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Trainin E, Meir R, Karniel A. Explaining patterns of neural activity
in the primary motor cortex using spinal cord and limb biomechanics
models. J Neurophysiol 97: 3736–3750, 2007. First published March
14, 2007; doi:10.1152/jn.01064.2006. What determines the specific
pattern of activation of primary motor cortex (M1) neurons in the
context of a given motor task? We present a systems level physio-
logical model describing the transformation from the neural activity in
M1, through the muscle control signal, into joint torques and down to
endpoint forces and movements. The redundancy of the system is
resolved by biologically plausible optimization criteria. The model
explains neural activity at both the population, and single neuron,
levels. Due to the model’s relative simplicity and analytic tractability,
it provides intuition as to the most salient features of the system as
well as a possible causal explanation of how these determine the
overall behavior. Moreover, it explains a large number of recent
observations, including the temporal patterns of single-neuron and
population firing rates during isometric and movement tasks, narrow
tuning curves, non cosine tuning curves, changes of preferred direc-
tions during a task, and changes of preferred directions due to
different experimental conditions.

I N T R O D U C T I O N

The primate motor system is a highly complex system
leading to sophisticated motor activities resulting from the
concerted activity of many cortical, sub-cortical and skeletal
modules involving multiple feedback loops (Dum and Strick
2005). One of the key components in this system is the primary
motor cortex (M1), which plays a major role in voluntary limb
movement. Projections from M1 influence muscles through
direct synapses onto motorneurons and indirectly through spi-
nal inter-neurons (Kandel et al. 2001). It is now well under-
stood that M1 is highly heterogeneous (Alexander and
Crutcher 1990; Ashe 2005; Crutcher and Alexander 1990;
Kakei et al. 1999) and that different populations in M1 repre-
sent different motor control signals and therefore cannot be
uniformly interpreted. However, physiology provides evidence
that some M1 neurons are highly correlated with muscle
activity (e.g., Fetz and Cheney 1980; Morrow and Miller
2003). We refer to such neurons as muscle-related cells. Our
model is aimed at explaining the functional behavior of these
muscle related cells in M1 in the context of arm movement.

Many statistical models (e.g., Georgopoulos et al. 1982;
Paninski et al. 2004; Sanger 1996) describe how neuronal
activity of single neurons changes with hand variables and play
an important role in neural prosthetic applications (Schwartz
2004). However, these approaches do not provide answers to

the following basic questions. How do neural activities, pro-
jected from the motor cortex toward the spinal cord, result in
hand movement and force? Given the redundancy of the
controlled system (Bernstein 1967), how does the brain select
specific control signals to achieve a motor task? The model
provided here directly addresses these questions. In particular,
our study is focused on the profound influence of some of the
plant’s properties on the control signal’s behavior, where by
plant we refer to the spinal-musculo-skeletal system. Under-
standing the spinal cord and the limb biomechanics is essential
to explaining the motor control signals descending from the
brain to the spinal cord. Our systems level physiological model
describes the transformation from the neural activity in M1,
through the muscle control signal (MCS), into muscle forces,
joint torques and down to endpoint forces and movements. The
redundancy of the system is resolved by adding biologically
plausible optimization criteria.

Our model aims at being the “simplest” physiological model
able to predict the complex patterns of activity of muscle
related neurons in M1. Despite its relative simplicity, the
model captures key features of the spinal cord and of the
biomechanical system in the context of the tasks studied. In
particular, limb mechanics, muscle unidirectionality and the
finite time response of the muscles and the spinal cord are key
properties of the system, responsible for basic features of the
observed neural activity. Our model makes specific predictions
about novel experimental situations and is consistent with
current experimental results.

M E T H O D S

Our model is aimed at predicting the neural activity of a subset of
M1 neurons, which contribute linearly and additively to the input of
the motorneuron pools (whether such a contribution is achieved
through direct or indirect connections to motorneurons). We refer to
such neurons as muscle related neurons and assume that these cells
include the cortico-motorneurons and, possibly, some of the other
neurons in M1. It is expected that many of the noncortico-motorneu-
rons in M1 do not possess such a linear and additive contribution to
the muscle control signal as they either project to other parts of the
spinal cord or do not project to the spinal cord at all.

We consider voluntary movement tasks, implying that the control
signal is initiated from the motor cortex. Moreover we consider simple
trained tasks, motivating the assumption that the control signal is
reproducible to a reasonable degree of accuracy, and that it is
optimized for the task. Additionally, we assume well-trained tasks,
which do not require the hand to achieve high accuracy or to retain
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stability against significant perturbations. This implies that the brain
does not use significant co-activation of antagonist muscles to in-
crease the hand’s impedance (Hogan 1984, 1989; Osu et al. 2004).

Two essential properties related to the plant model are the number
of degrees of freedoms (DOF) of the joints, and the number of
muscles spanning the arm’s joints. Arm models of varying complexity
have been introduced in the literature, starting from 2 DOF with two
muscles (e.g., Harris and Wolpert 1998) and at most 13 DOF with 42
muscle bundles (Garner and Pandy 2001). Our solution is general in
the sense that it assumes neither a specific number of DOF nor a
specific number of muscles. We use general formulae, in which D
stands for the number of DOF and M stands for the number of
muscles. Additionally we illustrate the model and its solution using a
relatively simple arm model with 2 DOF (D � 2) and six muscles
(M � 6).

The model addresses the following issues: 1) the relation between
endpoint force and joint torques. 2) The relation between joint torques
and joint movement. 3) The relation between equivalent muscle forces
and joint torques. 4) The relation between MCSs and muscular force.
5) Resolving the redundancy of MCSs by an optimality criterion. 6)
The relation between neuron activities and the MCS. 7) Resolving the
redundancy of neuron activities by an optimality criterion.

Next, we present a detailed description of the model and refer the
reader to Fig. 1A for a graphical explanation.

Hand position and joint angles

We assume that joint angle trajectories (or some equivalent data)
are given by either direct measurements or by some model. The
transformation between endpoint position and joint angles is given by

P � f��� (1)

where P is a vector designating hand position and � is a vector of joint
angles. The function f is nonlinear and uses the lengths of the arm’s
links as parameters. It can be calculated based on multiplication of
transformation matrices (Asada and Slotine 2000; Spong et al. 2006).

The kinematic equations of a bijoint planar arm (see Fig. 2A) are
given in APPENDIX B.

Joints torques

Once joint angles and external force trajectories are given, it is
possible to calculate the total torque exerted by the muscles at each
joint. The joint torque � is given by

� � � �D � �S (2)

where �S is the joint torque due to the external force and �D is the joint

torque due to arm movement. These torques are derived using the
following transformations and relations, which are standard in the
robotics literature (e.g., Asada and Slotine 2000; Spong et al. 2006).

The transformation between endpoint force and joint torques (stat-
ics) is given by

�S � JT���F�ex� (3)

where F(ex) is the external force vector and J is the manipulator
Jacobian. The manipulator Jacobian J is a N � D matrix, where N is
the external space dimensionality and D is the number of DOF. It is
derived from Eq. 1 according to

J � �
�P1

��1

�P1

��2

..
�P1

��D

. . .. .
�PN

��1

�PN

��2

..
�PN

��D

�
The Jacobian of a bijoint planar arm is given in APPENDIX B.

The relation between torques and movement (dynamics) is given by

�D � M���
d2�

dt2 � C��,
d�

dt
�� G��� (4)

where � is a vector of joint angles, M accounts for inertial forces, C
accounts for velocity-dependent forces, and G represents the influence
of gravity. The derivation of the dynamical equation for a given arm
model can be done using Euler-Lagrange equations (Asada and

FIG. 1. Overview. A: general model block diagram.
B: solution flow chart and the general model’s parame-
ters.

FIG. 2. Arm model with 2 joints and 6 muscles. A: arm mechanics. L1 and
L2 are the upper arm and forearm lengths, respectively. �1 and �2 are the
shoulder and elbow angles, respectively. �1 and �2 are the shoulder and elbow
torques, respectively. P � (x,y) are hand coordinates relative to the shoulder at
(0,0). F is the force vector exerted by the hand. B: equivalent muscles. Sh,
shoulder; Bi, bijoint; El, elbow; F, flexor; E, extensor.
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Slotine 2000; Spong et al. 2006). The explicit form of Eq. 4 for a
bijoint arm without gravity (see Fig. 2A) is given in APPENDIX B.

Musculoskeletal geometry

An equivalent muscle describes an anatomical muscle, or a syner-
getic group of anatomical muscles, along with the spinal cord circuits
related to these muscles. The moment arm describes the relationship
between the equivalent muscle force and the torque produced at each
joint. In our model, it is assumed that the moment arm is constant for
all joint angles so that �ij(t) � RijFi(t), where �ij(t) is the moment
produced by equivalent muscle i on joint j and Rij is the (constant)
moment arm of equivalent muscle i acting on joint j.

The total joint moment at joint j is given by �j(t) � �i�1
M Rij Fi�t� j �

1, 2, . . . , D or

��t� � RTF�t� (5)

where R is the M � D matrix composed of the arm moments Rij, and
F(t) is a M � 1 vector composed of the muscle forces. Specific
moment arm values for a 2-DOF arm model are given in APPENDIX B.

Equivalent muscle dynamics

In our model it is assumed, that the dynamic relation between the
control signal ui(t) and the muscular force Fi(t) is given by a simple
first-order low-pass filter

ui�t� � Fi�t� � �Fi
1�t�, s.t. ui�t� � 0 i � 1, . . . , M, or

U�t� � F�t� � �
dF�t�

dt
, s.t. U�t� � 0 (6)

where U(t) is a M � 1 vector of the MCSs ui(t).
It should be noted that in our model, MCSs describe the population

activity of cortical neurons contributing to the input of motorneuron
pools. This population activity is neither an electromyographic (EMG)
signal nor does it represent motorneuron activity although it is closely
related to them. In particular, the relation between muscular force and
its control signal is not identical with the dynamics of an anatomical
muscle (or with a combined action of several anatomical muscles, in
case of a simplified arm model) because the dynamics of equivalent
muscles includes the influence of the spinal cord as well. Thereby we
have used a relatively large value of the decay coefficient �. The value
of the decay coefficient was estimated to be 200 ms, leading to a good
fit with experimental results. This relatively large value accounts for
the overall response time of the spinal cord, muscle excitation, and
muscle activation. Additionally, we’ve tested the sensitivity of the
model’s predictions to the value of � and show that the general
patterns predicted by the model are robust over a wide range of values
of �—see RESULTS.

From single neuron activities to MCS

In our model, each cortical muscle-related neuron contributes to
one of the MCSs. We assume that the control signal is given by a sum
of delayed neural activities. Specifically

ui�t� � �
j�1

Ni

wi,jni,j�t � di,j�,

s.t. ni,j�t � di,j� � 0 j � 1, 2, . . . , Ni i � 1, 2, . . . , M (7)

where ui(t) is the control signal corresponding to the ith equivalent
muscle, nij(t) is the control signal (e.g., firing rate) corresponding to
the jth neuron contributing to the ith equivalent muscle, wij is its
weight, and dij is the latency of the neuron. We further assume that the
latencies dij are distributed uniformly in the range of [50 ms, 100 ms],

as the typical delay between M1 neural activity and muscle activity is
50–100 ms (Morrow and Miller 2003). These delays are long com-
pared with the conduction times (�10 ms) due to inward currents in
the motorneurons (Morrow and Miller 2003). The neural signals
{nij(t � dij)}j�1

Ni are computed in APPENDIX A for any fixed weights and
delays and are given by Eq. 11.

Redundancy resolution

The motor system is highly redundant (Bernstein 1967). Yet arm
movements are highly stereotypical under a large variety of experi-
mental conditions and generally vary little within and between sub-
jects. Furthermore, variability tends to decrease with practice. Thus
the redundancy of the motor system is resolved in a principled
manner.

One may derive a criterion for redundancy resolution in several
ways. One possible approach is based on the engineering principle
of optimal control (Chow and Jacobson 1971; Engelbrecht 2001;
Pandy 2001), which proposes that the system operates by optimiz-
ing a given cost function under the appropriate constraints. A
second possible approach is to simply postulate an empirical
redundancy resolution rule, verifying that it indeed explains and
predicts observed phenomena. Finally, one may use self-organiz-
ing neural network models whereby the redundancy is resolved by
the dynamics of these systems. Although each of these approaches
possesses its merit, we have chosen to base our derivation on
optimal control theory, which fits in nicely with an evolutionary
view of the nervous system.

However, such an approach may pose some difficulties. The fact
that the brain tries to reduce some costs and converges to some
solution does not necessarily imply that it always reaches the
optimal solution. The question arises as to whether biological
neural networks actually solve optimization problems (for discus-
sions, see Carpenter et al. 1987). The organization of the brain may
impose further constraints on the motor plan. The studies of
Morasso (1981), Shadmehr and Mussa-Ivaldi (1994), and Torres
and Andersen (2006) suggest that the brain employs an indepen-
dent path plan and thus restricts the possible muscle control
signals. Similarly, motor primitives (Bizzi et al. 1991) may impose
restrictions on the possible control signals. Yet the motor planning
restrictions may be included in the constraints of the optimal
control problem. For example, the stochastic optimal feedback
control model of Burdet and Milner (1998) incorporates motor
primitives as constraints.

We believe that the three redundancy resolution approaches alluded
to in the preceding text are complementary rather than contradictory.
The empirical approach focuses on the question “what,” the optimal
control theory approach focuses on the question “why,” and the neural
network approach deals with the question “how.”

In the present study, we use optimal control theory based on
simple optimality criteria. The redundancy of the system is re-
solved in two stages. First, we compute the MCSs according to a
muscle optimization criterion and then compute how each MCS is
divided between different neurons, according to a neuron-based
optimization criterion.

Optimization criterion for the MCSs

A natural question that arises pertains to the cost function used. We
can get a qualitative general answer to this question from observations
of motor learning processes. For example, the studies of Burdet et al.
(2001) and Franklin et al. (2003) show that when a human subject
learns to reach a target through an unstable force field, two phenom-
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ena occur during the learning period. First, the percentage of success-
ful trials increases and second, the EMG, and concomitantly, energy
consumption, decreases. Such observations are supported by the clear
evolutionary advantage of improving both task performance and
saving energy. Furthermore, each of these two tendencies cannot be
explained as a result of the other one. For example, unless a trained
task requires high accuracy, the brain will not employ significant
co-activation to achieve higher accuracy (Hogan 1984; Osu et al.
2004). The conclusion is that the cost function should combine both
task performance and energy consumption (Hogan 1984; Miyamoto et
al. 2004).

To resolve the MCS redundancy, we have used a quadratic opti-
mization criterion, given by

U�t�t0	t	tj � arg min
1

2�
t0

tj

U T�t�U�t�dt (8)

where t0 and tf are the initial and final trajectory times. The simpli-
fying factor of 1/2 has no influence on the solution.

Our choice of a quadratic optimality criterion is based on the
following reasoning.

First, a squared neural control input is a simplified model of
muscle energy consumption. Under isometric force conditions and
less than 30% of maximum contraction, the metabolic power
consumption of the muscle is proportional to the squared neural
control input (Hogan 1984).

Second, some studies have demonstrated the predictive capability
of such a criterion. For example, the study of Bolhuis and Gielen
(1999) demonstrated that a quadratic cost function successfully pre-
dicted EMG activity of arm muscles under conditions of isometric
static force.

Third, as mentioned in the preceding text, in general, the cost
function combines both task performance and energy consumption. In
the present case, we assume well-trained tasks, which do not require
the hand to achieve high accuracy or to retain stability against
significant perturbations. In this case, using a minimum energy crite-
rion is reasonable.

Optimization criterion for neural activities

We assume that neural activity at the level of the single cell is
selected in a way that minimizes the randomness of the muscle control
signal. Our motivation here is that single neurons are noisy elements,
and noise reduction through averaging may be one reason for using a
large number of neurons for controlling the muscles. We assume here
an optimization criterion, which is related to a measure of MCS
stochasticity.

The criterion is based on a very general assumption regarding the
way in which a single neuron contributes to the stochasticity measure
of the muscle control signal. In particular, we assume that

�ni,j�t � di,j ��j�1
Ni � arg min�

t0

tf �
j�1

Ni

f �wi,j ni,j �t � di,j �dt i � 1, 2, . . . , M (9)

where f(x) is a strictly convex function. Examples for functions that
obey the preceding restriction are f(x) � xr where r 	 1. A function
that does not obey this restriction is f(x) � x. The restriction on f(x)
ensures that the optimality criterion will impose a single solution. The
exact shape of f(x) does not influence the solution—see APPENDIX A. As
a specific example, we may assume that f(x) is the variance of x.

Next we present the full optimization problem leading to the
computation of the MCS and the neural activity.

Complete optimal control problem

minU�t�t0	t	tf

1

2�
t0

tf

UT�t�U�t�dt

s.t. U�t� � F�t� � �
dF�t�

dt
(10A)

RTF�t� � ��t� � 0 (10B)

U�t� � 0 (10C)

Then for each i � 1, 2, . . . , M

min�ni,j�t�di,j�j�1
Nj �t0	t	tf �

t0

tf �
j�1

Nj

f �wi,jni,j�t � di,j��dt

s.t. �
j�1

Ni

wi,j ni,j�t � di,j � � ui�t� � 0 (10D)

ni,j �t � di,j � � 0 j � 1, 2, . . . , Ni (10E)

Solution

The preceding optimal control problem is solved analytically in
APPENDIX A, leading to the optimal neural activity

ni,j�t � di,j� � ai,jui�t� j � 1, 2, . . . , Ni i � 1, 2, . . . , M (11A)

where the constants �ij are computed in APPENDIX A. The optimal MCS
is given by

U�t� � �R�R�k�TR�k���1���t� � �
d��t�

dt
��




(11B)

where the constant matrix R(k) contains a subset of the rows of R as
explained in APPENDIX A. For an isometric task (see APPENDIX A), the
MCSs are given by

U�t� � �R�R�k�TR�k���1J T����F�t� � �
F�t�

dt
�D�
��




(11C)

Under the assumption of generalized symmetry (see APPENDIX A for details) a
simplified expression results

ui�t� � ��F�t� � �F��t��ri��� cos�
 � 
i����
, i � 1, 2, . . . , M

ri��� � 	Ci.1
2 � Ci.2

2 
i��� � tg�1�Ci.2

Ci.1
� and C��� � R�R�k�TR�k���1JT���

The solution flow chart is summarized by Fig. 1B. The variables
appearing in the model are summarized in Table 1. A detailed solution
with specific parameters and arm configuration for the 2-DOF arm
model is given in APPENDIX B.

TABLE 1. Model variables

Variable Notation Figure Equations

End point position P � �Pt,. . . , PN� 2A 1
End point force F�ex� � �F 1

�ex�, . . . , F N
�ex�) 2A 2

Joint angles � � ��1,�2,. . . , �D�T 2A 1, 3, 4
Joint torques � � ��1,�2,. . . , �D�T 2A 2–5
Muscle forces F � �F1,F2, . . . , FM�T 2B 5 and 6
MCSs U � �U1,U2, . . . , UM�T 2B 6–8
Single neuron activities ni,j j � 1, 2, . . . , Ni

i � 1, 2, . . . , M
7 and 9

MCS, muscle control signal.
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Experimental setup

We refer to a variety of experimental results published in the
literature and present comparative model results. In particular, we
provide a detailed comparison of our model’s predictions with the
experimental results of Sergio and Kalaska (1998) and Sergio et al.
(2005). Our comparisons to the experimental results used only pub-
lished data and figures.

We describe briefly the experimental setup of Sergio and Kalaska
(1998) and Sergio et al. (2005). Two juvenile rhesus monkeys (a.k.a.
Macaca mulatta) were trained to perform an isometric task and a
movement task. The activity of single cells in the caudal part of M1
was recorded during both tasks. A neuron was selected if it was
related to movements of the shoulder and/or the elbow but not to more
distal joints and displayed directional tuning in at least one of the
tasks. Most neurons were related to the shoulder and shoulder girdle,
with a smaller number related to the elbow. The recorded neurons
were in the caudal part of M1 of three hemispheres from the two
monkeys (71 and 17 cells from the left and right hemispheres of
monkey A, 44 cells from the right hemisphere of monkey B). Attempts
were made to record neurons from all cortical layers, but the need for
stable isolation over long periods of time led to a bias toward neurons
in intermediate cortical layers. The set of recorded neurons included
132 cells. A particularly interesting aspect of the experiment is that the
activity of the same neurons was recorded for the two different tasks
(isometric and movement), enabling a detailed study of the (consid-
erable!) change of activity of the same cell between tasks.

In an isometric task, the subject retains a fixed endpoint position in
the face of an external force field. The dynamic profile of absolute
force is the same in all trials, while force direction changes between
trials. The force in this case was assumed to be F(ex)(t) � F(t)
[cos(�) sin(�) 0]T � F(t)D(�). The monkey held a static handle
during 1–3 s (center hold time) and was then required to exert a ramp
force of 1.5 N in one of eight directions. Force directions were spaced
at 45° intervals, starting at 0°. We’ve estimated the shape of the force
ramp, according to graph 1A in Sergio and Kalaska (1998) as a
second-order spline with rise duration of 150 ms. The monkey was
required to produce a force trajectory, which was confined to a
horizontal plane (a significant vertical force resulted in an error). The
handle was positioned in front of the monkey while hand location was
at the midline, 20 cm in front of the sternum.

In the movement task, the monkey was required to push a load of
1.3 kg by 8 cm. Movement duration was �0.6 s, and the directions of
movement were spaced at 45° intervals, starting at 0°. Because we did
not have experimental data about the hand trajectory in the movement
task, we assumed a minimum jerk trajectory (see APPENDIX B). The
inertial force during movement was calculated according to the
relation F � ma. After movement, the monkey was required to exert
a force of �1 N against the pendulum. We’ve assumed that the force
profile following the movement period is described by F(t) � 1 �
ae�bt, where a and b are chosen in a way that retains the continuity of
the force and its first derivative at the end of movement.

R E S U L T S

Intuition

We provide here a brief summary of the model’s predictions,
and their relation to the model assumptions described in METH-
ODS. We discuss both the directional behavior and the response
through time.

A temporal tuning function maps a time-dependent external
force or movement direction into a related signal, e.g., the
temporal firing rate of an M1 cell. A weighted sum of several
cosine functions is a cosine function [i.e. a cos(� � �) 

b cos(� � �) � c cos(� � )]. In the isometric force task, each
one of the external force components changes with direction as

a cosine function, and therefore a linear relationship between
endpoint force and the neural activity implies cosine tuning.
Under isometric conditions, the relation between endpoint
force and joint torques is linear (Eq. 3). However, due to the
muscle unidirectionality (Eq. 6), the relation between the MCS
and joint torques is linear for positive values and zero other-
wise (Eq. 11B). Therefore the tuning function, predicted by the
model under isometric conditions, is a truncated cosine rather
than a full cosine.

The preferred direction (PD) is the direction corresponding
to the peak of the tuning function. Since the linear relation
between endpoint force and joint torques depends on the
Jacobian (Eq. 3), the PD changes with arm posture.

The truncated cosine was obtained due to the linear relation
between endpoint force and joint torques (Eq. 3) under isomet-
ric conditions. Yet in the movement task, the nonlinearity of
arm dynamics (Eq. 4) leads to noncosine tuning at certain
periods of the movement task.

Let us assume that the time response of the control signal
simply follows the joint torques. In the isometric task, we
would expect a positive or negative step response, and in the
movement task, we would expect a positive step followed by
negative one or a negative step followed by positive one
(depending on movement direction). Because muscles are
unidirectional (Eq. 6), negative pulses are impossible and
negative torques are produced by the antagonist muscles alone.
Taking this consideration into account, we would expect a
nonsymmetric response. Thus in the isometric task we would
expect a step response or no response, depending on force
direction. In the movement task, we would expect a pulse-
pause response or a pause-pulse response, depending on move-
ment direction. We denote the latter pattern as biphasic. How-
ever, we should take into account the finite time response of the
equivalent muscle, expressed by the decay coefficient (Eq. 6).
Due to the finite time response, we obtain a pulse-step rather
than a step response in the isometric task and a triphasic rather
than a biphasic response in the movement task. We elaborate
on these issues in the following sections.

Isometric task

DIRECTIONAL BEHAVIOR. In this section we test different prop-
erties of the predicted neural command signal, given by Eq. 11.

Tuning function. Equation 11C shows that the shape of the
resulting tuning function of all MCSs is half cosine. If gravity
is considered, the tuning function is a truncated cosine with a
width, which is wider or narrower than 180°—see APPENDIX A.
An example of the tuning functions for the 2-DOF arm model
is given in Fig. 3A. From Eq. 11A, we expect that the tuning
function of a single neuron should also be a truncated cosine
function. Such a tuning function is narrower than a full cosine.
How does the prediction of a narrow tuning function match the
experimental data? Figure 3D shows an example of a repre-
sentative neuron from Sergio et al. (Sergio and Kalaska 1998;
Sergio et al. 2005) for which the width of the tuning function
is �180°. The tuning functions of 51% of the cells in
Amirikian and Georgopoulos (2000) were considerably nar-
rower than 360°. According to Paninski et al. (2004), about a
third of the neurons have narrow tuning function.

PDs. While different MCSs have tuning functions with
similar shapes, they are distinguished by their PDs. For exam-
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ple, the PDs in the 2-DOF arm model are 355° for the shoulder
flexor, 30°for the bijoint flexor, 87° for the elbow flexor, 175°
for the shoulder extensor, 210° for the bijoint extensor, and
267° for the elbow extensor—see Fig. 3B. In fact, the PD of
each MCS is in one of two opposite directions. For example,
the PD of u1(t) is 355 or 175° depending on the sign of the
expression F(t) 
 �F�(t). Thus the PD of the control signal is
reversed during the task whenever the expression F(t) 
 �F�(t)
changes its sign. We will address this phenomenon in the
movement task section. Elsewhere, we refer by PD to the PD
given that F(t) 
 �F�(t) 	 0.

Hand location and arm posture dependence of directional
tuning. According to Eq. 11C, the PD depends on hand posi-
tion and hand location through the Jacobian. Figure 3C shows
an example of PD dependence on hand location in the 2-DOF
arm. Systematic changes in directional tuning due to hand
location or arm posture have been observed in several studies
(Ajemian et al. 2000; Caminiti et al. 1991; Hocherman and
Wise 1991; Lacquaniti et al. 1995; Scott and Kalaska 1997;
Sergio and Kalaska 1997, 2003). According to Eq. 11B of our
model, neural directionality is defined in [�(t) 
 ���(t)] space.
We elaborate on this issue in the DISCUSSION.

DYNAMIC BEHAVIOR. Average response. In the isometric task,
different tuning functions differ only in their PD. Therefore
according to Eq. 11C, the neural activity, aligned to the
neuron’s PD, of all cortical muscle related neurons is given by

Q�t����F�t� � �
dF�t�

dt
� cos�
CM��




(12)

where Q(t) is the aligned neural response and 
CM is the force
direction relative to the neuron’s PD. This result is very robust

because it depends only on a single parameter—�. Further-
more, this result does not depend on the specific arm model
used.

Equation 12 can also be used to describe the average of
aligned neural responses, where the average is taken over many
neurons. In practice, such averaging procedures suffer from
two problems. First, different neurons have different latencies
(Eq. 7). A possible way to resolve this problem is to estimate
the latency of each neuron and align its response with respect
to time before averaging. A neuron’s latency can be estimated
by computing the cross-correlation between its activity and the
EMG signals (Morrow and Miller 2003). However, because the
experimental data we’ve examined is based on a simple aver-
age, we had to compensate for the effect of different latencies
by smoothing the predicted averaged response. We’ve
smoothed the predicted averaged response by assuming that
the latencies are distributed uniformly in the range of [50 ms,
100 ms].

Second, in the calculation of the experimental averaged
response, each neuron’s response is not exactly aligned to its
PD because in practice the PDs are given within a resolution of
45°. This low resolution creates a smoothness effect in the
direction axis as well. To compensate for this, we’ve smoothed
the predicted averaged response by assuming that the direc-
tionality alignment is distributed uniformly in the range of
[�22.5°, 22.5°].

Predicted control signal. If the control signal was defined
merely relative to the muscle force, we would get a signal with
similar shape to the muscle force profile. However, the control
signal is also related to the first derivative of the muscle force
(see Eq. 6). Therefore instead of obtaining a step response, we

FIG. 3. Directional tuning of the muscle con-
trol signals. A: tuning functions for the 2 degrees
of freedom (DOF) arm model. Right hand posi-
tion is (�5 cm, 20 cm). B: preferred directions
for the 2-DOF arm model. Parameters and no-
tations are the same. C: preferred direction (PD)
at different locations of the right hand for a
neuron related to the bijoint flexor according to
the 2-DOF arm model (APPENDIX B). The posi-
tion of each arrow corresponds to the relative
location of the hand on the planar work surface
with the top arrow corresponding to the most
distal hand location. The central location is (�5
cm, 20 cm). The remaining 8 hand locations
were at a distance of 8 cm, spaced at 45°
intervals, starting at 0°. The arrow represents the
PD with respect to the isometric force. D: cell
directional response in the isometric task, based
on Fig. 1a from Sergio and Kalaska (1998) with
permission. Discharge pattern of a shoulder-
related M1 cell during the isometric force task.
Each raster illustrates cell activity during 5 tri-
als, and the raster location corresponds to the
direction of the force. Data are aligned on the 1st
significant force change, denoted by a solid
vertical line (M). For each trial, the heavy tick
mark to the left of the cursor movement onset
line shows the time of target onset and the heavy
tick mark to the right shows the time at which
the final static level of force within the periph-
eral target was attained. It can be seen that after
the force change (M) the response is about zero
in 4 of 8 directions. Therefore the tuning func-
tion width is �180°.
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get a pulse step response—see Fig. 4. The pulse-step result is
robust with respect to a wide range of values of the force
derivative coefficient (�) as shown in Fig. 4C. The value of �
only determines the relative height of the pulse in the pulse-
step response.

To obtain an averaged response, the preceding profile is
multiplied by a truncated cosine as described by Eq. 12. As
explained in the preceding text, the averaged response is
smoothed to account for the effects of the simple averaging.
Recall that Eq. 12 is independent of the arm model, and
therefore the comparison with Sergio et al. (2005) is appropri-
ate. The averaged response in Sergio et al. (2005) was gener-
ated from those neurons that were directionally tuned during
target hold time using the PD from that epoch. The good
qualitative match between the experiment and model can be
clearly observed in Fig. 5.

Interpretation. The population vector is defined as the sum
of neuronal firing rates (relative to each cell baseline) multi-
plied by each neuron’s PD unit vector (Georgopoulos et al.
1983). The population vector has been used to estimate output
variables based on neural activity. In the experiment of Sergio
et al. (2005), the population vector significantly deviates from
the force direction as shown in Fig. 11 in Sergio et al. (2005).
The description of the population activity as a control signal
has two advantages over the description of the population
activity by a population vector of hand force. First, the control
signal can be approximated by a simple average. Second, the
agreement between the MCS and the averaged neural activity

is better than the agreement of the population vector with the
external force. Indeed, modern extraction algorithms (e.g.,
Salinas and Abbott 1994; Shpigelman et al. 2005; Taylor et al.
2002; Wu et al. 2004) significantly improve the accuracy of the
simple population vector. However, such techniques are much
more complex than the simple average we have used. This does
not reduce the importance of such algorithms for BMI appli-
cations. However, in the preceding case, “the population codes
a MCS,” is the preferable interpretation of the population
activity because it is the simplest interpretation that matches
the experimental results.

Single-cell activity. The predicted single-cell response is
proportional to the MCS response (see Eq. 11), i.e., a pulse step
response multiplied by a half cosine tuning function. Notice
that for the single cell, there is no need to apply a smoothing
procedure and therefore Eq. 12 was used without further
processing. In the experiment of Sergio and Kalaska (1998),
28% of the cells demonstrated a dynamic response similar to
the response predicted by our model. See Fig. 6 for a compar-
ison between this subset of neurons and the predicted response.
The time response of most other cells was similar to part of the
predicted response: 36% of the cells displayed a step response
at their PD, 29.3% displayed a pulse response, and 6.7% of the
cells were unclassifiable. There are several possible reasons
why the predictions of our model with respect to single-cell
activity apply only to a subset of the neurons reported on in the
experiments. We elaborate on these in the DISCUSSION.

FIG. 4. Pulse step response in the isometric
task for the general model. The ordinate is nor-
malized to arbitrary units. A: step of muscle force.
B: 1st derivative of muscle force. C: combined
pulse step response. Solid bold line, � � 100 ms;
solid line, � � 200 ms; dotted line, � � 300 ms.

FIG. 5. Population activity for the isomet-
ric task for the general model. A: experiment,
based on Fig. 9 of Sergio et al. (2005) with
permission. Mean population response as a
function of time and force direction, where the
direction is relative to the PD of each cell. All
data were aligned to the time of force onset
(time 0) and the PD of each neuron was arbi-
trarily rotated to the right. B: simulation of the
average neural response in our model. The
ordinate of the simulation is normalized to
arbitrary units.
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Movement task

ISOMETRIC FORCE APPROXIMATION. Let us assume an isometric
force experiment, in which the force profile is given by F(t) �
ma(t) where m is the mass of the external load and a(t) is the
acceleration in the movement experiment. We refer to this
approximation as the isometric force approximation. There are
two differences between this approximation and an accurate
description of arm mechanics: 1) hand position, and conse-
quently the Jacobian, changes during movement. Yet our
simulation with the 2-DOF arm model and 8 cm movement
distance shows that the assumption of fixed hand position has
a minor effect on the tuning function. 2) Besides moving the
load, the muscles also need to move the arm itself. This effect
is calculated using the dynamics (Eq. 4). We discuss the effect
of this component later. In the meantime we assume that this
effect is insignificant.

Under these simplifying assumptions we can calculate the
control signal’s joint torques in a similar way to the isometric
task.

TRI-PHASIC RESPONSE. Figure 7, A and B, shows graphs of F(t)
and of F(t) 
 �F�(t), for the isometric force approximation of
the movement task. As shown, there is an important difference
between the movement task and the isometric task with force
ramp profile. Unlike the force ramp profile scenario, the ex-
pression F(t) 
 �F�(t) is not always positive. The profile of
F(t) 
 �F�(t) is triphasic, where the first phase is positive, the
second is negative, and the third is positive again. We refer to
this type of response as triphasic as it relates to a known
phenomenon in which the activation period of one muscle is

followed by an activation period of the antagonistic muscle,
followed by a further activation period of the first muscle. We
refer to the transition times between the first and the second
phases and between the second and third phases as transition
times. If we examine two antagonistic muscles in the 2-DOF
arm model, for example, the shoulder flexor and the shoulder
extensor, it is clear that the predicted pattern is triphasic. The
triphasic response is a pattern of flexor-extensor-flexor, or
alternatively extensor-flexor-extensor, depending on the move-
ment direction. Note that the brain would not employ a tripha-
sic pattern if not for the finite time response of the equivalent
muscles. When the neural input to a muscle ceases, the mus-
cular force does not vanish immediately because it has some
decay period. To change the muscular force rapidly enough,
the antagonistic muscle should be activated, while the agonist
muscle is still active—see Fig. 7C.

Figure 7, D and E, show that the triphasic response is robust
as it occurs for all values of �. The value of � only determines
certain details of the shape of the curve. The first pulse gets
narrower with the increase of �, the second pulse shifts to the
left and the third pulse broadens with the increase of �. To
understand the influence of �, notice that the force profile (Fig.
7A) is quite similar to a sine wave. Therefore the “phase shift” of
F(t) 
 �F�(t) (Fig. 7B) becomes larger with the increase of �.

POPULATION ACTIVITY. Figure 8 presents a comparison of the
experimental results with the model’s prediction. The simula-
tion is based on Eq. 12, as we used the isometric force
approximation. Recall that Eq. 12 is independent of the arm
model, and therefore the comparison with Sergio et al. (2005)

FIG. 6. Isometric task: single-cell response
for the general model. A: experiment, based on
Fig. 1a from Sergio and Kalaska (1998) with
permission. Discharge pattern at the PD (top)
and at the opposite direction (bottom) of a shoul-
der-related M1 cell in histogram format (10-ms
bins). Data are aligned on the 1st significant
force change, denoted by a solid vertical line
(M). B: simulation of our model at the PD (top)
and at the opposite direction (bottom). We as-
sumed that the control signal is delayed by 100
ms. The ordinate of the simulation is normalized
to the same arbitrary units as in Fig. 5B.

FIG. 7. Tri-phasic response in the movement task for
the general model. A: hand inertial force during a mini-
mum jerk trajectory, given by F�r��2r3 � 3r2 � r, where
r � t/tf (the units are arbitrary). B: F�t� � �F��t� . The
positive phases (1st and 3rd) represent the profile of 1
muscle control signal (MCS). The negative phase (2nd)
represents the profile of the antagonist MCS. C: shoulder
muscle torques in the 2-DOF arm model for the movement
task. Movement direction is 0. Dashed line, shoulder
flexor torque; dotted line, shoulder extensor torque; solid
line, total torque; vertical lines, transitions between antag-
onist control signals. D: influence of the value of � (force
derivative coefficient) on cell response at the PD. Solid
bold line, � � 100 ms; solid line, � � 200 ms; dotted line,
� � 300 ms. E: same as D at the opposite direction.
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is appropriate. The average response in Sergio et al. (2005) was
generated for those neurons that were directionally tuned
during target hold time, using the PD from that epoch. As can
be seen in Fig. 8, the temporal behavior of the neural signal
predicted by the model corresponds to the experimental results.
Particularly important is the fact that the results for both the
isometric (Fig. 5) and the movement (Fig. 8) tasks reproduce
the qualitative shift in neural activity between the two tasks.

SINGLE-CELL ACTIVITY. Figure 9 displays a comparison be-
tween a subset of neurons in the experiment and the predicted
response. For the simulation, Equation 12 was used without
smoothing. In the experiment, 87.5% of the cells, displaying
step or pulse-step response in the isometric task (56% of all the
cells) displayed the burst-pause-burst response in their PD
(Fig. 9A) as predicted by the model (Fig. 9B). Most of these
cells (78 or 44% of all cells), as well as part of the cells in the
remaining group, displayed the predicted response of pause-
burst-pause in the opposite direction (Fig. 9, A and B); 45.4%
of the cells, exhibiting a pulse response in the isometric task
(13% of all the cells), displayed the burst-pause-burst response
in their PD. Many of these cells displayed the response of
pause-burst-pause in the opposite direction. Other neurons in
the movement task displayed pulse response (20%), step re-
sponse (13%), pulse-step response (4%), and the rest were
unclassified. Similarly to the single-cell dynamic response for
the isometric task, the agreement with our predictions is partial
though significant. We elaborate on this issue in the DISCUSSION.

PD REVERSAL. According to a preceding section, the PD of the
control signal is reversed each time the expression F(t) 

�F�(t) changes its sign. Therefore in movement tasks, the PD
of the control signals is reversed during the second phase.
According to the model, we expect to see such a phenomenon
at the level of the single cell as well. Figure 10 shows that this
prediction matches the experimental data. The graph of Sergio
et al. (2005) was generated from the cell activity shown in Fig.
9, which represents 44% of the cells. Note that the PD goes
through two reversals during the movement task, as expected
from the model.

NON COSINE BEHAVIOR. The control signal in our model can be
decomposed into two components. One component is related to
arm movement, and the second is related to the load move-
ment. The isometric force approximation is based on the
assumption that the torque needed to move the arm is small
compared with the torque needed to move the load. This
assumption holds only when the expression F(t) 
 �F�(t) is
significant. However, when the load is insignificant and/or
during periods around the transition times, the isometric force
approximation is poor. The component related to arm move-
ment is significant during periods around the transition times,
because F(t) 
 �F�(t) � 0. In the experimental setup, we’ve
examined the load was significant. However, we still expect the
isometric force approximation to be poor around the transition
times. During these periods, the nonlinear arm dynamics be-

FIG. 8. Population activity in the move-
ment task for the general model. A: experi-
ment, based on Fig. 9 of Sergio et al. (2005),
with permission. Mean population response as
a function of time and force direction, where
the direction is relative to the PD of each cell.
All data were aligned to the time of force
onset (time 0) and the PD of each neuron,
calculated at target hold time, was arbitrarily
rotated to the right. B: simulation of a MCS in
our model. The ordinate of the simulation of
our control signal is normalized to the same
arbitrary units as in Fig. 5B.

FIG. 9. Movement task: single-cell response for the general
model. A: experiment, based on Fig. 1b from Sergio and
Kalaska (1998) with permission. Discharge pattern at the PD
(top) and at the opposite direction (bottom) of a shoulder-
related M1 cell in histogram format (10-ms bins). Data are
aligned on the 1st significant force change, denoted by a solid
vertical line (M). B: simulation of the single neuron activity at
the PD (top) and at the opposite direction (bottom). We assume
a delay of 100 ms. The ordinate of simulation is normalized to
the same arbitrary units as in Fig. 5B. C: reconstruction of Fig.
2C in Todorov (2002). Activity at the PD (top) and at the
opposite direction (bottom).
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comes more significant. Consequently, half cosine tuning is not
expected anymore.

To simulate this phenomenon, we cannot use the general
equation for the isometric task (Eq. 12), as the calculations in
this case depend on the arm model. We need to calculate the
control signals according to Eq. 11B. However, the arm in this
experiment was allowed to move in three-dimensional space,
whereas we do not have data about the monkey’s arm moments
for a 4-DOF model. Therefore we have studied this phenom-
enon using the 2-DOF arm model as described in APPENDIX B,
assuming that qualitatively, the kind of effect of dynamic
nonlinearity around transition times would be similar for the 2-
and the 4-DOF models. Our simulations (with the 2-DOF
model) show that during these periods the tuning function
becomes wider and looses its cosine shape—an example of a
bimodal tuning function can be seen in Fig. 10C. The non-
cosine prediction is in agreement with the experimental results
shown in Fig. 10A. During periods around the transition times,
cell activity was not directionally tuned (time windows repre-
sented by circles).

D I S C U S S I O N

We have presented a mechanistically explicit modeling ap-
proach based on the following principles. 1) It is possible to
attribute functional meaning to neural activity in the motor
areas in the brain. 2) Understanding the spinal cord and the
limb biomechanics is essential to interpreting the motor control
signals descending from the brain to the spinal cord. In partic-
ular, the motor cortex control signals are related to endpoint
variables through dynamic models. 3) The redundancy of the
control signals can be resolved using optimal control theory. 4)
Neural activity characteristics, such as tuning functions, PDs
and coordinate systems, can be derived within a general theo-
retical framework.

Based on this modeling approach, we have presented a
model that explains muscle-related neural activity in the M1.

The model has demonstrated good agreement with a variety of
experimental results.

The model successfully predicted the temporal population
activity in the isometric and movement tasks (pulse-step,
tri-phasic) and for different force or movement directions
(truncated cosine) as well as the qualitative nature of the
transition between the two tasks. There are a few differences
between the population predicted responses and the experimen-
tal results. The peaks in the experiment are wider and continue
beyond the force ramp/movement duration, and the tuning
function in the experiment is somewhat wider. Additionally,
there is a �10 spike/s ground level in the experiment.

The predictions of the time responses of the single cell
partially agree with the experimental results. A subset of the
cells (28% in the isometric task, 44% in the movement task)
displayed close similarity with the predicted response. Most
other cells displayed similarity only to part of the response.
Comparing population and single-cell predictions, a subset of
the single cells displayed better similarity than the population
response (narrow peaks, no ground level), whereas others
displayed less similarity than the population response (e.g.,
single-cell pulse response in the movement task).

The gaps between model and experiment are possibly due to
the model’s simplifications and/or because only part of the
neurons examined in Sergio and Kalaska (2005) were muscle-
related cells. It is difficult to determine which of these two
reasons is more important as we do not know which of the cells
were muscle related. To better examine models of neural
activity in M1, one should use recorded activity of neurons
with similar connectivity, i.e., the connectivity of the measured
neurons should be identified.

The prediction of single-cell tuning functions is supported
by experimental results. The model successfully predicts the
half cosine tuning function in Sergio and Kalaska (1998). This
prediction also agrees with Amirikian and Georgopoulos
(2000) and with Paninski et al. (2004) showing that a signifi-
cant fraction of the M1 neurons have narrow tuning functions.

FIG. 10. Reversals of the PD during move-
ment task. A: based on Fig. 2b of Sergio and
Kalaska (1998) with permission. The temporal
trajectory of the PD of a representative cell
during movement tasks. The trajectory was
determined by a 50-ms sliding-window anal-
ysis. Time windows within which the cell was
significantly related to direction are shown by
an asterisk. Time windows within which the
cell was not directionally related are shown by
circle. Notice that around the transition times
(characterized by reversal of PD) the cell was
not directionally tuned. Large thick concentric
circles denote movement onset and offset. B:
simulation of a single neuron PD in the 2-DOF
arm model. The PD was calculated as the
angle at which the tuning function attains its
maximum. The PD is relative to its value
during target hold time. C: temporal tuning
function in the 2-DOF arm model for the
movement task at time � 80 ms.
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Interestingly, the analysis of Paninski et al. (2004) shows that
narrowness of the tuning function correlates with the informa-
tion about hand trajectory conveyed by the cell. The model also
successfully predicted noncosine tuning-functions around the
transitions times of the movement task.

Although tuning functions and PDs do not possess an intrin-
sic functional meaning in the context of our model, we’ve
calculated them to compare our results with published exper-
imental data. The model predicts the dependency of the PD on
arm posture and on hand location as well as the two reversals
of the PD during the movement task.

In addition to explaining known results, one may try to test
the model’s predictions in new situations. For example, our
simulations show that the phenomenon of unusual tuning
functions around transition times becomes more apparent as
the load becomes lighter. The reason for this is the nonlinear
nature of arm dynamics, which becomes more significant at
small loads, where the isometric force approximation is poor.
This prediction has not yet been tested experimentally.

The model’s relative simplicity and analytic tractability
support a causal explanation of how each of the plant’s prop-
erties influences the overall behavior. Such an explanation was
given in RESULTS.

Our model is aimed at predicting the behavior of muscle-
related cells. Yet many M1 neurons are not muscle related cells
(Alexander and Crutcher 1990; Ashe 2005; Crutcher and Al-
exander 1990; Kakei et al. 1999). Thus it is possible that the
neural activity of other neurons in M1 have very different
interpretations, such as movement direction. One possible
interpretation of cosine tuning (Georgopoulos et al. 1982) and
of the population vector (Georgopoulos et al. 1983) is that M1
employs a coding scheme based on external space directions.
However, correlations with high-level parameters are not suf-
ficient to prove high-level representation. Cosine tuning and
the existence of a population vector are determined by very
general necessary and sufficient conditions rather than by any
intrinsically coded coordinate system (Mussa-Ivaldi 1988;
Sanger 1994). However, the analysis of Mussa-Ivaldi (1988)
and of Sanger (1994) does not exclude the possibility of
direction coding. It just shows that the cosine tuning and the
population vector are not sufficient to determine whether neu-
rons code directions in external coordinates or in some intrinsic
coordinate system. To better model the neural activity, further
information is needed. Indeed, dissociation experiments (e.g.,
Crutcher and Alexander 1990; Evarts 1968; Scott and Kalaska
1997; Thach 1978) provide further information, which enables
one to distinguish between different interpretations of neural
activity. Interestingly, the early dissociation experiment of
Evarts (1968) showed that the discharge frequency of the
majority of pyramidal tract neurons was related primarily to the
force and to the force derivative and was only secondarily
related to the direction of displacement.

Currently it is known that neural coding in the motor cortex
is much more complex than described by cosine tuning and the
population vector (Johnson et al. 2001). Neurons in M1 do not
possess a single fixed PD. The PD depends on external vari-
ables (such as force or velocity) with which the neuron is
correlated. The correlations change for different tasks, and also
as a function of time within a single task. Many of the tuning
functions in M1 are narrow, asymmetric, and sometimes bi-
modal (Amirikian and Georgopoulos 2000), and the population

vector may deviate from extrinsic variables (Scott et al. 2001).
Yet the question of distinguishing between different interpre-
tations of neural activity is always relevant. Interpretations of
neural activity are in fact models. Therefore it is possible to
choose between different interpretations on the basis of the
agreement with the experimental results, the simplicity of the
model, and the relative weight given to each of these two
factors.

The study of Scott et al. (2001) shows that the population
vector may deviate from extrinsic variables. Our study further
shows in RESULTS that the MCS provides a better interpretation
of the population activity reported in the experiments of Sergio
et al. (2005) compared with the interpretation of endpoint
force.

Observed PD changes, due to arm posture, can be explained
by intrinsic coordinates but not by external coordinates
(Ajemian et al. 2000; Scott and Kalaska 1997). Our model
further suggests that such intrinsic coordinates do not neces-
sarily follow simple mechanical expressions, such as joint
angular velocities (Ajemian et al. 2000; Scott and Kalaska
1997) or torques (Scott and Kalaska 1997). In fact, the coor-
dinates might be hard to guess without a physiological model
as even in our simplified model, the derived coordinates are
composed of both joint torques and joint torque derivatives.

Several previous studies have presented models of neural
activity in M1 and its functional interpretation. The early work
of Humphrey (1972) described the relation between neural
activity in the motor cortex and muscular torque by a dynamic
linear model. We have followed the same approach. However,
Humphrey (1972) addressed the forward control problem,
whereas our model addresses the inverse control problem.

The model of Bullock and Grossberg (1988) and of Cisek et
al. (1998) assumes that automatic processes convert the target
position command and the movement’s overall speed com-
mand into an arm trajectory. The focus of this model is quite
different from ours. The model of Bullock and Grossberg
(1988) and of Cisek et al. (1998) does not use optimal control
theory to explain why the brain produces a certain control
signal. On the other hand, it introduces a computational scheme
for M1. Similarly, the model of Baraduc et al. (2001) focuses
on how the motor cortex learns and computes control signals,
using a neural network model. The neural network in this
model transforms position in extrinsic coordinates into position
in joint angle coordinates.

The model of Todorov (2000, 2002) describes the average
neural activity of neurons with a certain PD by a population
vector related to the external endpoint force, endpoint position,
velocity, and acceleration. We share with Todorov (2000,
2002) the general philosophy, according to which, understand-
ing the spinal cord and the limb biomechanics is essential to
interpreting the motor control signals descending from the
brain to the spinal cord. However, our view and understanding
of the spinal-muscular-skeletal system is very different from
Todorov (2000, 2002). In fact, our model and Todorov’s (2000,
2002) are based on very different assumptions. Most impor-
tantly, the model used in Todorov (2000, 2002) does not
contain muscle unidirectionality, muscle and spinal cord finite
time response, and realistic multi-joint mechanics (see, for
example, Moran and Schwartz 2000)—features that we find
crucial for achieving qualitatively correct predictions. Due to
the conceptual difference between the models, the predictions
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of the two approaches contradict each other, even in the
simplest scenarios. For example, in an isometric force task the
average neural activity predicted by Todorov (2000, 2002)
differs from our prediction. First, the predicted tuning function
in Todorov (2000, 2002) is a full cosine, whereas our model
predicts a truncated cosine tuning function. Recall that both
narrow and wide tuning functions are present in M1; however,
muscle-related cells have narrow tuning functions. Second, the
response at the PD predicted by Todorov is a step, whereas our
model predicts pulse-step response. The predictions of
Todorov (2000, 2002) also differ from ours with respect to the
movement task. For example, comparing Fig. 2C in Todorov
(2002), and Fig. 9B in this work, with the results in Sergio and
Kalaska (1998; Fig. 1b) shows the current model provides a
significantly better qualitative description—see comparison in
Fig. 9.

Finally, the model of Neilson and Neilson (2005) uses a
quadratic optimality criterion to resolve the redundancy of the
muscle control signals. The model assumes known flexion and
extension torques, which are used in linear equality constraints.
Given that the flexion and extension torques are known, one
can use this assumption with our general solution for the MCS
as this assumption simply doubles the number of linear equal-
ity constraints. Unlike our MCS model, the model of Neilson
and Neilson (2005) is limited to static scenarios. Another
important difference between this model and our model is that
it does not include the inequality constraints due to muscle
unidirectionality. In the case where all the predicted control
signals are positive, the solution of this model is similar. In any
other case, this model cannot be applied due to negative control
signals. Thus our solution is more general.

Although we have been able to demonstrate good agreement
with experimental results, many open questions remain for
future research of which we mention a few. 1) Cortical neurons
projecting to the spinal cord have further functionalities be-
yond providing input to the motorneuron pools. For example,
projections to Ia-inhibitory interneurons enable the brain to
regulate the gain of the reflex loop and thus change arm
impedance. A more comprehensive model should take such
connections into account. 2) To extend the model’s applicabil-
ity and predictive power, a more realistic spinal-biomechanical
model is needed. For example, to apply the model to tasks
involving impedance control, it should take into account neural
noise, control of the reflex loop gains, influence of the MCS
amplitude on muscle stiffness and viscosity and the depen-
dence of arm moment on joint angles.

We should emphasize that this study provides but one step in
a long journey toward the formidable task of constructing a
unified controller-plant based model of the biological motor
system. In general, the plant is very complex, the control policy
is task dependent, and the diversity of tasks is large. Further-
more, the biomechanical system (Loeb et al. 2002) and the
spinal cord (Burke 2004) are not fully understood. To combine
the plant model with a controller model, while incorporating
appropriate optimality criteria, one needs solve the associated
optimal control problem. In general, this computational prob-
lem is very difficult due to its high dimensionality and the
inherent nonlinearity and stochasticity. Finally, to better test
such models, the connectivity strengths of recorded neurons to
different motorneurons and interneurons should be identified.
Clearly the goal of achieving a full computational understand-

ing of voluntary motor control is a long distance away. Nev-
ertheless we believe that the encouraging results of the sim-
plified model we developed show that the task is not insur-
mountable.

A P P E N D I X A

General solution

From Eqs. 10a and 10b, we obtain

RTU�t� � ��t� � �
d��t�

dt
t0 	 t 	 tf

Thus we have replaced Eqs. 10a and 10b with equality constraints that
depend only on U(t). Now because the integrand of the cost function
and the constraints depend only on U(t), the solution at a given time
depends only on the integrand and the constraint at that particular
time. Therefore the optimal control problem can be replaced by the
following optimization problem

minU�t�

1

2
UT�t�U�t�, t0 	 t 	 tf

s.t. RTU�t� � ��t� � �
d��t�

dt
�D equality constraints�

U�t� � 0 �M inequality constraints�.

This problem can be solved using Lagrange multipliers—see, for
example, Bryson (1999).

We denote Lagrange multipliers for the equality constraints by
�j(t), j � 1, 2, . . . , D, and the Lagrange multipliers for the inequality
constraints by ��i(t), i � 1, 2, . . . , M.

At the minimum the equality constraints RTU(t) � �(t) 
 ���(t) are
satisfied.

In addition, for each i � 1, 2, . . . , M, the solution satisfies one of
the following two conditions: either the minimum is on the boundary
of the admissible region (so-called active constraints) or the minimum
is inside the admissible region (so-called inactive constraints), and
then

ui�t� � 0 & ��i�t� � 0 & ui�t� � �
j�1

D

�j�t�Rij � ��i�t� � 0

or

ui�t� � 0 & ��j�t� � 0 & ui�t� � �
j�1

D

�j�t�Rij � 0

Thus either

ui�t� � 0 and �
j�1

D

�j�t�Rij 	 0 or

ui�t� � �
j�1

D

�j�t�Rij and �
j�1

D

�j�t�Rij � 0

We conclude that

U�t� � �R��t�
, where ��t� � ��1�t�,�2�t�, . . . , �D�t�T,

and where �x
 � x if x � 0 and zero otherwise.

Therefore the D equality constraints become

RT�R��t�
 � ��t� � �
d��t�

dt
.

U(t) � [R�(t)]
 and therefore the set of equations R�(t) � 0 divides
the space �, spanned by �(t), into regions �(k), k � 1, 2, . . . , K. For

3747CONTROL THEORY PREDICTS NEURAL ACTIVITY IN MOTOR CORTEX

J Neurophysiol • VOL 97 • MAY 2007 • www.jn.org

 on July 16, 2007 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


each region �(k), there is a unique group of active muscle indices mk,
for which ui(t) 	 0, i � mk. More precisely

ui�t� � 
 �
j�1

D

�j�t�Rij � 0 i � mk

0 i�mk

Because RT[R�(t)]
 � �(t) 
 ���(t) is a continuous transformation from �

space to ���t� � �
d��t�

dt
� space, each region �(k) in the � space corresponds

to a region in the ���t� � �
d��t�

dt
� space.

Thus the solution is computed in the following way. Given that

��t� � �
d��t�

dt
belongs to the kth region of the ���t� � �

d��t�

dt
�

space, then

�
i�mk

Rijui�t� � �
i�mk

Rij��
l�1

D

�l�t�Ril�� �
l�1

D ��
i�mk

RijRil��l�t� � �j�t� � �
d�j�t�

dt

j � 1, 2, . . . , D. or

R�k�TR�k���t� � ��t� � �
d��t�

dt

where R(k) is a matrix containing the rows of R, corresponding to the
index group mk. Hence

��t� � �R�k�TR�k���1���t� � �
d��t�

dt
� and therefore

�*� U�t� � �R�R�k�TR�k���1���t� � �
d��t�

dt
��




Equation (*) provides the general solution to the optimization prob-
lem. This solution can be further simplified under the assumption of
generalized symmetry, which is defined as independence of the
expression R(k)TR(k) on the specific region k. Under this assump-
tion, the expression R(k)TR(k) can be computed once, and there is no
need to find the region to which �(t) 
 ���(t) belongs. In particular,
the condition of generalized symmetry holds in the case of strict
symmetry, implying that muscles are composed from symmetric
antagonist pairs. Namely, for each pair of antagonist muscles i and i�,
Ri�j � �Rij, j � 1, 2, . . . , D. For a given region k, either i � mk or
i� � mk, and because Rij Ril � (�Rij)(�Ril) � Ri�j Ri�l, j,l � (1, 2, . . . ,
D), the expression �Rij Ril i � mk, does not depend on the specific
region k. Thus under the assumption of strict symmetry, the expres-
sion R(k)TR(k) can be computed once, while the index group mk can be
any group that contains a single representative from each pair of antag-
onist muscles. The condition of generalized symmetry is less restrictive.
For example, it suffices that �i�group1Rij Ril � �i�group2RijRil for two
groups of flexors and extensors surrounding the same joint, while not
requiring each of the muscles in the group to have a symmetric pair.

Neural activity

Having computed the MCSs, {ui(t)}i�1
M , we now ask how the neural

activity of each control signal is divided between the neurons con-
tributing to this control signal. Because the integrand of the cost
function and the constraints depend only on ni,j(t � di,j), the solution
at a given time depends only on the integrand and the constraint at that
time. Therefore the optimal control problem can be replaced by the
following optimization problem

min�ni,j�t�di,j�j�1
Ni �

j�1

Ni

f �wi,jni,j�t � di,j��, t0 	 t 	 tf, i � 1, 2, . . . , M

s.t. �
j�1

Ni

wi,jni,j�t � di,j� � ui�t� � 0

ni,j�t � di,j� � 0 j � 1, 2, . . . , Ni

Assume initially that the inequality constraints are absent. Using
Lagrange multipliers we get that

f��wi,jni,j�t � di,j�� � wi,j � � � wi,j � 0 j � 1, 2, . . . , Ni

wi,j � ni,j�t � di,j� � �f���1��� � const j � 1, 2, . . . , Ni

where ( f �)�1 exists due to the strictly convexity of f.

wi,j ni,j�t � di,j� �
ui�t�

Ni

j � 1, 2, . . . , Ni �due to the equality constraints�

ni,j�t � di,j� �
ui�t�

Niwi,j

j � 1, 2, . . . , Ni

Because this solution obeys the inequality constraints, it serves as a
solution of the full problem (including the inequality constraints).
Thus the neural activity of a single neuron ni.j(t � di,j) is proportional
to the total neural activity of the control signal ui(t).

Isometric task

Consider an isometric task, i.e., the subject retains a fixed endpoint
position in the face of an external force field. Assume that the force is
applied at a certain direction � on the horizontal plane, namely

F�ex��t� � F�t�� cos�
�
sin�
�

0
�� F�t�D�
�

According to the relation between endpoint force and joint moments,
given by Eq. 3, we get that

� � JT���F�t�D���

and therefore

U�t� � �R�R�k�TR�k���1 JT����F�t� � �
F�t�

dt
�D�
��




or

U�t� � ��F�t� � �
F�t�

dt
�C�k����D�
��




where C(k)(�) � R(R(k)TR(k))�1 JT(�) is a M � 3 matrix.
Under the assumption of generalized symmetry mentioned in the

preceding text

C�k���� � C��� � k

Hence

U�t� � ��F�t� � �
F�t�

dt
�C��� D�
��




or

ui�t� � ��F�t� � �F��t��Ci,1��� cos�
� � Ci,2��� sin�
��
, i � 1, 2, . . . , M

Using trigonometry, we get that the tuning function is

ui�t� � ��F�t� � �F��t��ri��� cos�
 � 
i����
,

ri��� � 	Ci.1
2 � Ci.2

2 
i��� � tg�1�Ci.2

Ci.1
� i � 1, 2, . . . , M
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Influence of gravity

In the case where the arm is subject to gravity, some constant term
is added to each torque, according to Eq. 4. Therefore

ui�t� � �rgi��� � �F�t� � �F��t��ri��� cos�
 � 
i����
 i � 1, 2, . . . , M

where rgi(�) is a constant bias due to gravity.
As before, the tuning function is a truncated cosine. However, the

width of the tuning function is not exactly 180° but wider or narrower,
depending on the sign of the constant bias rgi(�).

A P P E N D I X B

Solution for the bijoint 6-muscles model

The kinematic equations of a bijoint planar arm (see Fig. 2A) are
given by

x � L1 cos ��1� � L2 cos ��1 � �2�

y � L1 sin ��1� � L2 sin ��1 � �2�

where L1, L2, �1, �2 are explained in Fig. 2A.
The joint angles can be derived in this case solely from the hand

position relative to the shoulder position, according to

�1 � cos�1� x

	x2 � y2�� sin�1�L2 sin ��2�

	x2 � y2 �
�2 � cos�1� x2 � y2 � L1

2 � L2
2

2L1L2
�

Using these equations, we have calculated joint angle trajectories. For
the isometric task, it was assumed that the hand position is (�5 cm,
20 cm) in shoulder coordinates. For the movement task. it was
assumed that the hand trajectory is a minimum jerk trajectory (Flash
and Hogan 1985), i.e.

x�t� � x0 � �x0 � xf��15r4 � 6r5 � 10r3�

y�t� � y0 � �y0 � yj��15r4 � 6r5 � 10r3�

where r �
t

tf

; x0, y0 and x1, y1 are hand coordinates at t � 0 and at t

� tf respectively.
The static torque was calculated according to Eq. 3, where the

Jacobian in this case is given by

J � � � L1 sin ��1� � L2 sin ��1 � �2� � L2 sin ��1 � �2�
L1 cos ��1� � L2 cos ��1 � �2� L2 cos ��1 � �2�

�
The dynamic torque was calculated according to Eq. 4, which is given
in explicit form for a bijoint arm without gravity (see Fig. 2A) by

�1 � H11�̈1 � H12�̈2 � h�̇2
2 � 2h�̇1�̇2

�2 � H22�̈2 � H12�̈1 � h�̇ 2

where

H11 � m1r1
2 � I1 � m2�L1

2 � r2
2 � 2L1r2 cos ��2� � I2

H22 � m2r2
2 � I2

H12 � m2L1r2 cos ��2� � m2r2
2 � I2

h � m2L1r2 sin ��2�

mi is the mass of link i, ri is the distance between the joint and the
center of link i, and Ii is the inertia of link i. We used the following
parameter values, applicable to a Rhesus monkey, based on Cheng
and Scott (2000), Melis et al. (2002), and Graham and Scott (2003)

M1 � 0.29 kg M2 � 0.25 kg

L1 � 14.4 cm L2 � 15.4 cm

I1 � 2.2 � 10�4 kg � m2 I2 � 6.7 � 10�4 kg � m2

Given the static and the dynamic torque, we have calculated the total
torque according to Eq. 2.

The musculoskeletal geometry is given by six equivalent muscles,
corresponding to the six classes of anatomical arm muscles: shoulder
flexor and extensor, bijoint flexor and extensor, and elbow flexor and
extensor (Fig. 2B). For this model we’ve used the moment arm values
shown in Table 2. These values are rough averages of the moment
arms reported in Graham and Scott (2003).

The arm moments matrix, under the symmetry conditions discussed
in APPENDIX A, is given by

R � �
Ri.1 0

� Ri.1 0
R3,1 R3,2

� R3.1 R3.2

0 R5.2

0 � R5.2

� and therefore R�k� � � R1.1 0
R3.1 R3.2

0 R5.2

�
Then the MCSs were computed according to Eq. 11.
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