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Automatic speaker recognition in uncontrolled environments is a very
challenging task due to channel distortions, additive noise and reverberation. To
address these issuéBis thesis studieprobabilistic latent variable models of short
term spectral irdrmation that leverage large amounts of data to achieve robustness in
challenging conditions.

Current speaker recognition systems represent an entire speech utterance as a
single point in a higldimensional space. This representation is known as
A s u p ermr \dhicthesis starts by analyzing the pedies of this representatiof.
novel visualization procedure of supervectors is presented by which qualitative
insight about the information being captured is obtained. We then propose the use of
an overcommte dictionary to explicitly decompose a supervector into a speaker
specific component and an undesired variability component. An algorithm to learn the
dictionary from a large collection of data is discussed and analyzed. A subset of the

entries of the ditionary is learned to represent spealspecific information and



another subset to represent distortions. After encoding the supervector as a linear
combination of the dictionary entries, the undesired variability is removed by
discarding the contributioonf the distortion components. This paradigm is closely
related to the previously proposed paradigm of Joint Factor Analysis modeling of
supervectors. We establish a connection between the two approaches and show how
our proposed method provides improvemsan terms of computation and recognition
accuracy.

An alternative way to handle undesired variability in supervector
representations is to first project them into a lower dimensional space antbthen
model them in the reduced subspace. Thisdowensim al pr oj ecti-on 1 s Kk
vectoro. U +vdctors exhibit acrGaussyan behavipand direct statistical
modeling requires the use of heawjled distributions for optimal performance.
These approaches lack clodedn solutions and therefoe are hard to analyze.
Moreover, they do not scale well to large datasets. Instead of directly modeling i
vectors, we propose to first apply a Aorear transformation and then use a linear
Gaussian model. We present two alternative transformations andesiperimentally
that the transformedviectors can be optimally modeled by a simple lir@aussian
model (factor analysis). We evaluater method on a benchmark dataset with a large
amount of channel variability and show that the results compare by@gainst the
competitors. Also, our approach has clegmun solutions and scales gracefully to
large datasets.

Finally, a multiclassifier architecture trained on a multicondition fashion is

proposed to address the problem of speaker recognition iprésence of additive



noise. A large number of experiments are conducted wyzm the proposed
architectureand to obtain guidelines for optimal performance in noisy environments.
Overall, it is shown that multicondition training of mudiassifier archiectures not

only produces great robustness in the anticipated conditions, but also generalizes well

to unseen conditions
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Chapter 1

Introduction

Automatic speaker recognition is concerned with designing algorithms that
infer the identity of people by their voices. This is a very challenging task since the
speech signals are highly variable. The sources of variability can be classified in two
types:intrinsic and extrinsic. When interested in making inferences about identity,
intrinsic sources of variability include: the linguistic message, language, vocal effort,
speakingstyle, emotional and health stat&xtrinsic sources are the channel
distortions introduced by acquisition devices (e.g., telephones), and environmental
distortions like additive noise and room reverberation.

In order to design systems that are able to cope with such sources of
variability in a wide number of domainst leastthree key aqiestions need to be
addressedi) how to trainstatistical modelshat leverage large amounts of datal
are efficiently adapted to scenarios wihthited amounts of datai) how to capture

and represent diverse speakpecific information that novides complementary



robustness to dérent sources of variabilityil) how to adaptively select the optimal
available representation for the condition at hand.

To partially address the first questiomndmostlydue to the emphasis placed
by the NIST spaker recognition evaluatio4]" the main focus of the speaker
recognition community in the past decade has been on coping with channel mismatch
between speech samplés.particular, recent advances in speaker recognitionaire
necessarily due to new or better understanding of speaker characteristics that are
informative or interpretable by humans; rather, they are the result of improvements in
machine learning techniques that leverage large amounts of data.

Following this tend, in this thesis wécus on the first and third questions
mentioned above. Specifically, vedvance thestateof-the-artin speaker recognition
systens based onprobabilistic latent variable models ofhortterm spectral
information thatleverage larg amounts of dataBy doing so, we are abte obtain
significant rdustness to channelismatchas well as additive noise.

Before continuing witha more detailed exposition of th@ganization of this

thesis the next sectiomotivates thiswork by way of @ example

1.1. Motivation

Since 1996, the National Institute of Standards and Technology (NIST) has
organized yearly evaluations of automatic speaker recognition syglgnishis has
provided a benchmark by whidhe technological improvements can be objectively
assessed. The top panelFofure 1.1 shows how statef-the-art speaker verification

systemg representative of theegrs indicated in the horizontakisp would perform



on the latest NIST evaluation data of 2010 (data recorded by both landlines and cell

phones)[1]. The results are presented in terms of Equal Error Rate (EER) which

correspond to the value in which the probability of miss detection equals the

probability of false acceptancélotice that according to this datasean 8fold

improvement hasccurred within 10 yeardrom around 16%EER of a system from

2001to the2% of a system from 20)1

16
4L 15.66 %
=121
E/ 1(_1 L
mo8L
6L
A 5.17 % 0
,| 4.74 % 3520
0 1.98 %
2001 2004-2005 2006-2008 2010 2011
Representative year of NIST SRE evaluations
(@)
30+ 27.2%
25 L 23.0%
Y,
s 20L |[___] Babble noise
v 15 | ~ s 13.5%
= ; [ ] Carnoise 107
- 5,83 7.605%
. 1.43% 1.94% 2.21%
0l [ 1
Original 20 dB 10 dB 6 dB 0dB
SNR
(b)

Figurel.1: (a) Performance of the representative stditthe-art technologies of the years
the horizontal axis on telephone data from the latest NIST &@dldiation. (b) Performance
degradation in terms of Equal Error Rate (EER) of a sththe-art speaker verificatior
system as a function of SNR of the test data for babble and car noises.

! The numbers dFigure1.1 (a) were provided by Brno University of Technology.
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The numbers in the top panalovide acontext forthe resultsshown in the
lower part ofFigure1.1. In particularthelower panel showhow the performance of
a stateof-the-art systen{representative 011 decreases danction of the signal to
noise atio (SNR)of the test datéfor babble and car noised) system that produse
a2% EER in a 20dB scenario performs at a rate of around 14% for a 6 dBISNR
other words, & dB SNR producesa performance degradation eeplent tothe
improvements obtainedbver 10 years of research. Thorastic decrease in
performancellustrates the neefbr robust mechanisms and motivates the work of

this thesis.

1.2.Dissertation Outline

The goal of this thesis is to improve the robustnafssutomatic speaker
recognition systems so that they can be deployed in challenging scenarios in which
channel distortions, additive noise, and reverberation are pr&gpeuifically, weaim
at advancing the stateof-the-art in speaker recognition systspibased on
probabilistic generative modelsf shortterm spectralinformationp that leverage
large amounts of data.

The field of automatic speaker recognition is approximately 50 years old; with
some of the earliest work dating back to the 1960s. A largruanof research has
been conducted since then and great technological advances have been accomplished.
For this reason, Chapt@rpresents &rief summaryof the kasic concepts in the field

to provide a context for the work presented in this thesis.



A common theme among current speaker recognition systems based en short
time spectral information is the representation of a speech utterance as a single point
inahighdi mensi onal space. This reprandsadnt ati on
the systems studied in this thesis make us dZhiapter3 is dedicated to gaining a
better understanding about the nature of this representdtioravel visualization
procedureof supervectorsis presentedby which qualitative insight about the
information being captured can be obtained. Based on this vidi@lizgproach, the
Switchboardl database (SWH) is used toestablish aelationship between a data
driven partition of the acoustic space and a knowledge based partition in terms of
broad phonetic classes.

The supervector formalism presenteddhapter3 provides a mechanism to
obtain a fixedength representatioof a variable length objecHowever, the direct
use of this representation in a speaker recogniti@tesn is not optimal; since
supervectors not only capture speageecific information but also contain a large
amount of undesired variability entangled with the desired informatience, there
is a need for a mechanism to disentangle the spspkerfc information and the
undesired variability captured in the supervector representafibissis the objective
of the work presented in Chaptefs 5, and 6. The three chapters make use of
probabilistic generative models with lateatriables.

The use of speaker recognition systems based on supervector representations
modeled by Joint Factor Analysis (JFA) advanced the-sfafee-art significantly
from 2004 until 2008The main goal o€Chapter4 is to provide aconnection between

the JFAparaligm and the use afignal codingn overcomplete dictionaridearned



from data Establishing thisconnection allowedor crosspollination between fields
and resukd in two algorithmic improvements over the baselif@ Jystem. One
improvement camen the form of improved computatipwhereas the otheramein
terms of improved recognition accuracy.

A significant breakhrough occurred around 2010 by using a Factor Analysis
modelof supervectors as an unsupervised dimensionality reduction techjqLs3.
The computed fact-secsowedoeanenexpdi aist imode
specific and intesession variability was performed in this lovt@mensional space
However,i-vectors were shown to exhibit n@aussian behavior and complex non
Gaussian generative models were needed for optmediormance[4]. As an
alternative,Chapter5 proposes the use of twbfferentnonlinear transformations of
i-vectors b reduce the nonGaussian behavioAfter applying either one of these
transformationsij-vectorscan be successfulljnodeledby a simplelinearGaussian
model The proposed transformations are shown to be extremely effective and
produce the samer even bettemperfomance as the more complex alternatives
(Heavyt ai | ed mo d el s sh aistbdtions) nvhileS mainthiaimgt tie
simplicity and high scalability of the line&aussian modelfkesults are presented
on data from the latest NIST 2010 speaker recognéi@iuation. The performance
obtained for conditions with a high degreechinnel variabilitys stateof-the-art.

Also working with rvectors, Chapte6 explores noise robustnessA novel
multi-classifier architecturerained on a multicondition fashias proposedo address
the problem of speaker recognition in the presence of additive. #olarge number

of experiments areonducted toanalyze the proposed architectuasd to obtain



guidelinesfor optimal performance in noisy environmen®verall, it is shown that
multicondition training of multclassifier architecturesnot only produes great
robustness in the anticipated conditiortsut also generalize well to unseen
conditionsduring training The latest NIST 2010 evaluation data is used to validate
these results.

Finally, Chapter7 summarizes the contributions of this thesis and discusses

future perspectives.



Chapter 2

Speaker RecognitiolA Review

The earlyresearchon speaker recognition was almosntirely limited to
human listening and it was mostly motivated by the desire to produce natural
sounding speech frospeech coded$]. Althoughthe synthetic speecgenerated by
the vocodersvas quite intelligible, itwas only partially successful in carryirige
speakesspecific information necessary to easily identify the speaRéris problem
motivated someinitial research about the factors that carry speagecific
information in the speech sigr&l.

In the midst of thesetidies in the early 1960sthe influential (and highly
controversid) work of Lawrence Kerstaabout visual spectrographic voice
identificationwas published7]. The results of this workthe availability of digital

computersand the curiosity to see if machines could duplicate human performance,

2The use of the term fivoiceprinto, in an attempt to equate spe
created fals expectations about the reliability of visual inspection of spectrograms. Numerous criticisms have been presented
with respect to the term fivoiceprinto si n(94,[89tandirefprerceses t he beh
therein for more details).

8



motivated one of thérst attempts at automatic speaker recognibgrPruzanskys8]j.

In this pioneering worka longterm average spectrum feature weavas computed
using a filterbank. Then, a similaritgcore was obtainedby a simple Euclidean
distance. Improvements upon this early work came in the form miodified
representations afpectralinformation[9]; alternativesources of speaker information
(prosody) [10], better modeling of the temporal dynamigkl], and improved
statistical modeling12].

According to the historical reviewfd-urui [13], the first fully automated
largescale(hundreds of speakerspeaker verification system with a high operational
performance wasevelopedoy Texas InstrumenSince then, the field of automatic
speaker recognitiohas attracted a lot of attention and significant progress has been
made both in the way the speake&fiormation is captured as well as the statistical
modeling techniques. A large number of reviews/tutorials have been published over
the years. Two of thenost recent ones af&4] and[13]. Also, less recenbut still
quite instructiveare the classical reviews Gampbell[15] and Atal[5].

In the following, we present a succinct exposition of some basic concepts
necessary to contextualize the work presented in this tfnefasring the reader to the
abovementioned reviews for details). First we describe important sources of speaker
specifc information in the speech signals. Then we provateme technical
definitions and applications of speaker recognitystems This is followed by an
overview of the basic constituent elements of aegerspeaker recognition system.

Moreover, the classal paradigm of speaker recognition basedGaussian Mixture



Modelsis reviewed Finally, we survey some of the most common techniggesl to

add robustness to speaker recognition systems.

2.1.Speaker Specific Information in the Speech Signal

The speech siwl is produced by the interaction of three mechanisms: the
lungs, the vocal folds in the larymand the articulators. The lungs produce the
airflow that is modulated by the vibration of twecal folds in the larynx The
resulting acoustic signal is fimr transformed by theomplex orchestration dhe
articulabrsp configurableelements of the voice production mechanism such as the
tongue, jawsoft-palate andips. Changes in the way the vocal fold vibrate (including
no vibration), and the vocal trashape resulting from the wfiguration of the
articulatorsare reflected o the acoustical properties of the sigidany outstanding
reviews exist about speech physiology (for examflé]). Here we will focus on

those aspestthat are particularly relevant to the identity of the speaker.

L High l;"'e'. ) Hard automatic
earned trait :
Semantic, lexical ideolects, Social status, education, place extraction
N phonotactics of birth AN
Rithm, speaking rate, pitch Personality, influence from
contours, energy modulations parents
— Spectro-temporal patterns of Anatomical structure of the —
Low level CNnergy vocal tract Easy automatic
(Physical trait) extraction

Figure2.1: Hierarchy of speakespecific information and associated determinant factors.

The speech signal conveys information aboutpimgsical, psychological and

social characteristics of the speal&r]. This information is present at different
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levels. Figure 2.1 showsa possible hierarchical classificatiari these sources of
informationas well as some associated factors.

Human listeners use these sources of information in a natural way to
discriminate among speakeE3]. The idiosyncratic combination of these sources
(e.g., low pitch, peculiar timbre, unique laughter, word choice, etc) facilitates an
accurate identificationlt is the unique relationship between these features that
characteri zes an i mhdman listedners, lthére is a bigidiffezent Al s o,
in the way identification is carriedub depending on the familiarity of the listener
with the speaker (e.g., parents, spouse, children[l8t)However, this distinction is
not curently applicable to automatic speaker recognition syst&osethelessthe
way automatic speaker recognition is carried oufcasisistent with the theory

presentedin Chapter 6 0f18], about how humans discriminate betwegtiamiliar

voices.
HIGH LEVEL | > LOW LEVEL
SEMANTIC
DIALOG LEXICAL PHONETIC PROSODIC SPECTRAL
€-—-—--- > €--—--- > € ————— e m e — = >
Message M Linguistic W | Articulatory S Acoustic A
sources channel channel channel
P(M) P(W|M) P(S|W, M) P(A[S, W, M)
Message M coded Word W realized Sound S
as a sequence of as a sequence of transmitted
words W sounds S resultsin A

Figure2.2: Informationtheoretic model of speech production. (Adapted ffbej).

The underlying factors conditioning each of these sourcésgure 2.1 are
very diverse. From a hierarchical perspective, at the lowest level, the physical
characteristics of the individual, as well as the anatomical characteristics of the vocal

tract, are refleted on the specttemporal composition of the signal. At theghest
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level, the habits and customs learned over a long period efaimthe primal factors
in the selection of words and semantic structures to convey a message.

Nowadays, one of the mosticcessfuframeworks for speech recognition is
based on the formulation of the speech production chain in terms of an information
theoretic mode[20]. This perspective provides a very useful conceptual framework
that has alspermeated to the area of automatic speaker recogfitignFrom this
framework, Figure 2.2 shows the constituent stages of the spg@olduction chain
along with a hierarchy of the related levels of speakecific information. There are
two main types of processes involved in this chain. On the one hand, there are
psychological processes relatedhe higher levels of information. Qhe other hand,
the lower levels of the hierarchy are associated with physiological pescé@se
high-complexity and elevateddegree of abstraction that characterizethe
psychologicaprocesses providespartial explanation about the difficulty invotven
the automatic extraction of the associated sources of spgad@fic information.

Analyzing Figure 2.2 in detail we can observe that the starting from an
intenckd message M, the speaker selects a sequence of words W (modeled by the
linguistic channel). At this level of abstraction, there are potential sources of speaker
specific information such as the particular tendencies to convey meaning as well as
the convesational patterns of an individug®2]. Moreover, with respect to the
linguistic channel, the particular word selection to convey a given message is also a
potential source of information. Therefore, at the lexical level ptiterns of word

usage of an individual speaker project its identity on the sjg@al
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Following the linguistic chamel, the articulatory channel transforms a discrete
sequence of words into a continuous speech signal S in accordance with a set of
phonological rule$24]. This stage is very rich in spealsgecific information19].

The distinctive characteristics introduced at this stage belong to the levels of
phonetic, prosodic and spectral information. The sepnaduced in this stage are the
resultsof physiological activities involving the interaction oethervous system and

the muscles. The orchestrated movements of the articulators transform the airflow to
generate the acoustic signal S that passes through the acoustic channel to produce the
measured speech signal Ahis acoustic channainodels both thephysiological
characteristics of the speaker as well as the extrinsic sources of variability such as the
transmission channel and environmental noise.

Representative examples thie practical application of high level sources of
information in recognitiorsystems are the use of: conversational pat{@2jslexical
ideolectq23]; phorotactics[25]; and prosodic informatiof26].

Despite tle availability of high level sources of speaker recognition, the vast
majority of current automaticecognitionsystems relay mostly (if not uniquely) on
low level information represented in termssbiortterm spectréemporal pattersof
energy allocatin. This is mostly due to the fact that the performance of systems
based on spectral information is (at least)order of magnitude better than the most
competitive systems based on higher level information [E8efor example). Also,
in order to obtain a reliable model of the speaker based on higher levels of
information, the amount of necessary speech is much larger than in the case of

spectral informatiorj21]. Nonetheless, the divetgiof representation brought by the

13



use of multiple sources of information is an effective way to obtain robustness to
environmental noise and channel distortifig. In this thesis we focus on low level
information and achiee robustness by improving the statistical models and the

representation of the spectral information.

2.2.Automatic Speaker Recognition: Definitions and

Applications

The term speaker recognition is normally used in a generic way in the speaker
recognitioncommunity. It refers to any mode of operation that involves inferring the
identity of a speaker. Within this generic term we can further differentiate between
two particular tasks:

1 Speaker identification. This mode of operation is concerned with
associate@n unknown with one particular speaker within a predefined
set of speakers. Depending on the nature of the set it can be subdivided
between openset and closedset identification. In the openset
situation it is possible that the observed speech sampiat mot
belong to any of the predefined set of speakers. On the contrary,
closedsetidentification assumes that the observed sample belongs to
one of the speakers in the set. Notice thaensetidentification is
more involved since it is necessary tatabfish a mechanism to
determine if the test sample really belongs to any of the available

speakers.
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1 Speaker verification: This mode of operation corresponds to a-two
class (binary) classification problem in which we are interested in the
guestion of whetbr a collection of utterances belong to the same
speaker or not. Traditionally, a subset of utterances is collected in an
initial enrollment stage and a statistical model of the speaker is built
based on that data. Then the test utterance is comparedtatin
model to produce a verification score. If the score is larger than a
threshold (defined based on the application at hand) then the collection
of utterances used for train and the test utterance are considered to
come from the same speaker.

Another mportantdifferencebetween speaker recognition systems is based
on the characteristics of the spoken text. In particular we can differentiate between the
following:

1 Text-dependent In this scenario, the same speech content is required
in all the utterance in order to produce a similarity score. Typical
examples of this mode of operation are the use of a user PIN number
or password. Alternatively, instead of requiring a fix utterance, a text
prompted strategy can be used in which the user is asked for a
cdlection of words or short phrases from a predefined collection.
Also, given two speech samples of unconstrained text content, an
automatic speech recognition system can be used to find multiple
occurrences of t he same -dépenddt eno and

recognition based on them. This strategy assumes that there is enough
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speech such that the probability of having multiple occurrences is
high.

1 Text-independent This modality does not impose any constraints in
the linguistic content of the speech sarspiesolved in the verification
process. It is therefore less restrictive and also presents more
challenges due to the lack of control over the content.

The particular choice of verification/identification and tegependent/
independent will mostly dependn the particular application of the speaker
recognition systemA possible grouping of applications follows:

1 Authentication: This is the typical application for which a password
would be use. Instead, a speaker verification system can be used to
obtainaccess to a physical facility or login into any internet site.

1 Content indexing In this context the speaker recognition system is
used to automatically index a multimedia collection (i.e., broadcast
news, audio book archives, movies, etc) to facilital@ceng and
accessing content.

1 Forensic application In this context the similarity between speech
samples is uskas evidence for investigative purposes or goart of
law. The improved performance of the recognition systems is
attracting more attentioi this kind of applicationg28].

In the next section we introduce the typical structure of a speaker recognition

system.
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2.3. Structure of Speaker Recognition Systems

The problem of speaker recognition, like the majority of [@wis in pattern
recognition, can be divided into two parts: feature extraction and similarity
computati on. The feature efxonteaddi amdp & rhte
similarity lackepdbati on as 0

The ultimate goal of the frorgnd is to geerate a representation from the
speech signal that emphasizes the spegpecific information while removing any
undesired variability. This can be stated more formally in the followisty of
desiderat§29]:

1 Efficient repesentation of speakspecific information (i.e., small
within-speaker variability and large betwegmeaker variability)

1 Easy to compute

1 Stable over time

1 Occur naturally and frequently in speech

1 Not be susceptible to mimicry

1 Robust to environmental distamms

Usually, a speech utterance is converted into a sequence of feature vectors by
densely sampling the signal in regular temporal intervals. In the case of low level
spectral information the speech signal is analyzed using atghertunning window
of approximately 20 to 40 athat is shifted ovetime in 10 ms increment$he short
time segment of speech is normally denotesi as p efercahmre ccorrespond to
pseudestationary segments of spee@tmong the mostypical parameterizations of

the informaion contained on apeech frameve find:

17



91 Linear Prediction Cepstral Coefficients (LPCC) [30]: Based on a
Linear Predictive Coding (LPGB1] analysis of the speedhame, the
set of prediction coefficients (typically 10 or 12) is transformed into a
set of cepstral coefficients. The LPC analysis is based on -polall
model of the speech signal that provides an efficient parametric
representation of the spectral etope.
1 Perceptual Linear Prediction (PLP)[32]: Based on LPC analysis of
a speech framewith several psychophysically based spectral
transforms inspired from models of human perception. The
transformations provide a small degref robustness.
1 Mel-Frequency Cepstral Coefficients (MFCC) [33]: Based on
Fourier analysis of the speech frame and followed by a reduction of
the frequency resolution by means of spectral integration using a
collection of triamgular filers spaced according tonael-frequency
scale.The output of the filters is mapped into the logarithmic domain
and then projected onto a Discrete Cosine Transform (DCT) basis to
reduce the correlation between the coefficients.
Each of the featusedescribed above can be finely tuned for the application at
hand by optimizing the configuratiasf the building blocks of the feature extraction
processAs an illustrationFigure 2.3 shows the typical signal processing chased

to computeMFCCs for speaker recognition.
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Figure 2.3: Signal processing chain of a conventib configuration of MFCCs for speak
recognition along with visual representations at three different points.

The first step involves computing a spectrogram based orShiogt Time
Fourier Transform (STFTthat is applied over 20 ms windows with a 16 temporal
increment. A lower resolution version of the spectrogram is obtained by avetiaging
spectral components of adjacent frequenciesthwf spectral slices (i.e., FFT
coefficients of a speech frame) of the spectrogram. This spectral integratitis ires
a dimensionality reduction ansl performed according to a reequency spacing of
a collection of triangulafilters [33]. For example, in the case of an 8 KHz sampling
rate (4KHz of speech bandwidththe number of FT coefficients is 128 and the
number of mefilters is typically 24.

Moreover, the output of the mélters is transformed into the logarithmic
domain and projected into an orthogonal DCT basis. In practicéirsheoefficient

of the DCT(which corresponds to the geometric average of energy in dBs) is either

19



discarded or sometimes replacedtbg normalized logenergy of the speech frame.
Also, only a subset of the remainihgyherordercoefficients is preserved.

For speaker recognition applicatiolss customary to keep a larger number
of DCT coefficients than for speech recognition (i.e., 19 coefficients as opposed to
13). By keeping a larger number of coefficients the details of the spectral envelope
are represented with more accuracy.

Finally, temporallysteady spectral distortions are removed from the
coefficients by applying normalizing transformatiofsee Section 2.5 for typical
optiong, and a larger temporal context is obtained by computing first (delta) and
second order (dekdelta) differences with the adjacent frames (normally a span of 2
frames fron the left and right). In this wayan initial vector with 19 bas DCT
coefficients plus logenergywould result ina vector of60 MFCCs by appending the
deltaand doubledelta components to the base coefficiemtserefore, the final result
corresponds ta temporal sequence of 60 dimensional MFC@sputed every 10 ms
from temporal spasiof around100 ms

Once a mechanism to extract information from a speech utterance is in place,
the backend is responsible for computing a similarity score between different
utterances. There are two phases in the use of theepackystem: training and
evaluation.

During the training phase, data from a particular speaker is used to build a
model. It is also possible to require a large collection of utterances (development
data) from a background population of speakers in order to build the speaker model

(an example of tlsiis given in the next section). Once a model is available, the back
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end can operate in the evaluation mode and produce a similarity score between a
speaker s model and a sample test utteran
construct the model, the seowill have a probabilistic interpretation or it will simply
quantify the similarity or distance between two speech samples. In both cases a higher
number indicates a higher similarity.

A possiblepartition of backend types in terms of the training pdigm is
betweennon-probabilistic and probabilistic models. The nonprobabilistic models
use the training data to builddascriminative functiorthat directly mapsthe input
data into a similarity score (or class label in case of -dedisions).A typica
exampe of this approach that has been very successful in the speaker recognition
community is the use of Support Vector Machifi84], [35]. In the case of
probabilistic modelsa further differentiation can be madeetweengenerativeor
discriminative[36] approachesThe main distinction between these two subclasses is
that generative models attempt to model the atasslitional distributions, whereas
the dieriminative models target the posterior distribution of the classes directly.
Notice that the classonditional can be used along with the prior distributions to
obtain the posterior probabilities wusing E
model the posterior distributions typically results in a smaller number of parameters
[36] which mayproducebetter estimates for a given fixed dataset.

All the speaker recognition systems presented in this thesis belong to the class
of probabilistic generative model#lso, all of them evolveé from the classic
paradigm introduced by Reynolds al. [37] based on adapted Gaussian Mixtures

Models. For this reasomwe review this paradigm in the next section.
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2.4. Adapted Gaussian Mixture Modebk

The stateof-the-art systems discussed in this thesis evolved from the classic
paradigm ofMaximum a Posteriori (MAP) adaptéshussian Mixture ModelGMM)
introduced by Reynoldst al.[37]. As illustrated inFigure 2.4, this scheme can be
seen as a likelihooratio (LR) detector between a GMM modef a given speaker

and an average backgrouGd#M modd, the socalledUniversal Background Model

(UBM).
Speaker model Likelihood
MAP-adapted ratio
from UBM Hst LR 2 6
, Feature
Wilh— 5| Extractor
Test (MFCCs) UBM Ha: LR <0
utterance i ::

Figure 2.4: Speaker verification system based on likelihood ration between-Mi&pted
speaker model and Universal Background Model GMM.

The UBM model is trained from a large collection of data using a Maximum
Likelihood (ML) objective by the ExpectatieMaximization (EM) algorithm{38]. It
serves two purposes. The first one is to provide a model fofg e n everage 0 a
speaker that will be used to compute a likelihood ratio. The semuid to provide a
prior distribution to perform Maximum a Postaii training of thespeaker model
[39]. Specifically, theparameters of the UBM aresed to definghe hyperparameters
of the conjugate prior distributisrused ér each of the Gaussianstire GMM of the
speakerAlthough it is possible to adapt all the parameters of the UBM (i.e., weights,
means and covariance matrices) it is custontarpnly adapt the means of the

Gaussian. This strategy (only adapting the means of the GMM from the UBM) has
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been proven empirically optimal by many researchers in the field for applications in

which the amount of data available to train a speaker modethe order of minutes

[37]. Conceptually, this implies that the speakpecific information contained in the

training utterance

s only encoded in t

That is, the particular ways in wah a given speaker differs from a generic average

speaker represented by the UBM are completely captured in the differences between

the means of the UBM and the meamy MAP-adapted speaker GMM.

Figure 2.5 illustrates this principle. The left picture depicts the configuration

of a3-mixture UBMthat has already been traineda two-dimensional feature space

On the right picture, the green crosses represerittheat ur e vectors of

training utterance (e.g., MFCCs). Then, the GMM of the speaker (solid ellipsoids) is

obtained by Bayesian adaptation of the means of the [BW Notice that only the

means of théwo Gaussianshat are close to the observed da@tsponsible for the

data)are adaptedvhile the third one remains the same. Hence, for regions of the

feature space in which no data is observed during training, the speaker model backs

off to the prior knowledgeaptuedby the UBM (average generic speaker).

Universal Background Model

‘‘‘‘‘‘‘‘
e

........

Speaker model adapted from UBM

‘‘‘‘‘‘‘

Figure2.5: MAP adaptation of the means of the UBM based on observed data from sg
Note that only the means of the mixtures responsible for the datzoassl.

23

he

t



2.5.Undesired Variability and Compensation Approaches

As described in Sectiof.1 the speech signal is the result ofcamplex
process that involves respiragoiaryngeal, and vocal tract movements. This gives
speakers a lot of degreesfodedom to alter their voices along dimensions such as:
loudness, pitcharticulation ratevoice quality etc Moreover, the properties of a
particular speech utterance vary along these dimensions as a function of a large
collection of factors: phonetic content, language, speakingstyle, environment,
emotional state, health, etdn this way, it is possible that a speaker never produces
an utterance inhe exact same way twice. Differences within a single speaker across
occasions and utteranca® calledntraspeakeror intrinsic variability.

Besides thentrinsic variability, there are other factors extrinsicvariability
such as the channel distorts introduced by acquisition devices (e.g., telephones),
and the environmental distortions resulting from additive noise and room
reverberation. The combination of both intrinsic and extrinsiariability is
collectively referred to amtersessiorvariahlity.

The succes®f a speaker recognition systemlies on its abilityfo determine
whether the nature and extent of the observed diffesehetveen two speech
samplesis better explained by thentersession variability (in which case the two
utterance would belong to the same speaker) or byitherspeakewariability that
arises from the speakspecific informationin the speech samplego facilitate this
judgmentand improve the performance in a wide variety of application domains, the
speaker reognition systems need mechanisms that suppress or attenuate the

intersession variability.
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One way to characterizédse techniqguess based on the domain in which
they areapplied feature domain omodel domainSince most of the work in this
thesis is based on improvements over model domain technajuesnsformations of
latent variables from probabilistic generative models, defer their exposition to
Chapterst, 5, and6.

The following is a necessarily incomplete brepresentativdist of the most
widely used techniqudsr speaker recognitiom the feature domain:

1 Cepstral mean normalization (CMN) [30]: This technique is aimed
at reducing the effects afonvolutive noise from the channel. It is
based on the principle that a convolutive distortion in the time domain
is transformed into a constant offset into the cepstral domain.
Therefore, by removing the mean of each cepstral coefficient the
effects of he channel (assuming is not timarying) are ameliorated.

1 Relative Spectral filtering (RASTA) [40]: Based on knowledge
about the dominant components of the modulation spectrum of the
speech signal, the RASTA filter is designed as a band pass filter to
eliminate the very slow changing components (convolutive noise) as
well as the rapidly changing compats (additive noise).

1 Feature Warping [41]: This technique is aimed at reducing the effects
of additive and convolutive noise by applying a nonlinear
transformation that transforms the empirical distribution of each

cepstralcoefficient to a Gaussian distribution (Gaussianization). It is
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normally applied using a running window of around 3 seconds of
duration.
1 Feature Mapping [42]: This is a datalriven technique that uses a

collection of UBMs trainedn data from a discrete set of distortions
(i.e., cell phone speech, reverberant speech) to learn an inverse
mapping of the distorted cepstral coefficients. This techniglomg
with its model domain counterpget3], can beregarded as discrete
versions of the statef-the-art approaches based on Factor Analysis.

All the techniques mentioned above calso becombined with the model

domaintechniqueghat will be describedth Chaptersl, 5, and6.

2.6.Chapter Summary

In this chapter we presented campactexposition of the basic concepts
necessary to contextualize the work presented in this tHesss we described the
process by which speech signals are generated and the important sources of speaker
specific information they carry. Then we provided technical definitions about
different speaker recognition modalities such as verification and identification, as
well as the notions of texdependent and texbtdependent Also, we listed the most
typical gplications in which they are used. This was followed by an overview of the
basic constituent elements of a generic speaker recognition system. Moreover, the
classical paradigm of speaker recognition based on Gaussian Mixture Models was
summarized. Finallywe surveyed some of the most common techniques used to add

robustness to speaker recognition systems that work in the feature domain.
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Chapter3

Supervector Bpresentations

3.1.Introduction

A common theme among curresgeaker recognitiogystems based on stto
time spectral informatiors the representation of a speech utterance as a single point
inahighdi mensi onal space. This rep(S¥samnt ati on
all the systems studied in this thesis make us of it.

In this chapterwe first provide some background knowledge amdiew the
processisedto mapa sequence of feature vectaro a supervectoiVe then present
a novel procedure for the visualization of supervectors by which qualitative insight
about the information being captdrean be obtained. Based on this visualization
approach, the Switchboatddatabase (SWH) is used to study the relationship
between a datdriven partition of the acoustic space and a knowledge based partition

in terms of broad phonetic classes.

27



3.2.Background

Obtaining fixedsize representations ofariablelength objects is a pervasive
techniqgue among many patterecognition applicationg44], [45], [46]. The
widespreadiuse of these techniques stems from the fact that mapping vdeagta
objects into the same vector space facilitates the use of standard pattern recognition
techniques. For example, we might be interested in classifying emails as spam/not
spam, and madikely, each email willhave a differennumber of words. In this
context, me of the best known examples of thésehniqueds the use ofibagof-
wordsd representationto describe documenfd4]. This approacimaps adocumnent
(considered as an unordered collection of wpid® a fixed-length vector whose
size equals the cardinality afpredefined/ocabulary andwhoseentriescorresponds
to the number of times each word appears in the document. Note that documents with
different number of words are mapped into the same fsieel space. This allows
direct comparison between objects whose initial representatisrof different size.

The same concept haalso been applied to domains where the notion of
Awor do i siately @agparentmfareedample, visual object categorization based
on images of different sizes (i.e., different number of pixXdlS). These approaches
construct Avisual wordso by des(eg,bding
pixel blocks) and performing some form of clustering to obtain a discrete set of
codewords(i.e., cluster centroids)rhe predefined visual vocabulary (dictionary) is
typically learned from a large collection of images representative of thatdwsind.

Once the vocabulary is set, the patches of a given image are clustered into the visual

words and the image is represented as a histogram of the counts ofseethwveird.
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In this way, we can highlightour important stagesof these methodologies with
examples from visual object categorization:

A Patch formation: The first step in this stage is the definition of a sampling
grid from which the patches will be extracted. Two typical approaches are the
use of uniform denselgamped grids[47], or sparselysampled grids based
on regions of interest (keypointg¥5]. Also the size of the patch is an
important design variable.

A Feature representation: This stage transforms theatgh content into a
feature vectorA desired property of these feature vectors is robustness to
typical sources of variability. SIFT descriptd#3] are commonly used for
this reasonn thevision community

A Dictionary construction: This stage usethe feature vectors froma large
collection oftrainingdata to obtain discreteset ofcodewords that will be use
to represent new imagebypically, the U-meansalgorithm is usedo cluster
the feature vectors of the training data intaodewords that will define the
dictionary[49].

A Object representation: Once the dictionary is defined, an object (e.g., image)
is represented as a fixsize vector bcodeword counts
It is important to remark that therdering of the data beyond the patch size is

completely ignored by this representation (spatial structure for images or temporal
structure for speech or text).
In the following section we describe hatis general technique has been

particularizedin the field of speaker recognitipto represent speech utterances.
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3.3.From Sequences oMFCCs to Supervectors

As described in SectioB.3, the shorttime spectral information i speech
signalis normallyrepresented as a sequernd¢eMIFCCs. In this way, the notions of
patch formationand feature representationdescribed in the previous section are
encapsulated in the way MFCCs are computed. In particular, the most typical setup
in speaker recognition use 20 ms Hamming windows with 10 ms increments to
compute the STFT. Hence,MFCC feature vector comprisinBelta and Double
Delta coefficients (with a span of two frames eagHl) contain”Y wframes, which
correspond to a patch of 100 ms of speed¥ote thatthis patch size is in theme
scaleof phonetic units in Englisfb0].

Alternatively, considering the-PB spectretemporal representation of Mel
filterbank energies witld channels (typicallpy ¢ 3 as the initial representation, a
2-D spectretemporal segmendf dimensionsd “Y ¢ T ) corresponds to the
notion of patchMoreover, the information contained in tisigectretemporal patch is
compressed into geature vector of MFCCs (normally 39 to 60 coefficientbus,
obtaining acompactrepresentation for subsequegrbcessingThe top left part of
Figure3.1 illustrates thigprocess

Once the notions of patch formation and feature representation are
established, the next step is to define a dictioridnjike in thecaseof visual object
categorization mentioned above the strategy followed to computepeech
supervectors is not based on hahdstering thrud -means; instead, a saflustering
of the acoustic space spanned by the MF@Cperformed using &MM-UBM.

Theref oceuyust heof theadictbrsaicorrespondo the means of each
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Gaussian mixtureln practice, he typical number of mixturesf the GMM-UBM
used to construct the dictionasyeither 1024 or 2048.

The use of a GMMJBM to perform a soft partition of thacoustic space is a
natural choice in the context of speaker recognition; mostly because the classic
recognition architecture is bakeon a GMMUBM (see Section2.4). A large
collection of training data (typically 10 or 20 hours of data from around a thousand
speakers) representative of the task at hand is used to train thel®WMn a ML
fashion Normally, a few iterations of the EM algorithm (10 to 15 iteratioas
enough to obtain a successful GMUBM.

Once a GMMUBM is trained)) 0 ha& ht aspeech utterance
parameterized in terms afequences oMFCCs ¢ € with € ¥ a his
mapped into two supervector@-igure 3.1 illustrates this proceys The first
supervector is denoted as the supervector of cpantis constructed by appending
together the softounts of the GMM. More formally, given the GMMBM 1
and a feature vectdr, the responsibility of mixtur&for the observation frame, at
time ohis given by:

o TR

[ B 0 Tmh

(3.1)

Moreover, the softount for mixtureQis obtained by summing the responsibilities

over all frames:

0 I8 (3.2

Then, the supervector of counts is formeddbas 0 0 80 8
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The secondupervector is denoted as the supervector of meaasor each
mixture componenis computed as the weighted average of the observepvdéta

the weights corresponding to the responsibilities of the mixture for each frame:
P .
: — 3.3
s €8 (33)

Then the supervector is obtained by appending the means for each mixture

componentas: * ‘ 8° 8
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Figure 3.1: Computation osupervector of counts and means from the temporal sequer
mixture responsibilities for each MFCC vector.

Figure 3.2 provides an alternative view tiie processdllowed to compute
both supervectors (assuming that the acoustic space -ditvemsional) Notice that
instead of just creating a supervector of medmwssupervector of offsetsis created
by centering around the supervector of GMMBM meansa a a 8a 8

In this way, the information encoded in the supervector of offsets highlights how a

particul ar speaker di ffers from an Mnaver a

32



UBM) in the realization of the particular sounds that are being modeletheby
corresponding GMM mixtureln particular one can think of thé&MM-UBM as an
unsupervised datdriven mechanism to define regions of skHern patterns of
spectral allocatiomf energythat occur very frequently. Then, considering the mean
of eachGMM componentas an average fAcanonical o real
represented by a region, the supervector of offsets encodes the characteristic way a
particular speaker realizes those patterns.

Moreover, the supervector of counts represents the relaggeidncy with
which a speaker produces those pattdrgnce, the counts will be highly dependent
on the linguistic content (i.e., influenced by the statistical distribution of occurrence
of the different sound of a language). However, they also encodeliddglity of the
corresponding components of the offset supervesioce the more often we observe
a similar repetition of the same pattern, the more we can believe that it is a reliable
descriptor of how a speaker realizes a patter over multipknitistions.

In order to gain a better understanding of the information being captured by
the supervector of offsets, it is important to answer the following question: Is there
any relationship between a dataven partition of the acoustic spa@nd a
knowledgebased partitiod Answering this question will help understand the nature
of the partitionof the acoustic spacand thereforgthe characteristics of the speaker
specific information represented in a supervector of offsets.

In the rest of this chapter we address this question in two different ways. First,
we propose a novel technique for the visualization of supervectors of means. This

visual representation provides qualitative insights into the information being captured.
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Second, we conduct a quantitative analysis between the corresponderare of

unsupervisediatadriven partition of the acoustic space of MFCCs and a knowdedge

based partition in terms of broad phonetic classes.

ML trained
GMM

Figure 3.2: Computation of supervectors of counts and data means using a@BAMto
partition the acoustic space of MFCCs.

3.4.Experimental Setup

In this section we present the details about the dataset used for our analysis as

well as theconfiguration to obtain a GMNUBM and the supervectors.

3.4.1.Switchboard-l Database

The Switchboard database is comprised of conversational speech between

two speakers recorded over landline telephone channels with a sampling rate of 8

34









































































































































































































































































































