
[20:25 18/6/03 Bioinformatics-btn165.tex] Page: i182 i182–i189

BIOINFORMATICS Vol. 24 ISMB 2008, pages i182–i189
doi:10.1093/bioinformatics/btn165

Designing succinct structural alphabets
Shuai Cheng Li 1, Dongbo Bu 1,2, Xin Gao 1, Jinbo Xu 3,∗ and Ming Li 1,∗
1David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada,
2Institute for Computing Technology, Chinese Academy of Sciences, China and 3Toyota Technological Institute at
Chicago, IL 60637, USA

ABSTRACT

Motivation: The 3D structure of a protein sequence can be
assembled from the substructures corresponding to small segments
of this sequence. For each small sequence segment, there are
only a few more likely substructures. We call them the ‘structural
alphabet’ for this segment. Classical approaches such as ROSETTA
used sequence profile and secondary structure information, to
predict structural fragments. In contrast, we utilize more structural
information, such as solvent accessibility and contact capacity, for
finding structural fragments.
Results: Integer linear programming technique is applied to derive
the best combination of these sequence and structural information
items. This approach generates significantly more accurate and
succinct structural alphabets with more than 50% improvement over
the previous accuracies. With these novel structural alphabets, we
are able to construct more accurate protein structures than the
state-of-art ab initio protein structure prediction programs such as
ROSETTA. We are also able to reduce the Kolodny’s library size by a
factor of 8, at the same accuracy.
Availability: The online FRazor server is under construction
Contact: {scli,mli}@uwaterloo.ca, j3xu@tti-c.org

1 INTRODUCTION
A small amount of structural fragments can model protein structures
accurately (Kolodny et al., 2002). Thus building such structural
fragment libraries has attracted intensive research. The library size
and accuracy are dominating factors for modelling and predicting
the protein structures accurately. Compact independent libraries for
protein structures have been built, and it is difficult to reduce the
size of such libraries further. However, a sequence segment does not
adopt all the structural fragments in a library with equal probabilities.
Therefore, it is more reasonable to build a customized structural
candidate list for each sequence segment. This way, the size of
structural candidate list can be much more succinct, and the protein
structure can be modelled more accurately.

1.1 Fragment libraries
Structural fragment libraries are also referred to as ‘structural
alphabet’ in literature. The size of a fragment library may vary
from dozens to hundreds. The fragments may have fixed or variable
lengths. Typically, fragments in these libraries have lengths not more
than nine since the structure database may not contain representative
resemblances for longer fragments (Fidelis et al., 1994).

Kolodny et al. (2002) studied fragment library with k-means
clustering methods and showed that it is unnecessary to have a

∗
To whom correspondence should be addressed.

large fragment library to accurately model protein structures and
construct near native structures. In that paper, fragments with lengths
4–7 were built with library sizes varying from 4 to 250. Criteria
of evaluating fragment libraries for building protein structures
were studied in Holmesand and Tsai (2004). Besides extracting
structural fragments from known proteins, research has also been
conducted on constructing structural fragments with ab initio
methods, and such methods produced longer fragments (Lovell
et al., 2003).

For the protein structure prediction purpose, it is more desirable to
have a position-specific structural fragment list for every sequence
segment of the target. Only a limited number of structural fragments
in the fragment libraries can be adopted as candidate structural
fragment for a sequence segment. ROSETTA implemented this
idea based on only two type of information: sequence profile
and secondary structure (Rohl et al., 2004; Simons et al., 1997).
Specifically, sequence profiles for the query sequence and each
sequence in the structure database are generated by PSI-BLAST
(Altschul et al., 1997). A profile–profile similarity score between
a query sequence segment and a structural fragment is calculated
using a distance function called City Block Metric (CBM):

DISTANCE =
�∑

i=1

20∑

aa=1

|S(aa,i)−X(aa,i)| (1)

where � is the fragment length, S(aa,i) and X(aa,i) are the
frequencies of amino acid aa at position i in the sequence
segment and in the structural fragment, respectively. In addition,
for a query sequence segment, its predicted secondary structure is
compared with the known secondary structure of each structural
fragment.

Unlike ROSETTA with fixed fragment lengths, TASSER (Zhang,
2007), extracts the structural fragments from structural models
generated by threading programs, with variable fragment length.

1.2 Fragment-based protein structure prediction
The structure predictions based on fragment assembly have shown
promising results. For example, two top automatic methods in
CASP7 (Moult et al., 2005), ROSETTA and TASSER, both
use fragment assembly strategy. Fragment-based protein structure
prediction is done in two steps: (1) identify the building blocks,
which are fragments of known structures; (2) construct the protein
structure with those building blocks using some search or simulation
algorithms.

Fragment-based protein structure prediction method can be traced
back to Pauling and Corey (1951), in which a protein fold
is simplified into smaller parts by using the regular secondary
structure element prediction. Research intensified after the work of

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at K
ing A

bdullah U
niversity of S

cience and T
echnology on M

arch 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

file:j3xu@tti-c.org; mli@uwaterloo.ca
http://bioinformatics.oxfordjournals.org/

[20:25 18/6/03 Bioinformatics-btn165.tex] Page: i183 i182–i189

Designing succinct structural alphabets

Jones and Thirup (1986), which uses known structures to refine
structures. Various fragment based structure prediction methods
were developed in Jones and Thirup (1986), Claessens et al. (1989),
Unger et al. (1989), Simon et al. (1991), Levitt (1992), Sippl (1993),
Wendoloski and Salemme (1992), Bowie and Eisenberg (1994),
with some success. Later, ROSETTA was developed, (Bradley
et al., 2003; Chivian et al., 2005; Simons et al., 1997). ROSETTA
significantly improved the protein structure prediction based on
fragments. Some recent fragment assembly algorithms, including
Haspel et al. (2003), Inbar et al. (2003) and Lee et al. (2005), use
longer fragments and/or different simulation algorithms. In another
related work, De Brevern et al. (2004) proposed a 16-letter alphabet
to predict local structures of a protein.

1.3 Our contributions
A major bottleneck for the fragment-based protein structure
prediction methods is designing succinct and highly accurate
structural alphabet. A constant factor reduction on the library size
will result in an exponential reduction of the search space. We have
introduced new ideas and have demonstrated that

• introducing structural information items, such as secondary
structure, solvent accessibility and contact capacity, can
improve the prediction of structural fragments;

• by using integer linear programming, we can derive the best
combination of both sequence and structural information items,
and it is possible to significantly reduce the structural alphabet
(or library) size, at the same level of accuracy;

• such reduction will indeed significantly improve the protein
structure prediction, with all other conditions unchanged.

The Occam’s Razor principle tells us that smaller the alphabet is,
the more likely it produces the right structure. A software package,
FRazor, ‘F’ for fragment, based on integer linear programming is
developed. By comparing our FRazor to the ROSETTA’s fragment
selection method, with the threshold as 1 Å, and fragment length 9,
the position coverage is improved from 56.4% to 79.1% for �-sheets,
and from 55.5% to 67.9% for loops while reducing the candidate
list size from 25 to 10 simultaneously. With the candidate list size
remaining at 25, our method can improve the position coverage of �-
sheets from 56.4% to 89.6% and the position coverage of loops from
55.5% to 78.1%. The improvement of our method is over 50% for
�-sheets and loops on average over the previous accuracies. Even
for �-helices, where the improvement space is very little, FRazor
still improves about 20% of the remaining open gap. Applying our
method to Kolodny’s library, our method reduces its size by a factor
of 8 while achieving the same accuracy. Applying our fragment
selection method to ROSETTA, with exactly the same settings for
the rest of the system, we improve the prediction accuracy from
2% to 26% for 5 out of 6 standard benchmark proteins used in
Simons et al. (1997), Kolodny et al. (2002) and Hamelryck et al.
(2006).

In our work Li et al. (2007), we utilize structural fragment
libraries in a new method for protein structure prediction.
Experimental results show that structural fragments serve as
a solid foundation for local structural bias prediction. In this
article, we focus on generating high-quality structural fragment
libraries.

2 METHODS

2.1 Problem statement
Given a protein target sequence t of length n, we parse t into a collection of
sequence segments. We use a sliding window of a fixed length � and step size
1 to parse t. Let these segments be qe1,qe2,...,qep, p=n−�+1 (qe stands
for query sequence element), and denote the native structural fragments of
these segments as ns1,ns2,...,nsp.

We need to have a collection of structural fragments from which we can
select the structural candidates for sequence segments. Denote this collection
of structural fragments as (se in below stands for structural element):
S ={se1,se2,...,seq}.

We refer to this collection of structural fragments as structural space.
In this article, S is obtained by parsing the 40 protein structures listed in
Table 1A.

We wish to select some structural fragments for each sequence segment,
such that our selections contain adequate structural fragments close to the
native structure of the sequence segment. Intuitively, the more the native-like
structural fragments, the better decoys can be constructed.

Stated formally, given qej , 1≤ j≤p, integer k and k′, k′ ≤k and a distance
threshold �, we wish to select a set of structural fragments, denoted as Sj ⊂S,
such that:

• |Sj|=k;

• ∃Fj ⊂Sj with |Fj|≥k′ and

• ∀s∈Fj , dist(s,nsj)≤�. dist is a given distance function.

Fj is referred to as a subset of near native structures for qej . If Fj is non-
empty, we say that qej is covered by Sj . Using the 40 proteins in Table 1A
to generate S, we have verified that over 99% sequence positions (over
all protein sequences) are covered by S. Sj is referred to as the structural
candidate list, or simply the candidate list, of qej . Sj is the ‘alphabet’ for qej .

2.1.1 Structural distance criteria To compute the distance between
structural fragments, we use the standard measure, which is the backbone
C�-carbon root-mean-squared deviation (or C�RMSD). C�RMSD, or simply
RMSD, satisfies the triangle inequality for fragments of equal length. Our
methods are also applicable to other distance measures.

2.1.2 Structural space We generated the structural space from the 40
proteins in Table 1A, selected from the PDB. We observed that over 99% of
the sequence/structural segments from the CASP7 proteins are covered by
the structural fragments from these proteins.

ROSETTA and TASSER use similar approaches, selecting the fragments
directly from the PDB (Berman et al., 2000). It is also possible to use the
existing independent libraries, such as Kolodny’s fragment library (Kolodny
et al., 2002). It is not important which method to use, so long as we ensure
that any structural fragment can find at least one resemblance in our structural
space within some distance threshold.

2.2 Generalized linear model
It is reasonable to assume that introducing more structural information
will help structural fragment prediction. However, how to combine these
information items remains a difficulty. In this article, we design an
integer linear programming model to integrate both sequence and structural
information items optimally.

Between each structural fragment sei in the structural space and each
sequence segment qej , a feature vector, V i,j =〈vi,j

1 ,...,vi,j
d 〉, of length

d =4×9, will be computed to measure how well sei and qej match, for
1≤ i≤q and 1≤ j≤p. Each entry in V i,j may be a linear or non-linear scoring
function. We label V i,j with +1 if dist(sei,nsj)≤�, and −1 otherwise.

Immediately, we may employ traditional machine learning approaches,
such as support vector machines (SVMs), to classify V i,j into two classes:
class +1 contains the feature vectors labelled with +1 and class −1 contain

i183

 at K
ing A

bdullah U
niversity of S

cience and T
echnology on M

arch 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

[20:25 18/6/03 Bioinformatics-btn165.tex] Page: i184 i182–i189

S.C.Li et al.

the feature vectors labelled with −1. Then the set of sei’s whose V i,j is
labelled +1 can be treated as the candidate list for qej . However, such an
approach is too simplistic for our case. We do not really need to classify all
the structural elements correctly. As a matter of fact, we do not care if most
of the structural elements are classified wrongly. We only need at least one
(or a few) of the structural fragments for qej classified correctly. Often there
are close-to-native structural fragments for a particular sequence segment,
we are just interested in selecting a candidate list of size say k =25, and one
of them is native like. Furthermore k is a constant much smaller than the total
number of native-like structural fragments, hence we do not need to classify
most of the structural elements correctly. It is still possible to design an SVM
to classify subsets of k-elements with at least one element correct. However,
this significantly increases learning dimension hence requiring more data.
Furthermore, since the features are for individual elements, this approach is
less natural than our direct customized approach.

On the other hand, our classification task can be easily modelled by a
linear model, since a candidate list is separable by a hyperplane with high
probability. To see this, let us treat the feature vectors as high-dimensional
points. Suppose we have a set of random points, each point is labelled with
+1 or −1, we want to find a subset of the point set, such that the subset
contains at least one point with label +1. We first form the smallest convex
hull containing all points. For each vertex of the convex hull, if it is labelled
with +1, then we use a hyperplane to separate it from the rest. We are done.
The probability that no vertex on the hull is labelled with +1 can be estimated
as 1−(1−P)|H|, where P is the probability that a point is in class +1 and |H|
is the expected number of points on the convex hull. According to Sims and
Kim (2006), P≈ (1/1.6)9 =0.015 for fragments of length 9. According to
Efron (1965), we may assume |H| is sufficiently large to make 1−(1−P)|H|
approach to 1. Thus, with high probability, a linear separator can be trivially
obtained.

These two observations have inspired us to design a system of linear
models to solve our problem.

2.2.1 A generalized linear model formulation. A general linear model has
the form:

y(x,w)=w0 +
M∑

k=1

wk�k(x) (2)

where w= (w0,...,wM)T , x is the input data, and (�1,...,�M)T are the basis
functions. Here, w is the weight vector or the parameters we want to train,
and w0 is called a bias parameter and used for any fixed offset in the data.
The basis functions, the �k’s, are generally non-linear and are applied to the
original data variables. In a linear model, y(x,w) is a non-linear function of
the input variables due to the non-linearity of the basis functions. We refer
readers to Bishop (2006) for comprehensive treatment of the linear models.

We now generalize the spirit of linear model, Equation (2), to design an
integer linear program (ILP) to model our problem. As mentioned above, we
use a feature vector V i,j =〈vi,j

1 ,...,vi,j
d 〉 to measure the similarity between

a structural fragment sei and a sequence segment qej . Without loss of
generality, we assume −1≤vi,j

l ≤1. Each structural fragment sei is associated
with a weight vector W i =〈wi

1,...,w
i
d〉. The distance between a structural

fragment sei and a sequence segment qej is computed by the dot product
between W i and V i,j :

Di,j =
d∑

l=1

wi
lv

i,j
l (3)

Thus, V i,j =〈vi,j
1 ,...,vi,j

d 〉 may be regarded as a set of basis functions, the
�k’s, and we wish to adjust the parameters W i =〈wi

1,...,w
i
d〉 so that for

some nj , where senj is a ‘native-like’ structure for qej , Dnj ,j is ranked top k
among other Di,j’s for 1≤ i≤q. Thus we actually have a system of pq linear
models, for 1≤ i≤q and 1≤ j≤p. Also note that we only train one set of
W i =〈wi

1,...,w
i
d〉 for each structural element sei, and eventually we require

only one of the Di,j’s, 1≤ i≤q, which is a native-like structure for qej , to be
ranked well.

This model is generic. Although we assume a linear combination of the
features, we do not assume any linearity about vi,j

l ’s, and they can contain
quadratic terms and so on. For example, in Equation (1), a feature vector
with length 180 is used. Each structure or sequence segment of length 9 is
represented by 9×20 frequency distribution matrices. The feature vector has
a size 180, and each entry is the absolute value of the difference between the
corresponding entries. Here the V i,j values are pre-calculated.

Now, our task is to train the W i’s. We used the 30 protein sequences,
whose structures are known, in Table 1B as the Training Set. We parsed
these proteins, length 9, Step 1, to obtain the set of qej’s. The Structure
Space sei’s are obtained from the 40 proteins, also with known structures, in
Table 1A.

For each sequence segment qej , we pre-compute Qj , the set of structural
fragments which have a distance to qej’s native structure less than the
distance threshold �. Our objective here is to optimize the weights, the Wi’s,
of the distance function such that we have a distance function that ranks
at least k′ element in Qj well. In the following formulation, we use k′ =1
for the simplicity of presentation. We can easily extend the above model to
the case such that in each candidate lists, at least k′, 1≤k′ ≤k, native-like
structures are included.

For 1≤ i≤q, indexing the structural space and 1≤ j≤p, indexing the
sequence segments, the ILP is as follows:

min
p∑

j=1

gj (4)

Dnj ,j −Di,j ≤dnj ,i,j(2+�)−�,nj ∈Qj,i /∈Qj,∀j (5)
∑

1≤i≤q,i/∈Qj

dnj ,i,j ≤k−1+fnj ,j(q−(k−1)),n∈Qj,∀j (6)

∑

nj∈Qj

fnj ,j ≤|Qj|−1+gj,∀j (7)

d∑

l=1

wj
l ≤1,∀j (8)

dnj ,i,j,fnj ,j,gj ∈{0,1},wj
i ∈[0,1]

We now interpret the above ILP formulation.

• Variable gj =1 indicates no element in Qj is included as one of the k
elements for Sj . The objective of the ILP, Equation (3), is therefore to
minimize

∑p
j=1 gj .

• The constant � in Equation (4) is created as a gap to separate the native
and non-native-like structural fragments. Ideally we want to have the
parameter settings such that:

Dnj ,j +�≤Di,j (9)

where senj is a native-like structure for qej , and sei is a non-native-like
structure for qej . Equation (4) is used to achieve this goal. It is clear
that −2≤Dnj ,j −Di,j ≤2. If dnj ,i,j =0, we rank the near native-like
structure senj better than the non-native-like structure sei.

• Equation (5) intends to check if a native-like structure senj is in the
candidate list of size k. If fnj ,j =0, then the number of non-native-like
structural fragments for qej that scores higher than senj ∈Qj is less than
k. When this fails, fnj ,j =1.

• If gj =0, Equation (6) ensures that at least one near native structure
in Qj for sequence segment qej is in its candidate list. The objective
function Equation (3) is used to minimize the number of sequence
segments whose candidate list of size k does not contain a near native
structure. Equation (7) is just to normalize the parameter distributions.

2.3 Basis functions: the Vi,j’s
The basis functions we use in this article are the entries extracted from the
sequence and structural information. Specifically, 4×� entries, the vi,j

l ’s, are

i184

 at K
ing A

bdullah U
niversity of S

cience and T
echnology on M

arch 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

[20:25 18/6/03 Bioinformatics-btn165.tex] Page: i185 i182–i189

Designing succinct structural alphabets

created for each structural fragment and sequence segment pair. That is, for
each sei and qej pair, the V i,j feature vector has d =36 entries (i.e. the �k’s),
with four entries, corresponding to the four types of scores below, for each
position.

For simplicity, in this section, we denote a structural fragment as se,
and denote a sequence segment as qe, without superscripts. They both have
length �=9. The i-th positions of qe and se are denoted as qe[i] and se[i],
respectively. For each position i, the following four types of score entries
are created.

2.3.1 Mutation scores Mutation score is similar to that of ROSETTA, as
shown in Equation (1), which is to compute the similarity score between
profiles. The profiles for both the template and the sequence are obtained
from 5-rounds of PSI-BLAST with a cutoff of 9×10−4. Mutation score
between se and qe consists of � entries. One entry is calculated for each
corresponding pair of positions. The value at position i, 1≤ i≤� is defined
to be:

20∑

aa=1

S(aa,i)×log
X(aa,i)

S(aa,i)
(10)

where we recall from Equation (1) that S(aa,i) and X(aa,i) are the
frequencies of amino acid aa at position i for sequence segment and structural
fragment, respectively. We have tested other possibilities, such as the City
Block Metric, dot product and the one from Kim et al. (2003). We found that
Equation (??) is slightly more stable.

2.3.2 Secondary structure score This term is to measure the similarity
between the secondary structure of sej and that of qej . The secondary
structure for a structural element sej is computed by DSSP, (Kabsch and
Sander, 1983). The secondary structure of a sequence is predicted by
PSIPRED (Jones, 1999), then it is parsed into qej’s. The program predicts
the confidences �i, �i and li for position i to be �-helix, �-sheet and loop,
respectively.

The secondary structure score computation at position i is from Xu (2005):

• If the secondary structure type of se[i] is �-helix, then we use �i −li

• If the secondary structure type of se[i] is �-sheet, then we use �i −li

• If it is loop, we just use 0.

2.3.3 Contact capacity score For each structural position se[i], a contact
number ni is calculated. There is a contact between two residues if the
distance between their C� atoms is within a given cutoff 7 Å. Contact capacity
is to measure the capacity that a residue has c contacts with any other residues
in a protein.

Given a protein structure, let N(aa,c) be the number of residues with type
aa and c contacts, N(c) be the total number of residues having c contacts,
N(aa) be the number of residues with type aa and N be the total number of
residues. Then for an amino acid type aa, the capacity to have c contacts is
defined to be:

CC(c,aa)=−log
N ×N(aa,c)

N(c)N(aa)

The contact capacity score for position i is computed as:
∑20

aa=1 S(aa,i)×
CC(ni,aa).

2.3.4 Environmental fitness score The environment for each structural
position is defined by the combination of secondary structure type and solvent
accessibility. Three secondary structure types are used: �-helix, �-strand or
loop; and three accessibility levels are defined: buried, intermediate and
accessible. So in total there are nine states of the structural environment
and each structural position has one of the nine environmental states. Let
F(Ei,aa) be the fitness score for an amino acid aa in environment state Ei.
The fitness score between se[i] and qe[i] is calculated as:

∑20
aa=1 S(aa,i)×

F(Ei,aa). For more details, we refer the readers to Kim et al. (2003).

3 RESULTS
We have implemented FRazor with C++, on Linux. The ILP is
implemented with the package CPLEX. Additionally, we built some
heuristics into the program in the case that ILP cannot find an optimal
solution within a reasonable amount of time.

3.1 Evaluation criteria
We use fragment coverage, local fit approximation and position
coverage as three evaluation criteria.

One way to evaluate the significance of selected structural
fragments for each target is to simply count the percentage of
sequence segments covered by the structural candidate lists for a
given structure distance threshold. This percentage is referred to as
fragment coverage.

Local fit approximation is a criterion developed in Kolodny
et al. (2002) to evaluate the quality of a fragment library. For each
sequence segment, the most similar structure in terms of RMSD
from the structural candidate list is calculated. Then we take the
average of the RMSD values over the entire sequence segment as
the local fit score.

However, a better approach for the protein prediction purpose is to
count the number of positions ‘correctly predicted’ in a target t. By
‘correctly predicting a position’ we mean that at least one sequence
segment containing the position is covered. The percentage of the
positions which are correctly predicted is referred to as position
coverage in this work. This criterion is also used by Simons et al.
(1997). The positions are divided into three cases �-helix, �-sheet,
and Loop. We evaluate the coverage for each type of positions.

First, we compare FRazor’s score function with ROSETTA’s
CBM. Then we show that our program does a much better job in
selecting structural candidates from a fragment library. Finally, we
show that the decoys assembled from the fragments generated by our
method have better quality than those from ROSETTA’s fragments.

3.2 Dataset
Our dataset consists of three parts: (1) Structure Space; (2) Training
Set and (3) Testing Set. The Structure Space is the collection
of structural fragments from which we can select the candidate
structural fragments for a sequence segment. Training set consists of
the fragments used to compute our parameters. Testing set contains
proteins for evaluating our method.

The proteins for Structure Space and Training Set are both from a
non-homologous (<30% homology) list with resolution <2 Å, dated
on March 26, 2006. The list of these proteins was created by the
program PISCES (Wang and Dunbrack, 2003), and totally there are
3177 chains. We used the first 70 chains. The Structure Space is made
from 40 protein chains as shown in Table 1, Panel A. We parse these
proteins with a sliding window of size �=9 and step size 1. Totally
there are 9658 residues. The resulting structural space consists of
9338 length-9 structural fragments. The training data consist of the
other 30 chains, which are also shown in Table 1, Panel B. We also
parse them into length-�=9 segments with sliding window of step
size 1. Totally there are 6584 residues.

For the Testing Set, we use proteins from CASP7 which were
created after April, 2006; there are in total 94 proteins. Also the
Testing Set are parsed into segments of length �=9. The CASP7
test proteins do not share high sequence identity with proteins in
PDB released before March 26, 2006, which contain proteins in our

i185

 at K
ing A

bdullah U
niversity of S

cience and T
echnology on M

arch 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

[20:25 18/6/03 Bioinformatics-btn165.tex] Page: i186 i182–i189

S.C.Li et al.

Table 1. Proteins for the Structure Space and Training Set

A. Structure Space
1ci4a 1zm8a 1j79a 1rlja 1zhva 1wlya 2a14a
2gc9a 1lg7a 1wkoa 1jfla 1t9ha 1lm5a 1kxoa
1xfia 1rqpa 1m15a 1z96a 1mla 1ail 1yksa
1q25a 1mj5a 2erba 2bsya 1lst 1g8aa 1wzca
1y9wa 1xkpc 1v4va 1se8a 1p9ha 1r17a 1qfta
1aol 1ju3a 1rsga 1atg 1s5aa

B. Training Set
1olra 2byca 1yb5a 1pbwa 1v0ea 1orva 1jb7b
2ftra 1fj2a 1fp2a 2foma 1xtta 1suua 1xuua
1w2wb 1viaa 1r9wa 1fj2a 1dmga 2ah5a 1tc5a
2az4a 1mzwb 1ef1c 1uvqc 1ikta 1xfsa 1zava
1vk5a 1oyga

The first 4 letters is the PDB code. The 5th letter is the chain id, missing for single
chains.

Table 2. Position coverage for CBM versus FRazor (FR)’s score function

�-Helix �-Sheet Loop Overall

θ CBM FR CBM FR CBM FR CBM FR

0.5 94.2 95.1 10.0 37.6 26.6 38.7 49.4 55.1
1 98.2 98.6 56.4 89.6 55.5 78.1 72.2 88.2
1.5 99.7 99.7 89.3 98.2 81.3 93.3 89.9 96.7
2 100 100 99.7 99.8 96.9 98.9 98.6 99.4
2.5 100 100 99.9 99.9 99.7 99.7 99.8 99.8
3 100 100 100 100 99.9 100 99.9 100
3.5 100 100 100 100 100 100 100 100

Position coverage (%) is displayed. The first column � (Å) is the native threshold. The
fragment candidate list size (k) is 25. The fragment length is 9.

Structure Space and Training Set. We also used six test proteins that
were used in previous studies in Simons et al. (1997), Kolodny et al.
(2002) and Hamelryck et al. (2006) to compare the quality of their
decoys assembled from FRazor’s fragments with that of ROSETTA’s
fragments. These six test proteins are: Protein A (PDB code 1FC2),
Homeodomain (1ENH), Protein G (2GB1), Cro repressor (2CRO),
Protein L7/L12 (1CTF) and Calbindin (4ICB).

3.3 FRazor versus CBM
It is an interesting question whether structural information, such
as secondary structure, solvent accessibility and contact capacity,
can help the prediction of structural fragments. In this experiment,
we explore this question by comparing FRazor against the CBM
model (Simons et al., 1997), where only sequence profile is used.
The experimental results are listed in Table 2, where the fragment
candidate list size is set to be 25, the number of templates used is
40, i.e. the 40 proteins in Table 1A, and the fragment length is 9.

Observe Table 2. With the threshold value as 0.5 Å, the position
coverage increases from 10.0% to 37.6%, and from 26.6% to 38.7%
for �-sheets and loops, respectively. With the threshold value as 1 Å,
the position coverage increases from 56.4% to 89.6%, and 55.5%
to 78.1% for �-sheets and loops, respectively. For threshold 1.5 Å,
significant improvement is observed for �-sheets and loops as well.

Table 3. Position coverage percentage (%) for CBM versus FRazor (FR) at
threshold value 1Å

�-Helix �-Sheet Loop Overall

k CMB FR CMB FR CMB FR CMB FR

5 90.5 96.6 34.2 65.6 40.3 59.8 60.7 75.1
10 97.2 97.5 42.4 79.1 46.1 67.9 65.1 81.5
15 97.8 99.3 49.5 82.1 50.6 70.5 68.6 85.0
20 98.1 98.0 53.6 85.1 53.5 73.0 70.8 86.4
25 98.2 98.6 56.4 89.6 55.5 78.1 72.2 86.4
30 98.3 98.7 59.9 90.8 57.4 79.6 73.6 88.2
35 98.5 98.8 61.5 92.0 58.5 81.1 74.5 90.0
40 98.7 99.0 63.5 92.9 59.5 82.3 75.4 90.8

The first column is the fragment candidate list size. The fragment length is 9.

Table 4. Fragment coverage and local fit score for threshold value as 1 Å

Fragment coverage (%) Local fit score (Å)

k CBM FRazor CBM FRazor

5 29.2 37.9 1.860 1.542
10 33.1 43.3 1.592 1.338
15 35.5 46.8 1.468 1.240
20 37.0 49.6 1.393 1.176
25 38.2 51.5 1.342 1.133
30 39.3 53.2 1.301 1.097
35 40.1 54.6 1.272 1.072
40 40.8 55.6 1.247 1.050

k is fragment candidate list size. The fragment length is 9. The threshold value is 1 Å.

Overall, we can have a position coverage 88.2% and 96.7% for
threshold value 1 Å and 1.5 Å , respectively, and the two values for
CBM are 72.2% and 89.9%. While the improvement for �-helix
looks small, because there is nothing much left to improve upon,
FRazor still made 20% improvement over the remaining gap, for
0.5 Å and 1 Å.

In Table 3, we fix the threshold value as 1 Å and we compare
the results by varying the candidate list size. The position coverage
is displayed. The improvement for �-sheets is more than 30% on
average with the same candidate list size. The improvement for loops
is more than 20% on average for all the cases. From the table we can
see that, the position coverage is increased from 56.4% to 79.1%,
and from 55.5% to 67.9% for �-sheets and loops, respectively, while
reducing the fragment candidate size from 25 to 10 simultaneously.
By using 5 as the candidate list size, FRazor’s performance is better
than that of CBM with 40 as fragment candidate list size for �-sheets
and loops. Also with using 15 as the candidate list size, FRazor’s
performance is better than CBM with 40 as the candidate list size in
all the cases.

Table 4 shows the results of fragment coverage and local fit
criteria. In Table 4, we fix the threshold value as 1 Å and we compare
the results by varying the candidate list size. This table demonstrates
that FRazor with candidate list size 10 has higher fragment coverage

i186

 at K
ing A

bdullah U
niversity of S

cience and T
echnology on M

arch 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

[20:25 18/6/03 Bioinformatics-btn165.tex] Page: i187 i182–i189

Designing succinct structural alphabets

Table 5. Customized fragment lists versus independent fragment libraries

Fragment coverage (%) Local fit score (Å)

L or k KFL FRazor KFL FRazor

25 – 45.3 – 0.763
50 36.2 40.5 0.754 0.667
100 40.7 55.7 0.673 0.589
150 43.3 58.6 0.633 0.554
200 44.0 60.4 0.603 0.531
250 46.3 61.8 0.585 0.515

This first column is the fragment candidate list size for FRazor, and the library size for
Kolodny’s libraries. Fragment coverage (%) at threshold 0.5 Å is shown for Kolodny’s
fragment libraries (KFL) at Column 2 and for FRazor’s distance function at Column 3,
respectively.

than the fragment coverage of CBM with candidate list size 40, with
scores 43.3% and 40.8%, respectively.

For all these evaluation criteria, we can safely draw a conclusion
that FRazor is able to identify compact candidate lists for
sequence segments. Besides the results reported, we conducted
experiments on varying the fragment length and candidate list size.
These experimental results suggest that FRazor is stable and robust,
and consistent improvement is observed.

3.4 Selecting fragments from a library
Sequence-specific fragment candidate lists are able to model a
protein more accurately than an independent fragment library. In this
section, we show that FRazor can produce a more accurate fragment
candidate list than an independent library by comparing to the
fragment libraries from Kolodny et al. (2002). From another aspect
that each structural fragment can be mapped to an entry in a fragment
library, FRazor is able to select a subset of fragments from a library
for a sequence segment. The libraries from Kolodny et al. (2002)
with fragment length 7 are used, and the library sizes are 50, 100,
150, 200 and 250. In order to have a fair comparison, we re-evaluated
the performances of these libraries on our test data. Denote the
library size as L.

Table 5 shows the results of Kolodny library, and FRazor’s
customized lists. By using candidate list size 25, the fragment
coverage score is better than the library with 200 fragments. The
local fit score by using 100 fragments is comparable with a fragment
library size 250.

3.5 Application to protein structure prediction
We also compared FRazor with ROSETTA’s fragment generation
module. This ultimate test is to examine the quality of the
decoys folded from the fragments generated by FRazor. We
replaced ROSETTA’s fragment generation method by FRazor to
test its accuracy. To fairly evaluate FRazor, we used ROSETTA’s
energy function and its default setting. The ROSETTA’s fragment
generation code is obtained from the ROSETTA package (version
2.0.1). For both FRazor and ROSETTA’s fragment generation
module, their structural fragments are selected from the same set of
40 proteins, which is included in ROSETTA’s fragment generation
module. Note that these are different 40 proteins from Table 1A.

Table 6. Decoy quality comparison between ROSETTA and FRazor

Target protein ROSETTA FRazor

Name L �,� % Best Avg % Best Avg

1FC2 43 2,0 20.5 2.59 7.3 38.6 2.60 6.4
1ENH 54 2,0 39.5 3.06 7.3 53.8 2.61 6.4
2GB1 56 1,4 89.8 1.88 4.3 90.6 2.04 4.4
2CRO 65 5,0 40.6 3.02 6.7 67.2 2.57 5.8
1CTF 68 3,3 9.2 3.42 9.1 11.0 3.14 8.4
4ICB 76 4,0 2.8 4.74 9.4 2.6 4.81 9.6

The first column is protein name given as PDB code. L is sequence length. Third column
is number of �-helices and �-stands. Column 4–6 give the percentage (%) of the good
decoys with RMSD <6.0 Å, RMSD of the best decoy (Best), and average RMSD (Avg)
of all decoys by ROSETTA. Column 7–9 give the corresponding values for FRazor.

We used the same 30 proteins in Table 1B to train. Using FRazor
instead of ROSETTA’s fragment generation module, with everything
else remain unchanged, we demonstrate that FRazor improves
structure prediction accuracy significantly.

We used the six proteins that were used in previous studies
(Hamelryck et al., 2006; Kolodny et al., 2002; Simons et al.,
1997) to evaluate FRazor. We assembled 1000 decoys for each
protein using structural fragments generated from both FRazor and
ROSETTA, respectively, and then compared FRazor and ROSETTA
in terms of the percentage of good decoys1 and the average RMSD
of all the 1000 decoys. As shown in Table 6, FRazor can generate
1.8–26% more good decoys than ROSETTA’s fragment generation
method. The average RMSD of the decoys generated by FRazor
is also much smaller for four of the six test proteins. For the
other two test proteins, both FRazor and ROSETTA have similar
average RMSD.

FRazor also generated the best decoys with better RMSDs.
For example, the best decoy generated by FRazor for the Cro
repressor protein (PDB code 2CRO) has a much lower RMSD to
its native structure than that generated by ROSETTA. As shown in
Figure 1, the first is the best decoy for the Cro repressor protein
generated by ROSETTA with RMSD 3.02 Å, the second is the best
decoy generated by FRazor with RMSD 2.57 Å, and the third is
the native structure. In addition to the Cro repressor protein, the
best decoys for both Homeodomain (PDB code 1ENH) and Protein
L7/L12 generated (PDB code 1CTF) by FRazor also have much
lower RMSDs than the best generated by ROSETTA. For the other
three proteins 1FC2, 2GB1 and 4ICB, their best decoys generated
by ROSETTA are slightly better than those by FRazor.

4 DISCUSSION
Our results illustrate that structural information can help the
accurate prediction of structural fragments for a sequence segment.
Our experimental results demonstrate that our method generates
structural fragments of significantly better quality, compared to
ROSETTA’s fragment generator and Kolodny’s library. This is
further justified by the end results of decoys generation.

1A decoy is good if its RMSD to the native structure is less than 6 Å.

i187

 at K
ing A

bdullah U
niversity of S

cience and T
echnology on M

arch 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

[20:25 18/6/03 Bioinformatics-btn165.tex] Page: i188 i182–i189

S.C.Li et al.

(a) The best decoy by ROSETTA (RMSD 3.02Å)

(b) The best decoy by FRazor (RMSD 2.57Å)

Fig. 1. Best decoys generated by ROSETTA and FRazor for the Cro
repressor protein 2CRO.

We have generated our fragment library based on 40 proteins.
Currently we are in the process of extending this to a much
larger set of representative proteins. The scoring function we used
to map a sequence segment to a structural fragment consists of
mutation score, secondary structure score, contact capacity score,
and environment fitness score. To improve the performance, a
natural idea is to use more scoring terms. A promising way is to
combine the scores from threading results, like the case in Zhang
et al. (2005), Zhang (2007). Currently all the scoring terms depend
on only a single position, which implies that residues in a protein
sequence are assumed to be independent. However, some residues
are obviously correlated, and it may obtain better performance if we
encode the correlation information into our scoring function. The
challenge to do so is to deal with the sparsity in training data since
there will be many more parameters to be trained. We may use some
regularization technique to resolve this issue.

Our work significantly improves the accuracy of �-sheet and loop
positions, and this gives us the possibility of predicting loop regions
more accurately. This work is underway. The program can also
assign weights to the positions of a structure automatically. This
might be useful for identifying structure motifs. A position with a
small weight may imply this position is unstable.

ACKNOWLEDGEMENTS
We thank David Baker and his ROSETTA group, for developing and
allowing us using the ROSETTA program, and ISMB’08 referees
for helpful comments.

Funding: This work is supported by NSERC OGP0046506, the
Canada Research Chair program and MITACS, and was made
possible by the facilities of the SHARCNET (www.sharcnet.ca).

D.B. was also partially supported by a Chinese Government
Scholarship Program and an NSFC grant 60496320.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.
Berman,H.M. et al. (2000) The protein data bank. Nucleic Acids Res., 28, 235–242.
Bishop,C.M. (2006) Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer.
Bowie,J.U. and Eisenberg,D. (1994)An evolutionary approach to folding small �-helical

proteins that uses sequence information and an empirical guiding fitness function.
Proc. Natl Acad. Sci., 91, 4436–4440.

Bradley,P. et al. (2003) Rosetta predictions in CASP5: successes, failures, and prospects
for complete automation. Proteins Struct. Funct. Genet., 53 (Suppl. 6), 457–468.

De Brevern,A. et al. (2004) Local backbone structure prediction of proteins. In Silico
Biol., 4, 381–386.

Chivian,D. et al. (2005) Rosetta predictions in CASP5: successes, failures, and prospects
for complete automation. Proteins Struct. Funct. Genet, 61 (Suppl. 7), 157–166.

Claessens,M. et al. (1989) Modelling the polypeptide backbone with ‘spare parts’ from
known protein structures. Protein Eng., 2, 335–345.

Efron,B. (1965) The convex hull of a random set of points. Biometrika, 52, 331–343.
Fidelis,K. et al. (1994) Comparison of systematic search and database methods for

constructing segments of protein structure. Protein Eng., 7, 953–960.
Hamelryck,T. et al. (2006) Sampling realistic protein conformations using local

structural bias. PLoS Computat. Biol., 2, e131.
Haspel,N. et al. (2003) Reducing the computational complexity of protein folding via

fragment folding and assembly. Protein Sci., 12, 1177–1187.
Holmesand,J.B. and Tsai,J. (2004) Some fundamental aspects of building protein

structures from fragment libraries. Protein Sci., 13, 1636–1650.
Inbar,Y. et al. (2003) Protein structure prediction via combinatorial assembly of sub-

structural units. Bioinformatics, 19 (Suppl. 1), 158–168.
Jones,D.T. (1999) Protein secondary structure prediction based on position-specific

scoring matrices. J. Mol. Biol., 292, 195–202.
Jones,T.A. and Thirup,S. (1986) Using known substructures in protein model building

and crystallography. EMBO J., 5, 819–823.
Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers, 22,
2577–2637.

Kim,D. et al. (2003) PROSPECT II: protein structure prediction program for genome-
scale applications. Protein Eng., 16, 641–650.

Kolodny,R. et al. (2002) Small libraries of protein fragments model native protein
structures accurately. J. Mol. Biol., 323, 297–307.

Lee,J. et al. (2005) Protein structure prediction based on fragment assembly and
parameter optimization. Biophys. Chem., 115, 209–214.

Levitt,M. (1992) Accurate modeling of protein conformation by automatic segment
matching. J. Mol. Biol., 226, 507–533.

Li,S.C. et al. (2007) FALCON: zero in on the native protein structure. Technical Report,
University of Waterloo.

Lovell,S.C. et al. (2003) Ab initio construction of polypeptide fragments: efficient
generation of accurate, representative ensembles. Proteins, 51, 41–55.

Moult,J. et al. (2005) Critical assessment of methods of protein structure prediction
(casp):round 6. Proteins Struct. Funct. Genet., 61, 3–7.

Pauling,L. and Corey,R.B. (1951) The pleated sheet, a new layer configuration of
polypeptide chains. Proc. Natl Acad. Sci., 37, 251–256.

Rohl,C.A. et al. (2004) Protein structure prediction using Rosetta. Methods Enzymol.,
383, 66–93.

Simon,I. et al. (1991) Calculation of protein conformation as an assembly of stable
overlapping segments: application to Bovine pancreatic trypsin inhibitor. Proc. Natl
Acad. Sci., 88, 3661–3665.

Simons,K.T. et al. (1997) Assembly of protein tertiary structures from fragments with
similar local sequences using simulated annealing and Bayesian scoring functions.
J. Mol. Biol., 268.

Sims,G.E. and Kim,S.H. (2006) A method for evaluating the structural quality of protein
models by using higher-order varphi-psi pairs scoring. Proc. Natl Acad. Sci., 103,
4428–4432.

Sippl,M. (1993) Recognition of errors in three-dimensional structures of proteins.
Proteins, 17, 355–362.

i188

 at K
ing A

bdullah U
niversity of S

cience and T
echnology on M

arch 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

[20:25 18/6/03 Bioinformatics-btn165.tex] Page: i189 i182–i189

Designing succinct structural alphabets

Unger,R. et al. (1989) A 3D building blocks approach to analyzing and predicting
structure of proteins. Proteins Struct. Funct. Genet., 5, 355–373.

Wendoloski,J.J. and Salemme,F.R. (1992) Probit: a statistical approach to modeling
proteins from partial coordinate data using substructure libraries. J. Mol. Graph.,
10, 124–126.

Wang,G. and Dunbrack,R.L.,Jr. (2003) PISCES: a protein sequence culling server.
Bioinformatics, 19, 1589–1591.

Xu,J. (2005) Fold recognition by predicted alignment accuracy. IEEE/ACM Trans.
Comput. Biol. Bioinform., 2, 157–165.

Zhang,Y. (2007) Template-based modeling and free modeling by I-TASSER in CASP7.
Proteins, (Suppl. 8).

Zhang,Y. et al. (2005) TASSER: an automated method for the prediction
of protein tertiary structures in CASP6. Proteins, 61 (Suppl. 7),
91–98.

i189

 at K
ing A

bdullah U
niversity of S

cience and T
echnology on M

arch 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

	Designing succinct structural alphabets
	Shuai Cheng Li, Dongbo Bu, Xin Gao, Jinbo Xu and Ming Li
	1 Introduction
	2 Methods
	3 Results
	4 Discussion

