
A Non-dominated Sorting Particle Swarm
Optimizer for Multiobjective Optimization

Xiaodong Li

School of Computer Science and Information Technology
RMIT University, VIC 3001, Melbourne, Australia

xiaodong@cs.rmit.edu.au
http://www.cs.rmit.edu.au/˜xiaodong

Abstract. This paper introduces a modified PSO, Non-dominated Sort-
ing Particle Swarm Optimizer (NSPSO), for better multiobjective opti-
mization. NSPSO extends the basic form of PSO by making a better
use of particles’ personal bests and offspring for more effective non-
domination comparisons. Instead of a single comparison between a par-
ticle’s personal best and its offspring, NSPSO compares all particles’
personal bests and their offspring in the entire population. This proves
to be effective in providing an appropriate selection pressure to propel
the swarm population towards the Pareto-optimal front. By using the
non-dominated sorting concept and two parameter-free niching methods,
NSPSO and its variants have shown remarkable performance against a
set of well-known difficult test functions (ZDT series). Our results and
comparison with NSGA II show that NSPSO is highly competitive with
existing evolutionary and PSO multiobjective algorithms.

1 Introduction

Multiobjective optimization problems represent an important class of real-world
problems. Typically such problems involve trade-offs. For example, a car man-
ufacturer may wish to maximize its profit, but meanwhile also to minimize its
production cost. These objectives are typically conflicting to each other. A higher
profit would increase the production cost. There is no single optimal solution.
Often the manufacturer needs to consider many possible “trade-off” solutions
before choosing the one that suits its need. The curve or surface (for more than
2 objectives) describing the optimal trade-off solutions between objectives is
known as the Pareto front. One of the major goals in multiobjective optimiza-
tion is to find a set of well distributed optimal solutions along the Pareto front.

In recent years, population-based optimization methods such as Evolution-
ary Algorithms have become increasingly popular for solving multiobjective op-
timization problems [1][2]. EA’s success is due to its generic ability to han-
dle large complex real-world problems. Since EAs maintain a population of
solutions, this allows exploration of different parts of the Pareto front simul-
taneously. However not until recently, another population-based optimization

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 37–48, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

38 X. Li

technique Particle Swarm Optimization (PSO) has been only applied to sin-
gle objective optimization tasks. PSO technique is inspired by studies of so-
cial behavior of insects and animals [3]. The social behavior is modeled in a
PSO to guide a population of particles (so-called swarm) moving towards the
most promising area of the search space. In PSO, Each particle represents a
candidate solution, Xi = (xi1, xi2, . . . , xid). d is the dimension of the search
space. The i-th particle of the swarm population knows: a) its personal best
position Pi = (pi1, pi2, . . . , pid), i.e., the best position this particle has vis-
ited so far that yields the highest fitness value; and b) the global best posi-
tion, Pg = (pg1, pg2, . . . , pgd), i.e., the position of the best particle that gives
the best fitness value in the entire population; and c) its current velocity,
Vi = (vi1, vi2, . . . , vid), which represents its position change; The following equa-
tion (1) uses the above information to calculate the new updated velocity for
each particle in the next iteration step. Equation (2) updates the each particle’s
position in the search space.

vid = wvid + c1r1(pid − xid) + c2r2(pgd − xid) (1)
xid = xid + χvid , (2)

where d = 1, 2, . . . , D; i = 1, 2, . . . , N ; N is the size of the swarm population; χ
is a constriction factor which controls and constricts the velocity’s magnitude;
w is the inertia weight, which is often used as a parameter to control explo-
ration/exploitation in the search space; c1 and c2 are two coefficients (positive
constants); r1 and r2 are two random numbers within the range [0, 1]. There is
also a VMAX , which sets the upper and lower bound for velocity values.

PSO has proved to be an efficient optimization method for single objective
optimization, and more recently has also shown promising results for solving
multiobjective optimization problems [4][5] [6][7]. What is in common among
these works is the use of a basic form of PSO first introduced by Kennedy and
Eberhart [3]. However the basic form of PSO has some serious limitations in
particular when dealing with multiobjective optimization problems. In PSO, a
particle is modified only through its personal best and global best to produce
its offspring. At each iteration step, if the fitness of the offspring is better than
the parent’s personal best, then the personal best is updated with this offspring,
however, there is no sharing of information with other particles in the population,
except that each particle can access the global best. For multiobjective optimiza-
tion, we argue that such sharing of information among all the individuals in a
population is crucial in order to introduce the necessary selection pressure to
propel the population moving towards the true Pareto-optimal front.

This paper introduces a modified PSO, Non-dominated Sorting Particle
Swarm Optimizer (NSPSO), which is able to increase such “sharing” among
all particles in a swarm population especially concerning how to allow the popu-
lation as a whole to progress towards the true Pareto-optimal front. For clarity,
in this paper, we use P ∗ to denote the true Pareto-optimal front, and Q the
found non-dominated solution set.

A Non-dominated Sorting Particle Swarm Optimizer 39

Fig. 1. Dominance relationships among 4 particles, including the personal best P t
1 of

a particle Xt
1, and its potential offspring Xt+1

1 , plus P t
2 and Xt+1

2 for a second particle
Xt

2, assuming minimization of f1 and f2.

2 Modifying PSO for Better Dominance Comparison

One problem that can be identified with the basic form PSO is that dominance
comparisons are not fully utilized in the process of updating the personal best
Pi of each particle. This can be illustrated via the following example shown in
Fig. 1. Note that F (·) denotes the evaluation of a particle in the objective space.

Fig.1 shows that the personal best P t
1 is mutually non-dominating with Xt+1

1 ,
and P t

2 is non-dominating with Xt+1
2 , however, Xt+1

1 is dominated by Xt+1
2 and

P t
2 , and furthermore, P t

1 is also dominated by P t
2 . In a standard PSO, the i-th

particle only has a single P t
i , which is used to compare with its potential offspring

Xt+1
i at time step t+1. If P t

i is non-dominating with its potential offspring such
as the situation shown in Fig. 1, then P t

i will remain the same. The consequence
of this kind of comparison is that the useful non-domination relationships among
all the four particles will not be captured. Fig. 1 shows that if we allow all 4
particles to be compared, then we would have found P t

2 and Xt+1
2 to be the

better two to retain. This illustration shows that in a standard PSO, valuable
non-domination comparisons are not effectively used. In other words, as a result
of having only a single comparison between a particle’s P t

i and Xt+1
i , there is

only a very weak selection pressure with respect to the non-dominated front that
exists in the current population.

This would naturally lead to the next two questions - what if we allow all
the personal bests of all particles and as well as these particles’ offspring to be
compared for non-domination relationships? How are we going to choose the
global best for each particle in order to propel the population to move towards
P ∗, while also maintaining a diverse set of solutions?

3 Non-dominated Sorting PSO

Two major goals in multiobjective optimization are to obtain a set of non-
dominated solutions as closely as possible to the true Pareto front P ∗, and to

40 X. Li

maintain a well-distributed solution set along the Pareto front. To achieve this
using PSO, a Non-dominated Sorting Particle Swarm Optimizer (NSPSO) is
proposed. In NSPSO, we adopt the non-dominated sorting concept used in NSGA
II [2], where the entire population is sorted into various non-domination levels.
This provides the means for selecting the individuals in the better fronts, hence
providing the necessary selection pressure to push the population towards P ∗.
To maintain population diversity, we use a widely-used niching method [8], and
also the crowding distance assignments adopted by NSGA II [9]. The following
two sections describe these methods.

3.1 Selection Pressure towards P ∗

Instead of comparing solely on a particle’s personal best with its potential off-
spring, the entire population of N particles’ personal bests and N of these parti-
cles’ offspring are first combined to form a temporary population of 2N particles.
After this, domination comparisons among all the 2N individuals in this tem-
porary population are carried out. This “combine-then-compare” approach will
ensure more non-dominated solutions can be discovered through the domination
comparison operations. Since updating the personal bests of the N particles rep-
resents “collectively” a step towards a better region in the search space, retaining
them for domination comparison provides the needed selection pressure towards
P ∗. By comparing the combined 2N particles for non-domination relationships,
we will be able to sort the entire population in different non-domination levels as
used in NSGA II. This type of sorting can then be used to introduce the selection
bias to the individuals in the populations, in favour of individuals closer to the
true Pareto front P ∗. At each iteration step, we choose only N individuals out
of the 2N to the next iteration step, based on the non-domination levels. This
process can be illustrated in Fig. 2. First the entire population is sorted into

Fig. 2. Particles of a swarm population of 10 are classified into 4 successive non-
dominated fronts

two sets, the non-dominated set and the remaining dominated set. In Fig.2, the
non-dominated set is Front 1, which contains 3 particles labeled as 1, 2 and 3.
Front 1 is the best non-dominated set, since all particles in Front 1 are not dom-
inated by any other particles in the entire population. To obtain the next front,

A Non-dominated Sorting Particle Swarm Optimizer 41

Front 2, we temporarily remove Front 1 from the population, then find the non-
dominated solutions of the remaining population, which is Front 2. Then again
we remove Front 2 as well, in order to identify the non-dominated solutions of
the next level. This procedure continues until all particles in the population are
classified into different non-dominated front levels. For each particle, there are
O(mN) comparisons are required to find out if it is dominated by other part-
ciles in a population of size N (m is the number of objectives). The complexity
to find the first non-dominated front (i.e., Front 1) for the whole population is
O(mN2). In the worst case where there is only one particle in each front, the
complexity of the above procedure for classifying different non-dominated fronts
is O(mN3).

Now we create the new particle population for the next iteration step, by
selecting particles from fronts in ascending order, e.g., first from Front 1, then
Front 2, etc, until N particles (or a specified threshold) are selected. Since the
particles in the first few fronts get chosen first, this selection pressure will effec-
tively drive the particle population towards the best front over many iteration
steps. Note that Front 1 could have more than N particles (since the combined
2N particles are sorted), especially after a number of steps in a run. Setting
a threshold may be necessary as it would allow opportunities of particles from
other fronts to be selected as well, i.e., maintaining “lateral diversity” [2].

3.2 Parameter-Free Niching Methods to Maintain a Diverse Q

Niching methods have been extensively studied and used as means of maintaining
population diversity in Genetic Algorithms. One commonly used niching method
is a sharing function model introduced by Goldberg and Richardson [10], where
a niche is treated as a resource shared among other individuals in the niche.
In NSPSO, to achieve the second goal of maintaining a diverse non-dominated
solution set, two niching methods are tried, in order to see how effective each
method is in maintaining solution diversity. The first method requires calculating
a niche count for each particle, whereas the second method requires calculating
a crowding distance value for each particle.

Using Niche Count. In NSPSO, the niche count mi of a particle i is simply
calculated as the number of other particles within a σshare distance (i.e., Eu-
clidean distance) from i. Note that σshare can be calculated dynamically at each
iteration step. Fig.3 shows how niche counts are calculated for two candidate
solution A and B. Both A and B are on the current non-dominated front. How-
ever since A has a smaller niche count than B, A will be preferred over B. This
choice has the effect of emphasizing a more diverse non-dominated front.

One of the undesirable features of the niching method employing σshare is
that σshare has to be specified by a user, and the model’s performance is highly
dependant on the choice of value for this parameter. We adopted the dynamic
update of σshare proposed by Fonseca and Fleming [11] so that we do not have
to specify σshare. For two objective functions, the following equation is used to
determine the σshare dynamically [2]:

42 X. Li

Fig. 3. Niche counts are calculated for particle A and B on the non-dominated front
Q (indicated by circles), assuming minimization of f1 and f2.

σshare =
u2 − l2 + u1 − l1

N − 1
, (3)

where ui and li are the upper and lower bounds for each of the two objective
values for the entire population. Note that as population size increases, the
σshare is reduced to accommodate more niches. At each iteration step, we select
from the current non-dominated solution set Q those particles with smallest
niche counts. Then Pg for each particle is randomly chosen among these “less
crowded” non-dominated particles.

Using Crowding Distance Assignments. The 2nd niching method employ-
ing crowding distance [9] is also free of choosing such a parameter. Deb et al. [9]
in their NSGA II introduced this niching method that makes use of the density
of solutions around a particular point on the non-dominated front. The density
is estimated by calculating the so-called crowding distance of a point i , which
is the average distance of the two point i-1 and i+1 on either side of this point i
along each of the objectives. When we use crowding distance values for niching,
we simply sort all the particles of the current Q in descending order, and then
choose a particle randomly from the top part of the sorted list (i.e., a particle
in the least crowded areas in the Pareto region) as Pg for each particle. This
process is repeated for each particle in the population, and over many itera-
tion steps. The complexity of this procedure in the worst case is O(mNlogN),
when all particles are in one front. For more information on crowding distance
assignment, the readers can refer to [9].

Replacement of “Overcrowded” Particles with New Particles. Another
method that can further promote diversity is to remove particles from over-
crowded areas on the current non-dominated front Q, and replace them with
new particles. We implement this in NSPSO by removing the particle with the
largest niche count (or the smallest crowding distance value), and replace it with
a randomly generated new particle, at each iteration step. Since the new par-
ticle chooses the particle with the smallest niche count, i.e., least crowded (or

A Non-dominated Sorting Particle Swarm Optimizer 43

the largest crowding distance value), from the current Q as its Pg, this particle
should have a better chance to land somewhere “less crowded” on the current
front Q.

3.3 NSPSO Algorithm

NSPSO can be summarized in the following steps:

1. Initialize the population and store the population in a list PSOList:
a) The current position of the i-th particle, Xi and its current velocity Vi, are initialized with

random real numbers within the specified decision variable range; Vi has a probability of
0.5 being specified in a different direction; The personal best position Pi, is set to Xi ;
VMAX is set to the upper and lower bounds of the decision variable range.

b) Evaluate each particle in the population; iteration counter t := 0.
2. t := t + 1.
3. Identify particles that give non-dominated solutions in the population and store them in a list

nonDomPSOList.
4. Calculate - a) niche count, or b) crowding distance value, for each particle.
5. Resort the nonDomPSOList according to a) niche counts, or b) crowding distance values.
6. For(i := 0; i < numParticles; i++) (step through PSOList):

a) Select randomly a global best Pg for the i-th particle from a specified top part (e.g. top
5%) of the sorted nonDomPSOList.

b) Calculate the new velocity Vi, based on the equation (1), and the new Xi by equation (2).
c) Add the i-th particle’s Pi and the new Xi to a temporary population, stored in

nextPopList. Note that Pi and Xi now coexist. Also note that nextPopList now has
a size of 2N .

d) Go to a) if i < numParticles.
7. Identify particles that give non-dominated solutions from nextPopList, and store them in

nonDomPSOList. Particles other than non-dominated ones from nextPopList are stored in a
list nextPopListRest.

8. Empty PSOList for the next iteration step.
9. Select randomly members of nonDomPSOList and add them to PSOList (not to exceed

numParticles).
10. Loop if PSOList size < numParticles:

a) Identify non-dominated particles from nonDomListRest and store them in
nextNonDomList.

b) Add members of nextNonDomList to PSOList, if still the PSOList size <
numParticles.

c) Copy nextPopListRest to nextPopListRestCopy, then empty nextPopListRest.
d) Assign the vacant nextPopListRest with the remaining particles other than non-

dominated ones from nextPopListRestCopy.
e) Go back to a), if still the PSOList size < numParticles.

11. If t < maxIterations, go to 2.
12. Obtain Q from the final population, and calculate the performance metric values (see section

4).

4 Performance Metrics

Diversity of Q. We measure the diversity of solutions along the Pareto front
in the final population by comparing the uniform distribution and the deviation
of solutions as described by Deb [2]:

∆ =
ΣM

m=1d
e
m + Σ

|Q|
i=1|di − d̄|

ΣM
m=1d

e
m + |Q|d̄ , (4)

where di is the distance between two neighbouring solutions in the non-
dominated solution set Q, d̄ is the mean value of all the di. de

m is the distance
between the extreme solutions of the true Pareto-optimal set P ∗ and Q on the

44 X. Li

m-th objective. de
m is calculated by using Schott’s difference distance measure

[2]. By using de
m, equation (4) also takes into account of the extent of the spread.

For an ideal distribution of solutions (uniform and de
m =0.0), ∆ is 0.0. For func-

tions with disconnected sectors on the Pareto front, e.g., ZDT3, ∆ is calculated
within each continuous sector and then averaged.

Number of non-dominated solutions found. The above diversity metric
does not take into account the number of optimal solutions found. An ideal
uniform distribution of Q with ∆ = 0.0 could have very few solutions. Obviously
we prefer a uniform distribution with a larger number of solutions found in the
final step of a run.

Closeness to P ∗. Generational distance (GD) metric is used to measure the
closeness of solutions in Q to P ∗. The GD metric finds the average distance of
the solutions of Q from P ∗ [2]:

GD =
(Σ|Q|

i=1d
p
i)

1/p

|Q| . (5)

For a two objective problem (p = 2), di is the Euclidean distance between the
solution i ∈ Q and the nearest member of P ∗.

5 Experiments

Four test functions ZDT1, ZDT2, ZDT3 and ZDT4 were used [2]. These functions
are considered to be difficult because of the large number of decision variables,
disconnectedness of P ∗, and multiple local fronts. The initial population of the
NSPSO was set to 200. c1 and c2 were set to 2.0. w was gradually decreased from
1.0 to 0.4. VMAX was set to be the bounds of decision variable ranges, and χ
simply to 1.0. NSPSO was run for 100 iteration steps. At the final iteration, the
diversity metric ∆ and closeness metric GD values were calculated according to
equation (4) and (5), and also the number of non-dominated solutions found.
A set of |P ∗| = 500 uniformly distributed Pareto-optimal solutions is used to
calculate the GD values. The results of NSPSO were compared with the real-
parameter NSGA II. NSGA II also had an initial population of 200, and it was
run for 100 generations. As suggested in [2], a crossover probability of 0.9 and
a mutation probability of 1/n (n is the number of real-variables) were used.
The SBX and real-parameter mutation operators, ηc and ηm, were set to 20
respectively. NSPSO and NSGA II were both run 10 times. The results are
averaged and summarised in Table 1 - 3. Four NSPSO variants were used: NC:
using niche count only; NC-R: using niche count with replacement; CD: using
crowding distance only; and CD-R: using crowding distance with replacement.
Refer to section 3.2 about these four niching variants.

A Non-dominated Sorting Particle Swarm Optimizer 45

Table 1. Mean and variance values of the GD metric measuring convergence.

ZDT1 ZDT2 ZDT3 ZDT4
Algorithm GD δ2 GD δ2 GD δ2 GD δ2

NC 7.97E-04 8.13E-05 8.05E-04 3.05E-05 3.40E-03 2.54E-04 7.82E-04 6.91E-05
NC-R 7.53E-04 4.18E-05 2.93E-02 9.03E-02 3.22E-03 5.31E-04 7.36E-04 5.16E-05
CD 1.05E-03 1.71E-04 8.48E-04 4.57E-05 3.54E-03 4.98E-04 9.03E-04 1.66E-04

CD-R 8.61E-04 1.55E-04 2.93E-02 9.02E-02 3.53E-03 3.79E-04 8.42E-04 1.50E-04
NSGA II 1.14E-03 7.64E-05 8.25E-04 3.26E-05 N/A N/A 2.92E-02 4.67E-02

Table 2. Mean and variance values of the ∆ metric measuring diversity.

ZDT1 ZDT2 ZDT3 ZDT4
Algorithm ∆ δ2 ∆ δ2 ∆ δ2 ∆ δ2

NC 7.67E-01 3.00E-02 7.58E-01 2.77E-02 9.14E-01 3.93E-02 7.68E-01 3.57E-02
NC-R 7.72E-01 3.58E-02 7.67E-01 4.36E-02 9.04E-01 6.89E-02 8.06E-01 5.05E-02
CD 7.62E-01 3.83E-02 7.48E-01 4.66E-02 8.69E-01 5.81E-02 7.36E-01 1.84E-02

CD-R 7.62E-01 3.17E-02 7.60E-01 4.86E-02 8.65E-01 5.94E-02 7.89E-01 3.98E-02
NSGA II 3.86E-01 1.63E-02 3.90E-01 2.01E-02 N/A N/A 6.55E-01 1.98E-01

6 Results and Discussion

Table 1 shows that for all 4 functions, NSPSO has no trouble reaching P ∗ for al-
most all of the 10 runs within 100 iterations. However an “outlier” was identified
for NC-R (ZDT2) and CD-R (ZDT2) each. Closely examining the data, it was
found that the poor GD value was the result of a single poor run, but 9 others
were in fact very good. Note that NSGA II failed to converge in 100 iteration
steps on ZDT3. NSGA II (ZDT4) has the worst variance and GD values, which
are due to two runs reaching only local fronts (Fig. 4 (last on the bottom row).
Table 2 shows that NSGA II has a better ∆ value overall, whereas NSPSO’s ∆
values are higher. However from a typical run as shown in Fig. 4, we can see that
NSPSO has a coverage of P ∗ just as good as NSGA II. The higher ∆ values can
be attributed to a larger number of different Q found by NSPSO than NSGA II,
as shown in Table 3. Since we can obtain the best front (Front 1) with possibly

Table 3. Number of non-dominated solutions found in the final iteration step.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4

NC 274.3 297 201 276.4

NC-R 277.2 282.6 186.9 286.4

CD 187.9 239.7 134.1 159.6

CD-R 247.8 290.1 194 254.5

NSGA II 200 200 N/A 175.5

46 X. Li

more than N non-dominated solutions in the combined population of 2N per-
sonal bests and offspring, NSPSO is often able to obtain more than 200 different
non-dominated solutions in the final step. In contrast, NSGA II generally has
a constant number of non-dominated solutions, which is its initial population
size (except for ZDT4). To our surprise, NC-R and CD-R did not seem to make
much difference in terms of ∆ and GD values. However in Table 3, we can note
that CD-R managed to find many more different non-dominated solutions than
CD. For NC and NC-R, however, there is not much difference. Fig. 4 presents

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1

NSPSO

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1

NSPSO

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f2

f1

NSPSO

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1

NSPSO

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1

NSGA II

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1

NSGA II

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

f2

f1

NSGA II-best

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

f2

f1

NSGA II-best
NSGA II-worst1
NSGA II-worst2

Fig. 4. Non-dominated solutions found by NSPSO (top row) and NSGA II (bottom
row) for ZDT1, 2, 3, and 4 (from left to right).

that for a typical NSPSO and NSGA II run, the non-dominated solutions found
in the final iteration step for all 4 test functions. Overall, the results show that
NSPSO is very competitive in terms of solution spread, coverage and closeness to
P ∗. Fig. 4 (3rd on the top row) shows that NSPSO has no trouble converging on
the different disconnected sectors of P ∗ for ZDT3, whereas in this case, NSGA
II failed completely (3rd on the bottom row). For ZDT4, NSPSO’s 10 runs have
all converged to P ∗ with a good spread and coverage. In contrast, NSGA II had
2 out of 10 runs reaching only a local front (Fig. 4 (last on the bottom row)).

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

f2

f1

NSPSO - ZDT4 step1

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

f2

f1

NSPSO - ZDT4 step5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

f2

f1

NSPSO - ZDT4 step9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

f2

f1

NSPSO - ZDT4 step15

Fig. 5. Snapshots of a NSPSO run showing the entire particle population at step 1, 3,
9 and 15, for solving ZDT4.

Fast and better convergence towards the global front. Fig. 5 presents 4
snapshots of the first few steps in a NSPSO’s run for solving ZDT4. It can be

A Non-dominated Sorting Particle Swarm Optimizer 47

noted that even in step 3, there were no particles that had found P ∗, but by
step 9 there were quite a few, though the majority of the particles were stuck at
the 2nd best front. By step 15, all particles had reached P ∗ without difficulty.
Considering the majority of current multiobjective evolutionary algorithms (with
the exception of NSGA II) are unable to converge to P ∗ for ZDT4, this is a
remarkable result. NSPSO also demonstrates its consistency as 10 out of 10
runs have all converged to P ∗, better than the NSGA II counterpart. NSPSO’s
impressive performance is due to the fact that we allow all particles’ personal
bests and offspring to be combined for non-domination comparison. Updating
of the particles is then based on their mutual non-domination relationships with
respect to the current Q in the population, not with respect to just another
single particle (like the basic PSO). Each time, the best N particles in terms of
non-domination levels of the entire population are selected for the next iteration
step. Even if a single particle has found P ∗, the particle’s personal best and
its offspring will be emphasised favourably in the next step. Since this personal
best and the offspring coexist and they are most likely to be located near P ∗, it
is likely they will be selected again for the next step. This is more like a “self-
proliferation” of good particles. The aggregated effect of this over many steps
would produce a large number of fitter particles along P ∗. Since at each step
we only select the best N particles, particles on those local fronts are gradually
phased out, replaced by the fitter ones on the global front.

Using a larger population size. It was found that a reasonably large popu-
lation is necessary for a good convergence. If population size was too small (e.g.,
20), NSPSO could converge to sub-optimal fronts, or to P ∗ but with a limited
number of non-dominated solutions, which is insufficient in terms of solution
spread and coverage. This is because a smaller number of particles do not suffi-
ciently sample the search space, and as a result, certain existing particles could
quickly become too dominant early on, and they would prevent other potentially
good particles (in terms of different non-dominated solutions) from being pro-
duced. A large initial population size would allow for a better sampling of the
search space, and from there onwards allow NSPSO to better use domination
comparison operations to find a wide spread of solutions along P ∗.

7 Conclusion

With an aim to improve PSO’s effectiveness in utilising the domination com-
parison operations for solving multiobjective optimization problems, this paper
has proposed a modified PSO, NSPSO. The model is able to discover more non-
dominated relations by comparing the personal bests and offspring of all particles
in a combined swarm population, thereby providing a more appropriate selection
pressure for the population to approach the true Pareto-optimal front. NSPSO
adopts the non-dominated sorting concept, and uses two parameter-free nich-
ing techniques to promote solution diversity. It has been shown that NSPSO
and its variants are able to perform remarkably well against some difficult test

48 X. Li

functions (functions with high-dimensional decision variables and multiple lo-
cal fronts) found in the literature. NSPSO is also fast, more reliable, and often
converging to the true Pareto-optimal front with a good solution spread and
coverage within just a few steps. This once again proves that PSO is a powerful
optimization technique that can be used efficiently not only for single objective,
but also for multiobjective optimization. Future work will look into application
of NSPSO to problems with more than 2 objectives, and also real-world multi-
objective optimization problems.

References

1. Zitzler, E., Deb, K. and Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation, 8(2):173–195, April (2000).

2. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms, John Wiley
& Sons, Chichester, UK (2001).

3. Kennedy, J. and Eberhart, R.: Particle Swarm Optimization. In Proceedings of
the Fourth IEEE International Conference on Neural Networks, Perth, Australia.
IEEE Service Center(1995) 1942–1948.

4. Coello, C.A.C. and Lechuga, M.S.: MOPSO: A Proposal for Multiple Objective
Particle Swarm Optimization, in Proceedings of Congress on Evolutionary Com-
putation (CEC’2002), Vol. 2, IEEE Press (2002) 1051–1056.

5. Hu, X. and Eberhart, R.: Multiobjective Optimization Using Dynamic Neighbour-
hood Particle Swarm Optimization. In Proceedings of the IEEE World Congress
on Computational Intelligence, Hawaii, May 12–17, 2002. IEEE Press (2002).

6. Parsopoulos, K.E. and Vrahatis, M.N.: Particle Swarm Optimization Method in
Multiobjective Problems, in Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC’2002) (2002) 603–607.

7. Fieldsend, E. and Singh, S.: A Multi-Objective Algorithm based upon Parti-
cle Swarm Optimisation, an Efficient Data Structure and Turbulence, Proceed-
ings of the 2002 U.K. Workshop on Computational Intelligence, Birmingham,
UK(2002) 37–44.

8. Horn, J., Nafpliotis, N., and Goldberg, D.E.: A Niched Pareto Genetic Algorithm
for Multiobjective Optimization. In Proceedings of the First IEEE Conference on
Evolutionary Computation, IEEE World Congress on Computational Intelligence,
vol: 1, Piscataway, New Jersey. IEEE Service Center.(1994) 82–87.

9. Deb, K., Agrawal, S. Pratap, A. and Meyarivan, T.: A Fast Elitist NonDominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In Pro-
ceedings of Parallel Problem Solving from Nature - PPSN VI, Springer(2000) 849–
858.

10. Goldberg, D.E., and Richardson, J.J.: Genetic Algorithms with sharing for multi-
modal function optimization. Genetic Algorithms and Their Applications: Proceed-
ings of the Second ICGA, Lawrence Erlbaum Associates, Hillsdale, NJ, (1987) 41–
49.

11. Fonseca, C.M. and Fleming, P.J.: Genetic algorithms for multiobjective optimiza-
tion: Formulation, discussion, and generalization. In Proceedings of the Fifth In-
ternational Conference on Genetic Algorithms (1993) 355–365.

	Introduction
	Modifying PSO for Better Dominance Comparison
	Non-dominated Sorting PSO
	Selection Pressure towards P^*
	Parameter-Free Niching Methods to Maintain a Diverse Q
	NSPSO Algorithm

	Performance Metrics
	Experiments
	Results and Discussion
	Conclusion

