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Abstract—A packet-switched network node with constant ca- ing ground and can hence be highly misleading. Indeed, while
pacity (in bps) is considered, where packets within each floare the snetcal literature has a lot of results based on its wario
served in the first in first out (FIFO) manner. While this single  gichastic arrival curve and stochastic service curve fspde
node system is perhaps the simplest computer communication the followi fi in | What stodhast
system, its stochastic service curve characterization anddepen- e _O owing questions remain largely open. a_ stoabas
dent case analysis in the context of stochastic network caltus ~S€rvice curve and delay bound does_the no_de provide when the
(snetcal) are still basic and many crucial questions surpsingly input is a single flow? What stochastic service curve andydela
remain open. Specifically, when the input is a single flow, wha pound does the node provide when the considered flow shares

stochastic service curve and delay bound does the node prae? e yqe with another flow? If the two flows are independent,
When the considered flow shares the node with another flow, wha S
can this independence be made use of and how?

stochastic service curve and delay bound does the node proe Lok ; . . o
to the considered flow, and if the two flows are independent, ca T he objective of this paper is to derive results providing
this independence be made use of and how? The aim of thisanswers to these fundamental questions. Specifically,(@&w

paper is to provide answers to these fundamental questions.  there is only one flow, we prove a stochastic service curve
(SSC) that has a bounding function equal to the complimgntar
cumulative distribution function (CCDF) of the packet I¢mg

Network calculus is a theory dealing with queueing typdistribution. In addition to the delay bound directly olpigdl
problems encountered in packet-switched computer nesvorkom the existing snetcal results and this SSC, an improved
To simplify the analysis, an important idea in network clisu delay bound is derived, which is consistent with a result in
is to characterize the traffic and service processes usimg sahe deterministic network calculus literatufear delay bound
bounds and perform analysis based on such bounds. Netwarlalysis, the last packetizer may be ignd&f27]. (i) When
calculus has developed along two tracks — deterministic atitkre is cross traffic, i.e., the node is shared by the trangers
stochastic. Deterministic network calculus, coined(byj[b@s flow with a crossing flow, we prove that the node provides
been extensively studied since its introduction in earl9d® to the aggregate of the two flows amggregate behavior
and is nicely covered by two books| [S] [27]. Stochastic nestochastic service curve that also has a bounding function
work calculus is the probabilistic extension or generaiimaof equal to the CCDF of the packet length distribution of the
deterministic network calculus. The developmensifchastic aggregate. Based on this and existing snetcal results, @ SS
network calculus(SNC) began also in early 1990s. Earlyfor the traversing flow is found. To overcome the potential
representative works include [26][33][4] for traffic moute], difficulty in finding the packet length CCDF of the aggregate
and [28] for server modeling. The bookl[5] also coverffow, a new and improved SSC is derived, where the flow
the theory of effective bandwidth, a first approach to SN@idependence can also be made use of. Moreover, in addition
However, due to challenges specific to stochastic netwdrksto delay bounds from these SSCs, an improved delay bound
is recently that crucial network calculus properties hagerb is obtained, where the flow independence information can be
proved for SNC, e.g.13][8I[29][16][31][22][12]. A seleicn exploited. (iii) To illustrate the obtained delay boundspt
of recent results can be found in the bo0kl[21]. In additiomxamples are provided. For the single flow case, the (best)
three surveys/overviews are availakle![32][L3][20]. bound matches with the exact result fdf /M /1/FIFO. For

In SNC, stochastic service curve is the fundamental concepé case with cross traffic, the obtained (best) bound iseclos
for server modeling. If some flows and servers are ind& the exact result fod /M /1/priority.
pendent, it is expected that tighter analytical bounds can b The rest is structured as follows. In the next section, the
obtained by making use of this independence information gaystem model and notation are defined. In $et. Ill, stoahasti
the analysis. In this paper, we consider a work-conservingtwork calculus basics are given. In Secl IV, the diffielti
constant capacity node serving flows. Each flow consists fof stochastic service curve and delay bound analysis, when
a sequence of packets that are served in the first in figscketization effect is not ignored, are discussed. In SBk&c.
out (FIFO) manner. This single node system is perhaps tive focus on the single flow case. In SEcl] VI, we take cross
simplest computer communication system. For such a systaraffic into consideration, and find stochastic service earv
an immediate impression is perhaps that it has been tholpugand delay bounds for the traversing flow. In 9ec] VII, we give
investigated and is well understood, given the currentcstietexamples. In Se€_VIll, discussion on related work is predid
literature. Unfortunately, this impression has no soligmart-  Finally, concluding remarks are given in Sec] IX.

I. INTRODUCTION
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1. THE SYSTEM MODEL AND NOTATION In addition, we define the (virtual) delay at timeas

We consider a work-conserving network node serving flows Di(t) = inf{r: A (t+7)> Al @)} 2)
in a packet-switched network. It is a discrete-time system Iy
with time indexed byt = 0,1,2,.... The serving capacity Due to FIFO, the delay of’* is also found frof

of the nodeT is constant., denoted ly (in bp;). Flow f  pfi = D/ (aF) = inf{r : A (a"' +7) > AT (a/))}. (3)
traverses this node and is referred as ti@eersing flow In _ _ _
addition, the node may also serve another flfty which is ~ The min-plus convolution, denoted by, of functionsf(-)

the aggregate flow of crossing traffic and is referred as tR8dg("), is defined as:

crossing flowPackets within each flow are served in the FIFO ® — inf + _ 4
manner. Between flows, some scheduling policy is employed, J@9) Oglggy{f(x) 9y =)} @
but within this paper, it is not specified. and it is easily verifiedf ® g(y) = g ® f(y).

By convention, a packet is said to have arrived to (respec-The maximum horizontal distance between functiorts)
tively served by) the node when and only when its last bit ha®d 5(.), denoted byi(a, 3), is defined as

arrived to (respectively left) the node. When a packet agiv
seeing the node busy, the packet will be queued and the buffer h(a, ) = sup{inf{r > 0: a(s) < B(s +7)}}.  (5)
size for such a queue is assumed to be large enough ensuring 520
no packet loss. All queues are initially empty. 1. STOCHASTICNETWORK CALCULUS BASICS

For the traversing flowf, we letp/-* denote theith packet  In this section, some related stochastic network calculus
(i = 1,2,...) of the flow. For eachp’?, we denote by./* models and existing results are introduced.
its arrival time to the noded/+* its departure time from the

node, and/** its length (in bits). Similarly, for the crossingA' Models ) _ )
flow f¢, we letpc denote itsith packet(i = 1,2,...), a® In snetcal, stochastic arrival curve (SAC) and stochastic
its arrival time,d its departure time, antf-‘ its length. service curve (SSC) are the most fundamental models. While

We further useA?(t) and A°(t) to denote the amount SAC is for traffic modeling, SSC is for server modeling. In
of traffic (in bits) that has arrived from the traversing flovihe literature, there are several definition variations ACS
and the crossing flow to the node within time perifigz] and SSC. In this paper, we adopt the following, to which the
respectively. Correspondinglyl/ (s, t) = A/ (t) — A/ (s) and Other variations may be mapped [21].

Ac(s,t) = A°(t) — A%(s) respectively denote the amounipefinition 1. A flow is said to have a v.b.c (virtual backlog
of traffic (in bits) that has arrived from them within timecentric) stochastic arrival curve(t) with bounding function

period (s, t]. For the departures from the node, we us€ (¢) F, if its arrival process A(t) satisfies, for anyt > 0
and A*(t) to respectively denote the amount of traffic (ing1)34][22]
nd .

bits) that has been served from the traversing flow al B
the crossing flow within time periof, ¢|. Correspondingly, P{A(t) - A® a(t) >z} < F(z) (6)
A (s,8) = A (£) — A*F () and A% (s, £) = A*(£)— A*<(s)

, A\ where a(t) is non-negative non-decreasing @nand F(x)
respectively represent the amount of traffic (in bits) thas h

k > non-negative non-increasing an
been served from the traversing flow and the crossing flow by

the node within time periods, t]. In Definition[d, if F(0) = 0, implying F'(z) = 0 for all

For the node, if it is shared by and f¢, considerthe =« > 0 orin other wordsA(t) < A®a(t), a(t) is also called a
sequence of packets on the output lifflor this sequence of (deterministic) arrival curve of the flow in the network aalles
packets, we call it thaggregate flovat the node, and lgi9-7  literature.

denote thejth packet(j = 1,2,...) of the aggregate flow. For pefinition 2. A system is said to provide a stochastic service
eachp?-/, denote byu?-’ the arrival time of the correspondingc,rye (1) with bounding functiory, if there holds, for all
packet to the nodef? its departure time from the node, and. -, 1] [21)

197 its length (in bits). Note that the aggregate flow is resulted ~

from the aggregation of the traversing flow and the crossing P{A®B(t) — A*(t) > 2} < G(2) (7)

flow_ 'Fhrough the work-conserving constant capacity node. W‘nereﬂ(t) is non-negative non-decreasing @nand G(z)

addition, for the departures from the node, we ub¥ (¢) non-negative non-increasing on

to denote the amount of traffic (in bits) from the aggregate - ~

flow, which has been served by the node within time period In Definition[2, if G(0) = 0, implying G(z) = 0 for all

[0,2], and A*9(s,t) = A*9(t) — A*9(s) the amount of traffic = > 0 or in other wordsA*(¢) > A® B(t), B(t) is also called

(in bits) that has been served from the aggregate flow by tAgdeterministic) service curve of the system in the network

node within time periods, ¢]. It is worth highlighting that for calculus literature.

the departures, t.h.ere holds™ (s, t). .:_A*j(s’ t) + A™(s,1). Istrictly speaking,D7»* < D/ (af-"), where the equation holds only if
The delay ofp/+*, denoted byD/, is naturally there is no concurrent arrival at*. If A(t) and A*(t) are defined orf0, t),

. ) ) this virtual delay definition defines the virtual waiting enfor a (possible
D = ght—of (1) Vvirtualy arrival at timet.



B. Related Results flow. The following equation, called the min-plus convoduti

. . . & D .
This paper focuses on stochastic service curve and dePalﬁ/euemg principlel[18], holds [21]

bound analysis. The following presents some related iesult A*(t) = inf {A(s)+ S(s,t)} (10)

For stochastic service curve analysis, due to the diffiesilti O0=sst
that will be discussed in the next section, very little iswmo where S(t) denotes the service process provided to the flow
for the general case where packet length distribution isrtakand S(s,t) = S(t) — S(s).
into consideration, and available results mostly assurrid flu Essentially, SSC defines a way to characterize the service
system ignoring packetization effect or that all packetgehaprocessS(t). While the SSC definition allows the derivation
the same length. of results useful for performance study of computer netwprk

In the SNC literature, the following result, called tleétover finding the SSC characterization of a system is surprisingly
serviceproperty, has been widely used for finding the stochashallenging. Even for the simplest constant capacity singl
tic service curve charaterization of the service provide@t node system, the challenge already exists.
flow (e.g. seel[8I[31]). .

A. A Pitfall

Proposition 1. Consider a system with cross traffic. If the When the node has constant capadity (in bps), the
system provides a stochastic service cusve) with bounding ¢)5ing equation has sometimes beamongly believed in
function G(z) and the crossing flow has a v.b.c. stochastig,o hetwork calculus literature (see, e.5.[25])

arrival curve a°(t) with bounding functionf¢(z), then the

leftover serviceprovided to the traversing flow has a stochastic A*(t) = inf {A(s)+C - (t—s)}. (12)
service curved’ (t) = (B(t) —ac(t))* with bounding function Oss<t
G/ (z) = F° @ G(). Or in other words, it iswrongly believed, for the constant
, ) capacity node:
For delay bound analysis, the following result has been S(s,8) = C - (t — 5). (12)

proved (e.g. see [11][21]).

p ition 2. If ¢ id tochasti . To give a counterexample, let's consider a single packet flow
roposition 2. 1T a System provides a stochastic Service Curvi?\put. The packet arrives at time”! = 1 and has lengtl2.

B(t) with bounding function to a flow f, which has v.b.c It is th | hatd(0) — 0. A(1) = 2. A(2) — 2. A(3) — 2
tochastic arrival curvex’ (t) with bounding functior/, then Lis then clear thatl(0) =0, A(1) =2, A(2) =2, A(3) = 2.

s : Suppose”’ = 1. Then,d’>! = 3. Hence,A*(0) = 0, A*(1)

the flow has a delay bound as

0,A*(2) = 0,A4*(3) = 2. However, from [(IlL), the output

would be A*(0) = 0,4%(1) = 1,4%(2) = 2,A*(3) = 2,

which is wrong. Table[] summarizes the comparison.
When the system is shared by the traversing flow and the TABLE |

crossing flow, the following delay bound follows immediatel A COUNTEREXAMPLE

from Propositiori Il and Propositigh 2 [21].

P{D!(t) > h(af +z,8)} < F! @ G(z). (8)

[t [0[1]2]3[4]
Proposition 3. Under the same condition as Prepositidn 1, if AR 0[2J2]2]2
the traversing flow has a stochastic arrival curué (t) with A™(1) actual 0]0j0]2]2
bounding functiorf/ (), then the delay of the flow is bounded A fom@D[o]1]2[2]2

as
P{D/ (1) > h(a! +o,8)) < Ff @ F* @ G(z).  (9) B. Difficulty in Finding SSC
When fluid-flow is assumed, i.d/" — 0 and[®/ — 0
where 3/ (t) = (B(t) — a®(t))*. for all packets, it is easy to verify that the amount of sezvic
provided by the node during any backlog period with length
IV. THE DIFFICULTIES 7 is C - 7. Then, from the network calculus literature, it is

o ] ] ] ] _known that the node provides a deterministic service curve
As highlighted in the previous section, stochastic servicg;y — ~.; |n addition, when cross traffic is present, the

curve (SSC) is the most fundamental server model for snetcghchastic service curve provided to the traversing flow is
As reviewed there, if the SSC characterization of the SerV'Feadin derived from the network calculusftover service

proyided by the node to the flow and the v.b.c SAC charact. foperty as shown by Propositidd 1. In addition, from the
ization of the flow are known, a delay bound can be readify,yersing flow's viewpoint, the crossing flow can be treated
obt_alned from the existing snetcal results. In the Iltgle,tu as a process that impairs the total service provided by the
while many results (e.gl[19][22][23]) may be exploited tQgryer. Then with the impairment process concépt [16][21],
find the v.b.c SAC characterization of a flow, there are Vefje siochastic service curve characterization of the servi

few for SSC analysis. . o available to the traversing flow can also be found.
The difficulties are inherent in the SSC definition. Suppose

S(t) is the service process provided by the node to the2Choosing to definei(t) and A*(t) on [0, ¢) does not correct the mistake.



However, when packetization effect is taken into accourdgyurve expressiorC - ¢, a bounding function, which is also
finding stochastic service curves for the node becomas related to
prisingly challenging, even though it has constant capacity. o Fll)d

Indeed, the network calculus literature has shown that a /I (y)dy
constant server with capacity has a deterministic service _ _
curve (C - t — L)+ where L™ denotes the maximum can b_e found, when _the packet length process is stationary an
packet length in the system. This follows from two fundaSatisfies some conditions.
mental results. (i) If there is a function that lower-bourtids Note that intuitively, a packetized system can be treated as
amount of service provided to the input during any backid§e concatenation of a fluid system followed by a packetizer
period, then the function is a (deterministic) service euof [2I[27] A. Since the fluid system provides deterministic service
the server[[27]. (i) Within any backlog period of length curveC -t as discussed above, the stochastic behavior of the

the amount of service provided by a constant rate server witRde is hence determined by the packet length distribution.
capacityC is lower bounded byC - ¢ — L)+ [14]. Based on this, we boldly conjecture ttihe constant capacity

Fundamentally, the following inequality can be provied [14]'0d€ provides a stochastic service cude ¢ with bounding
unction simply ag". However, while the intuition is perhaps
A*(t) > Alt)® (C -t — Lmaz(t))Jr_ (13) straightforward, proving the validity of the conjecturefe
from direct as to be shown in the next section.
where L™ (t) = max{l',1?,1®V} with () denoting the
IendgtLh of th? most rl(;ecenttpacket that arrived before of, atc  pifficulty in Making Use of Independence Information
an max — im o max i
With simple rrt;mipulatién) based on the definitionsof we Besides the difficulty in finding the SSC characterization of
obtain the node, it is even more difficult to make use of potential
N ma independence information in the analysis. This is due tg tha
A) ® (C-1) = AT(t) < L) (14) the service proces$(t) and the arrival processi(t) are
which implies inherently dependent, implied by {10). More specificallytth
S(t) and A(t) are functions of the lengths of packets that are
P{AH)® (C-t)— A*(t) >z} < P{L™™(t) > z} counted in. For a simple example, suppose flpvanly has
FL"“”(t)(x). (15) one packep’! whose length/>! is a random variable. It is
clear thatA(t) = I¥! and alsoS(t) = 11! for anyt > df'!,

Then, we can conclude thahe constant capacity nodeWhich indicates strong dependence betwekn) and S(t).

provides a stochastic service curget with bounding function ~ The inherent dependence betwe(t) and S(¢) makes it
FL™®) (). difficult to make use of potential independence in the anglys

Unfortunately, L™ (¢) is non-decreasing with, implying Particularly, when there is cross traffic present, evenghdahe
that FL"“(1)(z) may approachl as¢ grows [9f. Conse- traversing flow may be independent of the crossing flow, this
quently, using?L"**(®) as a bounding function is meaning|e5§'_ndepe_n<_jence information cannot _be exploited when ap@l_yin

The problem becomes even more challenging when thdhe existing snetcal resu_lts as _rewewed in SedErj [l.sTiki
is cross traffic. First, in order to apply the leftover seevicdue to that, the stochastic service curve characterizafidne
property to obtain a stochastic service curve for the tiimgr S€rvice process(t) provided by the node is dependent on the
flow, we need to know the stochastic service curve of the nodéicket lengths of both flows. A consequence is that, with the
However, the above discussion implies that the stochasgeC decided from Propositiah 1, it is not possible to make use
service curve of the node is yet to be found. Second, the pacREthe dependence information to improve the (independence
length process is a mixture of the packet length process iBformation-unaware) delay bound in Propositidn 3.
the traversing flow and that of the crossing flow. This makes T0 this point, we would like to remark that, if all packets
the determination of ="** () and consequently the stochasti®ave the same lengitor their lengths are upper-bounded, the
service curve characterization of the node even more dificlservice process of the node has a deterministic servicescurv

To tackle the time-growing?~™““(® problem, one may For th_ls case, independent case anqums may be conducted by
introduce a compromised service cur€ — 6) - t, for following the approaches proposed in[16] andi[12].
somed > 0, with a resultant bounding function related However, for the more general case, even though it is
to f;@ Fl(y)dy, by exploiting an approach used in SNC irintuitive that the independence information of the two flows
dealing with maximal random processés][21]. Recently, ti§@ould allow improving the analysis, how specifically to mak
effort in [30] shows that, without compromising the servicéSe of this independence information in the analysis resain

to be addressed.

3An exception is when all packets have the same ledgtr their lengths
are upper-bounded b¥. In this case, for any, FLmaI(t)(x) < 1 for all 4A packetizer is an element gathering all bits in a packetctvidelivers
z < L, otherwiseFme(t)(:v) = 0 for all z > L. Under this case, the the entire packet with no delay until and immediately afeeiving the last
node provides a deterministic service cuf¢g- ¢ — L)T, with which, further  bit of the packet.
analysis similar to that under the fluid-flow case can be cotedi 5The fluid-flow is a special case with infinitely small packatdéh.



V. STOCHASTIC SERVICE CURVE AND DELAY BOUNDS: sample path. However, if all packeti;’fvl,lfv?,._.., have
THE SINGLE FLow CASE identically distributed packet lengths with CCDF'(z), or
In this section, we first prove the stochastic service cusve 10r€ gglnerally if their lengths have the same upper-bounded
suggested by the conjecture. Then, delay bounds are derif&ePF £ (z), the following follows from i(2D).
for the traversing flow. To deal with the difficulty in finding P{AT @ B(t) — AT*(t) > 2} < Fl(x). (21)

the SSC, a novel approach is introduced. Summarizing the above discussion, we have validated the

A. Stochastic Service Curve conjecture. Formally, the following theorem has been pdove

We now present the approach to tackling the difficultyrheorem 1. Consider a work-conserving system with constant
In this approach, we relate the service prowd_ed by_a (n%pacity C serving a flow f. Suppose that all packets
necessarily constant rate) system to a flpuo a virtual time  paye length distributions that are identical with CCOF (z)
function defined as or whose CCDFs are all upper-bounded ¥ (x). Then,

; ; ; 14 the system provides to the flow a stochastic service curve
fii _ fii fii—1 v - _
VIR) = max{a™,V bt R (16) B(t) = C -t with bounding functiorG(z) = F!(x).

iteratively fori = 1,2..., with V/9 = 0, where R is a B. Delay Bounds

constant rate parameter. _ With TheorentlL, the following delay bound follows directly
Applying iteratively to its right hand sidel_(IL6) becomes o Propositiori .

V(R = X ZZ:]- 1F 17 Corollary 1. Under the same condition as for Theorein 1, if
(R) = max{a'’ +—""2—1}. a7) . . X B
1<<i R the traversing flow has a v.b.c stochastic arrive cune) =

The following result is crucial, which establishes a link” - ¢ with bounding function#”/ and/ < C, then for any
between the stochastic service curve model and the virt@cketp/", its delay is bounded as:
time function. For deterministic network calculus, a samil P{D/" >V < Flo F/(C- 1) (22)
relationship can be found in_[15] (Lemma 2). The proof is

long and is included in the appendix. In Section 1V, we have discussed the inherent dependence

between the arrival process and the service process. When
Lemma 1. Consider a flowf served by a system. For anyit comes to the delay bound analysis, we would like to
time ¢ > 0 and R > 0, the following relationship holds (for highlight that the inherent dependence is specifically seen
any sample path of the system): betweenA/(t) and 1/%(!), since by their definitions]/-*(*)

f Fx it £t £t may be counted imif(¢) . This partly explains why the min-
AT @B(t) - AT (0) < B[P0 - VIOR)] 11710 (18) plus convolution appEa;rs on the right hand side[of (22) and
where3(t) = R - t, i(t) = min{k : d/* > ), and1/®) the in Proposition 2, which assumes no knowledge of potential
length of packep/ (). independence information.

For the considered single node system with single inputAt this moment, it seems that nothlng more than Cor_ollﬁryl
flow f, consider any packet’-’. There are two cases. OneCOUId be dohe_ for delay I_oo_un_d analy§|_s. In the foIIovx_nng, we
case is that whep/> arrives, the system is idle, which iSshow that this is too pessimistic. Specifically, by expfaitthe

fi s ghi-1 H dfi — fi, 1 Anoth L that idea of the virtual time function, an improved delay bound is
> a7, Nenced = a’ A o Another case IS hat o4 iy the following theorem.
p/>* arrives, the system is busy, whichdé*® < d/*~1. Then,
it has to wait until the previous packet '~! has finished Theorem 2. Under the same condition as for Theorgim 1, if the
service. Henced/! = d/i=1 + % Combining both cases, traversing flow has a v.b.c stochastic arrive curvig) = r/ -t

we must havel/s = max{a’?,d/ -1} + % Comparing it With bounding functionf”/ and r/ < C, then for any packet
with V/i(C), the following result is proved. p/", its delay is bounded as (a.s.):

Lemma 2. For the considered single node system with single P{D"" > 7} <F/(C-7). (23)
input flow f, there holds, for any packet’ of the flow, Proof: Consider any sample path of the system. By the

&= VIO (19) definition of D7+ and with LemmdR2, we have
fri— gfi _ o fi o fi _ qf
Applying (I9) to Lemmd11, the following is obtained for D =d e = Vi C) —a
R=C -1 S EE Ol o
A @ B(t) — AT (1) < 15O, 200 ~ © 1%1?§i{;l Cla™ —a™)}
=j
It is worth highlighting thati(¢) is random and packet 1 Iy fi Fi fd
pfi® may be different from one sample path to another = E&%{A (a7 = €,a7) = Cla ol +e)}te

6_Intuitive|y, if at time ¢, there is a packet under service from the flow, then 1
p?*(") is this packet; otherwisep/-*(*) is the first packet from this flow, < — sup {Af(s,t) —r/(t —s)} +¢ (25)
which receives service after 0<s<t



wheret = af?, ¢ — 0 andr/ < C. In step [Z#),e — 0 is Recall that we are interested in the traversing flow. With

introduced such thatf (a/7 — ¢, %) includes all arrivals in Lemmal3 and the leftover property Propositidn 1, the follow-

[af7, al"?]. ing stochastic service curve to the traversing flow is oletdin
Since the traversing flow has a v.b.c stochastic arrive cur

we have by definition: Vfheorem 3. Consider the same system as in Lenfmha 3. If

the the crossing flow has a v.b.c. stochastic arrival curve

P{ sup {Af(s,t) =/ (t —s)} >z} < F/. ac(t) = r°-t, (r° < C), with bounding function”*(z), then
O<s<t the system provides to the traversing flow a stochastic servi
Since this bounding function holds for all sample paths)) (28urve 3(t) = (C' — r¢) - t with bounding functiorG(z) as
is then obtained. [ ] Gz) = F°o Flg(x) 27)

At a first glance, the delay bound in TheorBn 2 may seemNpte that in Theoren]3, the resulting bounding function
to be surprising, since the packetization effect is notaliye s pec FY(z), which assumes no knowledge of potential
seen from[(2B). However, an alert reader may have noticeependence information, even though the crossing flow may
that it is indeed consistent with a result in the determiistpg independent of the traversing flow. This is due to 4t
network calculus literature, which states that in delayrbu js the length distribution of all packets, which include kets
analysis,the last packetizer on the path of the flow may bgf the crossing flow, and hend@’ is inherently coupled with
ignored([5][27]. Theoreni? proves this property in the contexihe traffic arrival process of the crossing flow.
of stochastic network calculus for the single node case. 2) An improved result:While TheoreniB is an improve-

Remark: An implication of Theoreni2 is that, when delayment over those that are based bnl (15), it may be difficult to
bound analysis is performed, the node may be treated asidld 7' of the aggregate particularly when the traversing flow
|t W0u|d prOVide a deterministic SerVice curee- ¢ a.nd then and the Crossing flow have different packet |ength distrdmst
Corollary[1 becomes the same as Theofém 2. The following theorem proves another stochastic service
VI. STOCHASTIC SERVICE CURVES AND DELAY Bounps: ~ SHIVe for the traversing flow, where there is no need to find

THE CASE WITH CROSSTRAFFIC F , relieving th_e Q|ff|culty. In addmon, if lthe.two flows are
. . . Independent, this independence information is made use of.

In this section, we consider the case where the traversing
flow shares service of the node with the crossing flow. Specifheorem 4. Consider a work-conserving system with constant
ically, we find a stochastic service curve for the node ar@pacityC, shared by a traversing flow and a crossing flow
two SSCs for the traversing flow, followed by deriving delay“. Suppose the crossing flow has a v.b.c stochastic arrival

bounds for the traversing flow. curve ac(t) = r¢ - t, (r° < O), with bounding functionf,
, , and suppose all packets of the traversing flow have length
A. Stochastic Service Curves distributions that are identical with CCDF"(z) or whose

1) A direct result: Let us treat the traversing flow andCCDFs are all upper-bounded by'(x). Then, the node
the crossing flow as an aggregate flow. For packets of thevides to the traversing flow a stochastic service curve
aggregate flowy, which takes the packet order as that on thg(¢) = (C — r©) with bounding functiorG(x) as
output link the following relation can be easily verified:

G(r) = F°® Fl(x) (28)
. ) ) 19:3
%7 = max{a??,d% "1} + ol (26) and if the two flows are independent,
Comparing [(26) with[{16), it is clear that for the aggregate, G(x) = 1—F°xFl(z) (29)

d?7 = V9i(C). , where,F! = 1-F!, F¢ = 1—-F¢, and Fy x Fy(z) = [ Fi(x—
Note that in presentin§ (26), we do not make any assumptlo;wdFQ (’y) ' , ’

on the scheduling algorithm between the two flows, (2%
is only concerned about the aggregate. We dall (26) theTo prove Theoreni]4, Lemnid 4 and Lemfia 5 below are
“aggregate behavior” of the node, which is in consistendl wicrucial, with which, Theorerfil4 is easily verified.
the definition of the aggregate per-hop behaviof [17] under t
Differentiated Services (DiffServ) architectuie [1].

With (28) and following the same proof of Theoréin 1, th
following result can be verified.

Lemma 4. For the considered single node system with cross
gaffic, there holds, for any packet’* of the traversing flow,
4 < IOyt 4 S Possgar A, /') —re(dh — 5)}
Lemma 3. Consider a work-conserving system with constant C-r (30)
capacityC, shared by a traversing flow and a crossing flow for any ¢’ > ¢ > 0.

f¢. Suppose that all packets have length distributions that ar _ .
identical with CCDFF" (z) or whose CCDFs are all upper- __ Proof: As f(_)r (0, IEt_US consider the aggregate flow
bounded by’ (z). Then, the system provides to the aggregatlce'nce no specific scheduling between the two flows has been
of the two f|F)WS an “aggregat(_a b_eDaVior“ stochastic service “Strictly speaking, instead of directly applying Propasit[, a separate
curve C - t with bounding functionF"’ (). proof is needed.




assumed, a packet, which appears earlier on the outputlinkdm addition, there holds
the aggregate flow, may actually arrive to the node later than

c(40 N3 c(af,t 0
another packet that appears later on the output link. Inrothe A(t®, ah) —r (d_f —t) _
words, we may not haves- > a97~1. < sup {A%(s,dP) =@ —5))  (@37)
For any packep/?, suppose its corresponding packet in the 0<s<df
aggregate flowy is p?-/. Particularly, we suppose the departure Applying (38) and [(3F7) to[(35), we obtaifl (30) and the
time of p/*, i.e. @/ = d%7, is within the busy period that |emma is proved. m

starts att”. Note that such a busy period always exists, Since e remark that when there is no cross traffic, ié(t) = 0
in the worst case, the period is only the service time perigden |ettingr© = 0, Lemmal? is reduced to Lemnid 2 as
of p/* and in this caset’ = a9, expected.

Since the node is work-conserving with constant serviee rat \ote that Lemmdll provides a general relationship, with
C and it is busy with serving betwee andd?/, there holds: ,nich by lettingR = C — < in it, we obtain '

_ j_ 19k
@99 =i 4 Sl (31) AT @ B(t) — AT(1)

_ — )i _ i (o Z pe Frit)
wherep970 denotes the packet whose arrival starts the busy < (@=r)ld v (C=r]+1 (38)
period. _ _ Applying Lemmd 4 to above immediately gives the following:

Among packetgp?9o ... p97, some belong to the travers-

ing flow and the rest the crossing flow. Lefo denote the Leémma 5. For the considered single node system with cross

first packet from the traversing flow served in the busy perioff@ffic, for any timet and any sample path of the system, the
There holdsz/ o > 0, following relationship holds for the traversing floyy

Equation [[31l) can be re-written as:

o ) AT @ B(t) - AT (1) (39)
- P A*e(tP,d7) < A(s. dl O — pe . (ghi®) _ fri(t)
£ 0 k=i, ) < sup s, T s)h+1
dt <ttt + C[') + c , (32) ogsgdf,im{ ( ) ( )}

where, by definition,A*¢(t°, d/%) represents the total lengthyyhere 3(1) = (C — ) - ¢, i(t) = min{k : &* > ¢}, and
(in bits) of packets from the crossing flow servedif, a/*f. 1.t is the length of paci(qtf,i(t). -
Since the busy period starts#t this implies that immedi-
ately beforet?, the node is idle. In other words, all packets, Finally, since the crossing flow has a v.b.c stochastic alrriv
which arrived before®, have been served hj. So, we have curver<t with bounding function/°, and all packet lengths
A*e(t%) = A°(t"). In addition, crossing flow packets, whichhave identical (or the same upper-bounded) CGDFTheo-
are served beforé”?, must have arrived by/*. So, we have rem[4 is proved by applying these conditions to Leniha 5.

A*(d!) < A°(d/-¥). Combing both, we obtain:
(d7) < A*(d""). Combing both, we obtain It is worth highlighting that while[[28) looks similar t5 (p7

A0,y < A°(t°,d") (33) there is a fundamental difference between them. Specificall
which, when applied td(32), results in the packet length _dis_tributiorFlg in (27) is that of the
i £k o it aggregate flow, while in({28), the packet length distribatio
dhi <0 4 Dk=ig L n Act°,d"?) (34) F'is only of the traversing flow.
- C C '
With ([34), we obtain, for any> > r¢ > 0, B. Delay Bounds
» 0 ZZ:io IR Ae(g0, dliy — pe(dfi — 10) 1) Delay bounds from Theoremb 3 ddd With Theorems
at <t 4+ C + C @ and4, the following delay bounds are directly obtainednfro
re(dhi — 19 Prepositior R respectively.
C Corollary 2. Under the same condition as for Theorein 3, if
Further with simple manipulation, we obtain the traversing flow has a v.b.c stochastic arrival curve) =
i - y .t with bounding function”/, andrf < C — r¢, then for
N . 15k AC(10. qfty — pe(qfi — 40 rl -t wit ‘ g s ,
dlt <10+ Zgiorc - ()j _Trc( ) (35) any packep’?, it has a delay bound as:
Recall the virtual time functiori(16), it is ease to verifyath P{D" > 7} < F°@ F¥ @ FI((C —r)7). (40)

for the considered packet?, we have
Corollary 3. Under the same condition as for Theoréin 4, if

i fik i fik
VvIiiC =19 > ol 4+ Lokio ! > to + Dokin ! the traversing flow has a v.b.c stochastic arrival cunfg) =
- C—re = C—re r/ - t with bounding function®/, and p/ < C — r¢, then for
(36) any packep’, it has a delay bound as:

8Note thatt” starts the busy period and hence no packet finishes servidd if the two flows may be dependent,
at t0. This implies A*¢(t°, df+*) indeed represents the total length (in bits) . _ _ _
of packets from the crossing flow served|iff, d/%]. P{Df’l >T7}<FQF ® Ff((C —r)7); (41)



(ii) if the two flows are independent, This independence is more easily seen by expending them as

P{DM*>7} <(1=F «F)@ F/((C—r)7).  (42) sup {Al(s,a"") =l (al" = 5)}+

0<s<af:

It is worth highlighting that in obtaining the bounding max{ sup {A°(s,al) — 1 (@ — s))

function in Theoreni}4, we have relied on the right hand side 0<s<ali
of (39), which andA(t) are inherently dependent dueltd®). + A0, Ay — pe . (@5 — o)
This explains why in [[(42), the independence information ’ ’
cannot be further made use of. sup  {A%(s, dj',i) e, (df,i _ S)}} (48)
2) Animproved delay boundn the following, an improved ali<s<dfi
delay bound is presented. where the first term is determined only by the time period

Theorem 5. Suppose the traversing flow has a v.b.c stochastfé a’*'] and the arrivals of the traversing flow in this period,
arrival curve a(t) = rf -t with bounding functior?”f and the While the second term is determined by the same period
crossing flow has a v.b.c stochastic arrival curvg) = 7<-¢ 0;a”’] and another later non-overlapping period, d’7]
with bounding functior®. If »/ +r¢ < C, then for any packet and the arrivals of the crossing flow in these periods. Since
phi of the traversing flow, its delay is bounded as (a.s.) for the same periodo, a/-/], the two arrival processes are

(i) if the two flows may be dependent, independent and for the second period, the first term is not
affected, the independence is hence concluded. Conséguent
P{D/" > 1} < Fe® F/((C —1%)7); (43) the theorem follows from((47). [ ]
3) A further improved delay boundn obtaining the im-
(ii) if the two flows are independent, proved delay bounds in Theoréin 5, we made no assumption on
. the arrival process of the traversing flow or that of the drags
P{D" > 7} <1—Fx FI((C—7r°)7). (44) flow. If, however, these processes satisfy some assumptons

further improved delay bound can be obtained.
Proof: Consider any sample path. With Lemfia 4 partic- Specifically, if A/(t) and A°(t) are independent and they
ularly (30), we obtain, for any packet’, have independent stationary increments, a further impfove
. . . delay bound can be obtained.
Dl =gl — ol
< VH(C 1) — gt Theorem 6. Suppose that the traversing flod/ () and the
- crossing flow A¢(¢t) are independent and they have inde-

) c fii _ nC . fii . .
+Sup0§s§dfv7'{f4 (s,d"*) —r°-(d s)} pendent stationary increments. Assuie (1) = E[ef4’ (1]
- C=re and M<(1) = E[e?4(M)] exist for small§ > 0 and
B (it P lfv’“} i E[e?(AT(M+A°1)=C)] < 1. Then, for any packep’ of the
= R C — e a traversing flow, its delay is bounded as
+Sup0§s§dfvi{Ac(Sa df,i) —rC. (dfai _ S)} (45) P{Df.,i > 7_} < e—0(C—r)T (49)
C—re

for any§ > 0 and anyr® such thatE[e?(A" (-] < 1,

To ease the presentation, we ma¢é—r©) to the left and get Proof: Our starting point is[{35), which is reproduced

DI (C =19 here: |
i . L L Ac(to df,z‘) _ Tc(df"i _ tO)
. . . fii 0 Zk:lo )
< max (31— (C - %) (ol — ol )} G e (50)
1<j<i 4~
k= fa Iy with which, the following is easily verified
+ su A¢(s,d”*) —r¢ - (d7" — s . .
Ogsgru)lf’i{ ( ) ( )} (C —7°) - (dF — )
< max {47 (@ — e o) — (C =)@ —al 19} < A0~ (C 1) (0P 1)
) . .
; ; +AC(t0, dht) — re(dlt —19) (51)
+ su AC(s,dP) —r¢ - (dFP = s)} + e 46 T , ,
0§s§2f~i{ ( ) ( ) (46) = AT, alh) + A0, o) — C - (aF —10)
< sup {Af(s, af,i) _ Tf(a.ﬂi —s)} —|-Ac(af7i, df.,i) _ ,,,c(df,i _ aj',i)
0<s<aft . s ..
o - Y < su Al (s,al?) + A%(s, 0 = C - (afP — s
+ sup {A(s, dhty — e (df —5)) + € 47) - Ogsggf,i{ ( ) ( ) ( )}
P + A (@, df) - po(@ = o) (52)
wheree — 0. . = sup {A(s,a’) + A%(s,a8) — C - (@ — 5)
Note that, giveru/* as implied by the delay definition, the 0<s<al?

first two terms on the right hand side 6f147) are independent. +A(alt, ) — re(aft — alh)} (53)



where in step[{31) we have used the fact t@izio 1Hk <
AT (L0, af?).

It is worth highlighting that, the two terms il _(b2) ar

A. Single Flow

For the single flow case, consider the arrival procését)
overned by a compound Poisson process. In this process,

independent, since the second term is determined by a pefi@kets arrive according to a Poisson process with infensit
that is non-overlapping with the period involved in the firs packet lengths are independent and identically disehut

term, and the proces$°(¢) has independent increments. AlsGo|lowing a ne
due to this, in step[(33), we have intentionally moved thgpecifically:

second term insideup{}.
For ease of exposition, we let

Z = A¢(alt, dl?) — re(dft — ol

for which, it is easily verified that, E[e?Z|d’]

(E[e!A W= I]yd" " =" < 1 for vafi and henceE[e??] <
1, under the given assumptions.
Then, for anyd > 0, there holds,
P{(C —r°)D"" >z}
_ P{eG(C—rC)(df’i—af’i) > e@m}
< P{esupossgam{O[Af(svaf’i)ﬂhA“(s,af’i)—C-(af’i—s)]}
_ee[Ac(af'i’,df’i)frc(df'i’7af’i)] > e@m}
= P{ sup ee(Af(SHAC(S)’C'S) e > 691} (54)
0<s<af:t
(AT (1)+A°(1)-C) 02
< Ele ’ e??] (55)
e x
_ E[eG(Af(1)+AC(1)—C)] ) E[eez] e b7 (56)
< e (57)
where step[(54) is due to that both/(¢) and A°(t) are

stationary processes, stdp(56) is from the Doob’s maxi
inequalities for sub-(super-)martingales, and step (57jdm
the assumptions of the theorem.

Specifically, defineX (s) = /(A ()+A°()=C9)c02 5 —

gative exponential distribution with meéﬁn

N(t)
Al => "1
n=1

whereN(t) is a Poisson process with arrival intenskywhich
is independent of the packet lengths, &hdl, (-2, ... are i.i.d.
random variables with meafil.

For this compound Poisson process, it can be verified that
it has a v.b.c. stochastic arrival curve [22]19f (t) = ﬁt
with bounding functionf'/ () = e~%* for V6 > 0 andr/ =
ﬁ < 1. Note thatr? here is a function o#.

With Theorem[2, under the condition thaf < 1, the
tightest delay bound is obtained by takiAg= 1« — A, which
is:

P{D > 1} < e N7, (59)

It is worth highlighting that this single flow system may be
considereflas anM /M /1 system with Poisson arrival rate
and exponential service time distribution with parameter

Appealingly, the delay bound (59) matches exactly with the
delay] distribution found fromM /M /1 analysis.

B. With Cross Traffic

For the case with cross traffic, we suppose that priority
scheduling is adopted, with the crossing flow at the high
ITE}#ority level.
We assume the traversing flow and the crossing flow are
independent of each other. For both, the arrival process is
governed by a compound Poisson process. Similar to thessing|

0,1,2,...,a". There holds, due to independent incremenfg,y case, we consider that in each traffic arrival process,

assumption,

E[X(s+1)|X(1),..., X(s)]
E[ef(A (554D +A4%(s,541)=0) x ()
[

(
6(AT(

)

e
_ e 1)+AC(1)—C)]X(S)

-

<

(s (58)

packets arrive according to a Poisson process with intensit
M\ for the traversing flow (respectively® for the crossing
flow). In addition, to ease later comparison, we assume all
packets (of both flows) have the same i.i.d. length, follayvin
a negative exponential distribution with meafy.

This system is equivalent to ah//M/1/priority system,
for which, the classic queueing theory has exact resultifer t
delay expectation of the low priority traffic.

and hence{X(s)} forms a supermartingale. Theh [56) is Note that, given the delay CCDP{D > 71, the average
obtained from the Doob’s maximal inequality for supernrarti delay is obtained as [24] -

gales, which has also been used in the snetcal literatUds]6]
[ |

VIl. EXAMPLES

E[D]

/0 " (D> rYdr.

9Note that in real computer networks the time is discrete. thisr reason,
we have also assumed discrete time at the beginning. Nelesth this paper

To demonstrate the obtained results, examples are presedtes not specify the length of the time unit. Letting the uinite length—

in this section. The focus is on the obtained delay boun

Without loss of generality and for ease of expression,
normalize the capacity and take = 1.

('ﬁfinitely small, the system approaches time-continuous ahresults in this
paper still hold.

WE10}; is the delay in the system which matches the definitiorDdF?, while
not the delay in queue.



Exact Delay Expectation

The above relationship between the delay expectation and
CCDF readily allows us to find upper bounds on delay e
pectation from the obtained delay bounds. Among the vario
delay bounds derived in the previous sectiohs] (62) (€
are the tightest and will be compared against the exactisolut
1) Delay expectationFor theM /M /1 /priority system, the

classic queueing theory gives the following result:

p 1 1 pep
EDl=—————++— = 14 60
= p(l—=p)1l—p) n u(l—p)[ 1—pc]( )
whereE[D] denotes the delay expectatig, = % pe = %

andp = p° + p.
2) Bound on delay expectation, based (4Apain, for

Fig. 1. Comparison of boun@{b4).(= 1)

the two compound Poisson arrival processes, the traversing

flow has a v.b.c. stochastic arrival curué (t) = lfoeft with
bounding function?/ (z) = e~%’= for v6/ > 0; the traversing
flow has a v.b.c. stochastic arrival curué(t) = chect with
bounding functionF (z) = e~ for V6¢ > 0.

For ease of expression, lettirf = #° = #, which may
give a sub-tight bound, we obtain from Theorem 5

P{D>7}<(1460-(1—1ry)e 097 (61)

A
n—0"

wherer¢ = ﬁ andr/ = for anyd > 0, satisfying
rf+re <1
which further gives, by letting = ;1 — A/ — \°

M1 - fa-p)
[+ M(y]e—%y
P
and consequently, a bound on delay expectation is as:

P{D >y} <

e
Eb] < (L —p) ! p!

3) Bound on delay expectation, based @n] (48pr the
considered system, lettitg= —\—\. andr® = Wi—x the
following can be verified: (Lf[e?(A° (-] = (55— =
1 and (2) E[e?A (D+A"(1)=0)] — #(25+75 -1 _ | Then,
from Theoreni B, the delay bound {49) becomes

I (62)

P{D>71}< e~ W= =2 (1=r)r (63)

VIIl. DI1ScUsSION ANDRELATED WORK

In deterministic network calculus, the delay bound derived
from the Guaranteed Rate server model is better than that
directly from the deterministic counterpart bf (8). To ov@me
this difference, an interesting property has been provédt;w
says, in deterministic delay bound analy#i® last packetizer
can be ignored5][27]. For the considered single node case,
this property implies that, for the concern of determiisti
delay bound analysis, the constant capacity node could be
treated as if it had a deterministic service cuive ¢ and
hence Proposition]3 could be used directly. Results in this
paper further imply that this property can also be extended
to the stochastic network calculus context. Particulatlys
easily verified that, for the single flow case, delay bound (23
in Theoren{ 2 is better than delay boundl(22) in Corol@ry 1
by ignoring the packetization effedf;. In addition, for the
case with cross traffic, Corollafy 2 and Corollédy 3 will lead
to Theoreni b by ignoring the packetization effect.

In the general sense of taking packetization effect into
stochastic service curve and delay bound analysis, the work
[2] is most related. However, the obtained results[in [2] are
mostly functions offmOO F!(y)dy, while in our results, they
are related directly taf. In addition, how to make use of
independence information to improve the obtained resailts i
not investigated in[]2]. Moreover, [2] focuses on a specific
type of traffic, while our investigation is more systemafiar (
the single node case), applicable to any type of traffic that h
v.b.c stochastic arrival curve, which covers a wide range of

with which, the following bound on delay expectation igraffic types [22].

obtained:

1 1
Bl < o= —p) ~ali=p)

which is clearly better thad (62).

1+ Z—;] (64)

For the examples, delay bound analysisAdf M /1 using
shetcal can be found ihl[6][18]. However, the technique uised
this paper has fundamental difference from the technigsed u
in [6][18]. Particularly in [6][18], the analysis directiyworks
on the arrival process and the service process, without mgpp

To give an overview of the boun@(64), FId. 1 is presentethe arrival process to the stochastic arrival curve charaet-
wherez-axis is the total loady-axis is the share of cross traffiction, nor proving the stochastic service curve characiéon
in the total load. In the figure, the bound is compared agairgftthe system taking into consideration the packetizatftece

the exact resul{(80), under different total loags([0, 0.9]),

For delay bound analysis a¥//M/1/priority using snetcal,

and different shares2{ e [0,0.9]). The comparison showsthe same delay expectation bound (64) may be found in

that the bound[{84) is reasonably good.

[7]. However, beside the fundamental difference in the used



analytical technique, the bound inl [7] is derived under sonfss]
additional conditions/assumptions, e.g., preemptiverjtyi
and ignoring the packetizer. Nevertheless, it is excitmgede
the same bound derived when the packetization effect isitakes)
into account.

[17]

[19]

IX. CONCLUSION [20]

In this paper, we considered a packet-switched network nddd
with constant capacity (in bps) and systematically derivegh,
stochastic service curves and delay bounds for the system.
Specifically, we proved that the node provides a stochas&g]
service curve with a bounding function equal to the CCD
of packet length distribution. In addition, we derived gela
bounds, which imply thathe last packetizer can be ignored?4!
property may be extended to SNC. Furthermore, we presenigg
relations that allow to exploit independence informatiorte
analysis. For the single flow case, a by-product is a new del@?l
bound that matches with the exact result fdy M /1. [27]

Recall that, while the considered system is perhaps the
simplest computer network system, before this work, in tHe?!
context of stochastic network calculus, little was knowouéth |2
how to make use of the independence information in the
analysis, particularly when the packetization effect is1-co 0
sidered. This paper makes one step forward. We believe {ﬁé
analysis may be extended to the network case, where how to
make use of flow independence information to improve resultg]
(without ignoring the packetization effect) still remalasgely 3]
mysterious.
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In addition, comparing’ with i(¢), we must have
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Let us split the time period0,¢] into i/ + 1 intervals, Considering all thesé + 1 intervals, we get
which are[0, a’1), ..., [afi1 ald), ..., [af¥ 1 ol and \

o ) ) ; ’ ) ) ’ 9 A@ t _A t
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< R. dfﬂ?(t) _
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Similarly, for the nexti’ — 1 intervals, we haveA(s) =
SNk forVs s ol < s < al, (j=2,...,i'). Hence,
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Note that forVs : o/ < s < a"'*1, we haveA(s) =
S 17, In addition, in the above discussion, it is known
t < a"t1, Hence, for the last interval, we havé(s) =
S 1k for Vs : af < s < t. Consequently,
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