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Abstract

Expression quantitative trait loci (eQTL) analyses, which identify genetic

markers associated with the expression of a gene, are an important tool in the

understanding of diseases in human and other populations. While most eQTL

studies to date consider the connection between genetic variation and expression

in a single tissue, complex, multi-tissue data sets are now being generated by

the GTEx initiative. These data sets have the potential to improve the findings

of single tissue analyses by borrowing strength across tissues, and the potential

to elucidate the genotypic basis of differences between tissues.

In this paper we introduce and study a multivariate hierarchical Bayesian

model (MT-eQTL) for multi-tissue eQTL analysis. MT-eQTL directly models

the vector of correlations between expression and genotype across tissues. It

explicitly captures patterns of variation in the presence or absence of eQTLs,

as well as the heterogeneity of effect sizes across tissues. Moreover, the model

is applicable to complex designs in which the set of donors can (i) vary from

tissue to tissue, and (ii) exhibit incomplete overlap between tissues. The MT-

eQTL model is marginally consistent, in the sense that the model for a subset

of tissues can be obtained from the full model via marginalization. Fitting of

the MT-eQTL model is carried out via empirical Bayes, using an approximate

EM algorithm. Inferences concerning eQTL detection and the configuration

of eQTLs across tissues are derived from adaptive thresholding of local false

discovery rates, and maximum a-posteriori estimation, respectively. We investi-

gate the MT-eQTL model through a simulation study, and rigorously establish

the FDR control of the local FDR testing procedure under mild assumptions

appropriate for dependent data.
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1 Introduction

Genetic variation in a population is commonly studied through the analysis of single

nucleotide polymorphisms (SNPs), which are variants occurring at specific sites in

the genome. Differences among these variants drive primary phenotypic differences

between members of the population. For humans these differences range from physi-

cal characteristics to disease susceptibility. Mediating the connection between genetic

variation and resulting phenotypes are the effects of SNPs on the expression of dif-

ferent genes. Expression quantitative trait locus (eQTL) analysis seeks to identify

genetic variants that affect the expression of one or more genes: a gene-SNP pair for

which the expression of the gene is associated with the value of the SNP is referred

to as an eQTL. Enabled by high-throughput sequencing, eQTL analysis has proven

to be an effective approach for the discovery of genomic variants that influence ex-

pression, and a potentially useful tool in the study of pathways and networks that

underlie disease in human and other populations. For an overview of eQTL analy-

sis and disease mapping, see Cookson et al. (2009), Mackay et al. (2009), Rockman

and Kruglyak (2006), and the references therein. Kendziorski and Wang (2006) and

Wright et al. (2012) survey existing statistical and computational methods for eQTL

analysis, respectively.

To date, most eQTL studies have considered the effects of genetic variation on

expression within a single tissue. Nonetheless, these studies have provided enhanced

understanding of gene regulation and the etiology of various diseases, cf. Franke and

Jansen (2009) and Westra et al. (2013). A natural next step in understanding genomic

variation of expression is the simultaneous analysis of eQTLs in multiple tissues.

Multi-tissue eQTL analysis has the potential to improve the findings of single tissue

analyses by borrowing strength across tissues, and to expand the scope of single tissue

analyses by addressing more fundamental biological questions about the nature and

source of variation between tissues.

In a single tissue eQTL study, the goal is to identify gene-SNP pairs for which the

expression of the gene is associated with the SNP genotype. An important feature of

multiple tissue studies is that a SNP may be associated with the expression of a gene

in some tissues, but not in others. Thus a full multi-tissue analysis must identify
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complex patterns of association across multiple tissues. We will refer to an eQTL

as ’common’ if association is present in all available tissues, and ’tissue-specific’ if

association is present in at least one tissue, but not all. Until recently, understanding

of multi-tissue eQTL relationships was limited by a shortage of true multi-tissue data

sets, requiring the assimilation of data or results from different studies (one for each

tissue) involving distinct populations, measurement platforms, and analysis protocols,

cf. Emilsson et al. (2008) and Xia et al. (2012).

Recently, a number of human true multi-tissue eQTL data sets have been collected,

for example by Dimas et al. (2009) and Nica et al. (2011), although these contain

relatively few tissues. By contrast, the GTEx initiative (Lonsdale et al. (2013)) and

related projects are generating eQTL data from dozens of tissues in several hun-

dred individuals, greatly expanding our potential understanding of the variation and

specificity of eQTL effects across multiple tissues. The size and complexity of these

emerging multi-tissue data sets has created the need to expand existing statistical

tools for eQTL analysis.

In this paper we introduce and study a multivariate, hierarchical Bayesian model

for the simultaneous analysis of eQTLs in multiple tissues, which we call MT-eQTL.

The dimension of the MT-eQTL model is equal to the number of tissues. Impor-

tantly, we do not seek to describe the full joint relationship between expression and

genotype across tissues. Instead, we directly model the vector z of Fisher transformed

correlations between expression and genotype across tissues, after appropriate scal-

ing to account for different degrees of freedom in each tissue. The entries of z are

z-statistics for testing the association between genotype and expression in each tis-

sue. Working with the test statistics on the transformed scale facilitates modeling

and interpretation. The upper panel of Figure 1b shows a density-based scatter plot

of the z-vectors from a simulated data set. The lower panel illustrates the results of

the MT-eQTL model: vectors close to the origin for which no eQTLs are detected

have been removed, resulting in the central white area; detected eQTLs are colored

according to whether an eQTL is detected in both tissues (blue points) or a single

tissue (red and green points).

The MT-eQTL model can be expressed in an equivalent, mixture form in which

each component corresponds to a binary configuration indicating the presence (1)
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or absence (0) of an eQTL in each tissue. We adopt an empirical Bayes approach,

fitting the MT-eQTL model by maximum likelihood using an EM based algorithm.

Throughout we restrict attention to local (sometimes referred to as ‘cis’) gene-SNP

pairs, for which the SNP is within a fixed genomic distance of the coding region of

the gene.

We briefly describe some of the key features of the MT-eQTL model. A detailed

description is given in Section 2. The model explicitly captures patterns of variation

in the presence or absence of eQTLs, as well as the heterogeneity of effect sizes across

tissues. In complex multi-tissue data like that from GTEx, the number of samples

can vary substantially from tissue to tissue, and the sets of donors for different tissues

can exhibit different degrees of overlap. The MT-eQTL model is rich enough to ac-

commodate both of these features. Another important aspect of complex multi-tissue

data is that effect sizes in different tissues may be correlated. Correlations in effect

sizes arise from biological factors (for example, the underlying relationships among

tissues), and are reflected in the correlation structure of the vector z. The corre-

lation structure of z also reflects experimental factors such as donor overlap among

tissues. The MT-eQTL model explicitly accounts for both sources of correlation in

an identifiable way. Lastly, the MT-eQTL model has the desirable property of being

marginally consistent: roughly speaking, the mixture model for a subset of tissues

can be obtained from the full mixture model via marginalization.

Fitting of the MT-eQTL model from the z-vectors of local gene-SNP pairs is car-

ried out via empirical Bayes using an approximate EM algorithm. Fitting is fast

enough to accommodate the full analysis of real data sets on a desktop computer.

After fitting, the MT-eQTL model provides, for any given z-vector, posterior prob-

abilities for every binary configuration of eQTL absence (0) or presence (1) across

tissues. Using the fitted model, we define the local false discovery rate of a gene-SNP

pair to be the posterior probability of the zero configuration (no eQTL in any tissue)

given its vector of z-statistics. We test for gene-SNP pairs having an eQTL in some

tissue by adaptive thresholding of the local false discovery rates. Assessment of tissue

specificity can be obtained from the posterior probabilities of non-zero configurations.

The procedure is readily generalized to more general hypothesis testing settings.
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1.1 Related work

Research on multi-tissue eQTLs is relatively new, with early published work dating

from 2007. Most existing multi-tissue analyses extract eQTLs individually from each

tissue and then apply post-hoc procedures to assess commonality and specificity.

Dimas et al. (2009) and Heinzen et al. (2008) consider the simple pairwise overlap of

single tissue eQTL discoveries. Ding et al. (2010) proposed a procedure to measure

eQTL overlap that accounts for differences in statistical power between data sets

for individual tissues. Fu et al. (2012) proposed a resampling based procedure to

assess the tissue-specificity of cis-eQTLs. Bullaughey et al. (2009) examined the

gene-SNP associations in five human primary tissues of eQTLs with large effect sizes

in lymphoblastoid cell lines. A similar idea is implemented in Nica et al. (2011): given

a set of gene-SNP pairs with small p-values in one tissue, the p-values of these same

pairs are examined in other tissues to assess enrichment of significant associations.

In addition, several meta-analysis based approaches have been applied to integrate

eQTL results for different tissues, cf. Brown et al. (2013) and Xia et al. (2012).

The papers cited above provide exploratory studies of eQTLs in multiple tissues,

or pairwise conditional analysis of eQTLs declared significant in an initial tissue.

However, they do not address the ab-initio statistical analysis of multi-tissue data in

a manner that fully utilizes the data. Gerrits et al. (2009) used an ANOVA model

to jointly analyze gene-SNP associations across tissues, with eQTL configurations

assigned according to effect sizes in different tissues. Petretto et al. (2010) proposed

a sparse Bayesian regression model in which gene expression in different tissues is

treated as a multivariate response, and SNPs are treated as predictors; the presence

and specificity of eQTLs are captured by a sparse coefficient matrix. Following Wen

and Stephens (2011), Flutre et al. (2013) proposed a Bayesian framework for the

joint analysis of eQTLs across tissues. They use a linear model to capture gene-SNP

association in each tissue, and place a prior distribution on the coefficients subject

to a latent indicator of whether or not it is an eQTL. Each of these methods uses

permutation based procedures to control and calculate false discovery rates., which

is computationally burdensome when dealing with millions of gene-SNP pairs and

multiple tissues. In addition, these methods assume that each tissue has samples from

an identical set of individuals; as noted above, in many cases the set and number of
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donors varies from tissue to tissue.

In recent work, Sul et al. (2013) proposed a“Meta-Tissue” method that combines

linear mixed models and meta-analysis. The linear mixed model captures gene-SNP

correlations across tissues and accounts for partial overlap among donors. Meta-

analysis is used to address detection of eQTLs in multiple tissues, but the model

does not use an explicit indicator vector for eQTLs across tissues, making assignment

of tissue specificity less straightforward than with other methods. Moreover, their

hypothesis testing procedure does not make direct use of the alternative distribution,

which may lead to a reduction in statistical power.

1.2 Outline

Specification and fitting of the MT-eQTL empirical Bayes model is described in the

next section. Section 3 describes how the MT-eQTL can be applied to multi-tissue

inference, including eQTL detection using a simple step-up procedure based on the

local false discovery rate, and the determination of eQTL tissue specificity. Theorem

3.2 establishes the asymptotic FDR control of the step-up procedure. Section 4

explores the MT-eQTL model in a 4-tissue simulation study based on an ongoing

analysis of data from the GTEx project. The modified EM algorithm used to fit the

MT-eQTL model is described in Appendix A. Appendix B contains the proofs of the

marginal consistency of the MT-eQTL model. The proof of Theorem 3.2 is given in

Appendix C.

2 The MT-eQTL Model

In this section we describe the MT-eQTL model in detail, beginning with a general

description of multi-tissue data, and a detailed account of the multivariate z-statistics

on which the model is based.

2.1 Format of Multi-Tissue eQTL Data

The general data format for the multi-tissue eQTL problem is as follows. For each

of n donors we have full genotype information, and measurements of gene expression
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in at least one of K tissues. We assume that the same array platform is used for

measurements of genotype, and similarly for expression.
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Figure 1: (a) Illustration of the typical data format with two tissues. Genotype

data G is available for m SNPs and each of n samples. Expression measurements

are available for p genes; sample sets for different tissues may not be the same. (b)

Scatter plots of z-vectors from a simulated data set: for all simulated gene-SNP pairs

(top), and for significant discoveries with tissue specificity by color (bottom).

Let G be an m×n matrix containing the measured genotype of each donor in the

study at m genetic loci that are the sites of single nucleotide polymorphisms (SNPs).

Each column of G corresponds to a donor, and each row corresponds to a locus/SNP.

The measured transcript levels for tissue k are contained in a p × nk matrix Xk,

where p is the number of measured transcripts, and nk ≤ n is the number of donors

from which samples of tissue k are available. Each column of Xk has an identifier

indicating the donor associated with the measurements in that column. In general,

the number of donors nk can vary widely among tissues, and even if two tissues have
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similar numbers of samples, they may have relatively few common donors. The data

available for the purposes of multi-tissue eQTL analysis has the form (G,X1, . . . ,XK).

Figure 1a gives an illustration of the typical data format with two tissues.

2.1.1 Data Preprocessing and Covariate Adjustment

In most cases eQTL analysis is preceded by several preprocessing steps and covariate

adjustment. The genotype data matrix G consists of values 0, 1, and 2, typically

coded as the number of minor allele variants; SNPs with too few minor allele instances

are often discarded. Expression measurements may be obtained from array-based

platforms or from RNA-Seq tag counts. Lowly expressed genes are typically dropped

from the analysis.

Genotype and expression data may contain confounding factors. Some confounders,

such as gender, are observed, while others are of unknown technical or biological ori-

gin. To identify the unknown confounding factors, most studies use principal compo-

nents, surrogate variables (Leek and Storey, 2007), or PEER cofactors (Stegle et al.,

2012) as covariates. We assume that the expression data and genotype data have been

residualized for the confounders, so the comparison of these residualized quantities

are partial correlations adjusted for covariates. The degrees of freedom lost in fitting

the covariates is accounted for in computing the association between expression and

genotype.

2.2 Multivariate z-Statistic from Single Tissue Correlations

Denote a measured transcript by i ∈ {1, . . . , p} and a measured genotype by j ∈
{1, . . . ,m}. We focus on a subset Λ of the full index set {1, . . . , p} × {1, . . . ,m} that

consists of pairs (i, j) such that SNP j is located within a fixed distance (usually 100

Kilobases or 1 Megabase) of the transcription start site (TSS) of gene i.

Let λ = (i, j) be a gene-SNP pair of interest, and let k be a tissue for which

measurements of transcript i are available. Let rλk and ρλk denote, respectively, the

sample and population correlation of transcript i and SNP j in tissue k. Note that the

sample correlation rλk depends only on the nk measurements from donors of tissue

k. The vector of correlations rλ = (rλ1, . . . , rλK) captures the association between
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the expression of transcript i and the value of genotype j in each of the K tissues.

Relationships between different tissues will be reflected in correlations between the

entries of rλ. These features make rλ a natural starting point for a multi-tissue eQTL

model.

In order to construct a multivariate model for the correlations rλ, it is convenient

to work in a Gaussian setting. To this end, let

h(rλ) =
(
h(rλ1), . . . , h(rλK)

)
be the vector obtained by applying the Fisher transformation

h(r) =
1

2
log
(1 + r

1− r

)
to each component of rλ. Let

d1/2 := (
√
d1 − 3, . . . ,

√
dK − 3)

be a scaling vector, where dk is the degrees of freedom for Xk and G, equal to nk

minus the number of covariates used to correct genotype and expression for samples

in tissue k. Finally, define the vector

zλ = d1/2 · h(rλ) (1)

where u · v denotes the Hadamard (entry-wise) product of vectors u and v.

Consider a random vector Zλ derived in the same fashion as zλ from random

data (G,X1, . . . ,XK). We assume that the expression measurements Xk are ap-

proximately normal. Standard arguments for the Fisher transformation (Winterbot-

tom, 1979) show that h(rλk) is approximately normal with mean h(ρλk) and variance

(dk − 3)−1. By a routine multivariate extension of this fact, Zλ is approximately

normally distributed with mean

µλ = d−1/2 · h(ρλ).

The variance stabilizing property of the Fisher transformation and our choice of scal-

ing ensures that the variance of each entry Zλk of Zλ is close to one, regardless of ρλ.

In particular, if the true correlation ρλk between transcript i and SNP j for tissue

k is zero, then Zλk is approximately standard normal. Thus the k-th entry of the
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observed vector zλ is a z-statistic for testing ρλk = 0 vs. ρλk 6= 0. Importantly, the

components of Zλ need not be independent, even when all the true correlations ρλk

are zero. Capturing this dependence is a key feature of the MT-eQTL model, which

is described in detail below.

2.3 Hierarchical Model

Let λ = (i, j) be a gene-SNP pair in Λ. MT-eQTL is a multivariate, hierarchical

Bayesian model for the random vector Zλ. In detail, we assume that

Zλ |µλ ∼ NK (µλ,∆) (2)

µλ = Γλ ·αλ (3)

Γλ ∼ p on {0, 1}K (4)

αλ ∼ NK(µ0,Σ), independent of Γλ (5)

The mean vector µλ contains the effect sizes for the relationship between transcript

i and SNP j in each tissue. The K × K covariance matrix ∆ is constrained to

have diagonal entries equal to one, reflecting the variance stabilization of the Fisher

transformation, and the scaling in (1). The off-diagonal entries of ∆ capture correla-

tions among the entries of Zλ that are due to commonalities among tissues that arise

from the underlying sampling process, for example, correlations resulting from shared

donors among a pair of tissues.

We assume that the mean vector µλ of Zλ is equal to the entrywise product of a

multinormal random vector µλ and a vector Γλ with binary entries. The indicator

vector Γλ determines the presence (Γλk = 0) or absence (Γλk = 1) of an association

between transcript i and SNP j in tissues k = 1, . . . , K. The strength of an asso-

ciation, when present, is determined by the corresponding component of αλ. The

covariance matrix Σ of αλ captures tissue specific variation in effect sizes, and corre-

lations among effect sizes that reflect biological commonalities between tissues. The

mean vector µ0 of αλ captures the average effect sizes across tissues. In practice we

usually set µ0 = 0 because high expression levels of a gene can be associated with

either the major or minor allele with roughly equal probability, resulting in average

effect sizes to be approximately zero across tissues. We have noticed little effect of
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this setting on numerical results. The final parameter of the model is a probability

mass function p on {0, 1}K that assigns probabilities to each of the 2K possible config-

urations of Γλ. In particular, p0 (i.e., p(0,··· ,0)) is the prior probability that transcript

i and SNP j have no association in any tissue.

2.4 Mixture Model

The hierarchical model (2)-(5) describing the distribution of Zλ is fully specified

by θ = (µ0,∆,Σ,p), which consists of 2K + K2 + K − 1 real-valued parameters.

Estimation of, and inference from, the hierarchical model is based on an equivalent

mixture representation that we now discuss.

If U is distributed as NK(µ,Σ) and γ is a fixed vector in {0, 1}K , then one may

readily verify that the entrywise product U ·γ is distributed as NK
(
µ ·γ,Σ ·γγT

)
. A

straightforward argument then shows that the hierarchical model (2)-(5) is equivalent

to a mixture distribution of the form

Zλ ∼
∑

γ∈{0,1}K
pγ NK

(
µ0 · γ, ∆ + Σ · γγT

)
. (6)

We adopt an empirical Bayes approach for performing inference from the model (6).

Specifically, the parameters θ = (µ0,∆,Σ,p) of the hierarchical model are estimated

from the observed z-statistics {zλ : λ ∈ Λ} by approximately maximizing a pseudo-

likelihood derived from (6); see Appendix A for more details. Beginning with the work

of Newton et al. (2001) and Efron et al. (2001), empirical Bayes approaches have been

applied to hierarchical models in a number of genetic applications, most notably the

study of differential expression and co-expression in gene expression microarrays, cf.

Kendziorski et al. (2003), Newton et al. (2004), Smyth et al. (2004) and Efron (2008),

and Dawson and Kendziorski (2012).

The mixture model (6) is readily interpretable. Each component of the model

corresponds to a unique configuration γ, or equivalently, a unique pattern of tissue

specificity. The model component corresponding to γ = 0 represents the case in which

there are no eQTLs in any tissue, and has associated (null) distribution NK(0,∆).

The model component corresponding to γ = 1 represents the case in which there are

eQTLs in every tissue, and has associated distribution NK(µ0,∆ + Σ). Other values
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of γ represent intermediate cases in which there are eQTLs in some tissues (those

with γk = 1) and not in others (those with γk = 0).

2.5 Marginal Consistency

In eQTL studies with multiple tissues, it is likely that some subsets of the tissues are of

particular interest. From the point of view of model fitting and model interpretation,

it is desirable if the model for any subset of tissues is consistent with the full model

in the sense that it can be obtained from the full model (or any model on a superset

of tissues) via marginalization. We refer to this property as marginal consistency.

To elaborate, let S ⊆ {1, . . . , K} be a subset of r tissues, with 1 ≤ r ≤ K. The

mixture model (6) has two important compatibility properties: (i) the marginaliza-

tion of the full model to S has the same general form as the model derived from S

alone; and (ii) the parameters of the marginal model are obtained by restricting the

parameters of the full model to S. The following definition and lemma makes these

statements precise. A proof of the lemma is given in the appendix.

Definition: Let S ⊆ {1, . . . , K} with cardinality |S| = r. For each vector u ∈ RK

let uS = (uk : k ∈ S) ∈ Rr be the vector obtained by restricting u to the entries in

S. Similarly, for each matrix A ∈ RK×K let AS = {akl : k, l ∈ S} be the r× r matrix

obtained by retaining only the rows and columns with indices in S. Note that if A is

non-negative (positive) definite, then AS is non-negative (positive) definite as well.

Lemma 2.1. If Z ∈ RK be a random vector having the mixture distribution (6), then

ZS ∼
∑

ζ∈{0,1}r
pS,ζNr

(
µ0S · ζ, ∆S + ΣS · ζζT

)
(7)

where (pS,0, · · · , pS,1) is the probability mass function on {0, 1}r obtained by marginal-

izing p to S, i.e., pS,ζ =
∑

γ:γS=ζ pγ.

Remark: Suppose that the parameters θ = (µ0,∆,Σ,p) of the full mixture model (6)

are estimated from the z-statistic vectors {zλ : λ ∈ Λ}, and let S ⊆ {1, . . . , K} be a

set containing r tissues. Lemma 2.1 describes the model θS obtained by marginalizing

the full model to the tissue set S.
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3 Multi-Tissue eQTL Inference

Once fit, the mixture model (6) provides the basis for inference about eQTLs across

tissues. In practice, we expect that θ will be well-estimated due to the large number

of available gene-SNP pairs; we therefore regard θ as fixed and known. For data

sets with small sample sizes, approximate standard errors can be obtained from the

likelihood via the observed information matrix.

In most applications the covariance matrix ∆ will be positive definite, and we

assume this is the case here. With this assumption, the distribution NK
(
µ0 · γ, ∆ +

Σ ·γγT
)

associated with the configuration γ ∈ {0, 1}K has a density, which we denote

by fγ . Thus under the mixture model (6) the random vector Zλ has density

f(z) =
∑
γ

pγ fγ(z) z ∈ RK . (8)

In view of this expression and the hierarchical model (2)-(5), one may regard Zλ as

one element of a jointly distributed pair (Γλ,Zλ), where

Γλ ∼ p and Zλ |Γλ ∼ fγ . (9)

We carry out multi-tissue eQTL analysis based on the posterior distribution of the

configuration Γλ given the observed vector of z-statistics zλ. Two inference problems

are of central interest to us. The first is eQTL detection, in all tissues and in a subset

of tissues. The second is assessing the tissue specificity of eQTLs in transcript-SNP

pairs where an eQTL is present in at least one tissue.

3.1 Detection of eQTLs Using the Local False Discovery Rate

A primary goal of multi-tissue analysis is testing each transcript-SNP pair for the

presence of an eQTL in at least one tissue. This can be formulated as a multiple

testing problem, namely testing

H0,λ : Γλ = 0 versus H1,λ : Γλ 6= 0 for λ ∈ Λ. (10)

For λ = (i, j) ∈ Λ the null hypothesis H0,λ asserts that there is no eQTL between

transcript i and SNP j in any tissue, while the alternative H1,λ asserts that there is

an eQTL between i and j in at least one tissue.
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The null hypotheses can also be expressed in the form H0,λ : Zλ ∼ NK
(
0, ∆

)
.

It is possible to derive a p-value for zλ directly from the null distribution, and then

control the overall false discovery rate in (10) using a step-up procedure like that

of Benjamini and Hochberg (1995). However, this type of analysis ignores relevant

information about the distribution of Zλ under the alternative that is contained in

the mixture model.

We address the multiple testing problem (10) using the local false discovery rate

introduced by Efron et al. (2001) in the context of an empirical Bayes analysis of

differential expression in microarrays. Other applications of the local false discovery

rate to genomic problems can be found in Newton et al. (2004), Efron (2007), and

Efron (2008). To simplify notation in what follows, let (Γ,Z) denote a generic pair

distributed as (Γλ,Zλ).

Definition: The local false discovery rate of an observed z-statistic vector z under

the model (6) is defined by

η(z) := P(Γ = 0 |Z = z) =
p0f0(z)

f(z)
. (11)

Let α ∈ (0, 1) be a target false discover rate (FDR) for the multiple testing problem

(10). Vectors z for which the local false discovery rate η(z) is small provide evidence

for the alternative Γ 6= 0. We carry out testing of gene-SNP pairs using a simple

step-up procedure that is applied to the running average of the ordered local false

discover rates. The procedure, which is described below, appears in essentially the

same form in Newton et al. (2004), Sun and Cai (2007), and Cai and Sun (2009).

Local FDR Step-Up Procedure: Target FDR = α

1. Given: Observed z-statistic vectors {zλ : λ ∈ Λ}.

2. Enumerate the elements of Λ as λ1, . . . , λN so that η(zλ1) ≤ · · · ≤ η(zλN ).

3. Reject hypotheses H0,λ1 , . . . ,H0,λL where L is the largest integer such that

L−1
∑L

l=1 η(zλl) ≤ α.

In order to better understand the local FDR step-up procedure, and to assess its

performance, it is useful to express the procedure in an equivalent form. As noted by
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Efron et al. (2001), the false discovery rate associated with a rejection region R ⊆ Rk

for the multiple testing problem (10) is given by P(Γ = 0 |Z ∈ R). They establish

the following elementary fact, which exhibits a connection between the false discovery

rate and the local false discovery rate.

Proposition 3.1. If R ⊆ Rk is such that P(Z ∈ R) > 0, then P(Γ = 0 |Z ∈ R) =

E(η(Z) |Z ∈ R).

As noted above, vectors z for which η(z) is small provide evidence against Γ = 0,

so it is natural to reject H0,λ when η(zλ) falls below an appropriate threshold. Consider

rejection regions of the form R(t) = {z : η(z) ≤ t} for t ∈ (0, 1). Given a target false

discovery rate α, we wish to find t such that α = P(Γ = 0 |Z ∈ R(t)). By Proposition

3.1 this is equivalent to finding t ∈ (0, 1) such that F (t) = α, where

F (t) := E(η(Z) | η(Z) ≤ t) =
E[η(Z) I(η(Z) ≤ t)]

P(η(Z) ≤ t)
. (12)

The empirical analog of F (t) is the ratio

F̂ (t) =

∑
λ∈Λ η(zλ) I(η(zλ) ≤ t)∑

λ∈Λ I(η(zλ) ≤ t)
,

which depends only on η(·) and the observed vectors {zλ}. It is easy to see that the

local FDR step-up procedure is equivalent to the rule

Reject H0,λ if and only if η(zλ) ≤ sup{t : F̂ (t) ≤ α}. (13)

We show in Proposition C.4 that F (t) is strictly increasing and continuous. Thus

if F (t) and F̂ (t) were equal, the local FDR step-up procedure and the idealized

threshold procedure would coincide. In general, F (t) and F̂ (t) will be different, but

multiplying the numerator and denominator of F̂ (t) by |Λ|−1 it is evident that the

two functions will be close if |Λ| is large and the dependence among the observed

z-vectors is not extreme. Asymptotic control of the false discovery rate by the local

FDR step-up procedure is established in Theorem 3.2 below.

Let Λ∗ ⊆ N×N be an infinite index set, and let Λ1,Λ2, . . . ⊆ Λ∗ be a sequence of

finite subsets of Λ∗. Let α ∈ (0, 1) be a target FDR that is less than the maximum

value of η(z). For each n ≥ 1 let {(Γλ,Zλ) : λ ∈ Λn} be jointly distributed pairs

having the same distribution as (Γ,Z). In order to assess the performance of the local
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FDR step-up procedure on the observed z-statistic vectors {Zλ : λ ∈ Λn} we consider

the equivalent rule (13), which rejects H0,λ when η(Zλ) ≤ θ̂n = sup{t : F̂n(t) ≤ α}
where

F̂n(t) =

∑
λ∈Λn

η(Zλ) I(η(Zλ) ≤ t)∑
λ∈Λn

I(η(Zλ) ≤ t)
0 < t < 1.

The number of false discoveries and total discoveries for the local FDR step-up pro-

cedure are equal, respectively, to

Mn =
∑
λ∈Λn

I(Γλ = 0) I(η(Zλ) ≤ θ̂n) and Nn =
∑
λ∈Λn

I(η(Zλ) ≤ θ̂n).

Theorem 3.2. Let (Γ,Z) have joint distribution given by the mixture model (9) with

parameters (µ0,∆,Σ,p). Assume that ∆ is positive definite and that the diagonal

entries of Σ are positive. If F̂n(t) → F (t) in probability for each t ∈ (0, 1) then

EMn/ENn → α as n tends to infinity.

The proof of Theorem 3.2 is given in Appendix C below. The ratio of expectations

EMn/ENn is sometimes referred to as the marginal false discovery rate (m-FDR).

Sun and Cai (2007) and Cai and Sun (2009) established optimality properties and

m-FDR control of several local FDR based testing procedures, including the step-up

procedure used here, under independence and monotonicity assumptions. However,

these assumptions are typically violated in the setting of interest to us here. The

monotonicity assumption, which in the present case involves the relationship between

the distributions of the local FDR η(Zλ) under H0,λ and H1,λ, does not appear to hold.

Moreover, in eQTL data there are typically significant correlations between nearby

SNPs (linkage disequilibrium), leading to to complex, non-stationary correlations

between the gene-SNP based vectors Zλ.

Theorem 3.2 makes no explicit assumptions on the joint distribution of the vectors

Zλ; instead it relies on the relatively weak condition that F̂n(t)→ F (t) in probability.

This condition holds, for example, under the (very mild) assumption that the variance

of the numerator and denominator of F̂n(t) is equal to o(|Λn|2). While strong corre-

lations between nearby SNPs will be present, gene-SNP pairs that are well separated

will have little or no correlation, so the variance decay assumption is reasonable in

practice. When the variance decay assumption holds, the conclusion of the theorem

may be strengthened to Mn/Nn = α + oP (1).
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In regards to the proof of Theorem 3.2, the assumption that ∆ be positive definite

is only needed to ensure the existence of the the densities fγ; the assumption that the

diagonal entries of Σ are positive is reasonable in practice, but can likely be weakened.

The proof makes use of the properties of the multivariate normal, specifically the

normality of conditional distributions and the fact that normal densities are analytic

functions, but could likely be extended to more general exponential families with

additional work.

3.2 Analysis for Subsets of Tissues

In some problems, a subset S ⊆ {1, . . . , K} of the available tissues may be of primary

interest. The multiple testing framework described above can be adapted to the

tissues in S in two primary ways. The first is to construct a model based only on

the tissues in S and use the resulting local FDR to identify multi-tissue eQTLs.

However, this approach does not make use of the available data from tissues outside

S and as such it does not borrow strength from commonalities among tissues. As an

alternative, one may use the marginal local FDR for S, defined by

ηS(z) := P(ΓS = 0 |Z = z) =

∑
γ:γS=0 pγfγ(z)

f(z)
. (14)

Here ΓS and γS denote, respectively, the restriction of the vectors Γ and γ to the

tissues in S, while pγ , fγ and f correspond to the full model (6). We emphasize that

the marginal local FDR ηS(z) is a function of the complete vector of z-statistics, and

therefore depends on the fitted model for the full set of tissues.

3.3 Assessments of Tissue Specificity

Testing gene-SNP pairs is typically the first step in multi-tissue eQTL analysis. Re-

jection of H0,λ is based on evidence that λ is an eQTL in at least one of the available

tissues. More detailed statements about the pattern of eQTLs across tissues can be

made using information about the full configuration vector Γλ. If the hypothesis H0,λ

is rejected, a natural estimate of Γλ is the maximum a-posteriori (MAP) configuration

defined by

γ̂λ = arg max
γ∈{0,1}K\0

p(γ | zλ) = arg max
γ∈{0,1}K\0

pγ fγ(zλ).
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The MAP rule is investigated in the simulation section below. As an alternative, one

may compute the marginal posterior probability of an eQTL in each tissue k, namely

p(Γλ,k = 1|zλ) =
∑

γ:γk=1

p(γ|zλ) =
∑

γ:γk=1

pγ fγ(zλ)/f(zλ),

and declare an eQTL in tissue k if this marginal probability exceeds a predefined

threshold. Both MAP and thresholding of the marginal posterior extend to subsets

of tissues.

3.4 Testing a Family Configurations

The goal of the multiple testing problem (10) is to determine whether the config-

uration Γλ of a gene-SNP pair is equal to 0 or belongs to the complementary set

{0, 1}K \ {0}. More generally, one may test membership of Γλ in any fixed subset

T ⊆ {0, 1}K of configurations. The associated testing problem can be written as

HT
0,λ : Γλ ∈ T c versus HT

1,λ : Γλ ∈ T, λ ∈ Λ. (15)

A test statistic for (15) can be obtained by marginalizing the full local FDR (11),

which yields

ηT (z) := P(Γ ∈ T c |Z = z) =

∑
γ:γ∈T c pγfγ(z)

f(z)
.

The local FDR step-up procedure can then be applied to the values {ηT (zλ)} in order

to control the overall FDR in (15).

4 Simulation Study

In this section, we illustrate MT-eQTL with a simulation study. The basis of our

model and inference procedure is the collection of z-statistic vectors derived from

the observed genotype and transcript data. Thus we directly simulate the z-statistic

vectors themselves. Further details and results are described below.

4.1 Simulation Setting

We simulate vectors zλ independently from the mixture model (6) using parameters

θ = (µ0,∆,Σ,p) that are obtained from an ongoing eQTL analysis of data with
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K = 4 tissues, which we denote by a, b, c, and d, and roughly 107 local gene-SNP

pairs. Sample sizes, sample overlap, and degrees of freedom after covariate correction

are given in Table 1.

a b c d Degree of Freedom

a 156 104 122 90 137

b 119 100 84 100

c 138 88 119

d 105 86

Table 1: Sample sizes (diagonal), sample overlap (off-diagonal), and degrees of free-

dom for different tissues in the simulation.

For simplicity, in the simulations and model fitting we set µ0 to zero. The gener-

ating parameters ∆ and Σ based on the real data analysis are as follows:

∆ =


1.0000 0.1347 0.0805 0.1089

0.1347 1.0000 0.1204 0.1794

0.0805 0.1204 1.0000 0.1288

0.1089 0.1794 0.1288 1.0000

 , Σ =


6.5699 5.3098 4.4683 4.7126

5.3098 5.9752 4.7906 5.5778

4.4683 4.7906 5.5263 4.6493

4.7126 5.5778 4.6493 6.0178

 .

The generating parameter p can be found in Table 3. We simulated |Λ| = 107 vectors

zλ from (6) in a two-step fashion: first drawing γ ∈ {0, 1}4 from p, and then drawing

zλ from fγ(z). Access to the true configurations γ enables us to assess false discovery

rates associated with inferences from the fitted model.

4.2 Model Fit

The approximate EM procedure was used to fit the full 4-tissue model, as well as all

possible 1-, 2-, and 3-tissue models. We terminated EM updates when the difference

between log likelihoods in two consecutive iterations was less than 0.01. The number

of iterations until convergence of the EM procedure did not vary greatly from model

to model. For all models, the average number of iterations is 80, with numbers varying

from 40 to 132. The running time of the EM procedure depends on the number of

tissues in the model, ranging from about 1 second per iteration for the 1-tissue models
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to about 40 seconds per iteration for full 4-tissue model. Fitting of the 4-tissue model

based on the simulated data took slightly more than one hour; fitting the real data

(about 107 transcript-SNP pairs) required 1.5 hours. On real and simulated data,

fitting of the mixture model is extremely fast.

As expected, the parameters estimated from the simulated data are very close to

those used to generate the data. For the 4-tissue model, the relative error of each

entry of Σ is less than 0.3%, while the relative error for each entry of ∆ is less than

0.7%. As for the probability mass vector p, thirteen of sixteen entries had relative

error less than 1%; the relative errors of the remaining entries were 1.45%, 1.66% and

4.31%. These results confirm that the approximate EM procedure works well on the

simulated data.

In order to investigate the marginal consistency of the estimated parameters, we

marginalized the estimated parameters from the 4-tissue model, and compared them

with parameters estimated directly from lower dimensional models. The average

relative differences of the parameters p, Σ, and ∆ for 1-tissue, 2-tissue, and 3-tissue

models are summarized in Table 2.

1-tissue 2-tissue 3-tissue

p 9.8E-4 2.4E-3 4.1E-3

Σ 1.7E-3 1.1E-3 5.8E-4

∆ 0 1.4E-3 5.2E-4

Table 2: The average relative differences of p, Σ, and ∆ between the marginalization

of the 4-tissue model and the direct estimations from all 1-, 2-, and 3-tissue models.

4.3 Results

We first applied the adaptive thresholding procedure to the full 4-tissue model to

identify gene-SNP pairs that are eQTLs in at least one tissue. Throughout we used

an overall FDR threshold α = 0.05. For all models considered in the simulation, the

true false discovery rates are always slightly below 0.05.

Table 3 shows results from the 4-tissue model with MAP estimates of the con-
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figuration γ. The ”TS-config” column enumerates the 16 possible configurations

according to the tissues in which eQTLs are present. The ”True” column shows the

true numbers of transcript-SNP pairs with the specified configuration in the simu-

lated data. The ”Discoveries” column shows the number of transcript-SNP pairs in

the simulation estimated to have the specified configuration. The ”Intersection” col-

umn shows cardinality of the intersection of true and discovered transcript-SNP pairs

with the specified configuration. The ”Proportion” column gives the proportion of

true discoveries.

TS-config 100*p True Discoveries Intersection Proportion

0 77.24 7720693 8961544 7669320 0.86

a 1.96 196868 52070 33128 0.64

b 1.04 103866 23786 17070 0.72

c 1.88 189859 45253 28738 0.64

d 2.05 202925 53716 37600 0.70

a-b 0.29 29516 4592 3035 0.66

a-c 0.08 7835 446 313 0.70

a-d 0.09 9507 1280 870 0.68

b-c 0.10 9552 1448 903 0.62

b-d 0.33 32552 5196 2997 0.58

c-d 0.37 36738 6382 4294 0.67

a-b-c 0.19 19022 1730 1258 0.73

a-b-d 0.86 85418 9115 6194 0.68

a-c-d 0.09 8614 951 731 0.77

b-c-d 1.08 107405 14031 9445 0.67

a-b-c-d 12.34 1239630 818460 640847 0.78

Table 3: eQTL analysis results from the 4-tissue model for the simulation data.

For each configuration, only a modest fraction (about 1/4) of the true eQTLs with

that configuration are detected by the local FDR procedure. This does not imply that

the local FDR procedure is under-powered, but instead reflects features of the data

generation process that we believe are representative of real data. In detail, the multi-

tissue z-statistics of each gene-SNP pair are generated from a mixture multivariate
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Gaussian distribution centered at zero. As a result, the majority of alternative gene-

SNP pairs have z-statistics near zero; these z-statistics are not readily distinguishable

from those generated under the null.

For most configurations the proportion of true discoveries relative to total discov-

eries (the “Proportion” column) are above 60 percent. This is relatively high, given

that distinguishing between nearby configurations (those with 1’s in all but one of

same positions) as well as the null configuration can be difficult.

Vectors of z-statistics can serve as a useful, and potentially powerful, tool for

visualizing and interpreting the results of a multi-tissue eQTL analysis. Figure 1b

shows scatter plots of z-statistics for tissue b and tissue d, while Figure 2 shows

scatter plots of z-statistics for tissue a and tissue c. The black and white plot shows

the density of the observed z-statistic vectors, while the companion plot shows the

results of inference based on the fitted two-dimensional MT-eQTL model. In the

companion plot, z-statistic vectors deemed not to be significant are omitted, leading

to the white space at the center of the plot. The remaining points (corresponding

to eQTLs) are colored according to their assessed tissue specificity: green represents

the configuration (1, 0) in which there is an eQTL in tissue 1 but not tissue 2; red

represents the configuration (0, 1) in which there is an eQTL in tissue 2 but not

tissue 1; and blue represents the configuration (1, 1) in which there is an eQTL in

both tissues.

The overall shape of each plot is a tilted ellipse, with extreme values along the main

diagonal and, to a lesser extent, along the coordinate axes. As expected, significant

points close to one of the coordinate axes show evidence for an eQTL in a single

tissue (tissue specific eQTL), while those along the positive diagonal show evidence

for eQTLs in both tissues (common eQTL). In all other pairs of tissues (not shown),

we observe similar results. In Figure 2, we also observe some discoveries along the

anti-diagonal. For anti-diagonal pairs there is significant correlation between genotype

and expression in each tissue, but the correlation is positive in one tissue, and negative

in the other. The model reasonably identifies these points as common eQTLs. This

behavior also appears in the analysis of real data, cf. Fu et al. (2012). Better statistical

and biological understanding of eQTLs with different effects directions in different

tissues is the subject of ongoing research.
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Figure 2: Scatter plots of z-statistics for tissue a and tissue c. Density-based scat-

ter plot for all gene-SNP pairs (left), and significant eQTL discoveries with tissue

specificity assessments from the fitted two-dimensional MT-eQTL model (right).

In order to assess how the use of multiple tissues increases statistical power in

the context of the simulation, we fit models for tissue sets {a}, {a, b}, {a, b, c}, and

{a, b, c, d} and only focus on eQTL detection in tissue a. In each case we applied the

adaptive thresholding procedure to the marginal local FDR defined in (14). Figure 3

shows that the number of discoveries for tissue a increases steadily with the number of

auxiliary tissues. The realized false discovery rates were all controlled at the specified

0.05 level.

{a} {a,b} {a,b,c} {a,b,c,d}
0

1

2

3

4

5

6

7
x 10

5

Model

N
um

be
r 

of
 S

ig
ni

fic
an

t e
Q

T
Ls

 in
 T

is
su

e 
a

Figure 3: The number of significant discoveries in tissue a from the model for {a},
{a, b}, {a, b, c}, and {a, b, c, d} respectively.

To better visualize gains in eQTL discoveries with the use of auxiliary tissues, we
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also fit models for tissue sets {a, b}, {a, b, c}, and {a, b, c, d}, and detected eQTLs in

tissue a and tissue b. Figure 4 shows the scatter plots of significant eQTL discoveries

in the two tissues with tissue specificity assessments from different models. Clearly,

borrowing strength from auxiliary tissues, higher dimensional models discover more

eQTL gene-SNP pairs with moderate effects in tissue a and tissue b. The numbers of

discoveries from the 2-tissue, 3-tissue, and 4-tissue models are 707151, 789951, and

863253 respectively. All realized FDRs are within .0015 of the nominal .05 threshold.

Figure 4: Scatter plots of significant discoveries in tissues a and tissue b from models

for {a, b}, {a, b, c}, and {a, b, c, d}. Tissue specificities are assessed through the MAP

rule.
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A Model Fitting and Parameter Estimation

A.1 Matrix eQTL

The set of correlations rλk for all transcript-SNP pairs λ and tissues k = 1, . . . , K

can be conveniently calculated using the R package Matrix eQTL by Shabalin (2012).

The package is designed for fast eQTL analysis in individual tissues. Matrix eQTL

accounts for covariates and can filter transcript-SNP pairs by the distance between

their genomic locations. Once Matrix eQTL is applied separately for each tissue, the

t-statistics it reports can be transformed into correlations using the simple transfor-

mation

rλk =
tλk√
dk + t2λk

where dk is the number of degrees of freedom in the tests for tissue k which is defined

in Section 2.2 and is also reported by Matrix eQTL. The set of correlations can then

be combined in a single matrix with rows rλ.

A.2 Modified EM Algorithm

We wish to estimate the parameter θ = (µ0,∆,Σ,p) from the observed z-statistics

{zλ : λ ∈ Λ}, which are computed directly from the sample correlations rλk obtained

from Matrix eQTL. In order to make the estimation of θ tractable, we assume that

the random vectors Zλ are independent. The likelihood of the model then has a

simple product form, depending only on the unknown parameter θ, and the observed

z-statistics {zλ}:

L({zλ}|θ) =
∏
λ∈Λ

∑
γ∈{0,1}K

pγ fγ(zλ | θ), (16)

where fγ(· | θ) is the probability density function of the NK
(
µ0 · γ,∆ + Σ · γγT

)
distribution.

Remark: It is important to note that the parameter θ concerns only the (common)

marginal distribution of the random vectors Zλ, and is unaffected by their dependence.

The assumption that the random vectors Zλ are independent facilitates estimation of

θ, but does not impose any constraints on the marginal dependence structure of Zλ.
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We estimate the parameter θ by seeking to maximize the logarithm of the like-

lihood (16). The log-likelihood is not concave, and there appears to be no closed

form solution to the maximization problem. Thus one must to rely on iterative algo-

rithms that produce a sequence of parameters θ(t) converging to a (local) maximum

of the likelihood. A direct approach employing a generic software routine for nu-

merical maximization of the likelihood function would be computationally intensive,

as each iteration would require multiple (at least 2K) calculations of the likelihood

function around the estimate obtained at the previous iteration. A much faster con-

vergence can be achieved by applying a modification of Expectation Maximization

(EM) algorithm. Details are given below.

We treat the unobserved tissue-specificity information vector Γλ ∈ {0, 1}K as a

latent variable. The joint likelihood of both observed and latent variables is:

L(z,γ | θ) = pγ fγ(z | θ).

The EM algorithm operates in an iterative fashion. Let θ(t) = (µ
(t)
0 ,∆(t),Σ(t),p(t)) be

the estimate of the model parameters after t iterations. The estimate θ(t+1) is defined

by

θ(t+1) = arg max
θ

Q(θ : θ(t)),

where

Q(θ : θ(t)) =
∑
λ

EΓλ|zλ,θ(t)
[

logL(zλ,Γλ|θ)
]
.

The expectation of the log-likelihood is calculated with respect to the conditional dis-

tribution of Γλ given the observed vector of correlations zλ and the model parameters

θ(t).

Consider the conditional expectation appearing in Q(θ : θ(t)). Let p(γ | θ) denote

the probability of the configuration γ under the probability mass function p associated

with the parameter θ, and define

p(γ | z, θ) = P(Γλ = γ | z, θ) =
p(γ | θ)fγ(z | θ)∑
γ′ p(γ ′ | θ)fγ′(z | θ)

The objective function Q(θ : θ(t)) then has the form

Q(θ : θ(t)) =
∑
λ

∑
γ

p(γ | zλ, θ(t))
[

log p(γ | θ) + log fγ(zλ | θ)
]
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Maximization of Q with respect to θ leads to the explicit formula

p(γ | θ(t+1)) =
∑
λ

p(γ | zλ, θ(t))
/
|Λ|

where |Λ| is the number of gene-SNP pairs under consideration. There appears to be

no closed form solution for the iterates of µ
(t)
0 , Σ(t) and ∆(t). However, in practice,

most of the probability mass of p is concentrated at the two extreme cases γ = 0

and γ = 1, reflecting the fact that most transcript-SNP pairs are associated in no

tissues or all tissues. Approximating Q(·) by restricting the second sum to γ = 0, 1

leads to explicit (approximate) estimates of µ0, Σ and ∆ via the following first order

conditions:

∆(t+1) =
∑
λ

p(0 | zλ, θ(t))zλz
T
λ

/∑
λ

p(0 | zλ, θ(t))

µ
(t+1)
0 =

∑
λ

p(1 | zλ, θ(t))zλ

/∑
λ

p(1 | zλ, θ(t))

Σ(t+1) + ∆(t+1) =
∑
λ

p(1 | zλ, θ(t))(zλ − µ
(t+1)
0 )(zλ − µ

(t+1)
0 )T

/∑
λ

p(1 | zλ, θ(t))

At some iterations the estimates Σ(t+1) may fail to be non-negative definite. In such

cases we force Σ(t+1) to be non-negative definite by calculating its singular value

decomposition and dropping terms with negative coefficients (negative eigenvalues).

Starting with an initial parameter value θ(0), we perform sequential updates in

the manner described above until the change in the likelihood falls below a pre-

set threshold. To assess the reliability of the estimate one may run the algorithm

multiple times using distinct starting points. In our experiments the algorithm tends

to converge to the same estimate regardless of the starting point.

B Proof of Lemma 2.1

Proof. Let S be a subset of {1, . . . , K} with cardinality |S| = r. It follows from the

defining properties of the multivariate normal distribution that if U ∼ NK(µ, A) then

US ∼ Nr(µS, AS). It therefore follows from (6) that

ZS ∼
∑

γ∈{0,1}K
pγ Nr

(
(µ0 · γ)S, (∆ + Σ · γγT )S

)
(17)
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Here and in the remainder of the proof we follow the convention that γ ranges over

{0, 1}K , and ζ ranges over {0, 1}r. Elementary arguments show that

(µ0 · γ)S = µ0,S · γS and (∆ + Σ · γγT )S = ∆S + ΣS · γSγ
T
S

It then follows from (17) that

ZS ∼
∑

γ∈{0,1}K
pγ Nr

(
µ0,S · γS, ∆S + ΣS · γSγ

T
S

)
=

∑
ζ∈{0,1}r

∑
γ:γS=ζ

pγ Nr
(
µ0,S · γS, ∆S + ΣS · γSγ

T
S

)
=

∑
ζ∈{0,1}r

Nr
(
µ0,S · ζ, ∆S + ΣS · ζζT

) ∑
γ:γS=ζ

pγ

=
∑

ζ∈{0,1}r
pζ,SNr

(
µ0,S · ζ, ∆S + ΣS · ζζT

)
,

which is the desired expression for distribution of ZS.

C Proof of Theorem 3.2

C.1 Continuity and Monotonicity of F (t)

Lemma C.1. Let U be a bounded, non-negative random variable. For t ≥ 0 define

G(t) = E[U |U≤ t ] =
E[U I(U≤ t) ]

P(U≤ t)
. (18)

Then the following hold:

1. G is non-decreasing and right continuous;

2. If P(U = t) = 0 then G is continuous at t;

3. If P(a < U < b) > 0 for each 0 < a < b < L then G is strictly increasing on

(0, L).
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Proof. To show that G is non-decreasing it suffices to show that G(t+ δ)−G(t) ≥ 0

for each fixed t ≥ 0 and δ > 0. If G(t) = 0 then the result is immediate as the

function G is non-negative. If G(t) is positive, then

G(t+ δ)−G(t) =
E[U I(U≤ t+ δ) ]

P(U≤ t+ δ)
− E[U I(U≤ t) ]

P(U≤ t)

=
E[U I(U≤ t+ δ) ]P(U≤ t) − E[U I(U≤ t) ]P(U≤ t+ δ)

P(U≤ t+ δ)P(U≤ t)
.

By elementary arguments the numerator of the last fraction can be expressed as

E[U I(t < U≤ t+ δ) ]P(U≤ t) − E[U I(U≤ t) ]P(t < U≤ t+ δ)

≥ tP(t < U≤ t+ δ)P(U≤ t) − tP(U≤ t)P(t < U≤ t+ δ) (19)

= 0.

Thus G is non-decreasing. Right continuity of G follows by applying the monotone

convergence theorem to the numerator and denominator in (18). If P(U = t) = 0

then continuity of G at t follows from the dominated convergence theorem in a similar

fashion. Finally, if P(t < U < t+ δ) > 0 then the inequality in (19) is strict, and the

final claim follows by considering t ∈ [0, L) and δ > 0 such that t+ δ < L.

Lemma C.2. For i = 0, . . . ,m let fi be the density of the d-variate normal distribu-

tion Nd(µi,Σi) and let c1, . . . , cm be positive constants. If at least one of f1, . . . , fm is

not equal to f0, then

md

({
x : f0(x) =

∑m
j=1 cj fj(x)

})
= 0

where md(·) denotes Lebesgue measure on Rd.

Proof. Define h(x) = f0(x) −
∑m

j=1 cj fj(x) and let A = {x : h(x) = 0}. As h is

continuous, A is a closed subset of Rd. We establish the result by way of contradiction.

Consider first the case in which d = 1 and h(x) = 0 for each x ∈ R. By an easy

argument, we can assume that the densities fi, i = 0, 1, . . . ,m are distinct and that

m ≥ 1. Let µi and σi be, respectively, the mean and variance of the distribution

specified by the density fi. Let (σj, µj) be the largest element, under the usual
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lexicographic order, of the set {(σi, µi) : 0 ≤ i ≤ m}. Considering the limit of

h(x)/fj(x) as x tends to infinity, we conclude that cj = 0 if j 6= 0 or 1 = 0 if j = 0. In

either case we obtain a contradiction, and therefore h(x) cannot be identically equal

to zero.

The remainder of the proof proceeds by induction on d. Consider first the case

d = 1. Note that h(x) is an analytic function of the real variable x. If m1(A) > 0

then there exists M < ∞ such that m1(A ∩ [−M,M ]) > 0. In particular, there

are infinitely many points of A in the compact set [−M,M ]. Thus A has a limit

point x0, and h(x0) = 0 as A is closed. As the zeros of a non-zero analytic function

are necessarily isolated, it follows that h(x) is identically zero. This contradicts the

argument given above, and we conclude that m1(A) = 0.

Assume now that the lemma holds for dimensions 1, . . . , d − 1, and consider the

general case of dimension d. Suppose that md(A) > 0. By Fubini’s theorem, there

exist a Borel measurable set B ⊂ R such that (i) m1(B) > 0 and (ii) for every xd ∈ B
the section

A(xd) = {xd−1
1 : (xd−1

1 , xd) ∈ A} ⊆ Rd−1

has (d− 1)-dimensional Lebesgue measure greater than zero. (Here xd−1
1 denotes the

ordered sequence x1, . . . , xd−1.) Note that h(x) = 0 can be written in the equivalent

form

0 = f0(xd−1
1 |xd) f0(xd) −

m∑
j=1

cj fj(x
d−1
1 |xd) fj(xd) x ∈ A (20)

where fj(x
d−1
1 |xd) denotes the conditional density of xd−1

1 given xd under fj, and

fj(xd) denotes the marginal density of xd under fj. If for each xd ∈ B the conditional

densities fj(x
d−1
1 |xd) are equal on A(xd) then (20) becomes

0 = f0(xd) −
m∑
j=1

cj fj(xd) xd ∈ B,

which contradicts the induction hypothesis. Suppose then that for some xd ∈ B the

conditional densities fj(x
d−1
1 |xd) are not all equal on A(xd). Then equation (20)

becomes

0 = f0(xd−1
1 |xd) −

m∑
j=1

c′j fj(x
d−1
1 |xd) xd−1

1 ∈ A(xd)
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where c′j = cj fj(xd)/f0(xd). Our assumption regarding the conditional densities

ensures that fj(x
d−1
1 |xd) is different from f0(xd−1

1 |xd) for some j ≥ 1, again contra-

dicting the induction hypothesis. This completes the proof.

Lemma C.3. Let η(z) be defined as in (11) and assume that every diagonal entry of

Σ is positive. Then the following hold.

1. infz∈Rd η(z) = 0.

2. For every c ≥ 0 the Lebesgue measure of the set {z : η(z) = c} in RK is zero.

Proof. Proof of 1: As η(z) is always positive, it is enough to show that there exists

z ∈ Rd and γ ∈ {0, 1}K such that f0(bz)/fγ(bz)→ 0 as b→∞. From the exponential

form of the multivariate normal densities, it can be seen that the last relation will

hold if the matrix ∆−1 − (∆ + Σ · γγT )−1 has an eigenvalue greater than zero.

Let x0 be an eigenvector of the matrix ∆ corresponding to the smallest eigenvalue

λmin(∆) (which is positive by assumption). Assume without loss of generality that

||x0|| = 1. Using the variational formula for eigenvalues, and the relationship between

the eigenvalues of a matrix and those of its inverse, we find that

λmax(∆−1 − (∆ + Σ · γγT )−1) = max
z:||z||=1

zT (∆−1 − (∆ + Σ · γγT )−1)z

≥ max
z:||z||=1

zT∆−1z − max
z:||z||=1

zT (∆ + Σ · γγT )−1z

= λmax(∆−1) − λmax((∆ + Σ · γγT )−1)

= λmin(∆) − λmin(∆ + Σ · γγT )

≥ xT0 ∆x0 − xT0 (∆ + Σ · γγT )x0

= xT0 (Σ · γγT )x0

Let 1 ≤ i ≤ K be any index for which x0,i 6= 0. If γ is the binary K-vector having

a 1 in position i and all other entries equal to 0, then it is easy to see that the last

expression above is σii x
2
0,i, which is positive.

Proof of 2: This follows immediately from Lemma C.2

Proposition C.4. The function F (t) defined in (12) is continuous and strictly in-

creasing on the interval (0, Lη), where Lη = supz∈Rd η(z) < 1.
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Proof: Note that F (t) is of the form g(t) in (18) with U = η(Z). Part 2 of Lemma

C.3 establishes that P(η(bZ) = t) = 0, and continuity of F then follows from Lemma

C.1. For 0 < a < b < Lη we have

P(a < η(Z) < b) = P(η(Z) ∈ (a, b)) = P(Z ∈ η−1(a, b)).

As η(z) is continuous η−1(a, b) is an open subset of Rd. Moreover, η−1(a, b) is non-

empty by Part 1 of Lemma C.3. Thus P(a < η(Z) < b) > 0 as the density f of Z is

positive on Rd. Continuity of F (t) then follows from Lemma C.1.

C.2 Proof of Theorem 3.2

Lemma C.5. Let G1, G2, . . . : [0, 1] → R be non-decreasing functions. For fixed

α ∈ (0, Lη) define θn = sup{t : Gn(t) ≤ α} and let θ ∈ (0, 1) be the unique number

such that F (θ) = α. If Gn(t) → F (t) for each t in a dense subset T of [0, 1] then

θn → θ.

Proof. Suppose by way of contradiction that |θn−θ| 6→ 0. Then there exists δ1, δ2 > 0

such that {θ − δ1, θ + δ2} ⊆ T and an infinite subsequence nk of 1, 2, . . . such that

either θnk ≤ θ − 2δ1 for each k ≥ 1 or θnk ≥ θ + 2δ2 for each k ≥ 1. In the first case,

the definition of θn and the monotonicity of Gn imply

α ≤ Gnk(θnk + δ1) ≤ Gnk(θ − δ1)

Taking limits as k →∞ we find α ≤ F (θ− δ1) < α as F is strictly increasing, which

is a contradiction. In the second case, a similar argument shows that

α ≥ Gnk(θnk − δ2) ≥ Gnk(θ + δ2).

Taking limits as k → ∞ yields α ≥ F (θ + δ2) > α, which is again a contradiction.

This concludes the proof.

Proof of Theorem 3.2:
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Proof. Let θ̂n = sup{t : F̂n(t) ≤ α} and let θ be the unique number such that

F (θ) = α. We claim that θ̂n → θ in probability. To show this, assume to the contrary

that there exists δ > 0 and a subsequence nk such that

P
(
|θ̂nk − θ| > δ

)
> δ for each k ≥ 1. (21)

Let T be any countable, dense subset of [0, 1]. Our assumptions imply that F̂n(t)→
F (t) in probability for each t ∈ T . By a standard diagonalization argument, there

exists a subsequence mk of nk such that F̂mk(t)→ F (t) with probability one for each

t ∈ T . It then follows from Lemma C.5 that θ̂mk → θ with probability one, which

contradicts (21).

In order to establish the theorem, it will be convenient to work with version of Mn

and Nn in which the data-dependent threshold θ̂n is replaced by the limiting value θ.

Define

M̃n =
∑
λ∈Λn

I(Γλ = 0) I(η(Zλ) ≤ θ) and Ñn =
∑
λ∈Λn

I(η(Zλ) ≤ θ)

Note that EÑn = |Λn| · P(η(Z) ≤ θ). By an elementary conditioning argument,

EM̃n =
∑
λ∈Λn

E
{
P(Γλ = 0 |Zλ) I(η(Zλ) ≤ tn(α))

}
=

∑
λ∈Λn

E
{
η(Zλ) I(η(Zλ) ≤ tn(α))

}
= |Λn| · E[η(Z) I(η(Z) ≤ t)].

For each δ > 0,

E|Ñn −Nn| ≤
∑
λ∈Λn

P(η(Zλ) ∈ [θ̂n, θ] ∪ [θ, θ̂n])

≤ |Λn|
[
P
(
η(Z) ∈ (θ − δ, θ + δ)

)
+ P

(
|θ̂n − θ| ≥ δ

)]
.

As θ̂n → θ in probability and the distribution of η(Z) has no point masses, the last

inequality implies that E|Ñn − Nn| = |Λn| · o(1). A similar argument shows that
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E|M̃n −Mn| = |Λn| · o(1). Thus as n tends to infinity,

EMn

ENn

=
EM̃n + |Λn| · o(1)

EÑn + |Λn| · o(1)

=
E[η(Z) I(η(Z) ≤ θ)] + o(1)

P(η(Z) ≤ θ) + o(1)

→ E[η(Z) I(η(Z) ≤ θ)]

P(η(Z) ≤ θ)
= F (θ) = α.

This completes the proof of the theorem.
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