative outgoing links than
positive ones, since real users usually send/accept the
friend requests to/from their friends or acquaintances.

Based on the above rationale, we present VoteTrust,
a system that leverages the friend invitation graph to
detect Sybils. In VoteTrust, we say that a node B casts a
(positive/negative) vote on a node A if B accepts/rejects
the request from A. VoteTrust first uses a PageRank-
style algorithm to appropriately assign the number of
votes that one can cast on another node (referred to
as vote capacity). This process assigns few vote capacity
for individual Sybils and thus prevents them from sig-
nificantly vouching each other through collusion. After
that, VoteTrust evaluates a global acceptance rate (i.e.,
the probability of being a real user) for each node
through aggregating the votes over the network. During
the aggregation, VoteTrust further penalizes votes from
suspected nodes. Due to more negative votes from real
users, Sybils would get low global acceptance rates and
thus can be identified out.

This paper significantly extends an earlier version [11]
in the following ways. First, we add a new Section 2
to characterize the friend request behavior of Sybils.
Second, we add a new Section 5 that looks at how
to detect Sybil communities surrounding the identified
Sybils. Third, we add a new Section 6.2.2 that looks at
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Fig. 2. A sample of Sybil accounts.

the performance gain of the Sybil community detection
component. Finally, we add a new Section 7 to describe
how to implement VoteTrust using parallel computing
frameworks (e.g., Giraph), and report on our real expe-
riences with a deployment of VoteTrust in Renren.

2 BACKGROUND

In order to reach a user on OSNs like Renren and
Facebook, the attacker must first befriend that user. This
is because, by default, social communications such as
creating posts are only allowed between friends. The
Sybils cannot be monetized without first establishing
social connections to real users. This motivates us to
exploit the friend request behavior to detect Sybils.

To help, Renren [2], [12], one of the most popular
OSNs in China, provided us with 1000 real accounts and
1000 Sybil accounts, respectively. Both Sybils and real
users are sampled from over the global Renren network,
which ensures the identified features are typical (e.g.,
not special features of users in a regional network).
The Sybils were confirmed spammers due to containing
spam in blogs or posts. We find that most Sybil accounts
are well-constructed. Fig. 2 is the profile of a sample
account. The profile is crafted as a college student with
pictures, and with blogs and friends.

To avoid the effect of fake relationships, Renren sent
CAPTCHAs to all the friends of Sybils, and only con-
sidered those passing the challenge as real friends. The
security team of Renren also helped us to inspect a
random sample of 100 nodes from those passing the test
and confirmed that 96% of them are real users.

2.1 Befriending Behavior of Sybils

Using this dataset as our ground truth, we made the
following key observations:

First, Sybils receive few incoming requests from real
users. Fig. 3 plots a cumulative distribution function
(CDF) of users by the number of incoming requests they
receive. We see that Sybils receive few friend requests
from real users, since real users are more like to send
requests to their real life acquaintances or friends.

Second, Sybils are more likely to receive rejections than
real users. Fig. 4 shows a distinct difference between
Sybils and real users in terms of the acceptance rate,
i.e., the fraction of outgoing friend requests accepted by
real users. On average, real users have a high accep-
tance rate of 0.8, whereas Sybils have a low acceptance
rate of 0.2. Interestingly, the average acceptance rate
of Renren Sybils is close to that of fictitious profiles
in Facebook [13], indicating that the users of different
OSNs have a similar degree of tolerance to unwanted
communication.

Since Sybils have non-zero acceptance rates, they can
befriend many real users by sending a large number of
friend requests. Fig. 5 shows the CDF of the number of
Sybils’ friends passing the CAPTCHA test. We find that
50% of Sybils have more than 32 real friends. On average,
each Sybil has about 65 friends passing the test.

2.2 Discussion
What is the key difficulty of Sybils? The current social-
graph-based Sybil defenses assume that the key diffi-
culty of Sybils is to befriend many real users [5]–[9].
However, our results show that Sybils can easily over-
come this difficulty by sending a large amount friend
requests. Their actual difficulty is to require real users
to befriend them first or to accept them with a high
probability.
Can we directly use this difficulty to detect Sybils? Suppose
that we detect Sybils with the structural features of the
incoming degree or the percentage of positive outgoing
links. An attacker could manipulate these features with
Sybil collusion: One Sybil can send friend requests to
other colluding Sybils, who are guaranteed to accept
these requests. This is the reason why we propose
VoteTrust algorithm which is more robust against ma-
nipulations of the graph.

3 MODELS AND GOAL

In this section, we outline the system and threat models
and the goal of VoteTrust.
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System model. We consider a social network (like Ren-
ren and Facebook) that adopts a friend request/confirm
mechanism. One has to send a request in order to be-
friend another user, and the recipient can accept or reject
the request. We model the request/confirm interactions
of users as a friend invitation graph: a directed and
signed graph G(V, E), where V and E are the set of
nodes and links, respectively. A link e = (u, v, s) from
u to v, of sign s = 1, indicates that v trusts u and accepts
its request. If s = −1, then v distrusts u and rejects its
request. Let E+ and E− are disjoint sets of positive and
negative links (E+ ∪ E− = E).

In the graph, the node set V contains two disjoint sets
H and S, representing real and Sybil users respectively.
We denote the real region GH as the subgraph that
includes all real users and the links among them, and the
Sybil region GS as the subgraph that includes all Sybils
and the links among them. Since real users are not likely
to send/accept the friend request to/from strangers such
as fake accounts, GS has few incoming links from GH ,
but more negative outgoing links than positive ones to
GH . In this paper, we use the term In-link to represent
the link that goes into the Sybil region GS from the real
region GH .

Attack model. To appear legitimate to the system, an
attacker could create many positive links among Sybils.
The objective of the attacker is to infiltrate the target OSN
by creating as many links as possible to the real region.
We use the term attack-link to represent the link that
goes from the Sybil region GS to the real region GH .

Goal. The goal of VoteTrust is to takes as input the
friend invitation graph G, and outputs the classification
of any node u, i.e., u → {real, Sybil or unknown}, ∀u ∈ V .
When a node u joins the network, its initial state is un-
known. However, as the node repeatedly sends requests
to normal users, the system can eventually classify it
as Sybil or real based on the feedbacks from real users.
Let Nout be the maximum number of attack-links that a
Sybil can create before being detected. VoteTrust aims to
ensure that Nout is bounded, irrespective of the number
of collusion links.

4 INDIVIDUAL SYBIL DETECTION

We now describe the design of VoteTrust, which consid-
ers the Sybil detection as a vote aggregation problem.
In VoteTrust, a link of the friend invitation graph means
that one node casts a certain number of votes for the
other. The vote value is determined by the sign of
link. For each node, VoteTrust guarantees that votes are
mainly collected from real users by pruning the collusion
votes among Sybils. Then, it can identify the Sybil for
which the majority of votes are negative.

In VoteTrust, each node has two important features:
i)Vote capacity ϑ(v) is the number of votes that v can cast
on another node. Given a link (u, v, s) in G, we consider
that node v casts at most ϑ(v) votes on node u, and the

vote value xvu = s (−1 or 1). ii) Global acceptance rate
p(u) is the fraction of positive votes that VoteTrust ag-
gregates for a node u, indicating the probability that u is
accepted by real users. Nodes with low global acceptance
rate (e.g., below a certain threshold δf ) are detected as
Sybils. To limit the Sybil collusion, VoteTrust uses two
key techniques, trust-based vote assignment and global vote
aggregating, to properly assign the vote capacity and to
compute the global acceptance rate.

4.1 Trust-based Votes Assignment
The goal of trust-based votes assignment is to assign low
vote capacity to Sybils, so that we can limit the number
of votes that Sybils could cast for each other. To achieve
this goal, we first select some trusted users as seeds, and
then propagate the vote capacity from the seeds to others
along the links of friend invitation graph G(V, E). As
Sybil region has a limited number of in-links, the total
vote capacity entering the Sybil region is constrained.

Selecting Trusted Seeds. The goal of seed selection is
to find real users that will be the most useful in iden-
tifying other real users. A heuristic for selecting seeds
is to give preference to those from which trust can be
propagated to many other real users. Note that real users
prefer to send requests to their real-life acquaintances,
so we use the inverse PageRank method like TrustRank
[15]. The basic idea is to build the seed set from real
users that point to many real users that in turn point
to many others and so on. In particular, we can reverse
the links in the friend invitation graph, and compute the
PageRank. Through manually inspecting a few users of
high inverse PageRank scores, OSN providers can easily
identify those real users to seed trust.

Suppose that the system has N = |V | vote capacity in
total, i.e., each node has one vote capacity on average.
Given a set of trusted seeds (denoted as Vs), we equally
assign the vote capacity over Vs. Thus the initial vote
capacity for a user u is,

I(u) =
{

N/|Vs|, if u ∈ Vs;.
0, otherwise.

Votes Propagation. We then propagate the vote capac-
ity from trusted seeds to other nodes as follows: Suppose
that each incoming neighbor v of a node u has a vote
capacity of ϑ(v) and a outgoing degree of ω(v). The node
u’s overall vote capacity can be computed as,

ϑ(u) = d ·
∑

v:(v,u)∈E

ϑ(v)
ω(v)

+ (1− d) · I(u), (1)

where d is a constant less than 1 (e.g., 0.8).

4.2 Global Vote Aggregating
Vote assignment gives low vote capacity to not only
Sybils but also non-popular real users with few incoming
links. We thus introduce the global vote aggregating
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phase to get the global acceptance rate p(u) of a node u.
This phase further leverages the sign of outgoing links
(i.e., the user feedback) for higher accuracy, as Sybils
have a higher percentage of negative links to real region.

Global rating computation. For a node u, VoteTrust
computes the p(u) by combining all the votes from its
outgoing neighbors. As neighbors of high global accep-
tance rates are more likely to be real users, we should
bias towards their votes. Based on the above intuition,
we compute the user u’s global acceptance rate p(u) as:

p̂(u) =

∑
v:(u,v)∈E+ ϑ(v) · p(v)∑
v:(u,v)∈E ϑ(v) · p(v)

, (2)

Notice that the voting result may be unreliable if there
are few votes casted for a node. Hence, we combine
Wilson score to increase the confidence. Suppose the
number of votes for u is n(u). The Wilson score is a
weighted average of p̂ and 0.5, with p̂ receiving greater
weight as n(u) increases, i.e.,

p(u) =
p̂(u) + 1

2n(u)z
2
1−α/2

1 + 1
n(u)z

2
1−α/2

, (3)

where the z1−α/2 is the 1− α/2 percentile of a standard
normal distribution, e.g., z1−α/2 = 1.96 for 95% confi-
dence level.

Limiting the collusion votes. When aggregating votes
of outgoing neighbors, an important problem we should
address is how to prevent the attacker from increasing the
total number of collusion votes by enlarging the Sybil set?

Considering the case illustrated in Fig. 6. Initially, the
Sybil region has 3 Sybils that receive a total of 1 vote
capacity from the real region. The vote capacity of each
Sybil is 1/3, and each Sybil can collect at most 1/3
collusion votes. However, if the attacker adds another
two Sybils, the vote capacity of individuals drops to
1/5 as the total vote capacity is constant. But each Sybil
can collect at most 2/5 collusion votes. This means that
the attacker can increase collusion votes for Sybils by
enlarging the Sybil region. In fact, a complete-connected
subgraph with N Sybils and c total capacity could create
c(N−1)

2 collusion votes, which increases as N grows.
Given a fixed number of in-links, the vote capacity

of individual Sybils will drop as the Sybil region is
enlarged. Thus, VoteTrust limits the size of Sybil region
by ignoring the votes from nodes of very low capacity,
i.e, below a certain threshold δv . For example, in Fig.
6, if we set δv = 1/3, all the collusion votes would be

1: procedure VOTETRUST-D(G, Vs)
2: if u ∈ Vs then . vote assignment
3: I(u) ← N/|Vs|;
4: else
5: I(u) ← 0;
6: end if
7: while ∆ > ε1 do
8: for u ∈ V do
9: ϑ(u) = d ·∑v:(v,u)∈E

ϑ(v)
ω(v)

+ (1− d) · I(u)
10: end for
11: end while
12: p(0) ← 0.5; . vote aggregating
13: while ∆ > ε2 do
14: for u ∈ V do
15: p̂(u) =

∑
v:(v,u)∈E+ ϑ(v)·p(v)

∑
v:(v,u)∈E ϑ(v)·p(v)

16: p ←WilsonScore(p̂);
17: end for
18: end while
19: end procedure

Fig. 7. Sybil detection algorithm of VoteTrust.

ignored once the individual capacity drops to 1/5 due
to adding more Sybils. Choosing the threshold δv should
make a balance between ignoring collusion votes within
Sybil community and losing some real votes. We shall
show how to make a balanced tradeoff in Section 6.

Sybil detection. Given a detection threshold δf , we
consider a node u as Sybil if its global acceptance rate
p(u) < δf . Before combining votes using equation (2), we
assign the initial value of p(u) as δf . For those without
any vote (e.g., new users), their global rating would
always be the initial value. Thus, the system does not
perform classification on newcomers until after they start
generating friend requests.

We sketch the VoteTrust system in Fig. 7. It takes the
friend invitation graph G and a set of trusted “seed
users” Vs as inputs, and outputs a set of active Sybils
that send many friend requests to real users.

4.3 Security properties

let Nin be the number of in-links entering the Sybil
region GS , and Nout be the number of attack-links a Sybil
can send to real users. VoteTrust provides the following
security guarantees:

Theorem 1: If a colluding Sybil s wants to keep its
global acceptance rate p(s) above the detection threshold
δf , the number of its attack-links Nout should follow:

Nout ≤ ρ
δf − δ2

f

δf − γ
Nin, (4)

where ρ is a constant and γ is the fraction of negative
attack links of Sybils.

The proof is in Appendix A. This theorem means that
the number of requests that a Sybil could send to real
users are linearly bounded by the number of requests it
receives from real users.
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Theorem 2: The system collects collusion votes of Sybil
region S only if the Sybil group size Ns = |S| satisfies:

Ns ≤ σ
Nin

δv
, (5)

where σ is a constant factor and δv is the threshold for
vote collection.

The proof is in Appendix B. We see that the size of
Sybil community is also constrained by the number of
in-links Nin.

5 SYBIL COMMUNITY DETECTION

Detecting Sybil community in friend invitation graph
is different from that in social graph. In social graph,
given a node u and a community C, an internal (or
external) link indicates that the node belongs (or does not
belong) to the community. So the node u is included in C
only when it has more internal links than external ones.
Hence, Sybils do not form tight-knit communities if they
are not well connected among each other, or accumulate
many external edges from real users, as demonstrated by
our prior work [2]. As a result, they may be classified as
real users belonging to nearby real communities.

Unlike social graph, friend invitation graph is a signed
network that further contains the negative links. Given
a node u and a community C, both internal positive
links and external negative link indicate that the node
belongs to the community. Although Sybils are not well
connected (i.e., few internal positive links) or accumulate
many external positive links, they also have many ex-
ternal negative links to indicate their community mem-
bership. As a result, Sybils form a community in friend
invitation graph, meaning group members (e.g., Sybils)
accept each other but are rejected by the nodes out of
the group (e.g., real users).

Given a known Sybil, the next goal of VoteTrust is to
detect the whole Sybil community in the friend invita-
tion graph. Once some Sybil nodes are identified using
the voting-based detection, VoteTrust begins to detect
the Sybil community around these Sybil seeds. VoteTrust
employs two key techniques, bad score propagation and
Sybil community identification, to correctly expand Sybil
community and to determine its boundary.

5.1 Bad Score Propagation.

The goal of bad score propagation is to find nodes that
are more likely to be colluders. It assigns each node a
bad score, and a large score indicates a high likelihood
of being Sybil. This score assignment can guide us to
identify the boundary of Sybil region in the next step.

In order to assign high bad score to Sybils, VoteTrust
propagates the bad score from some identified “seed
Sybils” to other nodes along the inverse direction of links.
Since the Sybil region has a fixed number of in-links, the
bad score is likely to stay within the subgraph consisting
of colluding Sybils.

Selecting Bad Seeds. Define l(s) as the local accep-
tance rate of a Sybil s, i.e., the percentage of its positive
links. Clearly, if a Sybil s has many colluding Sybil
neighbors, its local acceptance rate l(s) would be larger
than its global acceptance rate p(s). Hence, given a set
of Sybil nodes, we use the subset V ′

s = {s|p(s) < l(s)}
as seeds, and equally assign the initial bad score over
them.

I(u) =
{

1, if u ∈ V ′
s .

0, otherwise.

Bad Score Propagation. Next we propagate bad score
from Sybil seeds to others along the inverse direction of
links in G: Suppose each outgoing neighbor v of a node
u has a bad score of B(v) and a in-degree of ϕ(v). The
node u’s bad score can be computed as,

B(u) = d ·
∑

v:(u,v)∈E

B(v)
ϕ(v)

+ (1− d) · I(u). (6)

5.2 Sybil Community Identification
Sybil community identification aims to identify the Sybil
community boundary. Instead of detecting the commu-
nity on the entire graph, we detect a local Sybil commu-
nity C by expanding a known portion of the community.
This portion C0 can be thought of as the core of a local
community. The algorithm first includes a number of
nodes with the highest bad score as the community core
C0, and then detects the Sybil community C through
a node discovery process: We focus on the two local
regions of the network. One is the current community
C (initial state is C0), and the other is the set of nodes
adjacent to the community, D (each has at least one
incoming or outgoing neighbor in C). At each step, one
or more nodes from D are chosen and agglomerated into
C, then D is updated to include any newly discovered
nodes. This expansion process continues until it has
discovered the entire local community.

Local Community Expansion To determine which
nodes should be agglomerated into the community at
each step, we measure to what extent a node u ∈ D is
accepted by the Sybil community C by:

Ωin(u) =
∑

v∈C

sign(u, v) (7)

Similarity, we measure to what extent u is accepted by
nodes out of the community C by:

Ωout(u) =
∑

v/∈C

sign(u, v) (8)

Since finding a community corresponds to increasing
its internal positive links and external negative ones, we
agglomerate the node u with Ω(u) = Ωin(u)− Ωout(u) > 0,
i.e., nodes are more likely to be accepted by the nodes
in the community than by those out of the community.

Core Selection and Expansion Termination In order
to expand the community, the algorithm needs to care-
fully select the community core C0. Intuitively, a small
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1: procedure VOTETRUST-C(G, V ′
s )

2: if u ∈ V ′
s then . Bad score propagation

3: I(u) ← 1;
4: else
5: I(u) ← 0;
6: end if
7: while ∆ > ε1 do
8: for u ∈ V do
9: B(u) = d ·∑v:(u,v)∈E

B(v)
ϕ(v)

+ (1− d) · I(u)
10: end for
11: end while
12: C0 ← V ′

s ; . Community expansion
13: repeat
14: C ← TopBadScoreNodes(2|C0|);
15: for u ∈ C do . Pruning real users
16: if Ω(u) < 0 then
17: C = C − {u};
18: end if
19: end for
20: for u ∈ D do . Adding other Sybils
21: if Ω(u) > 0 then
22: C = C ∪ {u};
23: end if
24: end for
25: ∆ ← 1− |C0|

|C| ;
26: C0 ← C;
27: until |C0| > 0&∆ < ε2

28: end procedure

Fig. 8. Algorithm of E-VoteTrust.

core cannot recall many Sybils, whereas a large core may
exceed the boundary of Sybil region.

Our algorithm attempts to choose C0 in a self-
adjusting manner. Let m be the size of C0 in the current
iteration (initially, C0 = V ′

s ). The algorithm first expands
the community C from C0. Then, the algorithm starts a
new iteration, doubles the size of C0 by including top
2m nodes with the highest bad score, and re-expands
the community C. This process is repeated until the
expanded Sybil communities are similar at the end of
two consecutive iterations, implying the whole Sybil
community is enclosed. Then the algorithm outputs C
as the detected sybil community.

The basic ideas of core selection are as follows: First,
we select core nodes from those of highest bad scores,
expanding the community from the Sybil region. Second,
we double the size of C0 in each iteration, which allows
the searching to be efficient and avoids introducing
many real users in one iteration.

We sketch the community detection algorithm in Fig.
8. It takes the invitation graph G and a known Sybil
set V ′

s as inputs, and outputs the Sybil community C
that Sybil nodes in V ′

s belong to. Notice that some real
users could also have relatively high bad score due to
unintentionally sending friend requests to Sybils. These
nodes may be included in C0. Thus, we first remove
nodes that are more likely to be accepted by the nodes
out of C (e.g., from step 15 to 19). This prunes some real
users and enhances the accuracy in the subsequent Sybil
community expansion.

5.3 Security Property

Theorem 3: The number of real users whose bad score
are higher than the Sybils’ average score is linearly
bounded by the number of In-links Nin:

|{u|xu > x̄s}| < %Nin (9)

where xu, xs represent the average bad score of real users
and Sybils, respectively, and % is a constant.

The proof is in Appendix C. Recall that the VoteTrust
tries to find a Sybil community surrounding Sybil seeds,
in which each node is detected as a Sybil colluder. A false
positive occurs only if we include a real user in the Sybil
community. Since the VoteTrust selects nodes of high bad
scores (i.e., those likely-to-be-Sybils), the above property
guarantees that most nodes in the Sybil community are
true Sybils. Thus, the VoteTrust could rightly expand the
community from the Sybil region, and could iteratively
improve the precision (and recall) by removing real users
from the community (and by adding other Sybils into the
community).

6 EVALUATION

In this section, we evaluate the performance of VoteTrust
through conducting detection over Renren network.

6.1 Data Set and Methodology

As VoteTrust requires the structure of friend invitation
graph, the sampled dataset used in Section 2 cannot be
used for the evaluation. In our experiment, we use the
Peking university (PKU) network because: First, we can
construct the friend invitation graph for PKU network
as we have the complete friend request records (a total
of 5.01 million for about 230K PKU users). Second, PKU
network is one of the most popular regional networks
in Renren, making it an attractive target for attackers
(e.g., Sybils are disguised as PKU users to increase
their popularity). Finally, we can perform a comparative
evaluation of VoteTrust’s ability over the PKU network,
as we can perform manual inspection on PKU users 1.

We evaluate the performance of VoteTrust through i)
adding artificial Sybils and ii) detecting real Sybils in
the network. The two sets of Sybils serve to validate
different aspects of VoteTrust. The simulations based on
artificial Sybils validate whether our theoretical bounds
hold in different attacking cases (e.g., different number
of in-links or Sybils). The detection performed on real
Sybils compares VoteTrust against other approaches in
terms of its effectiveness in identifying real social Sybils.

To measure the detection performance, we use the
metrics Precision and Recall. Suppose that O represents
the set of true Sybils existing in the network, and I
represents the set of Sybils identified by a defense scheme.
Precision P = |I ∩O|/|I| and recall R = |I ∩O|/|O|.

1. Renren’s privacy policy allows users in the same affiliation to see
the profile information of each other.
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6.2 Detecting Simulated Sybils
We first examine the performance of VoteTrust under
various attack strategies. We demonstrate that VoteTrust
is able to limit the attack-links of Sybils, and to find other
colluding Sybils in a preventive manner.

6.2.1 Sybil Detection

Simulation setup. We create a Sybil region S =
(Ns, Nin, Nout, p), where Ns is number of Sybils, Nin

is the number of in-links of Sybil region, Nout is the
number of attack links of each Sybil and p is the per-
centage of negative attack links. Clearly, the parameters
Nin, p represent the resource limitation of the attacker,
and the goal of VoteTrust is to limit both Nout and Ns.
In the following experiments, we assume that Sybils
form a tight complete-graph to maximize the collusion
votes (the worst case). We set p = 0.2 according to the
measurement in Section 2.

Limiting attack-links Nout. We first fix Ns = 100 and
Nin = 10, and allow varying attack-links to randomly
selected PKU users. Fig. 9 shows the recall increases as
Nout grows. On average, individual Sybils could only
create E[Nout] = 2 attack-links before being detected,
which is much smaller than Nin. Notice that the number
of PKU users with acceptance rates below a given thresh-
old is constant, so the precision also increases as Nout

grows due to finding more simulated Sybils. However,
we do not evaluate the precision here because there are
many real Sybils in Renren, which would affect the true
precision of detecting simulated Sybils. We shall leave
the detection of real Sybils in Section 6.3.

To verify the bound (4) on attack-links, we vary the
number of in-links Nin, and compute the average num-
ber of attack-links E[Nout] that a Sybil can create before
being detected. Fig. 10 plots the theoretical upper bound
and the experiment result, which are very close.

Limiting Sybil region size Ns. To limit the size of
Sybil community, VoteTrust ignores the votes from users
with vote capacities below the threshold δv . From bound
(5) we know that increasing the threshold could reduce
the community size Ns to ρNin/δv , but at the cost of
losing votes from some real users. Fig. 11 shows the
trade-off curve for various thresholds, where Y-axis is
the reduction factor 1/δv and X-axis is the ratio of lost

votes to total votes (computed based on vote capacity
distribution). To make a balance between vote loss and
community size restriction, we select the turning point of
(0.01, 8), and get the corresponding threshold δv = 0.12.

Given this threshold, we measure the fraction of lost
real votes and the fraction of collusion votes ignored
under different Sybil community sizes Ns. Here, we
fix Nin = 50 and Nout = 10. Fig. 12 shows that the
normal users lose only 0.45% votes, whereas Sybils lose
majority of their collusion votes, e.g., losing 57.1% given
Ns = 100 and 82.8% given Ns = 500. This result indicates
that, as the community size grows, VoteTrust effectively
eliminates colluding votes within Sybil community while
incurring little effect on real users.

6.2.2 Community Detection
We now examine to what extent that the community de-
tection (CD) of VoteTrust could complement the voting-
based detection (VD). To do so, we combine two de-
tection mechanisms, and look at the gain of the overall
performance.

Recall that Sybils could maximize the number of col-
luding votes by forming a tight complete-graph. So we
first examine the detection performance over a graph
Gn containing a completely-connected Sybil region with
Ns = 100 and Nin = 10, the same configuration as Fig. 9.
Fig. 13 shows the recall of the combined methods as the
average number of attack-links varies from 0 to 1. We
see that the community detection could promote recall to
100% even the voting-based detection just gains a recall
of 2%. This means the community detection is able to
find the whole Sybil community, once the voting-based
detection is able to provide a number of Sybil seeds.

A possible way that the attacker makes the community
detection harder is to weaken the collusion. To simulate
this strategy, we remove half of links between the Sybils,
and let Gn/2 represents the new graph. Fig. 13 shows
that the community detection achieves the similar per-
formance in the case of weak collusion. The reason is
that Sybils get fewer positive votes after weakening the
collusion. Thus, the voting-based detection achieves a
relatively higher recall, which in turn feeds the commu-
nity detection with more seeds and counteracts the effect
of weak collusion.

Fig. 14 shows the precision of the Sybil community
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detection, measured by the fraction of nodes that are
simulated Sybils in the identified community. We see
that the community detection achieves a nearly 100%
precision as Sybils create more attack-links. Interestingly,
the community detection is more accurate when the
attacker weakens Sybil collusion. Because in that case,
the community detection could get more Sybil seeds to
rightly expand the Sybil community.

The combination of these results show that the com-
munity detection of VoteTrust could effectively detect
other colluding Sybils, and thus preventing them from
creating attack-links in a proactive manner.

6.3 Detecting Real Sybils
To show the advantage of VoteTrust, we compare it
against typical ranking schemes that also use PageRank-
like algorithm to propagate scores, including SybilRank
(SR), TrustRank (TR) and BadRank (BR). The comparison
actually shows the extent to which VoteTrust can improve
existing schemes by incorporating the negative links.

Ground-truth datasets. We first run VoeTrust and
other ranking algorithms over the PKU network to detect
real Sybils, and then compare their performance using
two ground-truth datasets: The first one contains 500
randomly selected PKU users. An expert team carefully
scrutinized all accounts to classify them as real users or
Sybils by looking over detailed profile data. In particu-
lar, they examine whether the accounts use photos of
attractive young women/men, send or forward spam
messages or links and use invalid email addresses. This
manual inspection finds 73 Sybil accounts2 in the dataset.
We use this dataset to evaluate the performance of
different defenses. The other contains 2502 PKU Sybil
accounts that already detected by Renren security team
using prior techniques. Since it is a more large ground
truth data about Sybils, we use this dataset to confirm
the effectiveness of VoteTrust in detecting true Sybils.

Seed selection. For a fair comparison, we strive to
use the same trusted seeds for all schemes. We inspect
100 nodes of high inverse PageRank scores and only
seed trust at the nodes passing the verification. For bad

2. This fraction is higher than the whole networks. This is mainly
because PKU is the most famous university in China, and many Sybils
disguise as PKU users to increase their popularity.
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Fig. 15. Recall precision curve for various Sybil de-
tection schemes on different datasets. VT stands for
VoteTrust; SR for SybilRank; SR(MS) for SybilRank with
multi-community seeds; TR for TrustRank; and BR for
BadRank.

seeds, we select Sybils based on the number of their in-
links, because the bad score propagates from the receiver
to the sender (i.e., the reverse direction of trust score
propagation). So we select 100 highest in-degree Sybils
from the 2502 banned accounts as the bad seeds of
BadRank.

Results. Fig. 15(a) and Fig. 15(b) plot the precision-recall
curve (PRC) of VoteTrust and other approaches on two
datasets, respectively. We see that VoteTrust outperforms
all other schemes due to incorporating the negative link
information. Given the same recall, VoteTrust achieves
the highest precision on both datasets. It should be
pointed out that the second dataset provided by Renren
has a limitation that it does not contain the Sybils that the
security team fails to find. With this limitation, we may
significantly underestimate the true precision of different
schemes. In particular, the precision is calculated based
on the assumption that only banned accounts in the
dataset are Sybils. Thus, we have to suppose that the
system is wrong when it actually finds Sybils out of the
dataset, which underestimates the true precision. This
underestimation is the reason why the all schemes pro-
duce unreasonably low precision in Fig. 15(b). However,
the underestimation does not affect the relative improve-
ment of VoteTrust over others. Further, the horizontal
line in Fig. 15(b) is because about 80% of the banned
accounts have the same lowest score.

VoteTrust versus TrustRank. TrustRank also leverages
the heuristic that Sybils have few in-links, and propa-
gates the trust score from trusted seeds to other users.
However, TrustRank may mix Sybils with many non-
popular users that also have low trust score due to few
incoming links. In contrast, VoteTrust further leverages
the information of negative links to distinguish Sybils
from non-popular users. On average, given a similar re-
call, VoteTrust can improve the precision of TrustRank by
32.9% in manually checked dataset, and by 50.1% when
limiting the recall≥ 80% in banned accounts dataset.

VoteTrust versus SybilRank. SybilRank [16] uses a
early-terminated random walk to propagate trust score.
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Like [16], we perform log n power iterations for Sybil-
Rank, where n is the size of the graph. Fig. 15 shows that
SybilRank outperforms TrustRank, but it performs worse
than VoteTrust. For example, SybilRank has about 10%
higher false positive rate than VoteTrust in the manually
checked dataset, given a similar false negative rate.
Similar to TrustRank, SybilRank also has no additional
information to distinguish Sybils and non-popular users.
In contrast, VoteTrust further leverages the sign of nodes’
outgoing links (i.e., the positive/negative feedbacks), as
Sybils have a higher percentage of negative outgoing
links to real users than that of non-popular users.

We also implement the original seed selection strategy
used in SybilRank, where seeds are picked from different
communities. With the Louvain method, we found 116
communities in friend invitation graph, among which 50
large communities contain more than 94% of total nodes.
We inspect 2 nodes in each community and designate as
SybilRank trust seeds the nodes that pass the manual
verification. From Fig. 15 we see that SybilRank with
this original strategy performs only slightly better than
that with inverse PageRank strategy, since nodes of high
inverse PageRank scores usually have links to multiple
communities in the friend invitation graph. SybilRank
still performs worse than VoteTrust.

VoteTrust versus BadRank. BadRank is based on the
premise that a node is Sybil if it points to another
Sybil. Different from TrustRank, BadRank propagates the
bad score from Sybil seeds to users who link to Sybils.
However, The performance of BadRank is significantly
depend on Sybil seeds and may punish innocent users
that are enticed to send requests to Sybils. We compare
the performance of BadRank and VoteTrust on both
human checked samples and real banned accounts.

We find that BadRank cannot efficiently detect Sybils
on human checked dataset, because many Sybils are not
in the seed’s community, and thus cannot be detected
by BadRank. For banned accounts dataset, BadRank out-
performs both TrustRank and SybilRank due to selecting
seeds from these Sybil accounts. However, it has at least
30% higher false positive rate than VoteTrust on average,
given a similar false negative rate.

6.4 Discussion

How to handle false rates in practice? In the real
OSN, there are a wide variety of Sybils. Relying on a few
abnormal features can be very difficult to yield a binary
Sybil/non-Sybil classifier with both high recall and high
precision. This is true for all the Sybil defenses so far.
However, this limitation does not appear to significantly
affect the ability of VoteTrust in practice:

First, we find that many Sybils are missed because
they have not launched attacks yet (i.e., inactive ac-
tually). For example, in the ground-truth dataset used
in Fig.15(a), about 25% Sybils have no behavioral data
(e.g. friend requests) to leverage for classification. These

accounts cannot do harm to real users until after they
start generating friend requests to real users or their col-
luders. In this case, VoteTrust can recall these accounts as
quickly as possible once they become active, to minimize
the amount of damage they can do to real users.

Second, we find that most false positives in VoteTrust
can be attributed to promiscuous real users that also get
low acceptance rates due to friend request abuse. Thus,
OSNs could tolerate more false positives for acceptable
recall. Before banning a suspected account, OSN (like
Renren) sends CAPTCHAs and other challenges to the
account. In the case of false positives, OSN can regulate
the abusive behavior of promiscuous users, since passing
the challenges requires human effort. In the case of
right detection, fake accounts cannot correctly pass the
challenge and would be banned.

Does the experiment violate user privacy? Renren’s
privacy policy allows the users in the same affiliation
to see the profile information and friend relationships of
each other. Thus, the personal information contained in
our PKU dataset is actually public to us given the same
affiliation. Notice that we examine the personal informa-
tion for obtaining ground-truth dataset. The VoteTrust
itself does not require these personal information, the
OSN provider can deploy the detector solely based on
friend request records.

Is it possible to leverage promiscuous users to attack?
Since promiscuous real users are open to befriending
even strangers, the attacker may want to use well-
maintained Sybils (e.g., good-looking female accounts)
to gain positive links from these users. However, this tar-
geted attacks is difficult when the attackers have limited
knowledge about which users are gullible. Promiscuous
users have high tolerance of unwanted communication,
while cautious users are more resistant to Sybils. The
attacker cannot distinguish these types of OSN users.
As a result, Sybils are likely to receive many negative
feedbacks from cautious users, although they may be
able to contact some promiscuous users.

An alternative strategy of Sybils is to wait for receiving
the requests from promiscuous users, without contacting
them first. Notice that Sybil accounts are not popular
in OSNs, so promiscuous users rarely encounter/contact
Sybils first given a huge user population.

7 REAL-WORLD DEPLOYMENT

With the help of supportive collaborators at Renren, we
were able to deploy the VoteTrust system at the company
for internal testing on the global graph.

VoteTrust system consists of Sybil detection and com-
munity detection components, which can be used in
conjunction to defend against Sybil attacks. The Sybil
detection component takes the friend invitation graph
G and a set of trusted seeds as inputs, and outputs a
set S of active Sybils that achieve the detection bound
on the number of attack-links. Once Sybil nodes are
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Trust-based votes assignment

compute(Msgs){
vote = 0 or 1/N;
for (m:Msgs) sum += m;

vote = d*sum + (1-d)*I(u);
if (superstep < 30)

sendMsgToNbrs(vote/#neighbors);
else

voteTohalt();}

Global vote aggregating

compute(Msgs){
rate = 0.5;
for (m:Msgs) {

sum+=m;
if (sign(u,v) > 0)

weights+=m;}
rate = weights/sum;
if (superstep < 30)

sendMsgToNbrs(rate * vote);
else

Fig. 16. The implementations of Sybil detection using Giraph.

Local community identification

compute(Msgs){
belong = 1 or 0;
for (m:Msgs)

if m == 0
out += sign(u,v);

else
in += sign(u,v);

if (in - out > 0)
belong = 1;

if (superstep < 30)
sendMsgToNbrs(belong);

else
voteTohalt();

}

Fig. 17. The implementations of community detection
using Giraph. We omit the implementation of bad-score
assignment, since it is similar to that of trust-based votes
assignment except for the seed set.

identified, the community detection algorithm detects
other colluding Sybils around those identified Sybils.

7.1 Distributed Implementation

VoteTrust has inherent high parallelism, since a node’s
state only depends on its neighbors. Thus, we implement
VoteTrust using the graph processing system, which
enables us to process the entire graph that is very large.
Specially, we implement VoteTrust on the Giraph [17],
an open-source clone of Google’s Pregel.

Like Pregel, the organization of Giraph programs is
inspired by Bulk Synchronous Parallel model [18]. Typ-
ical Giraph computation consists of a sequence of itera-
tions, called supersteps. During each superstep, Giraph
invokes a user-defined function compute() for each
vertex, conceptually in parallel. The function specifies
behavior at a single vertex u and a single superstep S. It
takes messages sent to u in superstep S−1 as input, mod-
ifies the state of u and sends output messages to other
vertices that will be received at superstep S + 1 through
sendMsgToNbrs() function. The algorithm terminates
when all vertices vote to halt using voteTohalt()
function and there are no messages in transit.

Fig. 16 gives the implementation of the Sybil detec-
tion component. Taking the vote capacity assignment
as an example, in each superstep, we implement the
compute() function. It updates the node u’s vote capac-
ity based on Eq.(2), and calls sendMsgToNbrs() func-
tion to send the new capacity value to u’s each neighbor.
After a number of iterations, vertex calls voteTohalt()
to terminate computation. Fig. 17 gives the implemen-
tation of the community detection component. In the
compute() function, a node u first computes Ω(u). If
Ω(u) < 0, the node u would also be included in the
Sybil community.

Notice that Giraph only maintains the outgoing neigh-
bors of each node. To facilitate the implementation of
VoteTrust, we separate the invitation graph into two
graphs: i) Link initiation graph: a directed graph where
a directed link (u, v) represents a node u sends a friend
request to another node v. ii) Link acceptance graph:
a weighted-directed graph where a directed link (u, v)
represents u receives a request from v (the inverting
direction of link initiation edge). The weight equals 1 (or
-1) if u accepts (or rejects) the request. We run the first
stage of VoteTrust (i.e., vote capacity assignment) on the
link initiation graph, whereas running other stages on
the link acceptance graph.

7.2 Real-world Detection Result

In October, 2013, we deploy Giraph system on Renren’s
computation cluster, and run our VoteTrust algorithm
shown in Fig. 16 and Fig. 17. To get the implicit negative
links, we replay the friend request log in recent two years
(from 1-Oct-2011 to 1-Oct-2013). A pair of users has a
negative link if the request that one sends to the other
has not been accepted till the end of log.

Sybil Detection. VoteTrust has two thresholds: a node
is consider as Sybil if its global acceptance rate is below
a threshold δf , and a node’s votes are ignored if its vote
capacity is below a threshold of δv . The method of setting
the second threshold is similar to that in Section 6.2.1.

To derive the first threshold, Renren performs man-
ual inspection on different threshold choices Σ =
{τ, 2τ, . . . , 1}, where the granularity τ depends on the

voteTohalt();}
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amount of resources for manual inspection. In particular,
for each δf ∈ Σ, the security team at Renren gets the set
of suspected users whose global acceptance rates below
δf (say Vf ). The security team samples random users
from Vf , and reports a portion of fakes (say αf ) after
manual inspection. By this way, Renren could estimate
the precision (indicated by αf ) and recall (indicated by
|Vf |×αf ) for each threshold choice. With this estimation,
Renren can select the threshold δf that balances precision
and recall. Notice that the threshold could also be set
automatically if the OSN operator already has ground-
truth data to train the system. Let T and S represent the
set of real users and Sybils in the ground-truth data. For
any threshold choice δf ∈ Σ, we can get the precision as
|Vf ∩S|/|Vf ∩ (T ∪S)| and recall as |Vf ∩S|/|S|, and thus
get the balanced threshold.

After setting the thresholds, Renren begin to send
CAPTCHAs and other challenges to the suspected
users whose global acceptance rates below the balanced
threshold. If the suspected user cannot pass the chal-
lenges, the account is banned. Also, Renren finds sus-
pected users whose global acceptance rates are much
lower than their local acceptance rates (i.e., the percent-
age of their positive links), which indicates these sus-
pected users have colluders. Then, Renren takes them as
bad seeds and finds other colluders with the community
detection component of VoteTrust.

Detection Results: As Renren have deployed an on-
line Sybil detector using local acceptance rate [2], we
prune Sybils whose local acceptance rates are already
below the threshold, and focus on colluding Sybils that
cannot be identified based on their local property. Given
the two-year observation window, VoteTrust detects 105
Sybil communities that contain a total of 190,378 collud-
ing Sybils. Fig. 18 gives the size distribution of these
communities. We see that VoteTrust is able to detect a
number of very large Sybil communities, e.g., the largest
one contains 112,538 Sybils.

To examine how the large community is formed, we
randomly select 1000 Sybils from the largest community,
and plot their temporal behavior in Fig 19. We see that
these Sybils survive a long time by making the attack
stealthy. Before creating attack links, Sybils first create
many collusion links among themselves (e.g., around
day 120), in order to keep high acceptance rates. More-
over, a fraction of Sybils rarely attack, which are only
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Fig. 19. The temporal behavior of 1000 Sybils selected
from the largest community. The “•′′ (or “×′′) point repre-
sents the creation of collusion (or attack) link.

used to vouch others. However, VoteTrust can prune
collusion links by aggregating the global acceptance rate,
and thus find the attacking Sybils. Further, VoteTrust can
identify Sybil community around the attacking Sybils,
thus find other colluding Sybils even they have not
created attack links yet.

False Positive: To assess the false positive, we examine
their feedback to Renren’s customer support department.
Renren operates a telephone number and e-mail address
where customers can attempt to get banned accounts re-
instated. Complaints are evaluated by a human operator,
who determines if the account was banned erroneously.
We use the complaint rate, measured as the number of
complaints divided by the number of accounts banned,
as an upper-bound on false positives. During the one-
month period after Sybils are banned, the average com-
plaint rate on these banned accounts is about 1.33%,
which is extremely low. We further check the detection
precision with a manual inspection of 1000 banned Sybils
chosen at random. Our manual inspection shows that
96.35% are confirmed spammers due to containing spam
(e.g., blog spam or post spam).

Making detection adaptive. In the future, Renren
would execute VoteTrust periodically to detect newly
created Sybils. After the detection threshold δf has been
bootstrapped, Renren can use an adaptive feedback
scheme to dynamically tune the threshold on the fly.
The adaptive feedback is drawn from the customer com-
plaint rate to Renren’s support department. For example,
Renren can raise or lower the threshold to maintain an
acceptable complaint rate.

8 RELATED WORK

Recently, there has been a great effort in defending Sybils
(e.g., spammers) in OSNs. This section discusses the
difference between VoteTrust and these studies.

Social-graph-based approaches: Some decentralized
protocols OSNs [5], [8], [10] leverage the social graph
structure to defend against Sybils. These techniques rely
on the assumption that fakes can befriend only few
real accounts. However, our measurement on Renren
Sybils has shown this assumption is not valid [2]. Hence,
existing network-based Sybil defenses are unlikely to
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succeed in today’s OSNs. Given the limitation of relying
solely on the social network structure, an attractive way
to improve on these schemes is to give Sybil defense
schemes additional information.

Recent work [14] proposes ı́ntegro, a Sybil detection
system that integrates user activities into graph struc-
tures. ı́ntegro starts by predicting victim accounts from
user-level activities. After that, it limits the trust score
entering the Sybil region by weighting the social graph
such that edges incident to predicted victims have much
lower weights than others. But ı́ntegro relies on the accu-
racy of victim prediction, which requires the information
of many behavioral features. Moreover, as long as the
victims’ links have non-zero weights, Sybils could still
increase their scores by befriending even more victims.

However, VoteTrust only focuses on the friend invi-
tation behavior, and detects Sybils that get more rejec-
tions than acceptances from real users, irrespective of
the number of victims (i.e., those who accept Sybils).
Also, VoteTrust is compatible with many exiting defense
schemes such as SybilRank and ı́ntegro. We can use them
as the first step of VoteTrust (i.e., vote assignment), and
then use the next step of VoteTrust (i.e., vote aggregation)
to leverage the feedbacks on links.

Reputation systems: In many P2P systems, reputation
systems have received a significant amount of attention
as a solution for mitigating the affects of malicious peers.
In an important work, Cheng and Friedman [19] classify
them as symmetric or asymmetric approaches, and prove
formally that the symmetric reputation systems (such as
EigenTrust [20]) are susceptible to Sybil attacks.

Different from EigenTrust, VoteTrust is an asymmetric
system that has trusted nodes from which reputation
values propagate. It further limits the Sybil attack by
combining the implicit information of negative links
with the graph structure. As demonstrated in the paper,
VoteTrust can significantly outperform other asymmetric
systems that rely solely on graph topology (such as
TrustRank [15] or BadRank [21]).

Sybil community detection: Pervious works (e.g., [7],
[10]) are designed for the unsigned graph, and cannot
detect communities in a signed graph like friend in-
vitation graph. This is why we propose the VoteTrust
scheme. Our algorithm could leverage the implicit infor-
mation of negative links, and thus is able to accurately
identify the Sybil community.

Feature-based approaches: Sybils are created for prof-
itable malicious activities, such as spamming, click-
fraud, malware distribution, and identity fraud. Hence,
many works [3], [22] analyze aberrant behavior or spam
content to detect Sybil accounts. Meanwhile, some Sybil
detection systems have recently been developed based
on Bayesian filters and SVMs [23], [24]. However, these
feature-based Sybil detection systems require training on
large samples of ground-truth data.

Normal User Community

Sybil Community

Promoter 

Fig. 20. Illustration of collusion-based attack. We call
normal users (either intentionally or accidentally) sending
requests to Sybils as promoters.

9 CONCLUSION AND LIMITATION

This paper presents VoteTrust, a system that leverages
user interactions of initiating and accepting links to
defend against Sybil attacks. We provide the security
guarantees of VoteTrust, demonstrating that we limit
the number of requests Sybils can send to real users.
Our evaluation over real network shows that VoteTrust
is able to detect real Sybils with high precision, and
significantly outperforms traditional ranking systems.
Finally, working closely with Renren security team, we
have deployed VoteTrust system at Renren, showing that
VoteTrust can accurately detect real, large-scale Sybil
collusion existing in the network.

Although we also use some standard techniques (e.g.,
a PageRank-style algorithm to propagate scores), we
make three notable contributions: First, we introduce a
new graph model for Sybil defense, which nicely combine
link structure and user feedback. Second, we propose
new techniques, including global vote aggregation and
local community expansion, to exploit the negative links.
Finally, we present and analyze theoretically the security
guarantees of VoteTrust.

Limitation: Recent works [25], [26] have found that
miscreants start to sell legitimate accounts that have been
compromised in Twitter. Thus, if attackers are willing
to buy friends from miscreants, they could enhance the
attack capacity by increasing the number of in-links or
the acceptance rate of Sybils. In this case, VoteTrust can
be considered as a first-level defense that increases the
attack cost, and could be combined with other orthog-
onal techniques (e.g., those proposed in [25], [26]) for
even better defense.

APPENDIX A
PROOF OF THEOREM 1

Proof: We now provide detailed proofs of the
VoteTrust’s security properties. An typical attack mode
is illustrated in Fig. 20. The attacker would connect
Sybils into a complete-connected graph, so that each
Sybil could receive the maximum number of collusion
votes from others. Let Nin be the in-links going from
the non-Sybil region to the the Sybil region.

According to the work [27], the total vote capacity that
flows into the Sybil community, say ES , is given by,

ES = Ein
S − Eout

S (10)
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This equation means that the total vote capacity of
a Sybil community depends on the difference between
incoming capacity Ein

S and outgoing vote capacity Eout
S .

And Ein
S and Eout

S can be calculated using the following
expressions,

Ein
S =

d

1− d

∑

i∈Vin

fixi (11)

Eout
S =

d

1− d

∑

i∈Vout

(1− fi)xi (12)

where Vin represents the set of normal users that link to
Sybils, and Vout is the set of Sybils that link to normals.
fi represents the fraction of a node i’s edges that link to
Sybils. d is the decay factor in Eq.(1), and we use α to
denote d/(1− d).

Let x̄l and x̄s represent the average vote capacity
for each node in non-Sybil region and Sybil region,
respectively. To be fully connected, each Sybil sends
NS/2 requests to others Sybils. Here, Ns is the size of
Sybil set. Thus, for i ∈ Vout, 1 − fi = Nout

Nout+NS/2 . We
denote fin = E[fi] for i ∈ Vin. Substituting it into Eq.(10),
we get,

ES = α

(
Ninfinx̄l − ES

Nout

Nout + Ns/2

)
(13)

Solving the above equation, the total vote capacity of
Sybil community is,

ES =
αNinfinx̄l

αNout

Nout+NS/2 + 1
. (14)

Due to Sybils have similar structure, we assume they
have equal global acceptance rate p̄s. Let p̄l be the
average global acceptance rate of promoters. According
to the rating model Eq.(2), we have,

p̄s =
Ns

2 x̄sp̄s + γNoutx̄lp̄l

Ns

2 x̄sp̄s + Noutx̄lp̄l

(15)

where γ is the acceptance percentage of Sybils’ out-links.
Based on Eq.(15), we can get the Sybils’ total out-links
as:

Nout =
Nsx̄s

2 (p̄s − p̄2
s)

x̄lp̄l(p̄s − γ)
(16)

Notice that p̄s ∈ [0, 1], we get ∂Nout

∂p̄s
< 0. This indicates

that Nout decrease as p̄s grows.
To evade the detection, Sybils should maintain their

global rating p̄s above the detection threshold δf . There-
fore, Nout has the least upper bound when p̄s = δf . Note
that ES = Nsx̄s, substituting Eq.(14) into Eq.(16), and let
p̄s = δf yields the inequality,

(4α + 4)aN2
out + (2aNs − 2bc)Nout − bcNs ≤ 0 (17)

where a = δf − γ, b = δf − δ2
f and c = αNinfin

pl
.

According to the property of quadratic function, we
know the condition that the above inequality holds is
Nout ≥ 0. Thus, we get the following inequality:

Nout ≤ 2bc− 2aNs +
√

(2aNs − 2bc)2 + (16α + 16)abcNs

8aα + 8a

=
2bc− 2aNs + 2

√
(aNs + (2α + 1)bc)2 − (4α2 + 4α)b2c2

8aα + 8a

≤ 2bc− 2aNs + 2aNs + (4α + 2)bc

8aα + 8a

=
bc

2a

Substitute the expressions of a, b and c into the above
inequality, and let ρ = αfin

2p̄l
, we get the upper bound

given in equation (4). Theorem 1 is proved.
In the theorem, the constant factor ρ = αfin/2p̄l. where

α = d/(1− d) and d is the decay factor in Eq.(1). fin

represents the ratio of the number of in-links of Sybils
to the total out-degree of promoters. p̄l indicates the
average global acceptance rate of promoters.

APPENDIX B
PROOF OF THEOREM 2

Proof: In a completely connected Sybil group with
size Ns, each Sybil gets x̄l votes on average. Thus the
total vote capacity in this community is ES = Nsx̄s.
Substituting it into Eq.(14) we get,

Nsx̄s =
αNinfinx̄l

αNout

Nout+Ns/2 + 1
(18)

Note that the votes will be ignored by VoteTrust when
x̄s < δv , so Ns has the lowest upper bound when x̄s = δv .
Substituting this equation into Eq.(18), we get

δv

2
N2

s +
(

aδv − bNin

2

)
Ns − bNinNout ≤ 0 (19)

where a = (α + 1)Nout and b = αfinx̄l both defined in
Theorem 1. Solving the inequality like that of inequality
(17) yields the upper bound of community size in Eq.(5).
Theorem 2 is proved.

APPENDIX C
PROOF OF THEOREM 3

Proof: The bad score assignment is similar as the vote
capacity assignment in Fig 20. The difference is that it
propagates the bad score along the reverse direction of
links from Sybil seeds.

According to the work [27], the total bad score (de-
noted as EN ) in normal non-Sybil region (see Fig. 20)
depends on the difference between incoming bad score
Ein

N and outgoing bad score Eout
N .

EN = Ein
N − Eout

N (20)

Due to the essential process of bad score assignment
is equivalent to the trust-based vote assignment (in
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Theorem 1), the total bad score of normal users receive
from bad seeds can be derived based on Eq.(14),

EN =
αfinNinx̄s

αNout

Nout+N/2 + 1
. (21)

where, α and fin are constant parameters. Similarly, Nout

is the number of attack links, and x̄s is the average bad
score of Sybils.

Straightforwardly, the number of normal users whose
bad score are higher than Sybils’ average score does not
exceed EN

x̄s
, which is,

|{ui|xi > x̄s}| < αfinNin

αNout

Nout+N/2 + 1
< αfinNin (22)

Theorem 3 is proved.
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