
HAMPI: A Solver for String Constraints

Adam Kieżun
MIT

akiezun@csail.mit.edu

Vijay Ganesh
MIT

vganesh@csail.mit.edu

Philip J. Guo
Stanford University

pg@cs.stanford.edu
Pieter Hooimeijer
University of Virginia

pieter@cs.virginia.edu

Michael D. Ernst
University of Washington

mernst@cs.washington.edu

ABSTRACT
Many automatic testing, analysis, and verification techniques for
programs can be effectively reduced to a constraint-generation
phase followed by a constraint-solving phase. This separation of
concerns often leads to more effective and maintainable tools. The
increasing efficiency of off-the-shelf constraint solvers makes this
approach even more compelling. However, there are few effec-
tive and sufficiently expressive off-the-shelf solvers for string con-
straints generated by analysis techniques for string-manipulating
programs.

We designed and implemented Hampi, a solver for string con-
straints over fixed-size string variables. Hampi constraints express
membership in regular languages and fixed-size context-free lan-
guages. Hampi constraints may contain context-free-language defi-
nitions, regular-language definitions and operations, and the mem-
bership predicate. Given a set of constraints, Hampi outputs a string
that satisfies all the constraints, or reports that the constraints are
unsatisfiable.

Hampi is expressive and efficient, and can be successfully ap-
plied to testing and analysis of real programs. Our experiments use
Hampi in: static and dynamic analyses for finding SQL injection
vulnerabilities in Web applications; automated bug finding in C
programs using systematic testing; and compare Hampi with an-
other string solver. Hampi’s source code, documentation, and the
experimental data are available at http://people.csail.mit.
edu/akiezun/hampi.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal Methods; D.2.5 [Soft-
ware Engineering]: Testing and Debugging—Testing Tools

General Terms: Verification, Algorithms, Reliability

Keywords: string constraints, regular languages, context-free lan-
guages

1. INTRODUCTION
Many automatic testing [6, 17, 34], analysis [19, 40], and verifi-

cation [8, 22] techniques for programs can be effectively reduced
to a constraint-generation phase followed by a constraint-solving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$5.00.

phase. This separation of concerns often leads to more effective
and maintainable tools. Such an approach to analyzing programs is
becoming more effective as the efficiency of off-the-shelf constraint
solvers for Boolean SAT [29] and other theories [9, 15] continues
to increase. Most of these solvers are aimed at propositional logic,
linear arithmetic, or the theory of bit-vectors.

Many programs, such as Web applications, take string values as
input, manipulate them, and then use them in sensitive operations
such as database queries. Analyses of string-manipulating pro-
grams in techniques for automatic testing [4, 10, 16], verifying cor-
rectness of program output [35], and finding security faults [14,39]
produce string constraints, which are then solved by custom string
solvers written by the authors of these analyses. Writing a custom
solver for every application is time-consuming and error-prone, and
the lack of separation of concerns may lead to systems that are dif-
ficult to maintain. Thus, there is a clear need for an effective and
sufficiently expressive off-the-shelf string-constraint solver that can
be easily integrated into a variety of applications.

We designed and implemented Hampi, a solver for constraints
over fixed-size string variables. Hampi constraints express mem-
bership in regular and fixed-size context-free languages1. Hampi
constraints may contain a fixed-size string variable, context-free
language definitions, regular-language definitions and operations,
and language-membership predicates. Given a set of constraints
over a string variable, Hampi outputs a string that satisfies all the
constraints, or reports that the constraints are unsatisfiable. Hampi
is designed to be used as a component in testing, analysis, and
verification applications. Hampi can also be used to solve the in-
tersection, containment, and equivalence problems for regular and
fixed-size context-free languages.

A key feature of Hampi is fixed-sizing of regular and context-free
languages. Fixed-sizing makes Hampi different from custom string-
constraint solvers used in many testing and analysis tools [10]. As
we demonstrate, for many practical applications, fixed-sizing the
input languages is not a handicap. In fact, it allows for a more
expressive input language that allows operations on context-free
languages that would be undecidable without fixed-sizing. Fur-
thermore, fixed-sizing makes the satisfiability problem solved by
Hampi more tractable. This difference is similar to that between
model-checking and bounded model-checking [3].

Hampi’s input language can encode queries that help identify
SQL injection attacks, such as: “Find a string v of size 12 char-
acters, such that the SQL query SELECT msg FROM messages

1All fixed-size languages are finite, and every finite language is
regular. Hence, it would suffice to say that Hampi supports only
fixed-size regular languages. However, it is important to emphasize
the ease-of-use that Hampi provides by allowing users to specify
context-free languages.

WHERE topicid=v is a syntactically valid SQL statement, and that
the query contains the substring OR 1=1” (where OR 1=1 is a com-
mon tautology that can lead to SQL injection attacks). Hampi finds
a string value that satisfies the constraints, or answers that no sat-
isfying value exists (for the above example, string 1 OR 1=1 is a
solution).

Hampi works in four steps: First, normalize the input constraints,
and generates what we refer to as the core string constraints. The
core string constraints are expressions of the form v ∈ R or v � R,
where v is a fixed-size string variable, and R is a regular expression.
Second, translate these core string constraints into a quantifier-free
logic of bit-vectors. A bit-vector is a fixed-size, ordered, list of
bits. The fragment of bit-vector logic that Hampi uses contains stan-
dard Boolean operations, extracting sub-vectors, and comparing
bit-vectors. Third, hand over the bit-vector constraints to STP [15],
a constraint solver for bit-vectors and arrays. Fourth, if STP reports
that the constraints are unsatisfiable, then Hampi reports the same.
Otherwise, STP reports that the input constraints are satisfiable, and
generates a satisfying assignment in its bit-vector language. Hampi
decodes this to output a string solution.

Summary of Experimental Results. We used Hampi in testing and
analysis applications and experimentally evaluated Hampi’s expres-
siveness and efficiency. Our experimental results show that Hampi
is efficient, and its input language can express string constraints that
arise from a variety of real-world analysis and testing tools.

• SQL Injection Vulnerability Detection: We used Hampi in
a static analysis tool [37] for identifying SQL injection vul-
nerabilities. We applied the analysis tool to 6 PHP Web ap-
plications (total lines of code: 339,750). Hampi solved all
constraints generated by the analysis, and solved 99.7% of
those constraints in less than 1 second per constraint. All so-
lutions found by Hampi for these constraints were less than 5
characters long. These experiments on real applications bol-
ster our claim that fixed-sizing the string constraints is not a
handicap.

• SQL Injection Attack Generation: We used Hampi in Ardilla,
a dynamic analysis tool for creating SQL injection attacks [24].
We applied Ardilla to 5 PHP Web applications (total lines
of code: 14,941). Hampi successfully replaced a custom-
made attack generator and constructed all 23 known attacks
on those applications.

• Input Generation for Systematic Testing: We used Hampi
in Klee [5], a systematic-testing tool for C programs. We ap-
plied Klee to 3 programs with structured input formats (total
executable lines of code: 4,100). We used Hampi to gener-
ate constraints that specify legal inputs to these programs.
Hampi’s constraints eliminated all illegal inputs, improved
the line-coverage by up to 2× (up to 5× in parser code), and
discovered 3 new error-revealing inputs.

• Comparison with CFGAnalyzer: We compared Hampi’s
performance to CFGAnalyzer, a solver for bounded versions
of decision problems on context-free grammars [1]. Hampi
was, on average, 6.8 times faster than CFGAnalyzer on 100
grammar-intersection problems.

Contributions

• A decision procedure for constraints over fixed-size string
variables, supporting regular language membership, context-
free language membership, and typical string operations like
concatenation.

1 $my_topicid = $_GET[’topicid’];
2

3 $sqlstmt = "SELECT msg FROM messages WHERE topicid=’$my_topicid’";
4 $result = mysql_query($sqlstmt);
5

6 //display messages
7 while($row = mysql_fetch_assoc($result)){
8 echo "Message " . $row[’msg’];
9 }

Figure 1: Fragment of a PHP program that displays messages
stored in a MySQL database. This program is vulnerable to an
SQL injection attack. Section 2 discusses the vulnerability.

1 //string variable representing ’$my_topicid’ from Figure 1
2 var v:12; // size is 12 characters
3

4 //simple SQL context-free grammar
5 cfg SqlSmall := "SELECT " (Letter)+ " FROM " (Letter)+ " WHERE " Cond;
6 cfg Cond := Val "=" Val | Cond " OR " Cond";
7 cfg Val := (Letter)+ | "’" (LetterOrDigit)* "’" | (Digit)+;
8 cfg LetterOrDigit := Letter | Digit;
9 cfg Letter := [’a’-’z’] ;

10 cfg Digit := [’0’-’9’] ;
11

12 //SQL grammar fixed to 53 characters
13 reg SqlSmallFixedSize := fixsize(SqlSmall, 53);
14

15 //the SQL query ’$sqlstmt’ from line 3 of Figure 1
16 val q := concat("SELECT msg FROM messages WHERE topicid=’", v, "’");
17

18 //constraint conjuncts
19 assert q in SqlSmallFixedSize;
20 assert q contains "OR ’1’=’1’";

Figure 2: The Hampi input that finds an attack vector that ex-
ploits the SQL injection vulnerability from Figure 1.

• Hampi, an open-source implementation of the decision proce-
dure. Hampi’s source code and documentation are available
at: http://people.csail.mit.edu/akiezun/hampi.

• Experimental evaluation of Hampi for a variety of testing and
analysis applications.

• Downloadable (from Hampi website) experimental data that
can be used as benchmarks for developing and evaluating fu-
ture string solvers.

We introduce Hampi using an example (§2), then present Hampi’s
input format and solving algorithm (§3), discuss speed optimiza-
tions (§4), and present the experimental evaluation (§5). We finish
with related work (§6) and conclusion (§7).

2. EXAMPLE: SQL INJECTION
SQL injections are a prevalent class of Web-application vulner-

abilities. This section illustrates how an automated tool [24, 39]
could use Hampi to detect SQL injection vulnerabilities and to pro-
duce attack inputs.

Figure 1 shows a fragment of a PHP program that implements
a simple Web application: a message board that allows users to
read and post messages stored in a MySQL database. Users of the
message board fill in an HTML form (not shown here) that commu-
nicates the inputs to the server via a specially formatted URL, e.g.,
http://www.mysite.com/?topicid=1. Input parameters passed inside
the URL are available in the $_GET associative array. In the above
example URL, the input has one key-value pair: topicid=1. The
program fragment in Figure 1 retrieves and displays messages for
the given topic.

STP Solver

Encoder

Normalizer

Decoder

Solution
Bit−vector

Core String Constraints

Bit−vector Constraints

String Solution

HAMPI

No Solution Exists

String Constraints

Figure 3: Schematic view of the Hampi string solver. Section 3
describes the Hampi solver.

This program is vulnerable to an SQL injection attack. An at-
tacker can read all messages from the database (including ones in-
tended to be private) by crafting a malicious URL such as

http://www.mysite.com/?topicid=1’ OR ’1’=’1

Upon being invoked with that URL, the program reads

1’ OR ’1’=’1

as the value of the $my_topicid variable, and submits the follow-
ing query to the database in line 4:

SELECT msg FROM messages WHERE topicid=’1’ OR ’1’=’1’

The WHERE condition is always true because it contains the tau-
tology ’1’=’1’. Thus, the query retrieves all messages, possibly
leaking private information.

A programmer or an automated tool might ask, “Can an attacker
exploit the topicid parameter and introduce a tautology into the
query at line 4 in the code of Figure 1?” The Hampi solver answers
such questions, and creates strings that can be used as exploits.

Hampi constraints can formalize the above question (Figure 2).
Automated vulnerability-scanning tools [24, 39] can create Hampi
constraints via either static or dynamic program analysis (we demon-
strate both static and dynamic techniques in our evaluation in Sec-
tions 5.1 and 5.2). Specifically, a tool could create the Hampi input
of Figure 2 from analyzing the code of Figure 1.

We now discuss various features of the Hampi input language
that Figure 2 illustrates. (Section 3.1 describes the input language
in more detail.)

• Keyword var (line 2) introduces a string variable v. The
variable has a fixed size of 12 characters. The goal of the
Hampi solver is to find a string that, when assigned to the
string variable, satisfies all the constraints. Hampi can look
for solutions of any fixed size; we chose 12 for this example.

• Keyword cfg (lines 5–10) introduces a context-free gram-
mar, for a fragment of the SQL grammar of SELECT state-
ments.

Input � Var Stmt∗ Hampi input
Stmt � Cfg | Reg | Val | Assert statement
Var � var Id : Int string variable
Cfg � cfg Id := CfgProdRHS context-free lang.
Reg � reg Id := RegElem regular-lang.
RegElem� StrConst constant

| Id var. reference
| fixsize(Id , Int) CFG fixed-sizing
| or(RegElem ∗) union
| concat(RegElem ∗) concatenation
| star(RegElem) Kleene star

Val � val Id :=ValElem temp. variable
ValElem� Id | StrConst | concat(ValElem ∗)
Assert � assert Id [not]? in Id membership

| assert Id [not]? contains StrConst substring

Figure 4: Summary of Hampi’s input language. Terminals are
bold-faced, nonterminals are italicized. A Hampi input (Input)
is a variable declaration, followed by a list of statements:
context-free-grammar declarations, regular-language declara-
tions, temporary variables, and assertions. Some nonterminals
are omitted for readability.

• Keyword reg (line 13) introduces a regular expression Sql-
SmallFixedSize, defined by fixed-sizing the context-free
grammar (of strings derivable from SqlSmall) to a fixed size
of 53 characters. The size is chosen to be consistent with the
size of q, which is the sum of the size of v (12) and the sizes
of the constant strings (40+1) in the expression that defines
q (line 16).

• Keyword val (line 16) introduces a temporary variable q,
declared as a concatenation of constant strings and the string
variable v. This variable represents an SQL query corre-
sponding to the PHP $sqlstmt variable from line 3 in Fig-
ure 1.

• Keyword assert defines a regular-language constraint. The
top-level Hampi constraint is a conjunction of assert state-
ments. Line 19 specifies that the query string q must be
a member of the regular language SqlSmallFixedSize.
Line 20 specifies that the variable v must contain a specific
substring (e.g., a tautology that can lead to an SQL injection
attack).

Hampi can solve the constraints specified in Figure 2 and find a
value for v, such as 1’ OR ’1’=’1, which is a value for topicid
that can lead to an SQL injection attack. This value has exactly 12
characters, since v was defined with that fixed size. By re-running
Hampi with different sizes for v, it is possible to create other (usu-
ally related) attack inputs, such as 999’ OR ’1’=’1.

3. THE HAMPI STRING SOLVER
Hampi finds a string that satisfies constraints specified in the in-

put, or decides that no satisfying string exists. Hampi works in four
steps (Figure 3):

1. Normalize the input constraints to a core form (Section 3.2).

2. Encode the constraints in bit-vector logic (Section 3.3).

3. Invoke the STP bit-vector solver [15].

4. Decode the results obtained from STP (Section 3.3).

Users can call Hampi using a text-based front-end (using the in-
put grammar in Figure 4) or using a Java API to construct the Hampi
constraints.

3.1 Input Language for String Constraints
We discuss the salient features of Hampi’s input language (Fig-

ure 4) and illustrate them on examples. Hampi’s input language
enables encoding of string constraints generated from typical test-
ing and security applications. The language supports declaration
of fixed-size string variables and constants, regular-language oper-
ations, membership predicate, and declaration of context-free and
regular languages, temporaries and constraints.

Declaration of String Variable — var

A Hampi input must declare a single string variable and specify the
variable’s size in number of characters. If the input constraints are
satisfiable, then Hampi finds a value for the variable that satisfies
all constraints. Line 2 in Figure 2 declares a variable v of size 12
characters.

Sometimes, an application of a string-constraint solver requires
examining strings up to a given length. Users of Hampi can deal
with this issue in two ways: (i) repeatedly run Hampi for differ-
ent fixed sizes of the variable (can be fast due to the optimizations
of Section 4), or (ii) adjust the constraint to allow “padding” of
the variable (e.g., using Kleene star to denote trailing spaces). It
would be straightforward to extend Hampi to permit specifying a
size range, using syntax such as var v:1..12.

Declarations of Context-free Languages — cfg

Hampi input can declare context-free languages using grammars in
the standard notation, Extended Backus-Naur Form (EBNF). Ter-
minals are enclosed in double quotes (e.g., "SELECT"), and pro-
ductions are separated by the vertical bar symbol (|). Grammars
may contain special symbols for repetition (+ and *) and character
ranges (e.g., [a-z]).

For example, lines 5–10 in Figure 2 show the declaration of a
context-free grammar for a subset of SQL.

Hampi’s format of context-free grammars is as expressive as that
of widely-used tools such as Yacc/Lex; in fact, we have written a
simple syntax-driven script that transforms a Yacc specification to
Hampi format (available on the Hampi website).

Declarations of Regular Languages — reg

Hampi input can declare regular languages. The following regu-
lar expressions define regular languages: (i) a singleton set with
a string constant, (ii) a concatenation/union of regular languages,
(iii) a repetition (Kleene star) of a regular language, (iv) a fixed-
sizing of a context-free language. Every regular language can be
expressed using the first three of those operations [36].

For example, (b*ab*ab*)* is a regular expression that describes
the language of strings over the alphabet {a,b}, with an even num-
ber of a symbols. In Hampi syntax this is:

reg Bstar := star("b"); // ’helper’ expression
reg EvenA := star(concat(Bstar, "a", Bstar, "a", Bstar));

Hampi allows construction of regular languages by fixed-sizing
context free languages. The set of all strings of a given size from
a context-free language is regular (because every finite language
is regular). In Hampi, only regular languages can be used in con-
straints. Therefore, every context-free grammar must be fixed-sized
before being used in a constraint.

For example, in line 13 of Figure 2, the regular language de-
scribed by SqlSmallFixedSize consists of all syntactically cor-

S � Constraint
| S ∧ Constraint conjunction

Constraint � StrExp ∈ RegExp membership
| StrExp � RegExp non-membership

StrExp � Var variable
| Const constant
| StrExp StrExp concatenation

RegExp � Const constant
| RegExp + RegExp union
| RegExp RegExp concatenation
| RegExp� star

Figure 5: The grammar of core string constraints. Nontermi-
nals Const and Var have the usual definitions.

rect SQL strings of length 53 (according to the SqlSmall gram-
mar). Using the fixsize operator is much more convenient than
writing the regular expression explicitly.

Temporary Declarations — val

Temporary variables are shortcuts for expressing constraints on ex-
pressions that are concatenations of the string variable and con-
stants.

Line 16 in Figure 2 declares a temporary variable val q that
denotes the SQL query, which is a concatenation of two string con-
stants (prefix and suffix) and the string variable v. Using q is a
convenient shortcut to put constraints on that SQL query (lines 19
and 20).

Constraints — assert

Hampi constraints (declared by the assert keyword) specify mem-
bership of variables in regular languages. For example, line 19 in
Figure 2 declares that the string value of the temporary variable q
is in the regular language defined by SqlSmallFixedSize.

3.2 Core Form of String Constraints
After parsing and checking the input, Hampi normalizes the string

constraints to a core form (Figure 5). The core string constraints
are an internal intermediate representation that is easier to encode
in bit-vector logic than raw Hampi input is.

A core string constraint specifies membership (or its negation) in
a regular language. A core string constraint is in the form StrExp ∈
RegExp or StrExp � RegExp, where StrExp is an expression com-
posed of concatenations of string constants and occurrences of the
string variable, and RegExp is a regular expression.

Hampi normalizes Hampi input in 3 steps:

1. Expand all temporary variables, i.e., replace each reference
to a temporary variable with the variable’s definition (Hampi
forbids recursive definitions of temporaries).

2. Expand all context-free grammar fixed-sizing expressions,
i.e., convert fixsize terms to regular expressions (see below
for the algorithm).

3. Expand all regular-language declarations, i.e., replace each
reference to a regular-language variable with the variable’s
definition.

Fixed-Sizing of Context-free Grammars
Hampi uses the following algorithm to create regular expressions
that specify the set of strings of a fixed length that are derivable
from a context-free grammar:

1. Expand all special symbols in the grammar (e.g., repetition,
option, character range).

2. Remove ε productions [36].

3. Construct the regular expression that encodes all fixed-sized
strings of the grammar as follows: First, pre-compute the
length of the shortest and longest (if exists) string that can
be generated from each nonterminal (i.e., lower and upper
bounds). Second, given a size n and a nonterminal N, ex-
amine all productions for N. For each production N �
S 1 . . . S k, where each S i may be a terminal or a nonterminal,
enumerate all possible partitions of n characters to k gram-
mar symbols (Hampi takes the pre-computed lower and upper
bounds to make the enumeration more efficient). Then, cre-
ate the sub-expressions recursively and combine the subex-
pressions with a concatenation operator. Memoization of in-
termediate results (Section 4.1) makes this (worst-case expo-
nential in k) process scalable.

Example of Grammar Fixed-Sizing. Consider the following gram-
mar of well-balanced parentheses and the problem of finding the
regular language that consists of all strings of length 6 that can be
generated from the nonterminal E.

cfg E := "()" | E E | "(" E ")" ;

The grammar does not contain special symbols or ε productions,
so first two steps of the algorithm do nothing. Then, Hampi deter-
mines that the shortest string E can generate is of length 2. There
are three productions for the nonterminal E, so the final regular ex-
pression is a union of three parts. The first production, E := "()",
generates no strings of size 6 (and only one string of size 2). The
second production, E := E E, generates strings of size 6 in two
ways: either the first occurrence of E generates 2 characters and the
second occurrence generates 4 characters, or the first occurrence
generates 4 characters and the second occurrence generates 2 char-
acters. From the pre-processing step, Hampi knows that the only
other possible partition of 6 characters is 3–3, which Hampi tries
and fails (because E cannot generate 3-character strings). The third
production, E := "(" E ")", generates strings of size 6 in only
one way: the nonterminal E must generate 4 characters. In each
case, Hampi creates the sub-expressions recursively. The resulting
regular expression for this example is (plus signs denote union and
square brackets group sub-expressions):

()[()() + (())] + [()() + (())]() + ([()() + (())])

3.3 Bit-vector Encoding and Solving
Hampi encodes the core string constraints as formulas in the logic

of fixed-size bit-vectors. A bit-vector is a fixed-size, ordered list
of bits. The fragment of bit-vector logic that Hampi uses contains
standard Boolean operations, extracting sub-vectors, and compar-
ing bit-vectors (Figure 6). Hampi asks STP for a satisfying assign-
ment to the resulting bit-vector formula. If STP finds an assign-
ment, Hampi decodes it, and produces a string solution for the input
constraints. If STP cannot find a solution, Hampi terminates and
declares the input constraints unsatisfiable.

Every core string constraint is encoded separately, as a conjunct
in a bit-vector logic formula. Hampi encodes the core string con-
straint StrExp ∈ RegExp recursively, by case analysis of the regular
expression RegExp, as follows:

• Hampi encodes constants by enforcing constant values in the
relevant elements of the bit-vector variable (Hampi encodes
characters using 8-bit ASCII codes).

Formula � BitVector = BitVector equality
| BitVector < BitVector inequality
| Formula ∨ Formula disjunction
| Formula ∧ Formula conjunction
| ¬Formula negation

BitVector � Const bit-vector constant
| Var bit-vector variable
| Var[Int] byte extraction

Figure 6: Grammar of bit-vector logic. Variables denote bit-
vectors of fixed length. Hampi encodes string constraints as for-
mulas in this logic and solves using STP.

• Hampi encodes the union operator (+) as a disjunction in the
bit-vector logic.

• Hampi encodes the concatenation operator by enumerating all
possible distributions of the characters to the sub-expressions,
encoding the sub-expressions recursively, and combining the
sub-formulas in a conjunction.

• Hampi encodes the � similarly to concatenation — a star is
a concatenation with variable number of occurrences. To en-
code the star, Hampi finds the upper bound on the number of
occurrences (the number of characters in the string is always
a sound upper bound).

After STP finds a solution to the bit-vector formula (if one ex-
ists), Hampi decodes the solution by reading 8-bit sub-vectors as
consecutive ASCII characters.

3.4 Complexity
The satisfiability problem for Hampi’s logic (core string con-

straints) is NP-complete. To show NP-hardness, we reduce the 3-
CNF (conjunctive normal form) Boolean satisfiability problem to
the satisfiability problem of the core string constraints in Hampi’s
logic. Consider an arbitrary 3-CNF formula with n Boolean vari-
ables and m clauses. A clause in 3-CNF is a disjunction (∨) of three
literals. A literal is a Boolean variable (vi) or its negation (¬vi).
For every 3-CNF clause, a Hampi constraint can be generated. Let
Σ = {T, F} denote the alphabet. For the clause (v0 ∨ v1 ∨ ¬v2), the
equivalent Hampi constraint is:

V ∈ (TΣΣ · · ·Σ + ΣTΣ · · ·Σ + ΣΣF · · ·Σ)

where the Hampi variable V is an n-character string representing the
possible assignments to all n Boolean variables satisfying the input
3-CNF formula. Each of the Hampi regular-expression disjuncts in
the core string constraint shown above, such as TΣΣ · · ·Σ, is also of
size n and has a T in the ith slot for vi (and F for ¬vi), i.e.,

vi −→
i−1
︷�︸︸�︷

Σ · · ·Σ T
n−i
︷�︸︸�︷

Σ · · ·Σ
︸������������︷︷������������︸

n

The total number of such Hampi constraints is m, the number of
clauses in the input 3-CNF formula (here m = 1). This reduction
from a 3-CNF Boolean formula into Hampi is clearly polynomial-
time.

To establish that the satisfiability problem for Hampi’s logic is
in NP, we only need to show that for any set of core string con-
straints, there exists a polynomial-time verifier that can check any
short witness. The size of a set of core string constraints is the size

k of the string variable plus the sum r of the sizes of regular expres-
sions. A witness has to be of size k, and it is easy to check, in time
polynomial in k + r, whether the witness belongs to each regular
language.

3.5 Example of Solving
This section illustrates how, given the following input, Hampi

finds a satisfying assignment for variable v.

var v:2;
cfg E := "()" | E E | "(" E ")";
reg Efixed := fixsize(E, 6);
val q := concat("((" , v , "))");
assert q in Efixed; // turns into constraint c1
assert q contains "())"; // turns into constraint c2

Hampi follows the solving algorithm outlined in Section 3 (The al-
phabet of the regular expression or context-free grammar in a Hampi
input is implicitly restricted to the terminals specified):

step 1. Normalize constraints to core form, using the algorithm in
Section 3.2:

c1: ((v)) ∈ ()[()() + (())] +
[()() + (())]() +
([()() + (())])

c2: ((v)) ∈ [(+)]� ()) [(+)]�

step 2. Encode the core-form constraints in bit-vector logic. We
show how Hampi encodes constraint c1; the process for c2 is simi-
lar. Hampi creates a bit-vector variable bv of length 6*8=48 bits, to
represent the left-hand side of c1 (since Efixed is 6 bytes). Char-
acters are encoded using ASCII codes: ’(’ is 40 in ASCII, and
’)’ is 41. Hampi encodes the left-hand-side expression of c1, ((v
)), as formula L1, by specifying the constant values: L1 : (bv[0] =
40) ∧ (bv[1] = 40) ∧ (bv[4] = 41) ∧ (bv[5] = 41). Bytes bv[2] and
bv[3] are reserved for v, a 2-byte variable.

The top-level regular expression in the right-hand side of c1 is a
3-way union, so the result of the encoding is a 3-way disjunction.

For the first disjunct ()[()() + (())], Hampi creates the follow-
ing formula: D1a: bv[0] = 40 ∧ bv[1] = 41 ∧ ((bv[2] = 40 ∧ bv[3] =

41 ∧ bv[4] = 40 ∧ bv[5] = 41) ∨ (bv[2] = 40 ∧ bv[3] = 40 ∧ bv[4] =

41 ∧ bv[5] = 41)).

Formulas D1b and D1c for the remaining conjuncts are similar.
The bit-vector formula that encodes c1 is C1 = L1∧(D1a∨D1b∨D1c).
Similarly, a formula C2 (not shown here) encodes c2. The formula
that Hampi sends to the STP solver is (C1 ∧C2).

step 3. STP finds a solution that satisfies the formula: bv[0] =
40, bv[1] = 40, bv[2] = 41, bv[3] = 40, bv[4] = 41, bv[5] = 41. In
decoded ASCII, the solution is “(()())” (quote marks not part of
solution string).

step 4. Hampi reads the assignment for variable v off of the STP
solution, by decoding the elements of bv that correspond to v, i.e.,
elements 2 and 3. It reports the solution for v as “)(”. (String “()”
is another legal solution for v, but STP only finds one solution.)

4. OPTIMIZATIONS
Optimizations in Hampi aim at reducing computation time.

4.1 Memoization
Hampi stores and reuses partial results during the computation of

fixed-sizing of context-free grammars (Section 3.2) and during the
encoding of core constraints in bit-vector logic (Section 3.3).

Example. Consider the example from Section 3.5, i.e., fixed-sizing
the context-free grammar of well-balanced parentheses to size 6.

cfg E := "()" | E E | "(" E ")" ;

Consider the second production E := E E. There are two ways
to construct a string of 6 characters: either construct 2 characters
from the first occurrence of E and construct 4 characters from the
second occurrence, or vice-versa. After creating the regular expres-
sion that corresponds to the first of these ways, Hampi creates the
second expression from the memoized sub-results. Hampi’s imple-
mentation shares the memory representations of common subex-
pressions. For example, Hampi uses only one object to represent
all three occurrences of ()() + (()) in constraint c1 of the exam-
ple in Section 3.5.

4.2 Constraint Templates
Constraint templates capture common encoded sub-expressions,

modulo offset in the bit-vector. During the bit-vector encoding step
(Section 3.3), Hampi may encode the same regular expression mul-
tiple times as bit-vector formulas, as long as the underlying offsets
in the bit-vector are different. For example, the (constant) regu-
lar expression)(may be encoded as (bv[0] = 41) ∧ (bv[1] = 40)
or as (bv[3] = 41) ∧ (bv[4] = 40), depending on the offset in the
bit-vector (0 and 3, respectively).

Hampi creates a single “template”, parameterized by the offset,
for the encoded expression, and instantiates the template every time,
with appropriate offsets. For the example above, the template is
T (p) ≡ bv[p] = 41 ∧ bv[p + 1] = 40, where p is the offset parame-
ter. Hampi then instantiates the template to T (0) and T (3).

As another example, consider c1 in Section 3.5: The subexpres-
sion ()()+(()) occurs 3 times in c1, each time with a different
offset (2 for the first occurrence, 0 for the second, and 1 for the
third). The constraint-template optimization enables Hampi to do
the encoding once and reuse the results, with appropriate offsets.

4.3 Server Mode
The server mode improves Hampi’s efficiency on simple con-

straints and on repeated calls. Because Hampi is a Java program, the
startup time of the Java virtual machine may be a significant over-
head when solving small constraints. Therefore, we added a server
mode to Hampi, in which the (constantly running) solver accepts in-
puts passed over a network socket, and returns the results over the
same socket. This enables Hampi to be efficient over repeated calls,
for tasks such as solving the same constraints on string variables of
different sizes.

5. EVALUATION
We experimentally tested Hampi’s applicability to practical prob-

lems involving string constraints, and to compare Hampi’s perfor-
mance and scalability to another string-constraint solver.

Experiments:

1. We used Hampi in a static-analysis tool [37] that identifies
possible SQL injection vulnerabilities (Section 5.1).

2. We used Hampi in Ardilla [24], a dynamic-analysis tool that
creates SQL injection attacks (Section 5.2).

3. We used Hampi in Klee, a systematic testing tool for C pro-
grams (Section 5.3).

4. We compared Hampi’s performance and scalability to CFG-
Analyzer [1], a solver for bounded versions of context-free-
language problems, e.g., intersection (Section 5.4).

Unless otherwise noted, we ran all experiments on a 2.2GHz Pen-
tium 4 PC with 1 GB of RAM running Debian Linux, executing
Hampi on Sun Java Client VM 1.6.0-b105 with 700MB of heap
space. We ran Hampi with all optimizations on, but flushed the
whole internal state after solving each input to ensure fairness in
timing measurements, i.e., preventing artificially low runtimes when
solving a series of structurally-similar inputs.

The results of our experiments demonstrate that Hampi is ex-
pressive in encoding real constraint problems that arise in secu-
rity analysis and automated testing, that it can be integrated into
existing testing tools, and that it can efficiently solve large con-
straints obtained from real programs. Hampi’s source code and doc-
umentation, experimental data, and additional results are available
at http://people.csail.mit.edu/akiezun/hampi.

5.1 Identifying SQL Injection Vulnerabilities
Using Static Analysis

We evaluated Hampi’s applicability to finding SQL injection vul-
nerabilities in the context of a static analysis. We used the tool
from Wassermann and Su [37] that, given source code of a PHP
Web application, identifies potential SQL injection vulnerabilities.
The tool computes a context-free grammar G that conservatively
approximates all string values that can flow into each program vari-
able. Then, for each variable that represents a database query, the
tool checks whether L(G) ∩ L(R) is empty, where L(R) is a reg-
ular language that describes undesirable strings or attack vectors
(strings that can exploit a security vulnerability). If the intersection
is empty, then Wassermann and Su’s tool reports the program to be
safe. Otherwise, the program may be vulnerable to SQL injection
attacks. An example L(R) that Wassermann and Su use — the lan-
guage of strings that contain an odd number of unescaped single
quotes — is given by the regular expression (we used this R in our
experiments):

R = (([ˆ’]|\’)*[ˆ\])?’
((([ˆ’]|\’)*[ˆ\])?’
(([ˆ’]|\’)*[ˆ\])?’([ˆ’]|\’)*

Using Hampi in such an analysis offers two important advantages.
First, it eliminates a time-consuming and error-prone reimplemen-
tation of a critical component: the string-constraint solver. To com-
pute the language intersection, Wassermann and Su implemented a
custom solver based on the algorithm by Minamide [28]. Second,
Hampi creates concrete example strings from the language intersec-
tion, which is important for generating attack vectors; Wassermann
and Su’s custom solver only checks for emptiness of the intersec-
tion, and does not create example strings.

Using a fixed-size string-constraint solver, such as Hampi, has
its limitations. An advantage of using an unbounded-length string-
constraint solver is that if the solver determines that the input con-
straints have no solution, then there is indeed no solution. In the
case of Hampi, however, we can only conclude that there is no so-
lution of the given size.

Experiment. We performed the experiment on 6 PHP applications.
Of these, 5 were applications used by Wassermann and Su to eval-
uate their tool [37]. We added 1 large application (claroline,
a builder for online education courses, with 169 kLOC) from an-
other paper by the same authors [38]. Each of the applications has
known SQL injection vulnerabilities. The total size of the applica-
tions was 339,750 lines of code.

Wassermann and Su’s tool found 1,367 opportunities to compute
language intersection, each time with a different grammar G (built
from the static analysis) but with the same regular expression R
describing undesirable strings. For each input (i.e., pair of G and

R), we used both Hampi and Wassermann and Su’s custom solver
to compute whether the intersection L(G) ∩ L(R) was empty.

When the intersection is not empty, Wassermann and Su’s tool
cannot produce an example string for those inputs, but Hampi can.
To do so, we varied the size N of the string variable between 1
and 15, and for each N, we measured the total Hampi solving time,
and whether the result was UNSAT or a satisfying assignment.

Results. We found empirically that when a solution exists, it can
be very short. In 306 of the 1,367 inputs, the intersection was not
empty (both solvers produced identical results). Out of the 306 in-
puts with non-empty intersections, we measured the percentage for
which Hampi found a solution (for increasing values of N): 2% for
N = 1, 70% for N = 2, 88% for N = 3, and 100% for N = 4. That
is, in this large dataset, all non-empty intersections contain strings
with no longer than 4 characters. Due to false positives inherent in
Wassermann and Su’s static analysis, the strings generated from the
intersection do not necessarily constitute real attack vectors. How-
ever, this is a limitation of the static analysis, not of Hampi.

We measured how Hampi’s solving time depends on the size
of the grammar. We measured the size of the grammar as the
sum of lengths of all productions (we counted ε-productions as of
length 1). Among the 1,367 grammars in the dataset, the mean
size was 5490.5, standard deviation 4313.3, minimum 44, maxi-
mum 37955. We ran Hampi for N = 4, i.e., the length at which
all satisfying assignments were found. Figure 7 shows the solving
time as a function of the grammar size, for all 1,367 inputs.

Hampi can solve most queries quickly. Figure 8 shows the per-
centage of inputs that Hampi can solve in the given time, for 1 ≤
N ≤ 4, i.e., until all satisfying assignments are found. For N = 4,
Hampi can solve 99.7% of inputs within 1 second.

Summary of results: We applied Hampi to 1,367 constraints cre-
ated from analysis of 339,750 lines of code from 6 PHP applica-
tions. Hampi found that all 306 satisfiable constraints have short so-
lutions (N ≤ 4). Hampi found all known solutions, and solved 99.7%
of the generated constraints in less than 1 second per constraint.
These results, obtained on a large dataset from a powerful static
analysis and real Web applications, show that Hampi’s fixed-size
solving algorithm is applicable to real problems.

5.2 Creating SQL Injection Attacks from Dy-
namic Analysis

We evaluated Hampi’s ability to automatically find SQL injection
attack strings using constraints produced by running a dynamic-
analysis tool on PHP Web applications. For this experiment, we
used Ardilla [24], a tool that constructs SQL injection and Cross-
site Scripting (XSS) attacks by combining automated input genera-
tion, dynamic tainting, and generation and evaluation of candidate
attack strings.

One component of Ardilla, the attack generator, creates candi-
date attack strings from a pre-defined list of attack patterns. Though
its pattern list is extensible, Ardilla’s attack generator is neither tar-
geted nor exhaustive: The generator does not attempt to create valid
SQL statements but rather simply assigns pre-defined values from
the attack patterns list one-by-one to variables identified as vulner-
able by the dynamic tainting component; it does so until an attack
is found or until there are no more patterns to try.

For this experiment, we replaced the attack generator with the
Hampi string solver. This reduces the problem of finding SQL injec-
tion attacks to one of string constraint generation followed by string
constraint solving. This replacement makes attack creation targeted
and exhaustive — Hampi constraints encode the SQL grammar and,
if there is an attack of a given length, Hampi is sure to find it.

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 10000

s
o
l
v
i
n
g

t
i
m
e

(
s
e
c
.
)

grammar size

SAT
UNSAT

Figure 7: Hampi solving time as function of grammar size (num-
ber of all elements in all productions), on 1,367 inputs from the
Wassermann and Su dataset [37]. The size of the string variable
was 4, the smallest at which Hampi finds all satisfying assign-
ments for the dataset. Each point represents an input; shapes
indicate SAT/UNSAT. Section 5.1 describes the experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1

%

o
f

s
o
l
v
e
d

q
u
e
r
i
e
s

time (sec.)

string size 1
string size 2
string size 3
string size 4

Figure 8: Percentage of queries solvable by Hampi, in a given
amount of time, on data from Wassermann and Su [37]. Each
line represents a distribution for a different size of the string
variable. All lines reach 99.7% at 1 second and 100% be-
fore 160 seconds. Section 5.1 describes the experiment.

To use Hampi with Ardilla, we also replaced Ardilla’s dynamic
tainting component with a concolic execution [17, 34] component.
This required code changes were quite extensive but fairly standard.
Concolic execution creates and maintains symbolic expressions for
each concrete runtime value derived from the input. For example,
if a value is derived as a concatenation of user-provided parame-
ter p and a constant string "abc", then its symbolic expression is
concat(p, "abc"). This component is required to generate the
constraints for input to Hampi.

The Hampi input includes a partial SQL grammar (similar to that
in Figure 2). We wrote a grammar that covers a subset of SQL
queries commonly observed in Web applications, which includes
SELECT, INSERT, UPDATE, and DELETE, all with WHERE clauses.
The grammar has size is 74, according to the metric of Section 5.1.
Each terminal is represented by a single unique character.

We ran our modified Ardilla on 5 PHP applications (the same
set as the original Ardilla study [24], totaling 14,941 lines of PHP
code). The original study identified 23 SQL injection vulnerabili-
ties in these applications. Ardilla generated 216 Hampi inputs, each
of which is a string constraint built from the execution of a particu-
lar path through an application. For each constraint, we used Hampi
to find an attack string of size N ≤ 6 — a solution corresponds to
the value of a vulnerable PHP input parameter. Following previous
work [14, 20], the generated constraint defined an attack as a syn-
tactically valid (according to the grammar) SQL statement with a
tautology in the WHERE clause, e.g., OR 1=1. We used 4 tautology
patterns, distilled from several security lists2.

We separately measured solving time for each tautology and each
choice of N. A security-testing tool like Ardilla might search for
the shortest attack string for any of the specified tautologies.

Summary of results: Hampi fully replaced Ardilla’s custom attack
generator. Hampi successfully created all 23 attacks on the tested
applications. Hampi solved the associated constraints quickly, find-
ing all known solutions for N ≤ 6. Hampi solved 46.0% of those
constraints in less than 1 second per constraint, and solved all the
constraints in less than 10 seconds per constraint.

These results show that the Hampi enabled a successful reduction
of the problem of finding SQL injection attacks to string constraint
generation and solving, and was able to plug into an existing secu-
rity testing application and perform comparably.

5.3 Systematic Testing of C Programs
We combined Hampi with a state-of-the-art systematic testing

tool, Klee [5], to improve Klee’s ability to create valid test cases
for programs that accept highly structured string inputs.

Automatic test-case generation tools that use combined concrete
and symbolic execution, also known as concolic execution [5,6,17,
18, 23, 34] have trouble creating test cases that achieve high cover-
age for programs that expect structured inputs, such as those that
require input strings from a context-free grammar [16, 26]. The
parser components of programs that accept structured inputs (es-
pecially those auto-generated by tools such as Yacc) often contain
complex control-flow with many error paths; the vast majority of
paths that automatic testers explore terminate in parse errors, thus
creating inputs that do not lead the program past the initial parsing
stage.

Testing tools based on concolic execution mark the target pro-
gram’s input string as totally unconstrained (i.e., symbolic) and
then build up constraints on the input based on the conditions of
branches taken during execution. If there were a way to constrain
the symbolic input string so that it conforms to a target program’s
specification (e.g., a context-free grammar), then the testing tool
would only explore non-error paths in the program’s parsing stage,
thus resulting in generated inputs that reach the program’s core
functionality. To demonstrate the feasibility of this technique, we
used Hampi to create grammar-based input constraints and then fed
those into Klee [5] to generate test cases for C programs. We com-
pared the coverage achieved and numbers of legal (and rejected)
inputs generated by running Klee with and without the Hampi con-
straints.

Similar experiments have been performed by others [16,26], and
we do not claim novelty for the experimental design. However,
previous studies used custom-made string solvers, while we applied
Hampi as an “off-the-shelf” solver without modifying Klee.

2http://www.justinshattuck.com/2007/01/18/
mysql-injection-cheat-sheets,
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku,
http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet

Program ELOC input size symbolic symbolic + grammar combined
cueconvert 939 28 bytes % total line coverage: 32.2% 51.4% 56.2%

% parser file line coverage (48 lines): 20.8% 77.1% 79.2%
legal inputs / # generated inputs (%): 0 / 14 (0%) 146 / 146 (100%) 146 / 160 (91%)

logictree 1,492 7 bytes % total line coverage: 31.2% 63.3% 66.8%
% parser file line coverage (17 lines): 11.8% 64.7% 64.7%
legal inputs / # generated inputs (%): 70 / 110 (64%) 98 / 98 (100%) 188 / 208 (81%)

bc 1,669 6 bytes % total line coverage: 27.1% 43.0% 47.0%
% parser file line coverage (332 lines): 11.8% 39.5% 43.1%
legal inputs / # generated inputs (%): 2 / 27 (5%) 198 / 198 (100%) 200 / 225 (89%)

Table 1: The result of using Hampi grammars to improve coverage of test cases generated by the Klee systematic testing tool. ELOC
lists Executable Lines of Code, as counted by gcov over all .c files in program (whole-project line counts are several times larger, but
much of that code does not directly execute). Each trial was run for 1 hour. To create minimal test suites, Klee only generates a new
input when it covers new lines that previous inputs have not yet covered; the total number of explored paths is usually 2 orders of
magnitude greater than the number of generated inputs. Column symbolic shows results for runs of Klee without a Hampi grammar.
Column symbolic + grammar shows results for runs of Klee with a Hampi grammar. Column combined shows accumulated results
for both kinds of runs. Section 5.3 describes the experiment.

Klee provides an API for target programs to mark inputs as sym-
bolic and to place constraints on them. The code snippet below
uses klee_assert to impose the constraint that all elements of
buf must be numeric before the target program runs:

char buf[10]; // program input
klee_make_symbolic(buf, 10); // make all 10 bytes symbolic

// constrain buf to contain only decimal digits
for (int i = 0; i < 10; i++)
klee_assert((’0’ <= buf[i]) && (buf[i] <= ’9’));

run_target_program(buf); // run target program with buf as input

Hampi simplifies writing input-format constraints. Simple con-
straints, such as those above, can be written by hand, but it is infea-
sible to manually write more complex constraints for specifying,
for example, that buf must belong to a particular context-free lan-
guage. We use Hampi to automatically compile such constraints
from a grammar down to C code, which can then be fed into Klee.

We chose 3 open-source programs that specify expected inputs
using context-free grammars in Yacc format (a subset of those used
by Majumdar and Xu [26]). cueconvert converts music playlists
from .cue format to .toc format. logictree is a solver for
propositional logic formulas. bc is a command-line calculator and
simple programming language. All programs take input from stdin;
Klee allows the user to create a fixed-size symbolic buffer to simu-
late stdin, so we did not need to modify these programs.

For each target program, we ran the following experiment on
a 3.2 GHz Pentium 4 PC with 1 GB of RAM running Fedora Linux:

1. Automatically convert its Yacc specification into Hampi’s in-
put format (described in Section 3.1), using a script we wrote.
To simplify lexical analysis, we used either a single letter
or numeric digit to represent certain tokens, depending on
its Lex specification (this should not reduce coverage in the
parser).

2. Add a fixed-size restriction to limit the input to N bytes. Klee
(similarly to, for example, SAGE [18]) actually requires a
fixed-size input, which matches well with Hampi’s fixed-size
input language. We empirically picked N as the largest in-
put size for which Klee does not run out of memory. We
augmented the Hampi input to allow for strings with arbitrary
numbers of trailing spaces, so that we can generate program
inputs up to size N.

3. Run Hampi to compile the input grammar file into STP bit-
vector constraints (described in Section 3.3).

4. Automatically convert the STP constraints into C code that
expresses the equivalent constraints using C variables and
calls to klee_assert(), with a script we wrote (the script
performs only simple syntactic transformations since STP
operators map directly to C operators).

5. Run Klee on the target program using an N-byte input buffer,
first marking that buffer as symbolic, then executing the C
code that imposes the input constraints, and finally executing
the program itself.

6. After a 1-hour time-limit expires, collect all generated inputs
and run them through the original program (compiled using
gcov) to measure coverage and legality of each input.

7. As a control, run Klee for 1 hour using an N-byte symbolic
input buffer (with no initial constraints), collect test cases,
and run them through the original program to measure cov-
erage and legality of each input.

Table 1 summarizes our experimental setup and results. We
made 3 sets of measurements: total line coverage, line coverage
in the Yacc parser file that specifies the grammar rules alongside C
code snippets denoting parsing actions, and numbers of inputs (test
cases) generated, as well as how many of those inputs were legal
(i.e., not rejected by the program as a parse error).

The run times for converting each Yacc grammar into Hampi for-
mat, fixed-sizing to N bytes, running Hampi on the fixed-size gram-
mar, and converting the resulting STP constraints into C code are
negligible; together, they took less than 1 second for each of the 3
programs.

Using Hampi in Klee improved coverage. Constraining the inputs
using a Hampi grammar resulted in up to 2× improvement in total
line coverage and up to 5× improvement in line coverage within the
Yacc parser file. Also, as expected, it eliminated all illegal inputs.

Using both sets of inputs (combined column) improved upon the
coverage achieved using the grammar by up to 9%. Upon manual
inspection of the extra lines covered, we found that it was due to
the fact that the runs with and without the grammar covered non-
overlapping sets of lines: The inputs generated by runs without the
grammar (symbolic column) covered lines dealing with process-
ing parse errors, whereas the inputs generated with the grammar

(symbolic + grammar column) never had parse errors and covered
core program logic. Thus, combining test suites is useful for testing
both error and regular execution paths.

With Hampi’s help, Klee uncovered more errors. Using the gram-
mar, Klee generated 3 distinct inputs for logictree that uncov-
ered (previously unknown) errors where the program entered an
infinite loop. We do not know how many distinct errors these in-
puts identify. Without the grammar, Klee was not able to generate
those same inputs within the 1-hour time limit; given the structured
nature of those inputs (e.g., one is “@x $y z”), it is unlikely that
Klee would be able to generate them within any reasonable time
bound without a grammar.

We manually inspected lines of code that were not covered by
any strategy. We discovered two main hindrances to achieving
higher coverage: First, the input sizes were still too small to gen-
erate longer productions that exercised more code, especially prob-
lematic for the playlist files for cueconvert; this is a limitation
of Klee running out of memory and not of Hampi. Second, while
grammars eliminated all parse errors, many generated inputs still
contained semantic errors, such as malformed bc expressions and
function definitions (again, unrelated to Hampi).

Summary of results: Using Hampi to create input constraints led
to up to 2× improvements in line coverage (up to 5× coverage im-
provements in parser code), eliminated all illegal inputs, and en-
abled discovering 3 distinct, previously unknown, inputs that led
to infinitely-looping program execution. These results show that
using Hampi can improve the effectiveness of automated test-case
generation and bug finding tools.

5.4 Comparing Performance to CFGAnalyzer
We evaluated Hampi’s utility in analyzing context-free grammars,

and compared Hampi’s performance to a specialized decision pro-
cedure, CFGAnalyzer [1]. CFGAnalyzer is a SAT-based decision
procedure for bounded versions of 6 problems (5 undecidable) that
involve context-free grammars: universality, inclusion, intersec-
tion, equivalence, ambiguity, and emptiness (decidable). We down-
loaded the latest available version3 (released 3 December 2007) and
configured the program according to the manual.

Experiment. We performed the CFGAnalyzer experiments with
the grammar-intersection problem. Five of six problems handled
by CFGAnalyzer (universality, inclusion, intersection, equivalence,
and emptiness) can be easily encoded as Hampi inputs — the inter-
section problem is representative of the rest.

In the experiments, both Hampi and CFGAnalyzer searched for
strings (of fixed length) from the intersection of 2 grammars. To
avoid bias, we used CFGAnalyzer’s own experimental data sets
(obtained from the authors). From the set of 2088 grammars in the
data set, we selected a random sample of 100 grammar pairs. We
used both Hampi and CFGAnalyzer to search for strings of lengths
1 ≤ N ≤ 50. We ran CFGAnalyzer in a non-incremental mode (in
the incremental mode, CFGAnalyzer reuses previously computed
sub-solutions), to create a fair comparison with Hampi, which ran
as usual in server mode while flushing its entire internal state after
solving each input. We ran both programs without a timeout.

Figure 9 shows the results averaged over all pairs of grammars.
Hampi is faster than CFGAnalyzer for all sizes larger than 4 char-
acters. Importantly, Hampi’s win over CFGAnalyzer grows as the
size of the problem increases (up to 6.8× at size 50). For the largest
problems (N = 50), Hampi was faster (by up to 3000×) on 99 of
the 100 grammar pairs, and 1.3× slower on the remaining 1 pair of
grammars (data available on Hampi website).

3http://www.tcs.ifi.lmu.de/~mlange/cfganalyzer

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

t
i
m
e

(
s
e
c
.
)

string size (characters)

Hampi

CFGAnalyzer

Figure 9: Solving time as a function of string size, on context-
free-grammar intersection constraints. Results are averaged
over 100 randomly-selected pairs of context-free grammars.
Section 5.4 describes the experiment.

Hampi is faster also on grammar-membership constraints. We
performed an additional experiment we: searching for any string of
a given length from a context-free grammar. The results were sim-
ilar to those for intersection: e.g., Hampi finds a string of size 50,
on average, in 1.5 seconds, while CFGAnalyzer finds one in 8.7
seconds (5.8× difference). The Hampi website contains the experi-
mental data and results.

Summary of results: On average, Hampi solved constraints up to
6.8× faster than CFGAnalyzer, and its lead increased as the prob-
lem size grew larger.

6. RELATED WORK
Decision procedures have received widespread attention within

the context of program analysis, testing, and verification. Decision
procedures exist for theories such as Boolean satisfiability [29],
bit-vectors [15], quantified Boolean formulas [2], and linear arith-
metic [9]. In contrast, there has been relatively little work on practi-
cal and expressive solvers that reason about strings or sets of strings
directly.

Solvers for String Constraints. MONA [25] uses finite-state au-
tomata and tree automata to reason about sets of strings. However,
the user still has to translate their input problem into MONA’s in-
put language (weak monadic second-order theory of one succes-
sor). MONA also provides automata-based tools, similar to other
libraries [11–13].

Word equations [4,32] describe equality between two strings that
contain string variables. Rajasekar [32] proposes a logic program-
ming approach that includes constraints on individual words. His
solver handles concatenation but not regular language membership.
Bjørner et al. [4] describe a constraint solver for word queries over
a variety of operations, and translate string constraints to the lan-
guage of the Z3 solver [9]. If there is a solution, Z3 returns a
finite bound for the set of strings, that is then explored symboli-
cally. However, unlike Hampi, these tools do not support context-
free grammars directly.

Hooimeijer and Weimer [21] describe a decision procedure for
regular-language constraints, focusing on generating sets of satisfy-
ing assignments rather than individual strings. Unlike Hampi, their
solver does not allow expressing fixed-size context-free grammars.

Custom String Solvers. Many analyses use custom solvers for
string constraints [7, 10, 14, 16, 28, 37–39]. All of these approaches
include some implementation for language intersection and lan-
guage inclusion; most, similarly to Hampi, can perform regular-
language intersection. Each of these implementations is tightly
integrated with the associated program analysis, making a direct
comparison with Hampi impractical.

Christensen et al. [7] have a static analysis tool to check for
SQL injection vulnerabilities that uses automata-based techniques
to represent over-approximation of string values. Fu et al. [14] also
use an automata-based method to solve string constraints. Ruan et
al. [33] use a first-order encoding of string functions occurring in C
programs, and solve the constraints using a linear arithmetic solver.

Besides the custom solvers by Wassermann et al. [37], the solver
by Emmi et al. [10] is closest to Hampi. Emmi et al. used their
solver for automatic test case generation for database applications.
Unlike Hampi, their solver allows constraints over unbounded reg-
ular languages and linear arithmetic, but does not support context-
free grammars.

Many of the program analyses listed here perform similar tasks
when reasoning about string-valued variables. This is strong ev-
idence that a unified approach, in the form of an external string-
constraint solvers such as Hampi, is warranted.

Theoretical Work on String Constraints: A variety of problems
involve strings constraints, and there is an extensive literature on
the theoretical study of these problems [27,30,31]. Our work is fo-
cused on efficient techniques for a practical string-constraint solver
that is usable as a library and is sufficiently expressible to support
a large variety of applications.

7. CONCLUSION
We presented Hampi, a solver for constraints over fixed-size string

variables. Hampi constraints express membership in regular and
fixed-size context-free languages. Hampi constraints may contain a
fixed-size string variable, context-free language definitions, regular-
language definitions and operations, and language-membership pred-
icates. Given a set of constraints over a string variable, Hampi out-
puts a string that satisfies all the constraints, or reports that the con-
straints are unsatisfiable. Hampi works by encoding the constraint
in the bit-vector logic and solving using STP.

Hampi is designed to be used as a component in testing, analy-
sis, and verification applications. Hampi can also be used to solve
the intersection, containment, and equivalence problems for reg-
ular and fixed-size context-free languages. We evaluated Hampi’s
usability and effectiveness as a component in static- and dynamic-
analysis tools for PHP Web applications. Our experiments show
that Hampi is expressive enough to easily encode constraint aris-
ing in finding SQL injection attacks, and in systematic testing of
real-world programs. In our experiments, Hampi was able to find
solutions quickly, and scale to practically-relevant problem sizes.

By using a general-purpose freely-available string-constraint
solver such as Hampi, builders of analysis and testing tools can
save significant development effort, and improve the effectiveness
of their tools.

Acknowledgements
We thank the authors of CFGAnalyzer for sharing their data and
the ISSTA reviewers for their helpful comments.

8. REFERENCES
[1] R. Axelsson, K. Heljank, and M. Lange. Analyzing context-free grammars

using an incremental SAT solver. In ICALP, 2008.

[2] A. Biere. Resolve and expand. In SAT, 2005.

[3] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 2003.

[4] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for
string-manipulating programs. In TACAS, 2009.

[5] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In OSDI,
2008.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
automatically generating inputs of death. In CCS, 2006.

[7] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string
expressions. In SAS, 2003.

[8] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In TACAS, 2004.

[9] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, 2008.

[10] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for
database applications. In ISSTA, 2007.

[11] Brics finite state automata utilities. http://www.brics.dk/automaton/faq.html.

[12] Finite state automata utilities. http://www.let.rug.nl/~vannoord/Fsa/fsa.html.

[13] AT&T FSM library. http://www.research.att.com/~fsmtools/fsm.

[14] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis
framework for detecting SQL injection vulnerabilities. In COMPSAC, 2007.

[15] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In
CAV, 2007.

[16] P. Godefroid, A. Kieżun, and M. Y. Levin. Grammar-based whitebox fuzzing.
In PLDI, 2008.

[17] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In PLDI, 2005.

[18] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing. In
NDSS, 2008.

[19] S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint
solving. In PLDI, 2008.

[20] W. Halfond, A. Orso, and P. Manolios. WASP: Protecting Web applications
using positive tainting and syntax-aware evaluation. IEEE TSE, 34(1), 2008.

[21] P. Hooimeijer and W. Weimer. A decision procedure for subset constraints over
regular languages. In PLDI, 2009.

[22] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In ISSTA, 2000.

[23] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kieżun. jFuzz: A concolic
whitebox fuzzer for Java. In NFM, 2009.

[24] A. Kieżun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic creation of
SQL injection and cross-site scripting attacks. In ICSE, 2009.

[25] N. Klarlund. Mona & Fido: The logic-automaton connection in practice. In
WCSL, 1998.

[26] R. Majumdar and R.-G. Xu. Directed test generation using symbolic grammars.
In ASE, 2007.

[27] G. Makanin. The problem of solvability of equations in a free semigroup.
Sbornik: Mathematics, 32(2), 1977.

[28] Y. Minamide. Static approximation of dynamically generated Web pages. In
WWW, 2005.

[29] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient SAT solver. In DAC, 2001.

[30] G. Pesant. A regular language membership constraint for finite sequences of
variables. In CP, 2004.

[31] C. Quimper and T. Walsh. Global grammar constraints. In CP, 2006.

[32] A. Rajasekar. Applications in constraint logic programming with strings. In
PPCP, 1994.

[33] H. Ruan, J. Zhang, and J. Yan. Test data generation for C programs with
string-handling functions. In TASE, 2008.

[34] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C.
In FSE, 2005.

[35] D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic
execution with string analysis. In TAICPART, 2007.

[36] M. Sipser. Introduction to the Theory of Computation. Course Technology,
1996.

[37] G. Wassermann and Z. Su. Sound and precise analysis of Web applications for
injection vulnerabilities. In PLDI, 2007.

[38] G. Wassermann and Z. Su. Static detection of cross-site scripting
vulnerabilities. In ICSE, 2008.

[39] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su.
Dynamic test input generation for Web applications. In ISSTA, 2008.

[40] Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using
Boolean satisfiability. In CAV, 2007.

