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Software and knowledge engineers continually strive to develop tools and techniques to
manage the complexity that is inherent in the systems they have to build. In this article,

we argue that intelligent agents and agent-based systems offer novel opportunities for
developing effective tools and techniques. Following a discussion on the classic subject

of what makes software complex, we introduce intelligent agents as software structures
capable of making “rational decisions”. Such rational decision-makers are well-suited to
the construction of certain types of software, which mainstream software engineering has
had little success with. We then go on to examine a number of prototype techniques
proposed for engineering agent systems, including formal specification and verification

methods for agent systems, and techniques for implementing agent specifications.
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1. Introduction

Over the past three decades, software engineers have derived a progressively
better understanding of the characteristics of complexity in software. It is now
widely recognised that interaction is probably the most important single character-
istic of complex software (see, e.g., [21]). Software architectures that contain many
network-aware, dynamically interacting components, each with their own thread of
control, and engaging in complex coordination protocols to get or offer a plethora
of services to other components, are typically orders of magnitude more complex
to correctly and efficiently engineer than those that simply compute a function of
some input through a single thread of control.

Unfortunately, it turns out that many (if not most) real-world applications have
precisely these characteristics. As a consequence, a major research topic in Com-
puter Science over at least the past two decades has been the development of tools
and techniques to model, understand, and implement systems in which interaction
is the norm. The advent of global computing platforms, like the Internet and the
World Wide Web, has only increased the requirement of designing systems including
complex interactions.

Many researchers now believe that in future, computation itself will be under-
stood as chiefly as a process of interaction [23]. This has in turn led to the search
for new computational abstractions, models, and tools with which to conceptualise
and implement interacting systems.

Since the 1980s, software agents and multi-agent systems have grown into what is
now one of the most active areas of research and development activity in computing
generally. There are many reasons for the current intensity of interest, but certainly
one of the most important is that the concept of an agent as an autonomous system,
capable of interacting with other agents in order to satisfy its design objectives, is

1



2 Agent-oriented Software Engineering

a natural one for software designers. Just as we can understand many systems as
being composed of essentially passive objects, which have state, and upon which
we can perform operations, so we can understand many others as being made up of
interacting, semi-autonomous agents which offer services.

This paper has the following structure: Section defines what we mean by the
term “agent”, and summarises why such agents might be appropriate for engineer-
ing certain complex software systems. We then describe some typical application
domains for multi-agent systems. In section , we describe agent-oriented specifica-
tion techniques, focussing in particular on the requirements that an agent-oriented
specification framework will have. In section , we discuss how such specifications
can be implemented, either by directly executing them, or else by automatically
synthesising executable systems from specifications. Section discusses how imple-
mented systems may be verified, to determine whether or not they satisfy their
specifications. Finally, in section , we conclude with some comments on future
issues for agent-oriented software engineering.

Note that sections through to include some material from [55], where a fuller
examination of, in particular, the specification, implementation, and verification of
agent-based systems may be found.

2. Agent-Based Systems

By an agent-based system, we mean one in which the key abstraction used is
that of an agent. By an agent, we mean an abstraction that enjoys the following
properties [58, pp116–118]:

• autonomy : agents encapsulate some state (which is not accessible to other
agents), and make decisions about what to do based on this state, without
the direct intervention of humans or others;

• reactivity : agents are situated in an environment, (which may be the physical
world, a user via a graphical user interface, a collection of other agents, the
Internet, or perhaps many of these combined), are able to perceive this envi-
ronment (through the use of potentially imperfect sensors), and are able to
respond in a timely fashion to changes that occur in it;

• pro-activeness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behaviour by taking the initiative;

• social ability : agents interact with other agents (and possibly humans) via
some kind of agent-communication language, and typically have the ability to
engage in social activities (such as cooperative problem solving or negotiation)
in order to achieve their goals.

A multi-agent system is a system composed of a number of such agents, which
typically interact with one-another in order to satisfy their goals.

An obvious question to ask is why agents and multi-agent systems are seen as
an important new direction in software engineering. There are several reasons [27,
pp6–10]:

• Natural metaphor.
Just as the many domains can be conceived of consisting of a number of
interacting but essentially passive objects, so many others can be conceived
as interacting, active, purposeful agents. For example, a scenario currently
driving much research and development activity in the agents field is that of
software agents that buy and sell goods via the Internet on behalf of some
users. It is natural to view the software participants in such transactions as
(semi-)autonomous agents.
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• Distribution of data or control.
For many software systems, it is not possible to identify a single locus of con-
trol: instead, overall control of the systems is distributed across a number
computing nodes, which are frequently geographically distributed. In order
to make such systems work effectively, these nodes must be capable of au-
tonomously interacting with each other — they must agents.

• Legacy systems.
A natural way of incorporating legacy systems into modern distributed infor-
mation systems is to agentify them: to “wrap” them with an agent layer, that
will enable them to interact with other agents.

• Open systems.
Many systems are open in the sense that it is impossible to know at design
time exactly what components or services the system will be comprised of,
and how they will be able to interact with one-another. To operate effectively
in such systems, the ability to engage in flexible autonomous decision-making
is critical. An important example of this kind of systems are middleware
platforms like OMG’s CORBA [40] or Sun’s Jini [38]. These platforms include
some concept of agenthood, which helps in designing some specific types of
component or service.

Now that we have defined what an agent is, we can look at some example applica-
tions of agent technology.

3. Some Applications of Agent Technology

Agents have been applied in several application domains, amongst the most
important of which have been the following.

Agents and Distributed Systems In distributed systems, the idea of an agent
is often seen as a natural metaphor, and, by some, as a development of the concur-
rent object programming paradigm [1]. Specifically, multi-agent systems have been
applied in the following domains:

• Air traffic control.
Air-traffic control systems are among the oldest application areas in multi-
agent systems [49, 15]. A recent example is oasis (Optimal Aircraft Sequencing
using I ntelligent Scheduling), a system that is currently undergoing field trials
at Sydney airport in Australia [33]. The specific aim of oasis is to assist an
air-traffic controller in managing the flow of aircraft at an airport: it offers es-
timates of aircraft arrival times, monitors aircraft progress against previously
derived estimates, informs the air-traffic controller of any errors, and perhaps
most importantly, finds the optimal sequence in which to land aircraft. oasis

contains two types of agents: global agents, which perform generic domain
functions (for example, there is a “sequencer agent”, which is responsible for
arranging aircraft into a least-cost sequence), and aircraft agents, one for each
aircraft in the system airspace.

• Business process management.
Workflow and business process control systems are an area of increasing im-
portance in computer science. Workflow systems aim to automate the pro-
cesses of a business, ensuring that different business tasks are expedited by the
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appropriate people at the right time, typically ensuring that a particular doc-
ument flow is maintained and managed within an organisation. The adept

system is a current example of an agent-based business process management
system [25, 26]. In adept, a business organisation is modelled as a society of
negotiating, service providing agents. adept is currently being tested on a
British Telecom (BT) business process which involves some nine departments
and 200 different tasks.

• Industrial systems management.
The largest and probably best-known European multi-agent system develop-
ment project to date was archon [24]. This project developed and deployed
multi-agent technology in several industrial domains. The most significant of
these domains was a power distribution system, which was installed and is
currently operational in northern Spain. Agents in archon have two main
parts: a domain component, which realises the domain-specific functionality
of the agent, and a wrapper component, which provides the agent functional-
ity, enabling the system to plan its actions, and to represent and communicate
with other agents. The archon technology has subsequently been deployed
in several other domains, including particle accelerator control.

• Distributed sensing.
The classic application of multi-agent technology was in distributed sens-
ing [32, 11]. The broad idea is to have a system constructed as a network
of spatially distributed sensors. The sensors may, for example, be acous-
tic sensors on a battlefield, or radars distributed across some airspace. The
global goal of the system is to monitor and track all vehicles that pass within
range of the sensors. This task can be made simpler if the sensor nodes in the
network cooperate with one-another, for example by exchanging predictions
about when a vehicle will pass from the region of one sensor to the region
of another. This apparently simple domain has yielded surprising richness as
an environment for experimentation into multi-agent systems: Lesser’s well
known Distributed Vehicle Monitoring Testbed (dvmt) provided the proving
ground for many of today’s multi-agent system development techniques [32].

• Space shuttle fault diagnosis.
It is difficult to imagine a domain with harder real-time constraints than that
of in-flight diagnosis of faults on a spacecraft. Yet one of the earliest applica-
tions of the prs architecture was precisely this [18]. In brief, the procedures
that an astronaut would use to diagnose faults in the space shuttle’s reaction
control systems were directly coded as prs plans, and the prs architecture
was used to interpret these plans, and provide real-time advice to astronauts
in the event of failure or malfunction in this system.

• Factory process control.
Organisations can be modelled as societies of interacting agents. Factories
are no exception, and an agent-based approach to modelling and managing
factories has been taken up by several researchers. This work began largely
with Parunak [50], who, in yams (Y et Another M anufacturing System) used
the Contract Net protocol [48] for manufacturing control. More recently,
Mori et al have used a multi-agent approach to controlling steel coil processing
plant [36], and Wooldridge et al have described how the process of determining
an optimal production sequence for some factory can naturally be viewed
as a problem of negotiation between the various production cells within the
factory [57].
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Agents in the Internet Much of the hyperbole that currently surrounds all
things agent-like is related to the phenomenal growth of the Internet [12, 5]. In
particular, there is a lot of interest in mobile agents, that can move themselves
around the Internet operating on a user’s behalf. This kind of functionality is
achieved in the telescript language developed by General Magic, Inc., for remote
programming [52]; related functionality is provided in languages such as Java. There
are a number of rationales for this type of agent:

• Electronic commerce.
Currently, commercial activity is driven primarily by humans making deci-
sions about what goods to buy at what price, and so on. However, it is not
difficult to see that certain types of commerce might usefully be automated.
A standard motivating example is that of a “travel agent”. Suppose I want to
travel from Manchester to San Francisco. There are many different airlines,
price structures and routes that I could choose for such a journey. I may not
mind about the route, as long as the aircraft involved is not “fly-by-wire”; I
may insist on a dietary option not available with some airlines; or I may not
want to fly with Ruritanian airlines after I had a bad experience once. Trying
to find the best flight manually given these preferences is a tedious business,
but a fairly straightforward one. It seems entirely plausible that this kind of
service will in future be provided by agents, who take a specification of your
desired flight and preferences, and, after checking through a range of on-line
flight information databases, will return with a list of the best options.

• Hand-held PDAs with limited bandwidth.
Hand-held “personal digital assistants” are seen by many as a next step in
the laptop computer market. Such PDAs are often provided with limited-
bandwidth links to telecommunications networks. If a PDA has a query that
needs to be resolved, that will require network information resources, it may
be more efficient to send out an agent across the network whose purpose is to
resolve this query remotely. The searching process is done by the agent at a
remote site, and only the final result of the query need be sent back to the
PDA that originated the query.

• Information gathering.
The widespread provision of distributed, semi-structured information resources
such as the world-wide web obviously presents enormous potential; but it also
presents a number of difficulties, (such as “information overload”); agents are
seen as a natural tool to perform tasks such as searching distributed informa-
tion resources, and filtering out unwanted news and email [34, 31].

At the time of writing, most interest in mobile agents is centred around the Java pro-
gramming language, which, in the form of applets (portable downloadable programs
embedded within WWW pages), already provides a very widely used mobile object
framework. Also of relevance is the work of the Object Management Group (omg), a
consortium of computer manufacturers who are developing, amongst other things,
a mobile agent framework based on their well known corba (C ommon Object
Request Broker Architecture) distributed object standard [40].

Agents in Interfaces Another area of much current interest is the use of agent
in interfaces. The idea here is that of the agent as an assistant to a user in some
task. The rationale is that current interfaces are in no sense pro-active: things
only happen when some user initiates a task. The idea of an agent acting in the
way that a good assistant would, by anticipating our requirements, seems very
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attractive. Nicholas Negroponte, director of the MIT Media Lab, sees the ultimate
development of such agents as follows [37]:

“The ‘agent’ answers the phone, recognizes the callers, disturbs you
when appropriate, and may even tell a white lie on your behalf. The
same agent is well trained in timing, versed in finding opportune mo-
ments, and respectful of idiosyncrasies.” (p150)
“If you have somebody who knows you well and shares much of your
information, that person can act on your behalf very effectively. If your
secretary falls ill, it would make no difference if the temping agency
could send you Albert Einstein. This issue is not about IQ. It is shared
knowledge and the practice of using it in your best interests.” (p151)
“Like an army commander sending a scout ahead . . . you will dispatch
agents to collect information on your behalf. Agents will dispatch agents.
The process multiplies. But [this process] started at the interface where
you delegated your desires.” (p158)

Some prototypical interface agents of this type are described in [34].
In the remainder of this article, we consider what it means to specify, implement,

and verify agent-based systems.

4. Specification

In this section, we consider the problem of specifying an agent system. What
are the requirements for an agent specification framework? What sort of proper-
ties must it be capable of representing? The predominant approach to specifying
agents has involved treating them as intentional systems that may be understood
by attributing to them mental states such as beliefs, desires, and intentions [9, 58];
see [56] for a detailed justification of this idea. Using this idea, a number of ap-
proaches for formally specifying agents have been developed, which are capable of
representing the following aspects of an agent-based system:

• the beliefs that agents have — the information they have about their environ-
ment, which may be incomplete or incorrect;

• the goals that agents will try to achieve;

• the actions that agents perform and the effects of these actions;

• the ongoing interaction that agents have — how agents interact with each
other and their environment over time.

We use the term agent theory to refer to a theory which explains how these aspects
of agency interact to generate the behaviour of an agent. The most successful
approach to (formal) agent theory appears to be the use of a temporal modal logic
(space restrictions prevent a detailed technical discussion on such logics — see,
e.g., [58] for extensive references). Two of the best known such logical frameworks
are the Cohen-Levesque theory of intention [8], and the Rao-Georgeff belief-desire-
intention model [43, 56]. The Cohen-Levesque model takes as primitive just two
attitudes: beliefs and goals. Other attitudes (in particular, the notion of intention)
are built up from these. In contrast, Rao-Georgeff take intentions as primitives, in
addition to beliefs and goals. The key technical problem faced by agent theorists
is developing a formal model that gives a good account of the interrelationships
between the various attitudes that together comprise an agents internal state [58].
Comparatively few serious attempts have been made to specify real agent systems
using such logics — see, e.g., [17] for one such attempt.
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5. Implementation

Once given a specification, we must implement a system that is correct with
respect to this specification. The next issue we consider is this move from abstract
specification to concrete computational system. There are at least two possibilities
for achieving this transformation that we consider here:

1. somehow directly execute or animate the abstract specification; or

2. somehow translate or compile the specification into a concrete computational
form using an automatic translation technique.

In the sub-sections that follow, we shall investigate each of these possibilities in
turn.

5.1. Directly Executing Agent Specifications
Suppose we are given a system specification, φ, which is expressed in some logi-

cal language L. One way of obtaining a concrete system from φ is to treat it as an
executable specification, and interpret the specification directly in order to generate
the agent’s behaviour. Interpreting an agent specification can be viewed as a kind of
constructive proof of satisfiability, whereby we show that the specification φ is satis-
fiable by building a model (in the logical sense) for it. If models for the specification
language L can be given a computational interpretation, then model building can
be viewed as executing the specification. To make this discussion concrete, consider
the Concurrent MetateM programming language [16]. In this language, agents
are programmed by giving them a temporal logic specification of the behaviour it is
intended they should exhibit; this specification is directly executed to generate each
agent’s behaviour. Models for the temporal logic in which Concurrent MetateM

agents are specified are linear discrete sequences of states: executing a Concurrent
MetateM agent specification is thus a process of constructing such a sequence of
states. Since such state sequences can be viewed as the histories traced out by
programs as they execute, the temporal logic upon which Concurrent MetateM

is based has a computational interpretation; the actual execution algorithm is de-
scribed in [2].

Note that executing Concurrent MetateM agent specifications is possible pri-
marily because the models upon which the Concurrent MetateM temporal logic
is based are comparatively simple, with an obvious and intuitive computational
interpretation. However, agent specification languages in general (e.g., the bdi for-
malisms of Rao and Georgeff [43]) are based on considerably more complex logics.
In particular, they are usually based on a semantic framework known as possible
worlds [6]. The technical details are somewhat involved for the purposes of this
article: the main point is that, in general, possible worlds semantics do not have
a computational interpretation in the way that Concurrent MetateM semantics
do. Hence it is not clear what “executing” a logic based on such semantics might
mean. In response to this, a number of researchers have attempted to develop ex-
ecutable agent specification languages with a simplified semantic basis, that has a
computational interpretation. An example is Rao’s AgentSpeak(L) language, which
although essentially a bdi system, has a simple computational semantics [42].

5.2. Compiling Agent Specifications
An alternative to direct execution is compilation. In this scheme, we take our ab-

stract specification, and transform it into a concrete computational model via some
automatic synthesis process. The main perceived advantages of compilation over
direct execution are in run-time efficiency. Direct execution of an agent specifica-
tion, as in Concurrent MetateM, above, typically involves manipulating a symbolic
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representation of the specification at run time. This manipulation generally corre-
sponds to reasoning of some form, which is computationally costly. Compilation
approaches aim to reduce abstract symbolic specifications to a much simpler com-
putational model, which requires no symbolic representation. The ‘reasoning’ work
is thus done off-line, at compile-time; execution of the compiled system can then be
done with little or no run-time symbolic reasoning.

Compilation approaches usually depend upon the close relationship between
models for temporal/modal logic (which are typically labeled graphs of some kind),
and automata-like finite state machines. For example, Pnueli and Rosner [41] syn-
thesise reactive systems from branching temporal logic specifications. Similar tech-
niques have also been used to develop concurrent system skeletons from temporal
logic specifications. Perhaps the best-known example of this approach to agent
development is the situated automata paradigm of Rosenschein and Kaelbling [46].
They use an epistemic logic (i.e., a logic of knowledge [13]) to specify the perception
component of intelligent agent systems. They then used an technique based on
constructive proof to directly synthesise automata from these specifications [45].

The general approach of automatic synthesis, although theoretically appealing, is
limited in a number of important respects. First, as the agent specification language
becomes more expressive, then even offline reasoning becomes too expensive to
carry out. Second, the systems generated in this way are not capable of learning,
(i.e., they are not capable of adapting their “program” at run-time). Finally, as
with direct execution approaches, agent specification frameworks tend to have no
concrete computational interpretation, making such a synthesis impossible.

6. Verification

Once we have developed a concrete system, we need to show that this system
is correct with respect to our original specification. This process is known as veri-
fication, and it is particularly important if we have introduced any informality into
the development process. We can divide approaches to the verification of systems
into two broad classes: (1) axiomatic; and (2) semantic (model checking). In the
subsections that follow, we shall look at the way in which these two approaches
have evidenced themselves in agent-based systems.

6.1. Axiomatic Approaches

Axiomatic approaches to program verification were the first to enter the main-
stream of computer science, with the work of Hoare in the late 1960s [20]. Axiomatic
verification requires that we can take our concrete program, and from this program
systematically derive a logical theory that represents the behaviour of the program.
Call this the program theory. If the program theory is expressed in the same logical
language as the original specification, then verification reduces to a proof problem:
show that the specification is a theorem of (equivalently, is a logical consequence
of) the program theory. The development of a program theory is made feasible by
axiomatizing the programming language in which the system is implemented. For
example, Hoare logic gives us more or less an axiom for every statement type in a
simple pascal-like language. Once given the axiomatization, the program theory
can be derived from the program text in a systematic way.

Perhaps the most relevant work from mainstream computer science is the spec-
ification and verification of reactive systems using temporal logic, in the way pio-
neered by Pnueli, Manna, and colleagues [35]. The idea is that the computations
of reactive systems are infinite sequences, which correspond to models for linear
temporal logic. Temporal logic can be used both to develop a system specification,
and to axiomatize a programming language. This axiomatization can then be used
to systematically derive the theory of a program from the program text. Both the
specification and the program theory will then be encoded in temporal logic, and
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verification hence becomes a proof problem in temporal logic.
Comparatively little work has been carried out within the agent-based systems

community on axiomatizing multi-agent environments. We shall review just one
approach. In [54], an axiomatic approach to the verification of multi-agent systems
was proposed. Essentially, the idea was to use a temporal belief logic to axiom-
atize the properties of two multi-agent programming languages. Given such an
axiomatization, a program theory representing the properties of the system could
be systematically derived in the way indicated above. A temporal belief logic was
used for two reasons. First, a temporal component was required because, as we
observed above, we need to capture the ongoing behaviour of a multi-agent system.
A belief component was used because the agents we wish to verify are each sym-
bolic AI systems in their own right. That is, each agent is a symbolic reasoning
system, which includes a representation of its environment and desired behaviour.
A belief component in the logic allows us to capture the symbolic representations
present within each agent. The two multi-agent programming languages that were
axiomatized in the temporal belief logic were Shoham’s agent0 [47], and Fisher’s
Concurrent MetateM (see above). Note that this approach relies on the operation
of agents being sufficiently simple that their properties can be axiomatized in the
logic. It works for Shoham’s agent0 and Fisher’s Concurrent MetateM largely
because these languages have a simple semantics, closely related to rule-based sys-
tems, which in turn have a simple logical semantics. For more complex agents, an
axiomatization is not so straightforward. Also, capturing the semantics of concur-
rent execution of agents is not easy (it is, of course, an area of ongoing research in
computer science generally).

6.2. Semantic Approaches: Model Checking

Ultimately, axiomatic verification reduces to a proof problem. Axiomatic ap-
proaches to verification are thus inherently limited by the difficulty of this proof
problem. Proofs are hard enough, even in classical logic; the addition of temporal
and modal connectives to a logic makes the problem considerably harder. For this
reason, more efficient approaches to verification have been sought. One particularly
successful approach is that of model checking [7]. As the name suggests, whereas
axiomatic approaches generally rely on syntactic proof, model checking approaches
are based on the semantics of the specification language.

The model checking problem, in abstract, is quite simple: given a formula φ
of language L, and a model M for L, determine whether or not φ is valid in M ,
i.e., whether or not M |=L φ. Model checking-based verification has been studied
in connection with temporal logic. The technique once again relies upon the close
relationship between models for temporal logic and finite-state machines. Suppose
that φ is the specification for some system, and π is a program that claims to
implement φ. Then, to determine whether or not π truly implements φ, we take
π, and from it generate a model Mπ that corresponds to π, in the sense that Mπ
encodes all the possible computations of π; determine whether or not Mπ |= φ,
i.e., whether the specification formula φ is valid in Mπ; the program π satisfies
the specification φ just in case the answer is ‘yes’. The main advantage of model
checking over axiomatic verification is in complexity: model checking using the
branching time temporal logic ctl ([7]) can be done in polynomial time, whereas
the proof problem for most modal logics is quite complex.

In [44], Rao and Georgeff present an algorithm for model checking agent sys-
tems. More precisely, they give an algorithm for taking a logical model for their
(propositional) BDI agent specification language, and a formula of the language,
and determining whether the formula is valid in the model. The technique is closely
based on model checking algorithms for normal modal logics [19]. They show that
despite the inclusion of three extra modalities, (for beliefs, desires, and intentions),
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into the ctl branching time framework, the algorithm is still quite efficient, running
in polynomial time. So the second step of the two-stage model checking process de-
scribed above can still be done efficiently. However, it is not clear how the first
step might be realised for BDI logics. Where does the logical model characterizing
an agent actually comes from — can it be derived from an arbitrary program π,
as in mainstream computer science? To do this, we would need to take a program
implemented in, say, pascal, and from it derive the belief, desire, and intention
accessibility relations that are used to give a semantics to the BDI component of
the logic. Because, as we noted earlier, there is no clear relationship between the
BDI logic and the concrete computational models used to implement agents, it is
not clear how such a model could be derived.

7. Conclusions

In this article, we have given a summary of why agents should be perceived to be
a significant technology for software engineering, and also of the main techniques for
the specification, implementation, and verification of agent systems. Software engi-
neering for agent systems is at an early stage of development, and yet the widespread
acceptance of the concept of an agent implies that agents have a significant future
in software engineering. If the technology is to be a success, then its software en-
gineering aspects will need to be taken seriously. Probably the most important
outstanding issues for agent-based software engineering are: (i) an understanding
of the situations in which agent solutions are appropriate; and (ii) principled but
informal development techniques for agent systems. While some attention has been
given to the latter (in the form of analysis and design methodologies for agent sys-
tems [30, 60, 39, 10, 3, 29, 53]), almost no attention has been given to the former
(but see [59]).

8. How to Find Out More About Agents

There are now many introductions to intelligent agents and multiagent systems.
Ferber [14] is an undergraduate textbook, although as its name suggests, this volume
focussed on multiagent aspects rather than on the theory and practice of individual
agents. A first-rate collection of articles introducing agent and multiagent systems
is Weiß [51]. Two collections of research articles provide a comprehensive introduc-
tion to the field of autonomous rational agents and multiagent systems: Bond and
Gasser’s 1988 collection, Readings in Distributed Artificial Intelligence, introduces
almost all the basic problems in the multiagent systems field, and although some of
the papers it contains are now rather dated, it remains essential reading [4]; Huhns
and Singh’s more recent collection sets itself the ambitious goal of providing a sur-
vey of the whole of the agent field, and succeeds in this respect very well [22]. For a
general introduction to the theory and practice of intelligent agents, see Wooldridge
and Jennings [58], which focuses primarily on the theory of agents, but also contains
an extensive review of agent architectures and programming languages. For a col-
lection of articles on the applications of agent technology, see [28]. A comprehensive
roadmap of agent technology was published as [27].
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