
NUbugger: A Visual Real-Time Robot

Debugging System

Brendan Annable, David Budden and Alexandre Mendes

School of Electrical Engineering and Computer Science
Faculty of Engineering and Built Environment

The University of Newcastle, Callaghan, NSW, 2308, Australia.
{brendan.annable,david.budden}@uon.edu.au

alexandre.mendes@newcastle.edu.au

Abstract. As modern autonomous robots have improved in their abil-
ity to demonstrate human-like motor skills and reasoning, the size and
complexity of software systems have increased proportionally, with de-
velopers actively working to leverage the full processing performance of
next-generation computational hardware. This software complexity cor-
responds with increased difficulty in debugging low-level coding issues,
with the traditional methodology of inferring such issues from emergent
high-level behaviour rapidly approaching intractability. This paper de-
tails the development and functionality of NUbugger: a visual, real-time
and open source robot debugging utility that provides the user with com-
prehensive information regarding low-level functionality. This represents
a paradigm shift from corrective to preventative debugging, and concrete
examples of the application of NUbugger to the identification of funda-
mental implementation errors are described. The system implementation
facilitates simple and rapid extension or modification, making it a useful
utility for debugging any similar complex robotic framework.

Keywords: debugging, robotics, open source, visualisation

1 Introduction

The problem of developing a team of humanoid robots capable of defeating the
FIFA World Cup champion team, coined “The Millennium Challenge” [7], has
been a milestone that has driven research in the fields of artificial intelligence,
robotics and computer vision for over a decade. Corresponding with the contin-
ual improvement in a robot’s ability to demonstrate human-like motor skills and
reasoning is an exponential blowout in software size and complexity, facilitated
by the evolution of robot platforms and subsequent advances in processor perfor-
mance (from the 384 MHz RISC-based processors of the Sony AIBO ERS-210
(2002) to the 1.6 GHz Intel Atom processors of the Robotis DARwIn-OP [5]
platform (2012)); a trend often inferred from Moore’s Law [10].

As with any system of software or hardware, exponential increases in system
size and complexity necessitate the introduction of hierarchial layers of abstrac-
tion, allowing low-level functionality to be handled transparently by higher-level



functions, classes and packages. As the majority of open source libraries are sup-
ported by large developer communities, one critical factor is often ignored: the
cascading effect of low-level errors, and the difficulty of locating the source of
such errors by qualitative observations of emergent system misbehaviour (such
as a robot refusing to kick a ball [2]). The probability of such low-level issues
is increased by a number of factors encountered in typical RoboCup research
environments: few team members handling a large number of issues, strict dead-
lines and the disjoint nature of development (both in terms of frequent developer
turnover and one-developer-per-subsystem strategies [8]).

An analogy may be drawn between complex robotic systems and biology,
where abnormalities in an organism’s genotype are almost exclusively identi-
fied and inferred from complex emergent behaviour (e.g. a disease or hereditary
trait) at the phenotypic level. Although determining the root cause of some
observed abnormalities is a straightforward process (such as genetic diseases
caused exclusively by single nucleotide polymorphisms [13]), more complex sys-
tem misbehaviour may be the result of a significantly larger number of low-level
contributing factors. Due to the massive complexity of biological systems and
the inability to make perfect observations at the genome-level, the exact system-
atic causes of many common diseases remain largely unknown, despite years of
research by very large teams.

Although robotic and biological systems are (to date) fundamentally different
in implementation, they exhibit two primary common traits: massive complexity
and high-level issues caused by nontrivial combinations of low-level implemen-
tation errors. In this sense, the above analogy provides a useful insight to com-
mon debugging methodologies; locating low-level issues by observing high-level
behaviour is an increasingly intractable problem. However, unlike in biological
systems, where network models are constructed and analysed to infer genotype
from phenotype, the “genome” of a robotic system (i.e. the low-level software
behaviour and environmental response) is directly observable in real-time. Con-
cretely, the following debugging methodologies are possible:

– Data Logs: Most robotic systems provide functionality for generating de-
bug logs, commonly enabled by setting the value of some debug verbosity

parameter at compile-time (such as per the NUbots system [8]). Once an
error has been appropriately reproduced, data logs are generated capturing
some of (and not limited to) the following information as a function of time:

• Sensor values (accelerometer, gyroscopes, pressure sensors, etc.)

• Servo positional values (from which kinematics and pose may be inferred)

• Current captured image, colour-classified image [1] and recognised fea-
tures

• Self-localisation belief and perceived location of dynamic features (such
as the ball in robot soccer [2])

This information may be later analysed (either manually or by applying
classification techniques for well-known errors) to discover the sources of
error.



– Visual Monitoring: Although a significant improvement over high-level in-
ferential debugging, data logs have three major shortcomings: limited mem-
ory resources restricting the amount or resolution of data that can be col-
lected; the requirement for an error to be reproducible, allowing it to be
captured in a log once debugging has been enabled; and the adoption of
a purely corrective (rather than preventative) debugging methodology. All
of these issues are addressed by a visual monitoring methodology, where all
critical system information is streamed in real-time to a graphical web client,
to be monitored by the user. Concretely, this addresses the aforementioned
issues in the following ways:

• Memory is expensive, but network communication is cheap. Large amounts
of information (including real-time video) may be streamed from a robot
to a corresponding web client for an effectively unlimited period of time.

• Uncommon issues may be immediately identified by the user, removing
the presumption of error reproducibility.

• Abnormalities in low level functionality (such as an incorrectly classified
image or reduced video frame-rate) may be identified and corrected be-
fore they are able to visually affect high-level behavioural performance.

This paper describes the implementation of NUbugger (Newcastle Univer-
sity’s Debugger); a visual, real-time and open source robot debugging utility
that addresses the aforementioned issues. Firstly, an overview of the system im-
plementation is provided, both in terms of high (system inputs, outputs and
architecture) and low-level (languages and library dependencies) application
structure. The main functionality of NUbugger is explained, with concrete visual
examples of the real-time information provided to the user. Finally, the signifi-
cance and outcomes of the system are justified by providing examples of actual
low-level errors in the NUbots RoboCup source code, that have been identified
and corrected as a direct result of NUbugger’s implementation.

2 Implementation

NUbugger implements a many-to-many service between robots and web clients,
via a single web server. Concretely, an arbitrary number of robots (3-4 in the
case of RoboCup humanoid league soccer) are able to stream real-time, low-
level system information wirelessly to a single web server (which may be a robot
in itself). This information is then distributed to an arbitrary number of web
clients, allowing users to monitor performance-critical visualisations of sensory
data and emergent high-level behaviour. This process is illustrated in Fig. 1.

Due to the complexity of streaming large quantities of data from a robot
(implemented in C++) to web server (implemented in JavaScript), and finally
to a lightweight web client for real time display, a number of libraries were utilised
to provide abstraction over low-level networking and visualisation mechanisms.
The following libraries facilitated rapid application development, in addition to
minimising the effort required for future extension or modification:



Robot #1 Robot #2 Robot #3 Robot #4

Web Server

Web Client #1 Web Client #2

Fig. 1. Visual representation of the many-to-many NUbugger implementation, allowing
multiple users to visualise the real-time performance of an arbitrary number of robots.
The selected libraries provide sufficient levels of abstraction over underlying network
communication that the robots and web clients need not be coded in the same language.

– ∅∅∅MQ: Referred to as “the intelligent transport layer” by developers iMa-
trix, ∅MQ is a high-performance, asynchronous message library facilitating
speed and control over low-level message passing [6]. It was chosen for im-
plementation of the raw transport layer from robot to web server due to
the ease of embedding into a pre-existing application; concretely, it provides
direct support for C++, in addition to providing simple abstractions over
multithreading and automatic reconnection.

– Protocol Buffers: Developed by Google, Protocol Buffers are a language-
independent, cross-platform and extensible mechanism for serialising struc-
tured data [4]. As ∅MQ only provides a transportation mechanism for raw
binary data, such structures are critical for the addition of application level
information. Protocol Buffers allows for objects to be created and trans-
ported across the network in a packed binary form, rather than an inefficient
ASCII representation (utilised by JSON or similar transport protocol alter-
natives). Language independence is realised in a manner that allows C++
structures to be transparently interpreted by the JavaScript browser client.

– Socket.IO: Developed by Guillermo Rauch, Socket.IO is a JavaScript li-
brary for real-time web applications [9], and was implemented as the raw
transport layer from web server to web client. Socket.IO was chosen due to
its native support for WebSockets (the only streaming technology natively
supported by most modern web browsers), in addition to its transparent
support of automatic reconnection and fall-back transport methods. As not
all transports supported by Socket.IO support binary, Base64 encoding was
applied.

– Express: Developed by VisionMedia, Express is a minimal and flexible
node.js web application framework, providing a robust set of features for
building single, multi-page and hybrid web applications [12]. Express was
chosen for web server implementation due to easy integration with the JavaScript



Robot Web Server Web Client

Protocol Buffers

ZMQ ZMQ SocketIO SocketIO

Protocol Buffers

Fig. 2. Visual representation of the flow of information between the various networking
packages implemented during the development of NUbugger. The selected libraries
provide sufficient levels of abstraction over underlying network communication that
the robots and web clients need not be coded in the same language.

web client, in addition to its low computational expense, which allows for
the option of running the web server directly on the robot (if other options
are not available).

– Three.js: Developed by Ricardo Cabello, Three.js is a lightweight, cross-
browser JavaScript library that allows animated 3-dimensional computer
graphics to be displayed directly within a web browser, by providing an ab-
stracted interface over WebGL [3]. It was implemented for the 3D rendering
of the main application display.

– Ext JS: Developed by Sencha, Ext JS is a pure JavaScript application frame-
work for building interactive web applications, using techniques such as Ajax,
DHTML and DOM scripting [11]. It provides several widget and component
templates that are commonly used within a web development context, and
was used for the implementation of movable, resizable and configuration
windows to contain each developed application user interface. Ext JS pro-
vides flexibility for future extensions to the user interface by allowing for the
simple addition of further displays.

The flow of information between the various networking packages is illustrated
in Fig. 2.

3 Functionality

As demonstrated in Sec. 2, the NUbugger implementation allows for critical sys-
tem information to be streamed in real time from robot (in this case the Robotis
DARwIn-OP [5]) to web client (via web server). Although readily modifiable and
extensible, the NUbots debugging environment currently consists of the following
elements:

– The main display, as demonstrated on the right half of Fig. 3. This interface
provides a visualisation the robots self-localisation belief (i.e. the position



Fig. 3. The NUbots configuration of the NUbugger utility, demonstrating: the main dis-
play (right), image display (top-right) and scrolling chart display (bottom-left). These
displays are able to be customised by the user to provide any manner of real-time
information from the robot.

and orientation of the rendered 3D model) and error (indicated by a trans-
parent purple ellipse), in addition to the current pose of the robot, which
utilises real-time accelerometer and servo positional data.

– An image display, as demonstrated on the top-left of Fig. 3 and Fig. 4b.
This interface provides an indication of what the robot sees in real time, and
includes a number of overlays to allow the user to visualise image classifica-
tion [1] or detected salient features [2].

– A scrolling chart display, as demonstrated on the bottom-left of Fig. 3 and
Fig. 4a. This interface is able to provide real-time data directly from any
number of the robot’s sensors, including: accelerometers (as demonstrated),
gyroscopes, pressure sensors and temperature monitors.

4 Conclusion

In the short time since its development, NUbugger has already been applied
with great success to the University of Newcastle’s NUbots RoboCup team [8].
Concretely, it has assisted with the following low-level issues:

– Video latency: A previous version of the NUbots vision system maintained
a buffer of 20 image frames [8], facilitating random access and explicitly en-
forcing thread-safe execution. Recent redevelopment of the vision system
removed the need for this functionality [2], and introduced conflicts prevent-
ing buffered frames from being accessed synchronously with sensor data.
This resulted in up to a 0.6 second latency in image processing; a significant



(a) (b)

Fig. 4. Two examples of NUbugger debugging interfaces: a) the scrolling chart display,
demonstrating real-time information from the robot’s 3-axis accelerometer; and b) the
image display, with an overlay demonstrating the correct identification of the ball [2].

issue which went undiscovered until streamed in real-time to the NUbugger
utility, despite causing an observable reduction in self-localisation accuracy
and overall system performance.

– Ball detection accuracy: An implementation error in the vision system
prevented the robot’s head pitch and yaw from being considered when pro-
jecting ball-localisation coordinates from image to field-plane, causing sig-
nificant inaccuracy whenever the robot was not facing directly ahead. This
was identified in the main NUbugger display, which provides an overlay of
the robot’s ball positional belief; rotating the robot’s head from side-to-side
caused the overlay to transcribe an arc about the robot, despite the fact that
the ball remained physically stationary.

– Camera firmware: The Robotis DARwIn-OP robot platform is equipped
with a Logitech C905 camera, which utilises the Linux UVC driver [5]. Al-
though this driver provides control over a large subset of fundamental camera
parameters (such as brightness and contrast), a small number of parameters
(including exposure, white balance and a number of proprietary Logitech
colour correction values) remain inaccessible. Although this is a known and
unresolved issue, NUbugger allows for instant detection of one of the resul-
tant errors: automatic white balance adjustment caused by lighting varia-
tions across the soccer field, resulting in a dramatic reduction in classification
accuracy and therefore object recognition performance. Once the white bal-
ance of the streaming images is observed to have changed, the robot may be
instantly substituted and restarted.

Although still in the process of active development, it is hoped that NUbug-
ger will be successfully adopted by other RoboCup teams. In recent weeks, it
has proven critical to the identification of low-level issues that were plaguing
system performance, but near-impossible to identify using traditional debugging



methodologies. The latest NUbugger source code is available for download at
https://github.com/nubots/NUbugger.

References

1. Budden, D., Fenn, S., Mendes, A., Chalup, S.: Evaluation of colour models for
computer vision using cluster validation techniques. In: RoboCup 2012: Robot
Soccer World Cup XVI. Springer (In Press)

2. Budden, D., Fenn, S., Walker, J., Mendes, A.: A novel approach to ball detection
for humanoid robot soccer. In: Advances in Artificial Intelligence (LNAI 7691).
Springer (2012)

3. Cabello, R.: Three.js. https://github.com/mrdoob/three.js/ (2013)
4. Google: Protocol Buffers. https://developers.google.com/protocol-buffers/

(2012)
5. Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.: Development of open humanoid

platform DARwIn-OP. In: SICE Annual Conference (SICE), 2011 Proceedings of.
pp. 2178–2181. IEEE (2011)

6. iMatrix: ∅MQ: The Intelligent Transport Layer. http://www.zeromq.org/ (2013)
7. Kitano, H., Asada, M.: The robocup humanoid challenge as the millennium chal-

lenge for advanced robotics. Advanced Robotics 13(8), 723–736 (1998)
8. Nicklin, S.P., Bhatia, S., Budden, D., King, R.A., Kulk, J., Walker, J., Wong, A.S.,

Chalup, S.K.: The nubots team description for 2011
9. Rauch, G.: Socket.IO. http://socket.io/ (2012)

10. Schaller, R.R.: Moore’s law: past, present and future. Spectrum, IEEE 34(6), 52–59
(1997)

11. Sencha: Sencha Ext JS: JavaScript Framework for Rich Desktop Apps. http://
www.sencha.com/products/extjs (2013)

12. VisionMedia: Express: Web application framework for node. http://expressjs.
com/ (2013)

13. Wang, D.G., Fan, J.B., Siao, C.J., Berno, A., Young, P., Sapolsky, R., Ghandour,
G., Perkins, N., Winchester, E., Spencer, J., et al.: Large-scale identification, map-
ping, and genotyping of single-nucleotide polymorphisms in the human genome.
Science 280(5366), 1077–1082 (1998)


