
Specification-Guided Controller Synthesis for Linear
Systems and Safe Linear-Time Temporal Logic

∗

Matthias Rungger
Department of Electrical

Engineering
UCLA

rungger@ee.ucla.edu

Manuel Mazo Jr.
Delft Center for

Systems and Control
Delft University of Technology

m.mazo@tudelft.nl

Paulo Tabuada
Department of Electrical

Engineering
UCLA

tabuada@ee.ucla.edu

ABSTRACT

In this paper we present and analyze a novel algorithm to
synthesize controllers enforcing linear temporal logic speci-
fications on discrete-time linear systems. The central step
within this approach is the computation of the maximal con-
trolled invariant set contained in a possibly non-convex safe
set. Although it is known how to compute approximations
of maximal controlled invariant sets, its exact computation
remains an open problem. We provide an algorithm which
computes a controlled invariant set that is guaranteed to be
an under-approximation of the maximal controlled invari-
ant set. Moreover, we guarantee that our approximation is
at least as good as any invariant set whose distance to the
boundary of the safe set is lower bounded. The proposed
algorithm is founded on the notion of sets adapted to the
dynamics and binary decision diagrams. Contrary to most
controller synthesis schemes enforcing temporal logic spec-
ifications, we do not compute a discrete abstraction of the
continuous dynamics. Instead, we abstract only the part
of the continuous dynamics that is relevant for the com-
putation of the maximal controlled invariant set. For this
reason we call our approach specification guided. We de-
scribe the theoretical foundations and technical underpin-
nings of a preliminary implementation and report on several
experiments including the synthesis of an automatic cruise
controller. Our preliminary implementation handles up to
five continuous dimensions and specifications containing up
to 160 predicates defined as polytopes in about 30 minutes
with less than 1GB memory.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods and Search]:
Control Theory; I.2.2 [Automatic Programming]: Pro-
gram Synthesis

∗The work of the first and last authors was partially sup-
ported by the NSF award 1035916 and by the NSF Expedi-
tions in Computing project ExCAPE: Expeditions in Com-
puter Augmented Program Engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’13, April 8–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1567-8/13/04 ...$15.00.

Keywords

Controller Synthesis, LTL Specification, Set Invariance

1. INTRODUCTION
Traditional control systems design is concerned with ra-

ther simple specifications such as asymptotic stability, i.e.,
reaching some set as time tends to infinity. Although sim-
ple, these specifications are often hard to enforce due to the
complexity of the models employed in control theory and, in
particular, due to the infinite nature of the state space over
which those models are defined. In sharp contrast is the
work on formal verification of systems or in discrete-event
controller synthesis. In those two realms, the problem spec-
ification is typically much more complex, involving not only
specifications regarding the limiting behavior of the system
at hand, but also sequencing of actions, choices between al-
ternative actions, etc. These specifications, are typically for-
malized in a temporal logic [25] such as linear temporal logic
(LTL), which lets the user specify both logical and temporal
properties. In those areas of research more complex spec-
ifications can be tackled because of the finite state nature
of the system models. The use of systems evolving on finite
state spaces allows for the algorithmic treatment of problems
and therefore the use of computers for the computation of
its solution or be it the verification of a given property, or
the design of a control strategy to enforce a property.

With the advent of ubiquitous computing platforms to
sense and control physical systems, there has been an in-
creasing level of concern regarding the safety of such sys-
tems. This has, in turn, sparked the interest of computer
scientists to verify the correctness of software interacting
with the physical world, as well as from control scientists
aiming at synthesizing software that guarantees the safe con-
trol of a given physical plant. Until recently, most of the
approaches to these problems relied on extensive testing to
prove correctness of the designs at hand. In the past few
years, however, there has been a surge of research aimed
at the synthesis of correct-by-design control software. Un-
der this new paradigm, testing or verification is no longer
needed as the software is designed taking into account all
possible contingencies described by the models of the sys-
tem to be controlled.

As already mentioned, when the models employed to de-
scribe the system at hand have finitely many states, auto-
mated techniques are already available to synthesize con-
trollers. Thus, the most common approach to provide cor-
rect-by-design synthesis techniques is to convert the infinite
state models, usually employed in the modeling of physi-

cal processes, into finite state models. This translation, re-
ferred to as abstraction, needs to be carefully done so that
properties guaranteed in the simpler finite state model carry
through to the original infinite state system. While numer-
ous theoretical results are available supporting such abstrac-
tion procedures [31], direct application of them, imposing
uniform grids on the state space, usually results in com-
putationally intractable models. This is especially the case
when dealing with higher dimensional systems due to the
curse of dimensionality resulting in an exponential growth
of the finite models with the dimension of the system. There
exists a great variety of different approaches [23, 33, 16, 12,
10, 22, 1, 27, 36, 20, 40, 35] and tools, e.g. LTL-Con [15],
LTLMoP [11], TuLiP [41], Pessoa [21]. All of them with
their different virtues. The systems considered range from
simple double integrator dynamics [10], over linear dynam-
ics [33, 16, 40] or nonlinear dynamics [22, 27, 20, 35] to
hybrid dynamics [12] and stochastic systems [1, 36]. Differ-
ent notion of abstractions like behavioral containment [23,
27], exact (bi)similar relations [33] or approximate notions
[12, 22, 20] have been analyzed. Also the regarded spec-
ification language ranges from full LTL [33, 10], restricted
versions of LTL [22, 40], to special cases of reach-avoid prob-
lems [27, 35]. However, most of them suffer from the curse
of dimensionality, as they follow the same two step approach
by first computing a finite abstraction and performing con-
troller synthesis afterwards. Alternative approaches are thus
needed in order to make the synthesis of correct-by-design
controllers practical.

In the present work, we focus on an algorithm that avoids
the computation of a finite state abstraction of the continu-
ous system to be controlled. A similar approach, which also
connects the computation of the abstraction to the specifi-
cation is outlined in [13], where the authors focus on co-safe
LTL specifications. We consider discrete-time linear time-
invariant systems and a subset of the full linear temporal
logic (LTL) called safe-LTL. Safe-LTL formulas always spec-
ify a safety property. These are properties whose violation
can be checked by looking at a finite prefix of the violating
run. The well-known automata theoretic approach to syn-
thesize controllers that enforce LTL specifications, proceeds
as follows, see [17, 19]. First, the negated specification is
translated into a finite state automaton, which is then syn-
chronized with the system. If the synchronized system has
an accepting run, the property given by the specification
does not hold. Hence, the objective of a controller is to pre-
vent runs from being accepted which can be formalized as
safety game or as the computation of the maximal controlled
invariant set.

Therefore, we revisit the well-known fixed point iteration
to compute the maximal controlled invariant subset (MCIS)
of a given safe set K, see e.g. [3] or for a more detailed expo-
sition the monographs [2, 5]. When the system is linear and
the set K is polyhedral, all the intermediate computations
can be performed exactly by computing polyhedral projec-
tions and intersections, see e.g. [37]. Thus, provided that
the iterations terminate, we can solve the synthesis prob-
lem. Unfortunately, termination is not guaranteed in gen-
eral. There exists some results which address this problem
for a convex safe set K. The authors in [4, 5] exploit the
contraction property of an asymptotically stabilizable sys-
tem, and show that the MCIS can be under-approximated
with arbitrary accuracy in finite time. The authors in [9],

initialize the iteration with a controlled invariant set, and
are able to provide an invariant under-approximation of the
MCIS in every step of the iteration. Moreover, they show
that their approximation approaches the MCIS in the limit.
Unfortunately, in our case, we cannot assume the safe set K
to be convex as it is given by unions and intersections of the
polyhedral sets that correspond to the atomic propositions
in a safe-LTL formula.

The fixed point iteration for a non-convex safe set is of-
ten carried out for piecewise linear systems [14, 26, 24, 42].
However, none of these approaches ensure finite termina-
tion. Furthermore, it is not straightforward to apply the
solutions for convex safe sets to non-convex safe sets. Also,
from a practical point of view, the exact computation of the
MCIS with non-convex safe sets might not be a wise choice
since the number of polytopes might grow combinatorially
over the iterations. This constitutes a serious problem as
illustrated in Section 6.2.

We propose a practical implementation of the MCIS com-
putation for which we can guarantee termination. This is
attained at the price of providing an under-approximation
of the actual MCIS which is, nevertheless, a controlled in-
variant subset. The proposed technique is based on the no-
tion of sets adapted to the dynamics of a linear system, see
[31]. These are sets which in controllable normal form coor-
dinates, also known as Brunvosky normal form, are Carte-
sian products of intervals. For (unions of) such sets, the
computation of the MICS is relatively simple, and can be
computed in a finite number of iterations. This was already
observed in [37] and [38], and later generalized in [32, 33]
and [28]. However, one rarely encounters problems in which
the relevant sets are already adapted to the dynamics as
assumed in [32, 33] and [28]. The idea we explore in this
paper is to under-approximate the relevant sets by adapted
sets and then perform the fixed point computation for the
approximating sets. The approximations of the sets at hand
are represented much in the same flavor as proposed in [6]
and are stored in the form of binary decision diagrams [39,
30] (BDD). BDDs are selected as a data structure because
of their efficiency in representing and manipulating binary
functions or equivalently discrete sets.

One aspect of our work is that we do not require the com-
putation of the complete discrete abstraction of the contin-
uous dynamics. Instead, we abstract only the part of the
continuous dynamics that plays a role in the computation
on the MCIS. The computational implications of this are re-
flected on the experimental results, where we can solve prob-
lems up to five continuous variables, which was previously
not possible, see Section 6.2. A second aspect of the present
work is a certain completeness result for our approach: we
show that our approximation is at least as good as any in-
variant set whose distance to the boundary of the safe set is
lower bounded, see Section 4.2. A statement that is rarely
found in the abstraction based synthesis community.

2. PRELIMINARIES
In what follows, we mostly operate in a space X = Q×R

n,
given as the product of a discrete space Q and the Euclidean
space Rn. The projection of X onto Q and R

n is denoted by
the mappings πQ : X → Q and πRn : X → R

n, respectively.
Given a subset K ⊆ X we useK(q) to denote the setK(q) =
{x ∈ R

n | (q, x) ∈ K}. We define the Hausdorff distance
dH on X with respect to the product metric given by the

discrete metric on Q and the Euclidean distance d in R
n. A

cube in R
n with center c ∈ R

n and radius r ∈ R
n, is denote

defined by B(c, r) := {x ∈ R
n | ∀i∈{1,...,n} : −ri ≤ xi − ci ≤

ri}.

3. THE SYNTHESIS PROBLEM
In this section, we introduce the synthesis problem, which

is composed of three entities: a linear control system that
describes the physical process we want to control; a set of
atomic propositions that represent the sets of states that are
of interest for the control task; and the safe-LTL formula

that describes the desired closed-loop behavior of the system
in terms of the atomic propositions.

3.1 The System
We consider discrete-time linear control systems:

x+ = Ax+Bu, (1)

given by the matrices A ∈ R
n×n and B ∈ R

n×m. Through-
out the paper, we assume the system (1) to be controllable.

3.2 The Specification
Let P ⊆ 2R

n

denote the set of atomic propositions, with
each element Pi ∈ P given by a convex polytope:

Pi = H(Ci, ci). (2)

Here H(Ci, ci) = {x ∈ R
n : Cix ≤ ci} denotes the set

of solutions of the system of inequalities Cix ≤ ci with
Ci ∈ R

ri×n and ci ∈ R
ri . We assume that the sets Pi ⊆ R

n

are bounded. The atomic propositions are linked to the sys-
tem (1) through the map h : Rn → 2P associating to each
state x ∈ R

n the set of atomic propositions that are satisfied
at x, i.e., h(x) = {Pi ∈ P : x ∈ Pi}. These atomic proposi-
tions are used to construct safe-LTL formulas formalizing
the desired specification to be enforced by the controller to
be synthesized. For a definition of the syntax and seman-
tics of LTL and safe-LTL we refer the readers to [17, 19].
Here, we simply mention that safe-LTL formulas always de-
fine safety specifications and we provide a concrete example
illustrating its usefulness as a specification formalism.

Cruise control example.
Consider a truck with a trailer as depicted in Figure 1. We

want to design a controller ensuring that the highway speed
limits are always satisfied. The longitudinal dynamics of
the truck and trailer are given by the continuous-time linear
control system

ẋ =

0 −1 1
ks

m
− kd

m

kd

m

0 0 0

x+

0
0
1

u,

where the entries of the state vector x = (d, v1, v2) ∈ R
3 cor-

respond to the distance d between the truck and the trailer,
the velocity of the trailer v2 and the velocity of the truck
v1, respectively. A more detailed explanation of this model
is given in Section 6.1.

Let the truck be driving on a highway on which three
speed limits va = 15.6m/s (ca. 35mph), vb = 24.5m/s (ca.
55mph) and vc = 29.5m/s (ca. 66mph) are imposed. We
would like to design a controller guaranteeing that the truck
obeys the velocity limits. We assume that each velocity limit
sign on the highway is equipped with a radio transmitter

v1 v2d

d = 0

ks

kd

Figure 1: The truck with trailer.

that automatically transmits the limit to the truck. Then
we would like to ensure that the truck obeys the current
speed limit at most after T ∈ N time steps after the truck
receives the information that the speed limit has changed.

For simplicity we consider only the limits va and vb. A
safe-LTL formula encoding the specification is given by:

✷(ϕa ∧ ϕb) (3)

where ϕa and ϕb are defined as:

ma =⇒ ✸≤T (taWmb) and mb =⇒ ✸≤T (tbWma)

respectively. The atomic proposition mi, i ∈ {a, b} encodes
the fact that limit vi is in place while the atomic proposition
ti encodes the satisfaction of the speed limit, that is, v1 ≤ vi.
The operator ✸≤T requires taWmb to be satisfied in T or
less steps while the formula taWmb requires ta to be satisfied
unless mb becomes true, i.e., the speed limit changes from
ma to mb. We return to this example in Section 6.1 where
we compute the maximal controlled invariant set.

3.3 The synthesis problem
There exists a well known automata theoretic approach

to synthesize controllers with respect to LTL formulas and
specifically, with respect to safe-LTL formulas. Safe-LTL
formulas represent a fragment of full LTL formulas that
specifies safety properties, while full LTL formulas can also
specify liveness properties. Loosely speaking, a formula ϕ
defines a safety property, if its violation can be checked by
looking at a finite prefix of a trajectory. This property al-
lows the use of finite automata in the synthesis of controllers
enforcing safe-LTL instead of Büchi automata that require
more complex algorithms, see e.g. [19]. Kupferman and
Vardi [17] show that a bad-prefix finite state automaton can
be constructed from a safe-LTL formula ϕ. This automa-
ton accepts at least one bad prefix for every trajectory that
violates the specification ϕ.

Let A¬ϕ = (Q,Q0, F, δ, g, 2
P) denote the bad-prefix finite-

state automaton with respect to the formula ϕ where Q
is the set of states, F ⊆ Q is the set of accepting states,
δ ⊂ Q × Q is the transition relation, g : Q → 2P is the
output function and 2P is the output set. We define the
transition system:

Sϕ = (X,X0, U, δϕ, Y,H) (4)

as the synchronous product of system (1) and the bad-prefix
automaton A¬ϕ by:

• the set of states X = {(q, x) ∈ Q× R
n | g(q) = h(x)};

• the initial states X0 = {(q, x) ∈ Q0 × R
n | g(q) =

h(x)};

• the set of inputs U = R
m;

• the transition relation δϕ ⊆ X ×X;

• the set of outputs Y = 2P ;

• the output map H(q, x) = g(q) for each (q, x) ∈ X.

The transition relation δϕ of the synchronous product is im-
plicitly defined by ((q, x), (q′, x′)) ∈ δϕ iff there exists u ∈ U
such that

x′ = Ax+Bu ∧ (q, q′) ∈ δ.

A run of the transition system Sϕ associated to the initial
state (q, x) ∈ X0 is an infinite sequence ζ : N0 → X with
ζ(0) = (q, x) that satisfies (ζ(t), ζ(t + 1)) ∈ δϕ for all times
t ∈ N0. Sometimes we will denote ζ(t) simply by ζt.

We refer the reader to [17, 19] for a detail description of
the bad-prefix automaton and in particular to [13] where the
very same bad-prefix automaton is used.

It is well-known that the controller enforcing ϕ on (1)
corresponds to the controller forcing the system Sϕ to stay
within the safe set

K =
⋃

q∈Q\F

{q} × h−1 ◦ g(q) (5)

for all times. As long as trajectories remain in K, no finite-
prefix of a trajectory violating the specification is reached
and thus no violation of the specification ever occurs. More-
over, it is known that this controller is memoryless in the
sense that it is given by a map µ : X → 2U and it can be
chosen to be maximal, i.e., any other controller µ′ : X → 2U

that enforces ϕ satisfies µ′(q, x) ⊆ µ(q, x), see e.g. [31].
In summary, the synthesis of a controller enforcing a safe-

LTL specification is reduced to the computation of a con-
trolled invariant set for the system Sϕ. Therefore, in the
remaining parts of the paper, we solely focus on the compu-
tation of the maximal controlled invariant subset of K.

4. COMPUTATION OF INVARIANT SETS
Let us introduce the algorithm to compute the maximal

controlled invariant subset (MCIS) of K defined by:

K(K) =
{

(q, x) ∈ X
∣

∣ there exists a run ζ of Sϕ with

ζ0 = (q, x) and ζt ∈ K for all t ∈ N0} .

When no confusion arises we will denote the MCIS simply
by K. This set is computed by the well-known Algorithm 1,
see e.g. [3]. The algorithm is initialized with the set K
and proceeds iteratively by computing the set Ki+1 as the
intersection of Ki with the set of states that reach Ki in
one step. Assuming that the algorithm terminates after i ∈
N0 steps, the output satisfies Ki = K(K), see e.g. [14,
Lemma 2.1].

Algorithm 1 Computation of K(K)

Input: K
Init: K0 := K

while Ki 6= Ki+1 do

Ki+1 := Ki ∩ {z ∈ X | ∃z′ ∈ Ki : (z, z
′) ∈ δϕ} (6)

end while

Output: Ki

4.1 Approximation of the Maximal Controlled
Invariant Set

For the following analysis, we assume the system (1) to
be given in special Brunovsky normal form, see [7], i.e., the
system matrices are of form

A =

Aµ1
0 . . . 0

0 Aµ2
. . . 0

...
...

. . .
...

0 0 0 Aµm

, B =

bµ1
0 . . . 0

0 bµ2
. . . 0

...
...

. . .
...

0 0 0 bµm

for some µ1, . . . , µm ∈ N with
∑m

i=1 µi = n, and Aµi ∈
R

µi×µi , bµi ∈ R
µi×1 are of the form

Aµi =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

, bµi =

0
0
...
0
1

.

The original Brunovsky normal form is similarly defined,
only the last rows of the matrices Aµi contain possible non-
zero entries. However, such rows can be cancelled out by
a simple input transformation. Given that the system is
controllable, all these transformations are carried out with-
out loss of generality and automatically computed by our
implementation. See [28] for a more detailed treatment.

In our approximation of the safe set K, we use the fact
that for all q ∈ Q, the set K(q) results from a finite union
and intersection of atomic propositions Pi ∈ P . Therefore,
K(q) is given as a finite union of polytopes

K(q) =

pq
⋃

i=1

H(Ci, ci)

for some Ci ∈ R
ri×n and ci ∈ R

ri . We now proceed by
approximating these sets based on a uniform grid in R

n de-
noted by [Rn]ρ and parameterized by ρ ∈ R+:

[Rn]ρ = {x ∈ R
n : x = ρk, k ∈ Z

n}.

Let Cρ(ξ) denote the cell associated to the grid point ξ ∈
[Rn]ρ:

Cρ(ξ) = {x ∈ R
n | ∀i∈{1,...,n} : ξi ≤ xi ≤ ξi + ρ}.

and note that a cell is a Cartesian product of intervals and
is thus adapted to the dynamics [31]. We define the over-
approximation K̂ and the under-approximation Ǩ of the
safe set K by

K̂(q) = {x ∈ R
n | ∃ξ ∈ [Rn]ρ : x ∈ Cρ(ξ) ∩K(q) 6= ∅} ,

Ǩ(q) = {x ∈ R
n | ∃ξ ∈ [Rn]ρ : x ∈ Cρ(ξ) ⊆ K(q)} .

(7)

These approximations, being a union of adapted sets, are
also adapted sets. It is straightforward to verify that Ǩ ⊆
K ⊆ K̂ holds. Moreover, it follows immediately from the
definition of MCIS that

K(Ǩ) ⊆ K(K) ⊆ K(K̂).

Theorem 1. Suppose system (1) is in special Brunovsky

normal form and let Ǩ and K̂ be the sets as defined in (7).

Then Algorithm 1, with input Ǩ and K̂ terminates in a

finite number of iterations and the output Ki is the maximal

controlled invariant subset of Ǩ and K̂, respectively.

Although the proof of this theorem follows from the results
in [33] we include it here for the sake of completeness. Be-
fore we prove finite termination of the algorithm, we need a
technical result for the set

Pre(D) = {x ∈ R
n | ∃u ∈ R

m : Ax+Bu ∈ D} (8)

and the following definition.

Definition 1. We call a set D ⊆ R
n finitely representable

on [Rn]ρ if there exist ξ1, . . . , ξp ∈ [Rn]ρ such that D =
∪iCρ(ξ

i).

Lemma 1. Suppose (1) is in special Brunovsky normal

form. If D and D′ are finitely representable sets then D′ ∩
Pre(D) is finitely representable.

Proof of Theorem 1. We show the assertion for the
under-approximationK(Ǩ), i.e., Algorithm 1 is invoked with
Ǩ. The statement for K̂ follows analogously. We can write
equation (6) as

Ki+1 = Ki ∩
⋃

(q,q′)∈δ,q′∈πQ(Ki)

{q} × Pre(Ki(q
′)).

Note that K0(q) is finitely representable for all q ∈ Q. Thus,
we can use induction and invoke Lemma 1 to conclude that
that the sets Ki(q) are finitely representable for every i ∈ N0

and q ∈ Q.
Now we identify every Ki(q) with its representing grid

points Ki(q) ∩ [Rn]ρ and define the operator

G : 2Ǩρ → 2Ǩρ ,Ki ∩Q× [Rn]ρ 7→ Ki+1 ∩Q× [Rn]ρ

with Ǩρ = K ∩ Q × [Rn]ρ and Ki and Ki+1 given in (6).

Note that (2Ǩρ ,⊆) is a complete lattice and 2Ǩρ is finite.
In addition, it is straightforward to see that G is monotone.
Then, we apply Tarski’s fixed point theorem, see e.g. [34]
or [31, Corollary A.6], and conclude that there exists i ∈ N0

such that the maximal fixpoint K = G(K) of G is given by
K = Gi(Ǩρ), where Gi denotes the ith-fold composition of
G with itself.

4.2 Approximation Analysis
In this subsection we discuss how well we can approxi-

mate K(K) with K(Ǩ). It is well-known that the MCIS can
be arbitrarily well over-approximated [29]. However, this
is in strong contrast to under-approximations. It is shown
in [8] that replacing K with an arbitrarily small under-
approximation may lead to an empty MCIS. Nevertheless,
if K contains a controlled invariant set I “strictly inside”,
then by taking Ǩ to be a sufficiently close approximation of
K we can capture I in the sense that I ⊆ K(Ǩ). In other
words, if the synthesis problem has a solution for a safe set
that is “strictly inside” K, we are guaranteed to find that
solution. We now make these ideas precise.

Definition 2. A set I ⊆ X is called controlled invariant

with respect to Sϕ if for every z ∈ I there exists a run ζ of

Sϕ such that ζ0 = z and ζt ∈ I for all t ∈ N0.

We now formalize the meaning of “strictly inside” by requir-
ing dH(I, ∂K) ≥ γ for some γ > 0 where dH is the Hausdorff
distance between the set I and the boundary of K denoted
by ∂K. Whenever dH(I, ∂K) ≥ γ holds, we can construct
an under-approximation Ǩ of K containing I and thus we
have the guarantee I ⊆ K(Ǩ) by maximality of K(Ǩ).

In the following, we use Ǩρ to indicate that the under-
approximation Ǩ is obtained with respect to the grid [Rn]ρ.

Theorem 2. Let I ⊆ X be a controlled invariant set

with respect to Sϕ contained in I ⊆ K ⊆ X satisfying

dH(I, ∂K) ≥ γ for some γ > 0. Then, there exists ρ ∈ R+

such that I ⊆ K(Ǩρ).

Proof. Suppose the assertion is not true. Then there
exists a run ζ of Sϕ with initial state ζ0 ∈ I\(∪ρ∈R+

K(Ǩρ))
with ζt ∈ I for all t ∈ N0. Therefore, there exists γ ∈
R+ with dH

(

πRn(ζt), ∂K (πQ(ζt))
)

≥ γ. Moreover, there
exists ρ0 ∈ R+ such that for all ρ ∈ R+, ρ ≤ ρ0 we have
dH(Ǩρ,K) ≤ γ/2, which implies ζt ∈ Ǩρ for all t ∈ N0 and
therefore ζ0 ∈ K(Ǩρ). A contradiction.

4.3 Input Constraints
So far we have assumed that there are no constraints on

the inputs of the linear system. However, it is often the case
that the control inputs are restricted to a subset V ⊆ U of
the input space U = R

m. If that is the case we can aim at
computing an input constrained version of the MCIS. That
is, in the definition of the transition relation δϕ, see (4),
we enforce the inputs to be elements in U = V instead of
U = R

m. Let KV (K) denote the MCIS with respect to
the constrained input space V . We incorporate such input
constraints by extending the state space of the system so
as to incorporate the inputs. The system matrices of the
extended system are given by

A′ =

[

A B
0 0

]

, B′ =

[

0
I

]

(9)

where I is the identity matrix in R
m. Each element P ′

i of the
set of atomic propositions P ′ is correspondingly modified to

P ′
i = Pi × V

which in turn results in a modified safe set K′ according
to (5). The following lemma ensures the completeness and
soundness of this scheme.

Lemma 2. Let Sϕ and S′
ϕ be the transition systems ob-

tained as the synchronous product of (1) and (9) with the

bad-prefix automaton, respectively, and let K and K′ de-

note the corresponding safe sets. Then, the input constrained

MCIS of Sϕ, denoted by KV (K), coincides with the MCIS

of S′
ϕ, denoted by K′(K′), on X:

KV (K) = πX(K′(K′)),

where πX is the projection from X × V to X.

Proof. Let (q, x) ∈ KV (K). This implies, that there
exists a run ζ of Sϕ with initial state (q, x) such that ζt ∈ K
for all t ≥ 0. Let υ : N0 → V denote the associated input
sequence. We define the sequence υ′ : N0 → V by a shift
operation υ′

t := υt+1. By the definition of the extended
system (9) we are able to chose a run ζ′ of S′

ϕ with initial
state ζ′0 = (q, x, υ0) that satisfies

ζ′t = (ζt, υt−1).

As Sϕ obeys the constraints ζt ∈ X and υt ∈ V it follows
that ζ′t ∈ X × V for all t ≥ 0 which implies that (q, x, υ0) ∈

K̃′ and thus KV ⊂ πX(K′).
For the reverse inclusion, let (q′, x′, u′) ∈ K′. This implies

that there exists a run ζ′ of S′
ϕ with initial sate (q′, x′, u′)

that satisfies ζ′t ∈ X × V for all t ≥ 0. Let πV be the
projection from X × V to V and define the sequence υt :=
πV (ζ′t). We see, again by the definition of the extended

system (9), that we can pick a run ζ of Sϕ with initial state
(q′, x′) that satisfies (ζt, υt) = ζ′t, which implies that (q, x) ∈
KV .

5. SYMBOLIC IMPLEMENTATION
In this section, we describe the implementation of our

approach using binary decision diagrams (BDDs) and al-
gebraic decision diagrams (ADDs). Decision diagrams are
data structures that efficiently represent binary functions
fb : Bn → B with binary codomain (B = {0, 1}) and binary
functions fa : B

n → R with real codomain. In particu-
lar, we focus on the two operations that are unique to our
approach: the under-approximation of the atomic proposi-
tions and the computation of the set iterates (6). In what
follows, we show how these two operations can be performed
in a symbolic manner, i.e., without iterating over the grid
points. Moreover, all the operations are implemented us-
ing ordinary BDD manipulations like conjunction, disjunc-
tion, variable reordering and quantifier elimination as well
as ADD manipulations like thresholding, addition and sub-
traction. Standard BDD packages as CUDD [30] provide
efficient implementations for all of those operations.

5.1 Set Encoding
Our implementation of Algorithm 1 starts with the en-

coding of the safe set K, see (5), in terms of BDDs on a
binary domain B

Nn. In doing so, we assume that the sets
K(q) ⊆ R

n are contained in the unit-cube B(0, 1). If that is
not the case, we scale the sets and the continuous dynamics
accordingly.

Once the grid [Rn]ρ is fixed, the dimension Nn of the
binary domain B

Nn corresponds to the product of the state
space dimension n ∈ N and the number of bits N ∈ N that
are required to binary encode the finite number of grid points
of [B(0, 1)]ρ = B(0, 1) ∩ [Rn]ρ.

Given a grid point ξ = (ξ1, . . . , ξn) ∈ [B(0, 1)]ρ we denote
its binary encoding by ξB = (ξ1B , . . . , ξnB

) ∈ B
Nn with each

ξiB ∈ B
N .

5.2 Symbolic Approximation of Polytopes
Every polytope is obtained as a finite intersection of half-

spaces. Henceforth, we focus on the approximation of half-
spaces of the form

R = {x ∈ R
n | Cx ≤ c}

with C ∈ R
1×n and c ∈ R. Once we have the BDD repre-

sentation of the half-spaces, computing the intersection can
be realized by computing the conjunction of the two BDDs
representing these sets.

The under-approximation and the over-approximation of
the set R is represented by the BDDs ř : B

Nn → B and
r̂ : BNn → B, respectively, defined as:

ř(ξB) = 1 ⇔ Cρ(ξ) ⊆ R, (10)

r̂(ξB) = 1 ⇔ Cρ(ξ) ∩R 6= ∅. (11)

Rather than using the definition of ř and r̂ we compute
these BDDs by making use of the ADDs f̌ : BNn → R and
f̂ : BNn → R given by

f̌(ξB) = max
x∈Cρ(ξ)

Cx and f̂(ξB) = min
x∈Cρ(ξ)

Cx.

The functions f̌ and f̂ associate to each grid point ξ the
maximum and minimum value of Cx with x restricted to
x ∈ Cρ(ξ). Notice that we have the following implications

f̌(ξB) ≤ c ⇔ Cρ(ξ) ⊆ R and f̂(ξB) ≤ c ⇔ Cρ(ξ) ∩R 6= ∅.

Therefore, we are able to define the approximating BDDs ř
and r̂ simply by truncating the ADDs f̌ and f̂ . In particular,
we obtain all grid points ξB ∈ B

Nn that satisfy ř(ξB) = 1
respectively r̂(ξB) = 1 by

ř−1(1) = {ξB ∈ B
Nn | f̌(ξB) ≤ c}

r̂−1(1) = {ξB ∈ B
Nn | f̂(ξB) ≤ c}.

The ADDs f̌ and f̂ can in turn be efficiently computed as
we outline in the reminder of this subsection.

To provide a clearer presentation, we consider the one-
dimensional case n = 1 and assume that C ≥ 0. We fix
the particular encoding scheme as follows: a grid point ξ ∈
[B(0, 1)]ρ is obtained by a binary element ξB = b0 . . . bN−1

of BN by

ξ =
N−1
∑

i=0

2−ibi − 1.

With this encoding scheme in mind, we compute f̌ itera-
tively over the number of bits by the functions f̌ i : Bi → R

obtained from

f̌0(b0) = Cb0

f̌ i+1(b0 . . . bi+1) = f̌ i(b0 . . . bi)− 2−iC(1− bi+1).

It is easy to verify that f̌ = f̌N−1. We proceed in an analo-
gous way for the general case, as well as to compute f̂ .

5.3 Implementation of the Set Iterates
In this subsection, we describe the implementation of the

main computation in Algorithm 1, i.e., the iteration (6)
given by

K ∩K′

with K′ = {z ∈ X | ∃z′ ∈ K : (z, z′) ∈ δϕ}. In particular we
focus on how to obtain a BDD representation of K′ given
a BDD representation of K. The set K′ can be written in
terms of

K′ = {(q, x) ∈ X |

∃q′ ∈ πQ(K) ∧ (q, q′) ∈ δ ∧ x ∈ Pre(K(q))}.

with the Pre operator as defined in (8). Notice that the ele-
ments in (q, x) ∈ K′ do not need to be output synchronized,
i.e., we do not require g(q) = h(x). The synchronization of
the elements in K′ is achieved by the intersection of K′ with
the synchronized elements K in (6).

In the following we describe, how we obtain K′ in two
steps. First, we compute the set K̃ from K by

K̃ = {(q, x) ∈ X | q ∈ πQ(K) ∧ x ∈ Pre(K(q))}

and subsequently K′ from K̃ by

K′ = {(q, x) ∈ X | ∃q′ ∈ πQ(K̃) : (q, q′) ∈ δ ∧ x ∈ K̃(q′)}.

It is not difficult to see that the computation of K′ via K̃
can be obtained through standard BDD operations like ex-
istential abstraction and conjunction.

In the remainder of this subsection, we focus on the com-
putation of K̃ from K, which basically corresponds to the
implementation of the Pre operator. For the sake of presen-
tation, let us focus on the single input case.

Let k : B|Q|Nn → B denote the BDD representation of the
set K given by

k(qB, ξB) = 1 ⇔ {q} × Cρ(ξ) ⊆ K.

Notice that we assume that all sets K(q) are obtained from
the above approximation procedure. Hence, the sets K(q)
are finitely representable and therefore, k is an exact repre-
sentation of K.

As detailed in [28], whenever the linear system is given
in Brunovsky normal form, the Pre computation is imple-
mented by the following simple existential abstraction and
variable shift:

k̃(qB, ξB1
, . . . , ξBn) = 1 ⇔

∃uB : k(qB, ξB2
, . . . , ξBn−1

, uB) = 1.

We refer the reader to [28] for a more detailed explanation
and the multi-dimensional input case.

Notice that all our computations, including the approx-
imation of polytopes, are performed symbolically, i.e., we
avoid any iteration over the grid points ξB. Moreover, none
of the operations in our implementation includes the costly-
to-obtain abstraction, i.e., a BDD representation of the tran-
sition relation δϕ ⊆ X × X, which is the case for several
known approaches, e.g. [21, 10, 27, 35, 40] just to mention
a few. In the proposed scheme, the computation of the ab-
straction is restricted to the safe set K. As a result, we are
able to save memory as well as computation time.

6. EXPERIMENTAL RESULTS
In this section, we demonstrate the performance of the

developed algorithm for some examples. In the first sub-
section, we synthesize a cruise controller for a truck on a
highway. In the second part, we compare the performance
of Algorithm 1 with the polyhedral approach, described in
[14] and [26] in terms of an example from [24].

The accuracy of the computed solutions will be estimated
by the upper bound ê of the relative error between the vol-
ume of the MCIS and the volume of the computed under-
approximation:

ê =
volK(K̂)− volK(Ǩ)

volK(Ǩ)
≥

volK(K)− volK(Ǩ)

volK(K)
.

We implemented all the algorithms in C using the decision
diagram library from the University of Colorado (CUDD) [30].
All computations are performed on an Intel Core i7 1.8GHz
processor using 4GBytes of memory.

6.1 Cruise Controller for a Truck
We return to the example that was briefly described in

Section 3.
Recall that we seek to design a controller for the truck

with a trailer depicted in Figure 1. The objective of the
controller is to enforce the highway speed limits. We start
with the continuous-time linear model:

ẋ =

0 −1 1
ks

m
− kd

m

kd

m

0 0 0

x+

0
0
1

u,

where the entries of the state vector x = (d, v2, v1) ∈ R
3 cor-

respond to the distance d between the truck and the trailer,
the velocity of the trailer v2 and the velocity of the truck v1,
respectively. Here, we model the connection between the
truck and the trailer by a spring-damper system with con-
stants ks = 4500 N/kg and kd = 4600 Ns/m. The mass of
the trailer is fixed to m = 1000 kg. The input of our model
is the constrained acceleration u ∈ [−4, 4]m/s2 of the truck.

We consider three speed limits va = 15.6m/s (ca. 35mph),
vb = 24.5m/s (ca. 55mph) and vc = 29.5m/s (ca. 66mph)
and would like to design a controller, that guarantees that
the truck obeys the effective velocity constraint. In particu-
lar, we would like to ensure that the truck obeys the current
speed limit at most T ∈ N time steps after the controller re-
ceives the information that the speed limit has changed. The
number of steps T , after which we enforce the speed limit is
a parameter that we vary throughout the experiments.

Truck without trailer. We provide a complete descrip-
tion of a simplified version of this problem. However, we
present the experimental results for the original example.
The simplified version consists of the truck without a trailer
subject only to two speed limits va and vb. As a first step,
we discretize the continuous-time system by sampling the so-
lution of the system under piecewise constant inputs, with
sampling rate h = 0.4 s. In the second step, we extend the
state space with the input space so that we are able to ac-
count for the input constraints u ∈ [−4, 4]. The resulting
system is given by

z+ =

[

1 h
0 0

]

z +

[

0
h

]

v (12)

with z = (v1, u) and unconstrained input v. In addition
to the model of the truck we introduce an automaton as
a model for the environment, i.e., a model for the change
of speed limits over time. The automaton is sketched in
Figure 2. It has two states, ma and mb, one for each speed
limit and it can arbitrarily change between these states. The
full plant model is given by the composition of the linear
system (12) and the automaton in Figure 2.

ma mb

Figure 2: Model of the highway.

Notice that so far we assumed that our plant is given by
a linear system and not as a switched system with linear
dynamics. However, as we will describe below, for this par-
ticular example, it is an easy task to modify Algorithm 1
accordingly.

We define the atomic propositions by P0 = H(C0, c0),
P1 = H(C1, c1) and P2 = H(C1, c2) with

C0 =

−1 0
1 0
0 −1
0 1

, c0 =

0
35
4
4

and C1 =
[

1 0
]

, c1 = 15.6m/s, c2 = 24.5m/s. We use
P0 to specify our operating speed range 5 ≤ v1 ≤ 35m/s as
well as to account for the input constraints−4 ≤ u ≤ 4m/s2.
The propositions P1 and P2 are used to enforce the speed
limits va and vb, respectively.

The specification is given by the safe-LTL formula (3) and
the corresponding bad-prefix finite state automaton for T =
2 is depicted in Figure 3.

q0 q1 q2

q8

q6

q3

q5q4 q7

Figure 3: The bad-prefix finite state automaton ac-

cepting the prefixes of the undesired behavior.

The output function g : Q → Y is given by

g(q0) = {ma, P0, P1}, g(q1) = {ma, P0},

g(q2) = {ma, P0}, g(q3) = {ma, P0},

g(q4) = {mb, P0, P2}, g(q5) = {mb, P0},

g(q6) = {mb, P0}, g(q7) = {mb, P0},

g(q8) = ∅.

The states q0 and q4 of the bad-prefix automaton represent
the states where the speed limits va and vb, respectively
are met by the truck. For the states q1 and q5 the truck is
allowed to violate the speed limit, but has to reach q0 or q4 in
two steps. The same holds for q2 and q6 only that the truck
needs to meet the speed limits in one step. Otherwise, the
system ends up in one of the marked states, which represent
the undesired behavior.

We now form the synchronous composition of the bad pre-
fix finite state automaton with the plant. Recall that the
plant is in fact the synchronous composition of the continu-
ous dynamics in (12) with the automaton in Figure 2 that
has M = {ma,mb} as set of states. The set that we want
to render invariant is given by K0 = Q0 × M × R

2 with
Q0 = {q0, q1, q2, q4, q5, q6}. Note that we do not have con-
trol over the change of the speed limit. Hence, we need to
compute a MCIS that is robust with respect to uncontrol-
lable changes in speed limits. This is achieved by replacing
the sets Ki in each iteration just before the computation of
(6) in Algorithm 1 with

K′
i = {(q,m, x) ∈ Ki | (q,ma, x) ∈ Ki ∧ (q,mb, x) ∈ Ki}.

This replacement ensures that the elements in K are inde-
pendent of the mode m ∈ M . A more general approach to
handle the action of the environment is to consider a game
whose solution would require replacing Algorithm 1 with a
version that is robust with respect to environment actions.

We approximately computed the MCIS K where we used
10 bits in each dimension to approximate the atomic propo-
sitions. The continuous part of K, associated to the states
q0 and q4 is illustrated in the left subplots of Figure 4.

The cutoff corners of the sets clearly indicate the integra-
tor dynamics of the truck. Notice that, even though for q4
the truck is allowed to drive up to vb = 24.5m/s, it stays

close to va = 15.6m/s. That results from the fact, that the
truck needs to be able to reduce its velocity to vb within
Th = 0.8 s at all times. We show the approximation of the
MCIS Ǩ for the case T = 10 in the right subplots of Fig-
ure 4. As expected, the truck is now allowed to drive at a
much higher speed in mode mb compared to the case T = 2.
The run-time tr of the algorithm to compute Ǩ for both
cases is below a second and the error is bounded by ê ≤ 0.2.

10 20 30
-4

-2

0

2

4

10 20 30
-4

-2

0

2

4

10 20 30
-4

-2

0

2

4

10 20 30
-4

-2

0

2

4

q0, T = 2

q4, T = 2

q0, T = 10

q4, T = 10

u

u

u

u

v1

v1

v1

v1

Figure 4: The set Ǩ associated to q0 and q4 using

N = 10 bits per dimension for T = 2 and T = 10.

The run-times of Algorithm 1 and error estimates for var-
ious parameters T ∈ {2, 10} and N ∈ {10, 11, 12} are listed
in Table 1. We conducted the computations with all three
speed limits, which results in a maximum number of 33 dis-
crete states on the bad-prefix automaton.

N\T
2 10

tr ê tr ê
10 0.2s 0.24 0.2s 0.27
11 0.3s 0.12 0.3s 0.13
12 0.3s 0.06 0.3s 0.06

Table 1: Run-times of Alg. 1 and error bounds ê.

Truck with trailer. Now we consider the truck with
trailer. Following the same steps as above, we sample the
solution of the continuous-time system under piecewise con-
stant inputs, in order to obtain a discrete-time system. Ad-
ditionally, we augment the state space with the input space
which results in the four-dimensional state vector

z = [d, v2, v1, u]
T.

We use the same bad-prefix automaton to specify the de-
sired system behavior. For this case, however, in addition
to the speed limits we constrain the distance between the
two trucks to the interval

− 1/2m ≤ d ≤ 1/2m.

Thus, the polytopes associated to the atomic propositions
P0 = H(C0, c0), P1 = H(C1, c1) and P2 = H(C1, c2) are

given by

C0 =

−1 0 0 0
1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1

, c0 =

1/2
1/2
5
35
5
35
4
4

and C1 =
[

0 1 0 0
]

, c1 = 15.6m/s, c2 = 24.5m/s.
The times required to compute the MCISs are listed in

Table 2. Compared to the previous case, we can clearly ob-

N\T
2 10

tr ê tr ê
10 1m39s 2.31 2m40s 2.38
11 4m09s 1.01 4m31s 1.04
12 6m48s 0.58 7m52s 0.62
13 10m38s 0.43 16m01s 0.46

Table 2: Run-times of Alg. 1 and error bounds ê.

serve the burden of the higher dimensional state space in
terms of the run-times and tightness of the approximation.
Also, for this example the number of discrete states is ob-
servable in the computation times, i.e., as we increase T = 2
to T = 10 the bad prefix automaton becomes larger and so
do the computation times.

6.2 Comparison with an Example from the Lit-
erature

In this subsection, we show some evidence of the previ-
ously mentioned claim, that the combinatorial complexity
within the known polyhedral approach [14, 26] constitutes
a serious problem when applied to controller synthesis for
safe-LTL specifications.

For this purpose, we consider Example 5.1 introduced
in [24]. This example describes a linear system with a con-
strained three dimensional state space and a constrained
two dimensional input space. The set of atomic proposi-
tions is formulated in terms of subsets of the state space
Y = B(0,30), O1 = B(10,5), O2 = B(−5,5) and O3 =
B(−15,10) together with subsets of the input space V =
B(0, 2), W1 = B(−3/2,1/2), W2 = B(−1/4,1/4) andW3 =
B(2/5,1/5). Here we use the bold notation, to indicate that
the number corresponds to a vector in the appropriate di-
mension, e.g., for Y = B(0, 30) we have 0 = [0, 0, 0]T and
30 = [30, 30, 30]T.

We interpret the sets Y and V as the domain of the prob-
lem, while the sets Oi and Wi represent obstacles, in the
state space and input space, respectively. We computed the
MCIS K for the following specifications of increasing com-
plexity

ϕ0 = �(Y × V)

ϕ1 = �((Y ∧ ¬O1)× V)

ϕ2 = �(Y × (V ∧ ¬W1))

ϕ3 = �((Y ∧ ¬O1)× (V ∧ ¬W1))

ϕ4 = �((Y ∧2
i=1 ¬Oi)× (V ∧2

i=1 ¬Wi))

ϕ5 = �((Y ∧3
i=1 ¬Oi)× (V ∧2

i=1 ¬Wi))

ϕ6 = �((Y ∧3
i=1 ¬Oi)× (V ∧3

i=1 ¬Wi))

In all of the conducted computations the polyhedral algo-
rithm terminated. We show the run-times of the compu-
tations in comparison with our symbolic implementation of
Algorithm 1 in Figure 5. The subplot inside the main plot
shows the outcome for ϕ0, . . . , ϕ4. Clearly, for simple speci-
fications the polyhedral approach outperforms the symbolic
scheme. This simply results from the fact that the safe set
first has to be approximated, which takes more than ninety
percent of the time. However, as the problem becomes more
complex the approximation effort lessens in comparison with
the effort to compute the set iterates. For example, for the
problem with two obstacles in the state space and input
space, i.e., ϕ4, we can observe that the proposed symbolic
approach starts to outperform the polyhedral approach.

0

50

100

150

200

250

300

350

400

polyhedral
symbolic

0

5

10

15

[m
in
u
te
s]

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ϕ0 ϕ2 ϕ4

Figure 5: Comparison of the polyhedral approach

with the symbolic scheme in terms of run-times.

We implemented the polyhedral approach using MATLAB
and the multi-parametric toolbox [18]. The toolbox pro-
vides several methods to compute intersections and projec-
tions of polytopes. Specifically, we used the mex interface to
the “fast” C implementation of the Fourier-Motzkin quanti-
fier elimination to compute polyhedral projections, see help
polytope/projection.

7. DISCUSSION
In this paper we presented an approach to the synthesis

of controllers enforcing safe-LTL specifications on discrete-
time linear systems. It was shown through examples that
it scales up to 5 continuous variables thus placing it at the
forefront of the existing controller synthesis techniques en-
forcing temporal logic specifications on continuous systems.
We are currently working to increase the size of the systems
that can be handled by improving the approximation of sets
which constitutes the bottleneck of the current implementa-
tion.

8. REFERENCES

[1] A. Abate, J. P. Katoen, J. Lygeros, and M. Prandini.
Approximate model checking of stochastic hybrid
systems. European Journal of Control, 16:624, 2010.

[2] J. P. Aubin. Viability Theory. Systems & Control:
Foundations & Applications. Birkhäuser, 1991.

[3] D. Bertsekas and I. B. Rhodes. On the minimax
reachability of target sets and target tubes.
Automatica, 7:233–247, 1971.

[4] F. Blanchini. Ultimate boundedness control for
uncertain discrete-time systems via set-induced
lyapunov functions. In Proc. of the 30th IEEE CDC,
pages 1755–1760, 1991.

[5] F. Blanchini and S. Miani. Set-Theoretic Methods in

Control. Systems & Control: Foundations &
Applications. Birkhäuser, 2008.

[6] O. Bournez, O. Maler, and A. Pnueli. Orthogonal
polyhedra: Representation and computation. In
HSCC, LNCS, pages 46–60. Springer, 1999.

[7] P. Brunovský. A classification of linear controllable
systems. Kybernetika, 6:173–188, 1970.

[8] P. Collins. Optimal semicomputable approximations
to reachable and invariant sets. Theory of Computing

Systems, 41:33–48, 2007.

[9] E. De Santis, M. D. Di Benedetto, and L. Berardi.
Computation of maximal safe sets for switching
systems. IEEE TAC, 49:184–195, 2004.

[10] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J.
Pappas. Temporal logic motion planning for dynamic
robots. Automatica, 45:343–352, 2009.

[11] C. Finucane, G. Jing, and H. Kress-Gazit. LTLMoP
website. http://ltlmop.github.com/, 2010.

[12] A. Girard and G. J. Pappas. Hierarchical control
system design using approximate simulation.
Automatica, 45:566–571, 2009.

[13] E. A. Gol, M. Lazar, and C. Belta. Language-guided
controller synthesis for discrete-time linear systems. In
HSCC, pages 95–104. ACM, 2012.

[14] E. C. Kerrigan. Robust Constraint Satisfaction:
Invariant Sets and Predictive Control. PhD thesis,
Dep. of Eng., University of Cambridge, 2000.

[15] M. Kloetzer and C. Belta. LTL-Con website.
http://iasi.bu.edu/Software.html, 2006.

[16] M. Kloetzer and C. Belta. A fully automated
framework for control of linear systems from temporal
logic specifications. IEEE TAC, 53:287–297, 2008.

[17] O. Kupferman and M. Y. Vardi. Model checking of
safety properties. Formal Methods in System Design,
19:291–314, 2001.

[18] M. Kvasnica, P. Grieder, M. Baotić, and M. Morari.
Multi-parametric toolbox (mpt). In HSCC, volume
2993, pages 121–124. Springer, 2004.

[19] T. Latvala. Efficient model checking of safety
properties. In In Model Checking Software. 10th

International SPIN Workshop, pages 74–88, 2003.

[20] R. Majumdar and M. Zamani. Approximately
bisimilar symbolic models for digital control systems.
In CAV, volume 7358, pages 362–377. Springer, 2012.

[21] M. Mazo Jr., A. Davitian, and P. Tabuada. Pessoa
website.. http://www.cyphylab.ee.ucla.edu/pessoa,
2009.

[22] M. Mazo Jr., A. Davitian, and P. Tabuada. Pessoa: A
tool for embedded controller synthesis. In CAV,
volume 6174 of LNCS, pages 566–569. Springer, 2010.

[23] T. Moor, J. Raisch, and S. O’Young. Discrete
supervisory control of hybrid systems based on
l-complete approximations. Discrete Event Dynamic

Systems, 12:83–107, 2002.

[24] E. Pérez, C. Ariño, F. X. Blasco, and M. A. Mart́ınez.
Maximal closed loop admissible set for linear systems

with non-convex polyhedral constraints. Journal of
Process Control, pages 529 – 537, 2011.

[25] A. Pnueli. The temporal logic of programs. In Proc. of

18th Annual Symp. on Foundations of Computer

Science, pages 46–57, 1977.

[26] S. V. Rakovic, P. Grieder, M. Kvasnica, D. Q. Mayne,
and M. Morari. Computation of invariant sets for
piecewise affine discrete time systems subject to
bounded disturbances. In Proc. of the 43rd IEEE

CDC, pages 1418–1423, 2004.

[27] G. Reißig. Computing abstractions of nonlinear
systems. IEEE TAC, 56:2583–2598, 2011.

[28] M. Rungger, M. Mazo Jr., and P. Tabuada. Scaling up
controller synthesis for linear systems and safety
specifications. In Proc. of the 51th IEEE CDC, 2012.

[29] P. Saint-Pierre. Approximation of the viability kernel.
Applied Math & Optimization, 29:187–209, 1994.

[30] F. Somenzi. CUDD: CU Decision Diagram Package.

Release 2.5.0. University of Colorado at Boulder,
2012. http://vlsi.colorado.edu/~fabio/CUDD/.

[31] P. Tabuada. Verification and Control of Hybrid

Systems – A Symbolic Approach. Springer, 2009.

[32] P. Tabuada and G. J. Pappas. Model checking LTL
over controllable linear systems is decidable. In HSCC,
pages 498–513. Springer, 2003.

[33] P. Tabuada and G. J. Pappas. Linear time logic
control of discrete-time linear systems. IEEE TAC,
51:1862–1877, 2006.

[34] A. Tarski. A lattice-theoretical fixpoint theorem and
its applications. Pacific Journal of Mathematics,
5:285–309, 1955.

[35] Y. Tazaki and J. Imura. Discrete abstractions of
nonlinear systems based on error propagation analysis.
IEEE TAC, 57:550–564, 2012.

[36] I. Tkachev and A. Abate. On infinite-horizon
probabilistic properties and stochastic bisimulation
functions. In Proc. of the 50th IEEE CDC and ECC,
pages 526–531, 2011.

[37] R. Vidal, S. Schaffert, J. Lygeros, and S. Sastry.
Controlled invariance of discrete time systems. In
HSCC, pages 437–451. Springer, 2000.

[38] R. Vidal, S. Schaffert, O. Shakernia, J. Lygeros, and
S. Sastry. Decidable and semi-decidable controller
synthesis for classes of discrete time hybrid systems. In
Proc. of the 40th IEEE CDC, pages 1243–1248, 2001.

[39] I. Wegener. Branching Programs and Binary Decision

Diagrams - Theory and Applications. SIAM
Monographs on Discrete Mathematics and
Applications, 2000.

[40] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Receding horizon temporal logic planning. IEEE TAC,
57:2817–2830, 2012.

[41] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and
R.M. Murray. TuLiP website. http://sourceforge.
net/apps/mediawiki/tulip-control/, 2010.

[42] B. Yordanov, J. Tůmová, I. Černá, J. Barnat, and
C. Belta. Formal analysis of piecewise affine systems
through formula-guided refinement. Automatica, 2012.

