
Überatlas: Robust Speed-Up of Feature-Based
Registration and Multi-Atlas Segmentation

Jennifer Alvén, Alexander Norlén, Olof Enqvist, and Fredrik Kahl

Department of Signals and Systems
Chalmers University of Technology

Abstract. Registration is a key component in multi-atlas approaches
to medical image segmentation. Current state of the art uses intensity-
based registration methods, but such methods tend to be slow, which sets
practical limitations on the size of the atlas set. In this paper, a novel
feature-based registration method for affine registration is presented. The
algorithm constructs an abstract representation of the entire atlas set,
an überatlas, through clustering of features that are similar and detected
consistently through the atlas set. This is done offline. At runtime only
the feature clusters are matched to the target image, simultaneously
yielding robust correspondences to all atlases in the atlas set from which
the affine transformations can be estimated efficiently. The method is
evaluated on 20 CT images of the heart and 30 MR images of the brain
with corresponding gold standards. Our approach succeeds in producing
better and more robust segmentation results compared to two baseline
methods, one intensity-based and one feature-based, and significantly re-
duces the running times.
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1 Introduction

Segmentation is one of the most fundamental problems in medical image analysis
and may be used in order to locate tumors, measure tissue volumes, for the study
of anatomical structures, surgery planning, virtual surgery simulation, intra-
surgery navigation etc. [22]. The value of automatic segmentation is huge, since
manual delineation is time-consuming and sensitive to the skill of the expert.
It is important that the segmentation algorithm is robust and fast in order to
be useful in clinical care. Moreover, the segmentation algorithm should produce
results comparable to those by a skilled expert.

One segmentation method that has become popular in recent years is multi-
atlas segmentation [15, 12, 21, 5, 26] as it produces state-of-the-art results. Multi-
atlas segmentation relies on a set of atlases (images with corresponding manual
delineations), which are separately registered to an unlabeled target image. La-
bels are transferred from the atlas images to the target image and fused by a
voting scheme. In contrast to segmentation based on shape models, for example,



Fig. 1: A schematic drawing of the proposed framework. Offline: The atlases are
co-registered to a reference atlas where the features are clustered both according
to descriptor distance and spatial distance to make sure that the features in the
cluster describe the same anatomical structure and to exclude outliers. Online:
Robust matching between the target image and the überatlas is performed, di-
rectly gives feature correspondences between the target and all of the atlases.
Using these correspondences all the atlases are robustly and efficiently registered
to the target image.

active shapes [6], the solution is not constrained to be in the subspace spanned
by the shape model. While being robust to non-satisfactory registrations multi-
atlas segmentation has the disadvantage of being dependent on multiple image
registrations which in general take a lot of time to compute and consequently
limits the practical size of the atlas set.

In principle, there are two different approaches to image registration, feature-
based and intensity-based registration, see the surveys [14, 25]. Intensity-based
methods are capable of producing very accurate registrations, but are often slow
and sensitive to initialization. On the other hand, feature-based methods are
fast, but risk failing due to the difficulty in establishing correct point-to-point
correspondences between the images.
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In this paper, a novel feature-based registration method is presented that
combines the information of the entire atlas set and efficiently finds robust trans-
formations between a target image and all the images in the atlas set. The general
idea is to cluster the feature points in the atlas set, both according to descriptor
distances and according to spatial distances after a careful co-registration of the
atlases, into what will be referred to as an überatlas. The construction of the
überatlas is done offline. At runtime, one only needs to register the überatlas to
the target image, and correspondences to all images in the atlas set are auto-
matically obtained. As the überatlas only contains the best fitted feature points
for matching from the co-registration phase, the approach has the potential not
only to improve speed, but also to reduce the amount of classification errors and
improve the segmentation. Figure 1 shows a schematic drawing of the proposed
solution.

2 Related Work

The work that is most closely related to ours is the standard multi-atlas ap-
proach, where registrations are computed between all the atlases and the target
image independently, see [15, 12]. Typically, the images are first registered using
an affine transformation. If needed, this is followed by a refined nonrigid regis-
tration. In this paper, we focus on the first step of estimating an affine transfor-
mation. We experimentally compare to two such standard baselines, one using
intensity-based registration and one using features. The intensity-based method
performs image registration with the popular software package Niftyreg, mean-
ing that an affine transformation is estimated via a block-matching strategy,
proposed and implemented by Ourselin et al. [19, 20]. The feature-based method
is based on standard RANSAC optimization [9] which is further described in the
sections below.

Dey et al. [7] proposed to first co-register a set of atlases of the heart using
a nonrigid intensity based method and then, at runtime, to only register one
of the atlases to a target image and letting the other atlases vote indirectly. To
some extent this is contrary to the idea of multi-atlas segmentation as it relies on
obtaining a single very accurate registration at run time. Gill et al. [10] proposed
to create a mean atlas including feature points of a set of atlases of the lung,
and use this mean atlas to initialize an active shape model.

Hence, the concept of using a mean atlas is not new, but we are not aware of
any work using an intermediate representation for efficiently estimating all the
transformations between atlases and target images. Our main contributions are
the development of such a representation, which we refer to as an überatlas, and
to experimentally demonstrate that we obtain comparable accuracy with respect
to the two baselines while significantly reducing runtimes.
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3 Proposed Solution

In order to perform a multi-atlas segmentation, one needs to register the atlases
to a target image as accurately as possible. As previously mentioned, a common
way of doing this is to estimate an affine transformation followed by a nonrigid
transformation. In this paper, we focus on the affine estimation step.

The underlying idea of our approach is to construct an intermediate represen-
tation of the atlas images which can be used to perform the most time-consuming
part of the process, namely the robust matching, that is, obtaining correct fea-
ture correspondences between the atlases and the target images. The überatlas is
constructed in such a way that if a feature correspondence between the überatlas
and the target image has been identified, one can immediately derive in which
atlas images this particular feature correspondence was originally present, see
Figure 1. Once good correspondences are obtained to all the atlases, one can
quickly compute an affine transformation for each atlas individually.

First, we will describe how to construct the überatlas from the atlas set
(Section 3.1). Note that this is an offline process done only once, so speed is less
important than for the online steps. Then, we will describe how to register the
überatlas to a new, unlabeled target image (Section 3.2), which is a process done
online.

3.1 Überatlas Construction

The purpose of the überatlas is to gather information about corresponding fea-
ture points in all atlases, as well as an approximate way of describing all the
feature points. To compute sparse features we use the code by Svärm et al. [24].
This code uses the method of SIFT for feature detection [17] and a descriptor
similar to that of SURF proposed by Bay et al. [2].

Constructing an überatlas is done in two steps: co-registration and feature
clustering.

Co-registration of atlases. In this step, a nonrigid transformation T̂ i,̂i is esti-

mated between each atlas, i, and the reference atlas î, that has been chosen at
random. An initial estimate of T̂ i,̂i, was given by affine feature-based registra-
tion. We used truncated l2 as a loss function with a truncation threshold of 20
mm and optimized it using RANSAC [9] with one million iterations.

For the nonrigid registration, each atlas image, Ii, is concatenated with its
corresponding labeling, Li into a two-channel 3D image. The labeling is weighted
with a factor αi to determine its impact on the solution. For our experiments
α was set to the intensity span of the image. Finally, the actual registration
is performed with NiftyReg using normalized mutual information, due to its
capability of dealing with multi-channel images. For all other parameters we
used the default values.
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Feature clustering. A feature point f is uniquely determined by the index of
the atlas from which it is extracted, i, the coordinates of the feature point in
the coordinate frame of the atlas, x, and the corresponding descriptor, d, i.e.,
f = (i,x,d). Using the transformations, T̂ i,̂i, obtained by co-registration, all
feature points are transformed into a common coordinate system. The trans-
formed coordinates are in other words the coordinates of a feature detected in
any atlas, transformed accurately into the coordinate system of the reference
atlas.

In order to construct the feature clusters, F = {fk : k ∈ K} where K is
the set of the feature indices in a cluster, agglomerative clustering is used [27].
A distance matrix based on the distances between all descriptors is constructed
and sorted. When clustering M atlases, the 3×M smallest distances to each of
the feature descriptors are taken into account and the remaining distances are
considered infinitely large. The set of clusters is initialized with one cluster for
every feature point (a cluster with size 1) and the clustering proceeds by merging
pairs of clusters.

For merging clusters, a variant of single linkage is used, i.e., the shortest
distance between two clusters is considered. However, these clusters are only
merged if no features in the two clusters come from the same image and if all
features in the two clusters are spatially consistent. More precisely feature k from
image i is spatially consistent with feature l from image j if their coordinates
satisfy, ∣∣∣T̂ i,̂i ◦ xk − T̂ j,̂i ◦ xl

∣∣∣ < εs. (1)

In practice, the spatial threshold, εs, was set to 10. Finally, we only keep clusters
that contain at least 3 features.

These criteria make sure that the features in the clusters with high certainty
describe the same anatomical feature. Further, it tells us that this anatomical
feature is often detected by the feature detector meaning that we can expect
to find the feature in a new image as well. Finally, it cleans the überatlas of
features that are not found consistently between the atlases. These are features
that most likely are outliers, noise, misplaced features or features describing
uncertain anatomical regions.

An überatlas is a set of non-overlapping feature clusters with a corresponding
descriptor, i.e.,

{(Fu, d̂u) : u ∈ U} (2)

where U is the set of feature cluster indices and d̂u is calculated as the mean of
the feature descriptors included in the cluster Fu.

3.2 Überatlas Registration

Registration using the überatlas is done in two steps. First the features of the
target image are matched to the feature clusters in the überatlas in a robust
manner. Then each atlas is registered efficiently to the target image using iter-
atively reweighted least squares (IRLS).
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Matching. Given a new target image, feature points are detected and descriptors
are computed as explained in Section 3.1. For each cluster the cluster descriptor
is matched to its nearest neighbor of the feature descriptors in the target image.
The distance between the descriptors is measured using the Euclidean norm.

A match between a feature f t in the target image and a cluster Fu in the
überatlas simultaneously establishes correspondences to all features present in
the cluster and therefore also to the atlases from which these features were
extracted.

In order to eliminate outliers, a restriction on the distance between the de-
scriptors of the correspondences is introduced. A correspondence between f t and
a feature in an atlas fs found through matching to the cluster Fu is considered
an inlier if the following criterion is fulfilled

‖dt − ds‖
Du

< εd, (3)

where εd is a parameter and Du is the maximum distance between the descriptors
within the cluster Fu, i.e.,

Du = max{‖di − dj‖ : f i,f j ∈ Fu}. (4)

This can be viewed as a generalization of Lowe’s ratio criterion for feature match-
ing (see [17]), to the case of cluster matching. In practice, we used εd = 1.

Finally, RANSAC is used in order to remove matches that are not consis-
tent with an affine transformation between the überatlas and the target image.
The coordinates of the clusters are set to the mean of the transformed feature
coordinates. Also, the affine transformation is used as an initialization to the es-
timation of the affine transformation between the atlases and the target image,
described below.

Affine transformation. As described in Section 1, the problem of using feature-
based registration is the great amount of outliers produced. Even though the
amount of outliers is reduced thanks to the construction of the überatlas, the
problem is not entirely eliminated. Normally this is dealt with using RANSAC
with a high number of iterations, but überatlas-based matching produces fewer
outliers, so we can use a faster method for estimating the affine transformation,
namely iteratively reweighted least squares (IRLS), see Chartrand and Yin [4].

Often truncated l2-norm is viewed as an appropriate loss function in the
presence of outliers, see Blake et al. [3]. However, we have found that using
the truncated l1-norm instead, reduces the sensitivity to the choice of outlier
threshold and enables larger thresholds without losing robustness. The reason
is that the l2-norm is suitable mainly when the noise is Gaussian. This is a
good assumption for the measurement errors of inliers but works poorly for the
outliers. When increasing the value of the outlier threshold, we include more
outliers making the the assumption of normally distributed residuals unsuitable.
Truncated l1-norm is less sensitive.
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Given a set of N local correspondences, where the coordinates of the cor-
respondences are given by {(xn,yn) : n = 1, . . . , N}, the affine transformation
is estimated via IRLS. The following minimization problem is solved iteratively
with the l2-norm as a loss function,

(Âi, t̂i) = argmin
A,t

N∑
n=1

ωi,n|Ayn + t− xn|2, (5)

where i is the iteration number and the weight ωi,n is a function of the errors
in the previous iteration. In order to avoid dividing with zero, a regularization,
|δ| � 1, is introduced. For details on IRLS, see, e.g., Aftab and Hartley [1]. In
the end, the weights are given by

ωi,n =

{
1/max{|ri−1,n|, |δ|}, |ri−1,n| < ε,

0, |ri−1,n| ≥ ε,
(6)

where the residuals are given by ri,n = Âiyn + t̂i − xn.
For the experiments, we used IRLS with 10 iterations, initialized by a com-

position of the transformation estimated by RANSAC described in the previous
section and the known affine transformation between the atlas and the überatlas
that was obtained in the offline co-registration. Results for truncation levels of
both 10 and 50 mm are presented in the next section.

4 Experiments

The experimental evaluation was carried out on two different data sets and for
two different settings, the first being pairwise affine registration and the second
one, multi-atlas segmentation. To make full use of the data, the experiments
were performed in a leave-one-out fashion, i.e., an überatlas was constructed
using all but one image and then tested on that image.

4.1 Data sets

The first data set consists of 20 CT images of the heart. For these images delin-
eations of the pericardium were obtained using a gold standard approach. More
precisely, the delineations were drawn for every 10th slice in all three viewing
directions by an expert involved in the SCAPIS project [13]. These 2D delin-
eations were then interpolated into a complete 3D delineation that was finally
approved by the expert.

The second data set consists of 30 MR images of the brain of young adults
and delineation of 83 regions of the brain, which are manually drawn accord-
ing to the protocol in Hammers et al. [11]. The data set is available online on
http://www.brain-development.org. The images of the brains were upsampled
with a factor 2.
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4.2 Pairwise Affine Registration

In this evaluation we consider the quality of the pairwise affine registrations ob-
tained from a new target image to the individual atlas images as described in
Section 3.2. Comparisons are given to two baseline methods: The first is affine
intensity-based registration using NiftyReg with default values. The second one
is standard feature-based registration, feature points were extracted by a fea-
ture detection and description program implemented by Svärm et al. [24]. The
program was run with default values and without rotation invariance. The affine
registration was performed with 10000-iteration RANSAC. As for the outlier
threshold, ε, both 10 and 50 mm were evaluated.

Comparisons are done with respect to runtime and the dice index [8], which is
a similarity measure between 0 and 1. The results for the heart images and brain
images are given in Tables 1 and 2. Clearly, the überatlas registration produces
larger values of the dice index than the compared methods and significantly
reduces running times.

Table 1: Dice index and runtimes of the pair-wise affine registrations of the
hearts. For the feature-based baseline and the überatlas registration, the run-
times include feature detection, matching and affine transformation. The feature-
based baseline method and the überatlas registration was tested with two dif-
ferent values of the outlier threshold ε.

Method ε = 10 mm ε = 50 mm Runtime

Intensity 0.754 ± 0.130 0.754 ± 0.130 1054 s
Features 0.870 ± 0.057 0.811 ± 0.084 11.7 s

Überatlas 0.874 ± 0.072 0.888 ± 0.038 2.7 s

Table 2: Dice index and runtimes of the pair-wise affine registrations of the
brains. For the feature-based baseline and the überatlas registration, the run-
times include feature detection, matching and affine transformation. The feature-
based baseline method and the überatlas registration was tested with two dif-
ferent values of the outlier threshold ε.

Method ε = 10 mm ε = 50 mm Runtime

Intensity 0.637 ± 0.024 0.637 ± 0.024 63 s
Features 0.640 ± 0.023 0.630 ± 0.026 7.1 s

Überatlas 0.643 ± 0.022 0.638 ± 0.024 1.0 s
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4.3 Multi-Atlas Segmentation

For multi-atlas segmentation three different setups were tested:

(II) Affine intensity-based registration + nonrigid intensity-based registration

(UI) Affine überatlas registration + nonrigid intensity-based registration

(UU) Affine überatlas registration + nonrigid feature-based registration

Implementation Details. The intensity-based nonrigid registration was based on
the free-form deformation proposed by Rueckert et al. [23], and implemented by
Modat et al. [18]. The affine transformation was used as an initialization for the
nonrigid transformation. The program was run with default values. The feature-
based nonrigid registration was based on a point-based free-form deformation
implemented by D. Kroon based on a proposition of Lee et al. [16]. The cor-
respondences marked as inliers according to the outlier threshold were used as
input. The nonrigid feature-based transformation was run with default values,
apart from the number of grid refinements that was set to 5.

Experimental results. Dice index and runtimes of the multi-atlas based seg-
mentations are given in Tables 3 and 4 for heart and brain images, respectively.
Clearly, the überatlas registration produces comparable values of the dice index
for the compared methods and significantly reduces the runtimes. Considering
the brain images, the multi-atlas based segmentation results are on par with the
intensity-based multi-atlas approach by Heckemann et al. [12] which is current
state of the art. They use the same brain data set and obtain a mean dice index
equal to 0.8173. Furthermore, assuming a multi-atlas consisting of 100 images,
the intensity-based multi-atlas segmentation would take 4.5 hours compared to
our method that would take only 1.9 minutes. A multi-atlas segmentation with
the feature-based baseline would take 13 minutes.

Table 3: Dice index and runtimes of the multi-atlas based segmentations of the
hearts. For the affine überatlas registration, the runtimes include feature detec-
tion, matching and affine transformation. Abbreviations: AFF = affine regis-
tration, NR = nonrigid registration, II = intensity AFF + intensity NR, UI =
überatlas AFF + intensity NR, UU = überatlas AFF + überatlas NR.

Method Dice index Runtime AFF Runtime NR Runtime total

II 0.933 ± 0.049 20026 s 36955 s 56981 s
UI 0.969 ± 0.033 52 s 36955 s 37007 s
UU 0.951 ± 0.019 52 s 121 s 173 s
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Table 4: Dice index and runtimes of the multi-atlas based segmentations of the
brains. For the affine überatlas registration, the runtimes include feature detec-
tion, matching and affine transformation. Abbreviations: AFF = affine regis-
tration, NR = nonrigid registration, II = intensity AFF + intensity NR, UI =
überatlas AFF + intensity NR, UU = überatlas AFF + überatlas NR.

Method Dice index Runtime AFF Runtime N-R Runtime total

II 0.805 ± 0.010 1827 s 2900 s 4727 s
UI 0.806 ± 0.010 30 s 2900 s 2930 s
UU 0.769 ± 0.013 30 s 23 s 53 s

5 Conclusion

Our proposed überatlas registration framework, is a novel, feature-based method
that uses co-registration of atlases and clustering of feature points as a pre-
processing step in order to speed up the computations of the image registrations
needed in multi-atlas segmentation, but also to reduce the amount of outliers.
The robust estimation of the affine transformations are done with the truncated
l1-norm as loss function. The registration method is faster than the two methods
used as a comparison. For instance, computing pair-wise affine registrations of
the heart takes 2.7 seconds on average compared to 11.7 and 1054 seconds,
respectively.

The experimental results show that the developed affine registration algo-
rithm is more robust to outliers making it both less sensitive to parameter selec-
tion and allows for a higher truncation threshold. The need for tuning param-
eters is therefore decreased but this factor is especially valuable when an affine
transformation describes the actual transformation between the images poorly.

The proposed method succeeds to produce better segmentation results with
respect to the dice index and has a lower standard deviation, both compared to
the intensity and the feature based baseline. It produces comparable multi-atlas
segmentation results to the current state of the art. Fine-tuning of the algo-
rithm (such as choosing reference atlas in a more structured way and optimizing
parameters) could yield even better results.
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