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To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages
sent between sensor nodes. Before doing so, keys for performing encryption and authentication must be agreed
upon by the communicating parties. Due to resource constraints, however, achieving key agreement in wireless
sensor networks is non-trivial. Many key agreement schemes used in general networks, such as Diffie-Hellman
and other public-key based schemes, are not suitable for wireless sensor networks due to the limited computational
abilities of the sensor nodes. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large
amount of memory this requires when the network size is large. To solve the key pre-distribution problem, two
elegant key pre-distribution approaches have been proposed recently.

In this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a
new key pre-distribution scheme which substantially improves the resilience of the network compared to previous
schemes, and give an in-depth analysis of our scheme in terms of network resilience and associated overhead. Our
scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the
probability that communications between any additional nodes are compromised is close to zero. This desirable
property lowers the initial payoff of smaller-scale network breaches to an adversary, and makes it necessary for
the adversary to attack a large fraction of the network before it can achieve any significant gain.
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1. INTRODUCTION

Recent advances in electronic and computer technologies have paved the way for the pro-
liferation of wireless sensor networks (WSNs). Sensor networks usually consist of a large
number of ultra-small autonomous devices. Each device, called a sensor node, is battery
powered and equipped with integrated sensors, data processing capabilities, and short-
range radio communications. In typical application scenarios, sensor nodes are spread ran-
domly over the terrain under scrutiny and collect sensor data. Examples of sensor network
projects include SmartDust [Kahn et al. 1999] and WINS.1

Sensor networks are being deployed for a wide variety of applications [Akyildiz et al.
2002], including military sensing and tracking, environment monitoring, patient monitor-
ing and tracking, smart environments, etc. When sensor networks are deployed in a hostile
environment, security becomes extremely important, as these networks are prone to differ-
ent types of malicious attacks. For example, an adversary can easily listen to the traffic,
impersonate one of the network nodes, or intentionally provide misleading information to
other nodes. To provide security, communication should be encrypted and authenticated.
The open problem is how to bootstrap secure communications between sensor nodes, i.e.
how to set up secret keys between communicating nodes.

This problem is known as thekey agreementproblem, which has been widely studied in
general network environments. There are three types of general key agreement schemes:
trusted-server schemes, public-key schemes, and key pre-distribution schemes.Trusted-
serverschemes depend on a trusted server for key agreement between nodes; an example
is Kerberos [Neuman and Tso 1994]. This type of scheme is not suitable for sensor net-
works because in the locations where WSNs are deployed, one cannot generally assume
that any trusted infrastructure is in place.Public-keyschemes depend on asymmetric cryp-
tography and require some sort of public-key infrastructure to be in place; an example
of such schemes is an authenticated key agreement protocol using public-key certificates.
However, as pointed out by Perrig, et al. [Perrig et al. 2001], the limited computation and
energy resources of sensor nodes often make it undesirable to use public-key algorithms
in WSNs. A third way to establish keys is viapre-distribution, where (secret) key infor-
mation is distributed to all sensor nodes prior to deployment. Such schemes seem most
appropriate for WSNs.

If it is known which nodes will be in the same neighborhood before deployment, pair-
wise keys can be established between these nodes (and only these nodes)a priori. How-
ever, most sensor network deployments are random; thus, sucha priori knowledge about
the topology of the network does not exist. A number of key pre-distribution schemes do
not rely on prior knowledge of the network topology. A naive solution is to let all nodes
store an identicalmastersecret key. Any pair of nodes can use this master secret key to
securely establish a new pairwise key. However, this scheme does not exhibit desirable net-
work resilience: if a single node is compromised, the security of the entire sensor network
is compromised. Some existing studies suggest storing the master key in tamper-resistant
hardware to reduce the risk, but this increases the cost and energy consumption of each
sensor. Furthermore, tamper-resistant hardware might not always be safe [Anderson and
Kuhn 1996].

At the other extreme, one might consider a key pre-distribution scheme in which each

1Wireless Integrated Network Sensors, University of California. See: http://www.janet.ucla.edu/WINS.
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sensor storesN − 1 keys, each of which is known to only one other sensor node (here, we
let N denote the total number of nodes in the network). This scheme guarantees perfect
resilience because any number of compromised nodes does not affect the security of any
uncompromised pairs of nodes. Unfortunately, this scheme is impractical for sensors with
an extremely limited amount of memory becauseN could be large. Moreover, adding
new nodes to a pre-existing sensor network is difficult when using this scheme because the
existing nodes do not have the new nodes’ keys.

Recently, two key pre-distribution schemes suited for sensor networks have been pro-
posed. Eschenauer and Gligor [Eschenauer and Gligor 2002] proposed a random key pre-
distribution scheme which may be summarized as follows: before deployment, each sensor
node receives a random subset of keys from a large key pool; to agree on a key for commu-
nication, two nodes find a common key (if any) within their subsets and use that key as their
shared secret key. Now, the existence of a shared key between a particular pair of nodes
is not certain but is instead guaranteed only with some probability (which can be tuned by
adjusting the parameters of the scheme). Eschenauer and Gligor note that this does not
present an insurmountable problem as long as any two nodes can securely communicate
via a sequence of secure links; see Sections 4 and 7 for further discussion.

Based on this scheme, Chan, Perrig, and Song [Chan et al. 2003] proposed a general-
ized “q-composite” scheme which improves the resilience of the network (for the same
amount of key storage) and requires an attacker to compromise many more nodes in order
to compromise any additional communication. The difference between this scheme and the
previous scheme is that theq-composite scheme requires two nodes to findq (with q > 1)
keys in common before deriving a shared key and establishing a secure communication
link. It is shown that, by increasing the value ofq, network resilience against node capture
is improved for certain ranges of other parameters [Chan et al. 2003].

1.1 Main Contributions

The primary contribution of this work is a new key pre-distribution scheme which offers
improved network resilience (for the same storage constraints) compared to the existing
schemes mentioned above. The scheme requires more computation than previous schemes,
but we show that this extra computation is small compared to that required by public-key
schemes. We provide a thorough theoretical analysis of the security of our scheme, as well
as its associated overhead. A high-level overview of this scheme, and a discussion of its
advantages, appears below. As part of our analysis of the security of this scheme, we also
introduce a rigorousframework(i.e., formal definitions of security) appropriate for analyz-
ing key pre-distribution schemes for wireless sensor networks. Somewhat surprisingly, we
found that prior definitions of security for key pre-distribution schemes were insufficient
for our intended application; thus, we believe our framework is of independent interest and
should prove useful for further work in this area.

Our key pre-distribution scheme extends and improves upon Blom’s key pre-distribution
scheme [Blom 1985] by combining this scheme with the random key pre-distribution meth-
ods discussed previously. Blom proposed a key pre-distribution scheme that allowsany
pair of nodes to find a secret pairwise key between them. Compared to the “trivial” scheme
mentioned earlier in which each node stores(N − 1) keys, Blom’s scheme only requires
nodes to storeλ+1 keys, whereλ ¿ N . The tradeoff is that, unlike the(N−1)-pairwise-
key scheme, Blom’s scheme is not perfectly resilient against node capture. Instead it has
the followingλ-secure property:as long as an adversary compromises at mostλ nodes,
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uncompromised nodes are perfectly secure. When an adversary compromises more thanλ
nodes, all pairwise keys in the entire network are compromised.

The thresholdλ can be treated as a security parameter in that selection of a largerλ
leads to a more secure network. This threshold property of Blom’s scheme is a desirable
feature because an adversary needs to attack a significant fraction of the network in order to
achieve high payoff. However,λ also determines the amount of memory required to store
key information, as increasingλ leads to higher memory usage. The goal of our scheme is
to increase the network’s resilience against node capture in a probabilistic sense (and not
in a perfect sense, as in the Blom scheme) without using too much memory.

Blom’s scheme uses asinglekey space to ensure that any pair of nodes can compute
a shared key. Motivated by the random key pre-distribution schemes presented previ-
ously [Eschenauer and Gligor 2002; Chan et al. 2003], we propose a new scheme using
multiplekey spaces. That is, we first constructω spaces using Blom’s scheme, and each
sensor node carries key information fromτ (2 ≤ τ < ω) randomly selected key spaces.
Now (by the properties of the underlying Blom scheme), if two nodes carry key informa-
tion from a common space, they can compute a pairwise key. Of course, it is no longer
certain that two nodes can generate a pairwise key (as in Blom’s scheme); instead (as in
previous random key pre-distribution schemes), we have only a probabilistic guarantee
that this will be possible. Our analysis shows that using the same amount of memory (and
for the same probability of deriving a shared key), our new scheme is substantially more
resilient than previous probabilistic key pre-distribution schemes.

To further improve the resilience of our approach while maintaining connectivity of the
network, we develop a two-hop-neighbor key pre-distribution scheme. The idea is to let the
direct neighbor of a sender forward messages, so that nodes that are two hops away from
the sender can also receive them. The nodes that are two hops away are known astwo-hop
neighbors. Treating two-hop neighbors as “direct” neighbors, the number of neighbors of
each sender increases fourfold. The consequence is that the resilience threshold can be
improved as well. Our results show that under certain conditions, the threshold can be
improved by a factor of four compared to our initial scheme.

The remainder of this paper is organized as follows. Section 2 describes our proposed
framework for analyzing the security of key pre-distribution schemes in terms of their ef-
fectiveness in establishing “secure channels” between the network nodes.2 We also show
a simple method to convert any secure key pre-distribution scheme into a scheme for es-
tablishing secure channels. Section 3 reviews Blom’s key pre-distribution scheme which
will be used as a building block for our main key pre-distribution scheme, described in
Section 4. Section 5 rigorously quantifies the resilience of our scheme to node capture,
and compares our scheme with existing key pre-distribution schemes. Section 6 presents
the communication and computation overheads of our scheme. Section 7 describes our
two-hop-neighbor key pre-distribution scheme. We conclude in Section 8.

1.2 Other Related Work

The Eschenauer-Gligor scheme [Eschenauer and Gligor 2002] and the Chan-Perrig-Song
scheme [Chan et al. 2003] have been reviewed earlier in this section. Detailed comparisons
with these two schemes will be given in Section 5.

Blundo et al. proposed several schemes allowing any group ofn parties to compute

2Interestingly, secure key pre-distribution is necessary, butnot sufficient, for establishing secure channels.
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a common key which is perfectly secret with respect to any coalition oft other par-
ties [Blundo et al. 1993]. Whenn = 2, their main scheme may be viewed as a special case
of Blom’s scheme [Blom 1985], which is reviewed in Section 3. Although both Blom’s
scheme (forn = 2) and the main scheme of Blundo, et al. (for arbitraryn) match the
known lower bound [Blundo et al. 1993] in terms of their memory usage for any desired
resiliencet, we stress that this lower bound holdsonly when (1)all groups of sizen must
be able to compute a shared key and (2) the network must beperfectlyresilient to at mostt
captured nodes. By relaxing these requirements (slightly) and considering theprobabilistic
analogues of the above, we obtain more memory-efficient schemes.

Perrig et al. proposed SPINS [Perrig et al. 2001], a security architecture in which each
sensor node shares a secret key with a base station. In this scheme, two sensor nodes cannot
directly establish a secret key; however, they can set up a shared key using the base station
as a trusted third party. The scheme described in this work does not rely on any trusted
parties after nodes have been deployed.

A similar approach to the one described in this paper was independently developed by
Liu and Ning [Liu and Ning 2003], which was published at the same time as the conference
version of this paper [Du et al. 2003]. Compared to [Liu and Ning 2003], this paper pro-
vides a more thorough theoretical security analysis and communication overhead analysis;
we also introduce a rigorousframework(i.e., formal definitions of security) appropriate for
analyzing key pre-distribution schemes for wireless sensor networks. Moreover, we also
describe a further improvement using multi-hop neighbors.

2. A SECURITY FRAMEWORK FOR KEY PRE-DISTRIBUTION SCHEMES

Before describing our primary scheme in detail, we first propose a general framework in
which to analyze the security of key pre-distribution schemes in general. Our starting
point is the following simple observation (which, however, we found lacking in previous
work): the goal of a key pre-distribution scheme is not simply to distribute keys, but rather
to distribute keyswhich can then be used to secure network communication. While the
former is necessary for the latter, it is decidedlynot sufficient. As an example, we show
below that although the Eschenauer-Gligor scheme ensures that the keyKij established by
some pair of nodesi andj remains unknown to an adversary (with high probability, for
some fraction of compromised nodes), the scheme isinsecureif Kij is used to authenticate
the communication between these nodes. Related problems arise in the schemes of Blom,
Blundo, et al., and Chan-Perrig-Song, as well. This observation emphasizes the importance
of precise definitions of security, as well as rigorous proofs in some well-defined model.

We develop the framework as follows: We first define key pre-distribution schemes, and
describe for such schemes a “basic” level of security. This definition (informally) cap-
tures the idea that an adversary should be unable to determine the key shared by some
pair of users (except with low probability), and roughly corresponds to the level of secu-
rity considered in previous work in this area. We then define a stronger notion of security
which we believe more accurately represents the level of security expected from key pre-
distribution schemes when usedin practice. We focus specifically on the case of message
authentication, yet our results easily extend to the case of pairwise encryption. Our defini-
tion (informally) requires that an adversary be unable to insert a bogus message which is
accepted as legitimate by one of the nodes (except with low probability). Schemes meeting
this, more stringent notion of security are said to achievesecure pairwise authentication.
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After introducing these definitions, we show that a scheme meeting the “basic” notion

of security does not necessarily achieve secure pairwise authentication. On a more positive
note, we show a simple way to convert any scheme achieving the “basic” level of security
to one whichdoesachieve secure pairwise authentication.

Our definitions, as well as our results, are described here in a relatively informal fashion.
Yet, it should be straightforward for the interested reader to derive formal definitions and
statements of our results from the discussion below.

We begin with a discussion of key pre-distribution schemes. We view such schemes
as being composed of algorithms for key generation, key distribution, and key derivation.
In the randomizedkey generationphase, some master secret informationS is established.
GivenS and a node identityi, a deterministickey distributionalgorithm generates infor-
mationki which will be stored by nodei. Finally, during thekey derivationphase, two
distinct nodesi andj holding ki andkj , respectively, execute an algorithmDerive and
output a shared keyKij ∈ {0, 1}` or⊥ if no such key can be established. We denote exe-
cution of this algorithm by nodei (holding informationki) asDerive(ki, i, j); we always
requireDerive(ki, i, j) = Derive(kj , j, i). We assume the key derivation stage is deter-
ministic, but allow that it may require interaction between nodesi andj. Note that a pair
of nodesi, j is not guaranteed to be able to establish a shared keyKij 6=⊥. We assume
that the probability (over choice of master keyS) thati andj can establish a shared key is
the same for anyi 6= j, and refer to this as theconnectivity(denoted byp) of the scheme.

We define our “basic” level of security via the following game: Fix node identitiesi
andj, and run an instance of the key pre-distribution scheme. An adversary is given the
information {ki1 , . . . , kit} for t randomly-selected nodes, where neitheri nor j are in
the set{i1, . . . , it} (this models adversarial compromise of these nodes, with concomi-
tant exposure of the secret information stored thereon). The adversary “succeeds” if: (1)
Kij 6=⊥, and (2) the adversary can successfully output the keyKij . We will say that a
key pre-distribution scheme is(t, ε)-secure if, for anyi, j, the probability that an adversary
succeeds is at mostε. (In the above formulation, we have not restricted the computational
abilities of the adversary in any way. Clearly, this relaxation can also be considered.)
Note that meaningful security is obtained only whenε < p, since the first condition (i.e.,
Kij 6=⊥) only holds with probabilityp.

Before introducing a more useful notion of security, we define a pairwise authentication
scheme. This is simply a key pre-distribution scheme with an additionalmessage authenti-
cationalgorithmMac andmessage verificationalgorithmVrfy. Now, if nodesi, j establish
a shared keyKij 6=⊥, nodei can authenticate its communication to nodej as follows (j
can authenticate its communication toi similarly): before sending messagem, nodei
computestag = MacKij (m) and sendstag along withm; upon receiving(m, tag), node
j acceptsm only if VrfyKij

(m, tag) = 1. For completeness, we defineMac⊥(m) =⊥ for
all m, andVrfy⊥(m, tag) = 0 for all m, tag.

We now define secure pairwise authentication via the following game: Fixi andj, and
run an instance of the pairwise authentication scheme. An adversary is given{ki1 , . . . , kit}
as before. Additionally, the adversary can repeatedly make an unlimited number of mes-
sage authentication requests of the formMac(i′, j′,m), with the effect that nodei′ authen-
ticates messagem for nodej′ (using keyKij) and returns the resultingtag to the adversary.
(We stress thati′, j′ ∈ {i, j} is allowed). Finally, the adversary outputs(m∗, tag∗) and
“succeeds” if: (1)VrfyKij

(m∗, tag∗) = 1 (in particular, this will requireKij 6=⊥), and
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(2) the adversary had never requestedMac(i, j, m∗) orMac(j, i, m∗). Success corresponds
to the adversary “inserting” the bogus messagem∗ which is accepted as valid by one of
i, j even though neither node authenticated this message. Finally, we say that a scheme
is a (t, ε)-securepairwise authentication schemeif, for any (i, j), the probability that a
polynomial-time adversary succeeds in the above game is at mostε. Note that we must
now limit the computational abilities of the adversary since secure message authentication
for an unbounded number of messages is impossible otherwise.

It is instructive to note that a key pre-distribution scheme secure in the basic sense need
not be a secure pairwise authentication scheme. For example, consider a scheme in which
Kij is equal toKi′j′ (for some(i′, j′) 6= (i, j)) with some high (i.e., non-negligible)
probability; this is true for both the Eschenauer-Gligor and Chan-Perrig-Song schemes.
Now, even if an adversary does not compromiseany nodes, and even if it cannot guess
Kij (and hence the scheme remains secure in the basic sense), the scheme is not a secure
pairwise authentication scheme. In particular, an adversary can take messages that were
authenticated byi′ and intended forj′, and send these messages toj while claiming they
originated fromi; with high probability (namely, wheneverKi′j′ = Kij), the adversary’s
insertion goes undetected.

This problem of “repeated keys” has been noticed (although informally) in previous
work. However, we stress that subtle problems may arise even when the probability of
“repeated keys” is small. Whenever the keys used by different pairs of parties are not
independent(in a probabilistic sense), a formal proof of secure pairwise authentication
will not be possible in general. In fact, this reflects a serious potential vulnerability, as
the presence of dependent keys leaves open the possibility ofrelated-key attackson the
message authentication code or the lower-level primitives (i.e., block ciphers) from which
the MAC is constructed. The possibility of such related-key attacks also rules out the easy
“fix” in which nodes pre-pend the identities of the sender/receiver to any authenticated
messages; this does nothing to prevent related-key attacks.

Given the above, one should focus on designing secure pairwise authentication schemes
rather than secure key pre-distribution schemes. Luckily, it is simple to derive the former
from the latter as follows: LetKij be the key derived by nodesi andj in some key pre-
distribution scheme which is assumed to be secure in the basic sense discussed above.
These nodes then computeK ′

ij = H(i, j, Kij), whereH is a hash function modeled as a
random oracle[Bellare and Rogaway 1993]. This keyK ′

ij is then used byi andj (as the
key for anysecure MAC) to authenticate their communication as suggested above. It can
be shown that if the initial scheme is(t, ε)-secure in the basic sense, and if the probability
of forgery for the MAC isε′, then the modified scheme is a(t, qε + ε′)-secure pairwise
authentication scheme, whereq is a bound on the number of hash function queries made
by an adversary. The proof is straightforward, and is omitted here.

Since one may always convert any secure key pre-distribution scheme into a secure
pairwise authentication scheme, we will analyze the security of our proposed scheme in
the “basic” sense with the understanding that the above transformation should be applied
before the scheme is used in practice. This modular analysis of security is (we believe)
simpler, more intuitive, and less prone to error.
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3. BACKGROUND: BLOM’S KEY PRE-DISTRIBUTION SCHEME

Blom proposed a key pre-distribution method that allows any pair of nodes in a network
to be able to derive a pairwise secret key [Blom 1985]. As long as no more thanλ nodes
are compromised, the network is perfectly secure (we call this theλ-secure property). We
briefly describe how Blom’sλ-secure key pre-distribution system works (we have made
some slight modifications to the scheme in order to make it more suitable for sensor net-
works, for the essential features remain unchanged).

During the pre-deployment phase, the base station first constructs a(λ + 1)×N matrix
G over a finite fieldGF (q), whereN is the size of the network andq > N . Matrix G
is public information; any sensor can know the contents ofG, and even adversaries are
allowed to knowG. Then the base station creates a random(λ + 1)× (λ + 1) symmetric
matrixD overGF (q), and computes anN×(λ+1) matrixA = (D ·G)T , where(D ·G)T

is the transpose ofD ·G. Matrix D needs to be kept secret, and should not be disclosed to
adversaries or any sensor node (although, as will be discussed later, one row of(D · G)T

will be disclosed to each sensor node). BecauseD is symmetric, it is easy to see:

A ·G = (D ·G)T ·G = GT ·DT ·G = GT ·D ·G
= (A ·G)T .

This means thatA·G is a symmetric matrix. If we letK = A·G, we know thatKij = Kji,
whereKij is the element inK located in theith row andjth column. We useKij (or Kji)
as the pairwise key between nodei and nodej. Fig. 1 illustrates how the pairwise key
Kij = Kji is generated. To carry out the above computation, nodesi andj should be able
to computeKij andKji, respectively. This can be easily achieved using the following key
pre-distribution scheme, fork = 1, . . . , N :

(1) store thekth row of matrixA at nodek, and

(2) store thekth column of matrixG at nodek.3

Therefore, when nodesi andj need to establish pairwise key, they first exchange their
columns ofG and then they can computeKij andKji, respectively, using their private
rows ofA. BecauseG is public information, its columns can be transmitted in plaintext.
It has been shown [Blom 1985] that the above scheme isλ-secure if anyλ + 1 columns of
G are linearly independent. Thisλ-secure property guarantees that no coalition of up toλ
nodes other thani andj can computeKij or Kji.

An Example of Matrix G

We show an example of matrixG. Note that anyλ + 1 columns ofG must be linearly
independent in order to achieve theλ-secure property. Since each pairwise key is repre-
sented by an element in the finite fieldGF (q), we must set|q| to be larger than the key size
we desire. Thus, if 64-bit keys are desired we may chooseq as the smallest prime number
larger than264 (alternately, we may chooseq = 264); note that for all reasonable values of
N we will haveq > N as required. Lets be a primitive element ofGF (q); that is, each
nonzero element inGF (q) can be represented by some power ofs. A feasibleG can be

3We will show later that a sensor need not store the whole column, because each column can be generated from
a single field element.
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Fig. 1. Generating Keys in Blom’s Scheme

designed as follows [MacWilliams and Sloane 1977]:

G =




1 1 1 · · · 1
s s2 s3 · · · sN

s2 (s2)2 (s3)2 · · · (sN )2
...

sλ (s2)λ (s3)λ · · · (sN )λ




.

It is well-known thatsi 6= sj if i 6= j mod q (this is a property of primitive elements).
SinceG is a Vandermonde matrix, it can be shown that anyλ+1 columns ofG are linearly
independent whens, s2, s3, . . . , sN are all distinct [MacWilliams and Sloane 1977]. In
practice,G can be generated by the primitive elements of GF (q). Therefore, when we
store thekth column ofG at nodek, we only need to store the seedsk at this node, and
any node can regenerate the column given the seed. Tradeoffs between memory usage and
computational complexity will be discussed later in the paper.

4. MULTIPLE-SPACE KEY PRE-DISTRIBUTION SCHEME

To achieve better resilience against node capture, we propose a new key pre-distribution
scheme that uses Blom’s method as a building block. Our idea is based on the following
observations: Blom’s method guarantees thatany pair of nodes can establish a shared
secret key. If we imagine a graph in which each sensor node is a vertex and there is an
edge between nodes only if they can establish a shared key, then Blom’s scheme results in
a completegraph (i.e., and edge exists between all node pairs). Although full connectivity
is desirable, it is not necessary. To achieve our goal of key agreement, all we need is a
connectedgraph, rather than a complete graph. Previous work shows thatby requiring the
graph to be connected rather than complete, the information stored by each sensor node
can be reduced.

Before we describe our proposed scheme, we define akey space(or spacein short)
as a pair of matrices(D, G) as defined in Blom’s scheme. We say a node picks a key
space(D, G) if the node carries the secret information generated from (D, G) using Blom’s
scheme. Two nodes can calculate pairwise key if they have picked a common key space.

4.1 Key Pre-Distribution Phase

During the key pre-distribution phase, we need to assign key information to each node,
such that after deployment, neighboring sensor nodes can establish a shared, secret key.
Assume that each sensor node has a unique identity, whose range is from1 to N . We also
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select the parametersτ, ω, andλ, where2 ≤ τ < ω. These parameters determine the
security and performance of our scheme, as will be discussed later in the paper. Our key
generation/distribution phase consists of the following steps:

Step 1: GeneratingG matrix. We first select a primitive element from a finite field
GF (q), where|q| is larger than the desired key length (and alsoq > N ), to create a
generator matrixG of size(λ + 1) × N . Let G(j) represent thejth column ofG. We
provideG(j) to nodej. As we have already shown in Section 3, althoughG(j) contains
(λ + 1) elements, each sensor only needs to store one field element (the second element
of the column), which can be used to regenerate all the elements inG(j). Therefore the
memory usage for storingG(j) at a node is just a single element. Since the seed is unique
for each sensor node, it can also be used as a node identity.

Step 2: GeneratingD matrices. We generateω random, symmetric matricesD1,. . ., Dω

of size(λ+1)× (λ+1). We call each tupleSi = (Di, G) (for i = 1, . . . , ω), a key space.
We then compute the matrixAi = (Di ·G)T . Let Ai(j) represent thejth row ofAi.

Step 3: Selectingτ spaces. We randomly selectτ distinct key spaces from theω key
spaces for each node. For each spaceSi selected by nodej, we store thejth row ofAi (i.e.
Ai(j)) at this node. This information is secret; under no circumstance should a node send
this information to any other node. According to Blom’s scheme, two nodes can establish
a common secret key if they have both picked a common key space.

SinceAi is anN × (λ + 1) matrix,Ai(j) consists of(λ + 1) elements. Therefore, each
node needs to store(λ + 1)τ elements in its memory. Because the length of each element
is (roughly) the same as the length of the secret keys, the memory usage of each node is
(λ + 1)τ times the length of the key (we do not count the space required to store the seed
for G(j), since this may serve as the node identity).

4.2 Key Agreement Phase

After deployment, each node needs to discover whether it shares any space with its neigh-
bors. To do this, each node broadcasts a message containing the following information:
(1) the node’s id, (2) the indices of the spaces it carries,4 and (3) the seed of the column of
G it carries.5

Assume that nodesi andj are neighbors, and they have received the above broadcast
messages. If they find out that they have a common space, saySc, they can compute their
pairwise secret key using Blom’s scheme: Initially nodei hasAc(i) and seed forG(i), and
nodej hasAc(j) and seed forG(j). After exchanging the seeds, nodei can regenerate
G(j) and nodej can regenerateG(i); then the pairwise secret key between nodesi andj,
Kij = Kji, can be computed in the following manner by these two nodes independently:

Kij = Kji = Ac(i) ·G(j) = Ac(j) ·G(i).

After secret keys with neighbors are set up, the entire sensor network forms the following
key-sharing graph:

DEFINITION 4.1. (Key-sharing graph)Let V represent all the nodes in the sensor net-

4If we are concerned about disclosing the indices of the spaces each node carries, we can use the challenge-
response technique to avoid sending the indices [Chan et al. 2003].
5As mentioned earlier, we could also let the node identity be the same as the seed.
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work. A key-sharing graphGks(V, E) is constructed in the following manner: For any two
nodesi andj in V , there exists an edge between them if and only if (1) nodesi andj have
at least one common key space, and (2) nodesi andj can reach each other (i.e., are within
wireless transmission range).

We now show how two neighboring nodes,i andj who do not share a common key
space could still establish a shared secret key. The idea is to use the secure channels that
have already been established in the key-sharing graphGks: as long asGks is connected,
two neighboring nodesi andj can always find a path inGks from i to j. Assume that the
path isi, v1, . . ., vt, j. To establish a common secret key betweeni andj, nodei first
generates a random keyK. Theni sends the key tov1 using their secure link;v1 sends the
key tov2 using the secure link betweenv1 andv2, and so on untilj receives the key from
vt. Nodesi andj use this secret keyK as their pairwise key. Because the key is always
forwarded over a secure link, no nodes beyond this path can determine the key.

4.3 Computing ω, τ , and Memory Usage

As we have just shown, to make it possible for any pair of nodes to be able to find a secret
key between them, the key sharing graphGks(V, E) needs to beconnected. Given the size
and the density of a network, how can we select the values forω andτ such that the graph
Gks is connected with high probability? We use the following three-step approach, which
is adapted from [Eschenauer and Gligor 2002]. Although this approach is heuristic and
not rigorous, it has been suggested and used in previous work in this area [Eschenauer and
Gligor 2002; Chan et al. 2003].

Step 1: Computing required local connectivity. Let Pc be the probability that the key-
sharing graph is connected. We call itglobal connectivity. We uselocal connectivity
to refer to the probability of two neighboring nodes sharing at least one space (i.e., the
probability they can establish a common key). The global connectivity and the local con-
nectivity are related: to achieve a desired global connectivityPc, the local connectivity
must be higher than a certain value; we call this value therequired local connectivity, and
denote it byprequired.

Using results from the theory of random graphs [Erdős and Ŕenyi 1959], we can relate
the average node degreed (i.e., the average number of edges connected to each node) to
the global connectivity probabilityPc for a network of sizeN (for N large):

d =
(N − 1)

N
[ln(N)− ln(− ln(Pc))] . (1)

For a given density of sensor network deployment, letn be the expected number of neigh-
bors within wireless communication range of a node. Since the expected node degree
should be at leastd as calculated above, the required local connectivityprequired can be
estimated as:

prequired =
d

n
. (2)

We stress that this only guarantees connectivity in a heuristic (and not a rigorous) sense:
to apply the theory of random graphs it must be the case that a node has edgeswith other
nodes uniformly distributed throughout the graph. Here, however, nodes only have edges
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to their physically-close neighbors. Yet, we are not aware of any problems in practice with
using this heuristic estimate.

Step 2: Computing actual local connectivity.After we have selected values forω andτ ,
the actual local connectivity is determined by these values. We usepactual to represent the
actual local connectivity, namelypactual is the actual probability of any two neighboring
nodes sharing at least one space (i.e., the probability that they can establish a common
key). Sincepactual = 1− Pr(two nodes do not share any space),

pactual = 1−
(
ω
τ

)(
ω−τ

τ

)
(
ω
τ

)2 = 1− ((ω − τ)!)2

(ω − 2τ)!ω!
. (3)

The values ofpactual have been plotted in Fig. 2 whenω varies fromτ to 100 andτ =
2, 4, 6, 8. For example, one can see that, whenτ = 4, the value ofω must be at most 25 in
order to achieve local connectivitypactual ≥ 0.5.
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Fig. 2. Probability of sharing at least one key when two nodes each randomly choosesτ spaces fromω spaces.

The collection of sets of spaces assigned to each sensor form a probabilistic quorum
system [Malkhi et al. 2001]: the desire is that every two sensors have a space in common

with high probability. Next we show that ifτ ≥
√

ln 1
1−pactual

√
ω, then the probability

of intersection is at leastpactual. For example, whenτ ≥
√

ln 2
√

ω, the probability of
intersection is at least1/2. This helps explain the behavior evidence in Fig. 2. A proof
of this fact, similar to proof of the “birthday paradox”, is as follows: It is well-known that
1− x ≤ e−x for all x ≥ 0. Therefore,

pactual = 1− ((ω − τ)!)2

(ω − 2τ)!ω!

= 1−
(
1− τ

ω

) (
1− τ

ω − 1

)
· · ·

(
1− τ

ω − τ + 1

)

≥ 1− e−( τ
ω + τ

ω−τ +···+ τ
ω−τ+1 )

≥ 1− e−
τ2
ω .
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Accordingly, we have

τ ≤
√

ln
1

1− pactual

√
ω.

Thus, the value ofτ to achievepactual (for givenω) is at most
√

ln 1
1−pactual

√
ω.

Step 3: Computingω and τ . Knowing the required local connectivityprequired and the
actual local connectivitypactual, in order to achieve the desired global connectivityPc, we
should havepactual ≥ prequired. Thus:

1− ((ω − τ)!)2

(ω − 2τ)!ω!
≥ (N − 1)

nN
[ln(N)− ln(− ln(Pc))] . (4)

Therefore, in order to achieve a certainPc for a network of sizeN and the expected
number of neighbors for each node beingn, we just need to find values ofω andτ such
that Inequality (4) is satisfied.

Step 4: Computing memory usage.According to Blom’s scheme, a node needs to store
a row from anN × (λ + 1) matrix (D · G)T ; therefore, for each selected space, a node
needs to carryλ + 1 elements; Hence the total memory usagem for each node is:

m = (λ + 1)τ. (5)

(As mentioned earlier, we do not count the field element needed to generateG(i) since this
can also serve as the node identity.)

5. SECURITY ANALYSIS

We evaluate the multiple-space key pre-distribution scheme in terms of its resilience against
node capture. Our evaluation is based on two metrics: (1) Whenx nodes are captured,
what is the probability that at least one key space is broken? This analysis shows when the
network starts to become insecure. (2) Whenx nodes are captured, what fraction of the
additional communication (i.e., communication amonguncapturednodes) also becomes
compromised? This analysis shows the expected payoff an adversary obtains after captur-
ing a certain number of nodes.

5.1 Probability of At Least One Space Being Broken

We define the unit of memory size as the size of a secret key (e.g., 64 bits). In Blom’s
scheme, for a space to beλ-secure, each node needs to use memory of sizeλ+1. Therefore,
if the memory usage ism and each node needs to carryτ spaces, the value ofλ should be
bm

τ c − 1. We use this value forλ in the following analysis.
Let Si be the event that spaceSi is broken (fori = 1, . . . , ω), and letCx be the event

thatx nodes are compromised in the network. Furthermore, letSi ∪ Sj be the joint event
that either spaceSi or spaceSj , or both, is broken and letθ = τ

ω . Hence, we have

Pr(at least one space is broken| Cx) = Pr(S1 ∪ S2 ∪ · · · ∪ Sω | Cx).

According to the Union Bound,

Pr(S1 ∪ · · · ∪ Sω | Cx) ≤
ω∑

i=1

Pr(Si | Cx).
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Due to the fact that each key space is broken with equal probability,

ω∑

i=1

Pr(Si | Cx) = ω Pr(S1 | Cx).

Therefore,

Pr(at least one space is broken| Cx)

≤
ω∑

i=1

Pr(Si | Cx) = ω Pr(S1 | Cx). (6)

We now need to calculatePr(S1 | Cx), the probability of spaceS1 being compromised
whenx nodes are compromised. Because each node carries information fromτ spaces, the
probability that each compromised node carries information aboutS1 is θ = τ

ω . Therefore,
after x nodes are compromised, the probability that exactlyj of thesex nodes contain
information aboutS1 is

(
x
j

)
θj(1− θ)x−j . Since spaceS1 can be broken only after at least

λ + 1 nodes are compromised (by theλ-secure property of the underlying Blom scheme),
we have the following result:

Pr(S1 | Cx) =
x∑

j=λ+1

(
x

j

)
θj(1− θ)x−j . (7)

Combining Inequality (6) and Equation (7), we have the following upper bound:

Pr(at least one space is broken| Cx)

≤ ω

x∑

j=λ+1

(
x

j

)
θj(1− θ)x−j

= ω

x∑

j=λ+1

(
x

j

) ( τ

ω

)j (
1− τ

ω

)x−j

. (8)

We plot both simulation and analytical results in Fig. 3. From the figure, the two results
match each other closely, meaning that the union bound works quite well in the scenarios
we discuss. Fig. 3 shows, for example, that when the memory usage is set to 200,ω is set
to 50, andτ is set to 4, the value ofλ for each space is49 = b 200

4 c − 1, but an adversary
needs to capture about 380 nodes in order to be able to break at least one key space with
reasonably-high probability.

Authentication Property.Due to the property of Blom’s scheme, all keys generated in a
space are pairwise keys. Therefore, when the space is not yet compromised, keys in this
space can be used directly for authentication (note, however, that this willnot guarantee
secure pairwise authentication in the sense of Section 2). After a space is broken, however,
an adversary can generate all the pairwise keys in that space, and keys in that space can no
longer be used for authentication purposes.

5.2 The Fraction of Network Communication that is Compromised

To understand the resilience of our key pre-distribution scheme, we need to find out how the
capture ofx sensor nodes by an adversary affects the rest of the network. In particular, we
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Fig. 3. The probability of at least one key space being compromised by the adversary when the adversary has
capturedx nodes (m = 200, ω = 50). p in the figure representspactual.

want to find out the fraction of additional communication (i.e., communication among the
uncaptured nodes) that an adversary can compromise based on the information retrieved
from thex captured nodes. To compute this fraction, we first compute the probability that
any one of the additional communication links is compromised afterx nodes are captured.
Note that we only consider the links in the key-sharing graph, and each of these links is
secured using a pairwise key computed from the common key space shared by the two
nodes of this link. We should also notice that after the key setup stage, two neighboring
nodes can use the established secure links to agree upon another random key to secure
their communication. Because this key is not generated from any key space, the security
of this new random key does not directly depend on whether the key spaces are broken.
However, if an adversary can record all the communications during the key setup stage,
he/she can still compromise this new key after compromising the corresponding links in
the key-sharing graph.

Let c be a link in the key-sharing graph between two uncompromised nodes, andK be
the communication key used for this link. LetBi represent the joint event thatK belongs
to spaceSi and spaceSi is compromised. We useK ∈ Si to represent that “K belongs to
spaceSi”. The probability ofc being broken givenx nodes are compromised is:

Pr(c is broken| Cx) = Pr(B1 ∪ B2 ∪ · · · ∪ Bω | Cx).

Sincec can only use one key, eventsB1, . . . ,Bω are mutually exclusive. Therefore,

Pr(c is broken| Cx) =
ω∑

i=1

Pr(Bi | Cx) = ω Pr(B1 | Cx),

because all eventsBi are equally likely. Note that
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Pr(B1 | Cx) =
Pr((K ∈ S1) ∩ (S1 is compromised)∩ Cx)

Pr(Cx)
.

Since the event(K ∈ S1) is independent of the eventCx or the event (S1 is compromised),

Pr(B1 | Cx) =
Pr(K ∈ S1) · Pr(S1 is compromised∩ Cx)

Pr(Cx)
= Pr(K ∈ S1) · Pr(S1 is compromised| Cx).

Pr(S1 is compromised| Cx) can be calculated by Equation (7). The probability thatK
belongs to spaceS1 is the probability that linkc uses a key from spaceS1. Since the choice
of a space fromω key spaces is equally probable, we have:

Pr(K ∈ S1) = Pr(the link c uses a key from spaceS1) =
1
ω

.

Therefore,

Pr(c is broken| Cx)

= ω Pr(B1 | Cx) = ω · 1
ω
· Pr(S1 is compromised| Cx)

= Pr(S1 is compromised| Cx)

=
x∑

j=λ+1

(
x

j

) ( τ

ω

)j (
1− τ

ω

)x−j

. (9)

Assume that there areγ secure communication links that do not involve any of thex
compromised nodes. Given the probabilityPr(c is broken| Cx), we know that the expected
fraction of broken communication links among thoseγ links is

γ · Pr(c is broken| Cx)
γ

= Pr(c is broken| Cx)
= Pr(S1 is compromised| Cx). (10)

The above equation indicates that, given thatx nodes are compromised, the fraction of
the compromised secure communication links outside of thosex compromised nodes is
the same as the probability of one space being compromised. This follows directly from
the linearity of expectations.

5.2.1 Comparison.Fig. 4 compares our scheme (the one with solid lines) with the
Chan-Perrig-Song scheme (q = 2, q = 3) and the Eschenauer-Gligor scheme (q = 1). The
figure clearly shows the advantages of our scheme. For example, in both the Chan-Perrig-
Song and Eschenauer-Gligor schemes, whenm = 200 andpactual = 0.33 an adversary
needs to compromise less than 100 nodes in order to compromise10% of the links. In
our scheme, however, the adversary needs to compromise500 nodes before compromising
10% of the links. Therefore, our scheme quite substantially lowers the initial payoff to
the adversary for smaller-scale network breaches. Chan, Perrig, and Song also proposed
a modification of their scheme using multipath key reinforcement to improve the secu-
rity [Chan et al. 2003]. The same technique can be applied to our scheme to improve the
security as well; we leave further comparison to our future work.
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(a)m = 200, pactual = 0.33
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(b) m = 200, pactual = 0.5

Fig. 4. The figures show the probability that a specific random communication link be-
tween two random nodesi, j is compromised after an adversary has capturedx nodes, not
includingi or j. The variablem denotes the memory usage (where the unit of memory is
the length of a shared key), andpactual denotes the probability that a random pair of nodes
can establish a secure link.

In Blom’s scheme, whenm = 200 the network is perfectly secure if less than200 nodes
are compromised, but is completely compromised as soon as200 nodes are compromised
(pactual is always equal to1 in Blom’s scheme).

5.2.2 Further Analysis.Even though Equation (9) can be used for numerical computa-
tion, it is too complicated to figure out the relationship betweenx, m, ω, andτ . According
to the results shown in Fig. 4, there is a small range ofx where the fraction of the compro-
mised secure communication links increases exponentially with respect tox. We develop
an analytical form to estimate this range. It should be noted that Equation (9) is the tail of
the binomial distribution. Therefore, using the bound on the tail of the binomial distribu-
tion [Peterson 1972], we can derive the following theorem regarding that range.

THEOREM 5.1. Assume thatλ = m
τ À 1, s.t. λ + 1 ≈ λ. Define the entropy function

of y, 0 ≤ y ≤ 1, asH(y) = −y ln y − (1− y) ln(1− y) andH ′(y) = dH(y)/dy. For all
x ≥ λ + 1,

1
2
√

xα(1− α)
e−xE(α,θ) ≤

x∑

j=λ+1

(
x

j

)
θj(1− θ)x−j ,

whereα = λ+1
x , θ = τ

ω , andE(α, θ) = H(θ) + (α− θ)H ′(θ)−H(α). Furthermore, if

x <
mω

τ2
, (11)

then
x∑

j=λ+1

(
x

j

)
θj(1− θ)x−j ≤ e−xE(α,θ).

PROOF. Assume thatx ≥ λ + 1. According to the bound on the tail of binomial distri-
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bution [Peterson 1972], Equation (9) can be bounded as follows:

1
2
√

xα(1− α)
α−αx(1− α)−(1−α)xθαx(1− θ)(1−α)x ≤

x∑

j=λ+1

(
x

j

)
θj(1− θ)x−j

and ifα > θ, then
x∑

j=λ+1

(
x

j

)
θj(1− θ)x−j ≤ α−αx(1− α)−(1−α)xθαx(1− θ)(1−α)x, (12)

whereα = λ+1
x andθ = τ

ω . Sinceλ = m
τ À 1, λ + 1 ≈ λ. Consequently,α ≈ λ

x = m
τx .

By taking the logarithm of the upper bound of Inequality (12) and multiplying by− 1
x , we

have

− 1
x

ln
(
α−αx(1− α)−(1−α)xθαx(1− θ)(1−α)x

)

= −H(α)− α ln θ − (1− α) ln(1− θ)
= −H(α) + H(θ) + (θ − α) ln θ + [(1− θ)− (1− α)] ln(1− θ)
= −H(α) + H(θ) + (α− θ)(− ln θ + ln(1− θ)).

SinceH ′(y) = dH(y)/dy = ln(1− y)− ln y,

− 1
x

ln
(
α−αx(1− α)−(1−α)xθαx(1− θ)(1−α)x

)
= E(α, θ)

where

E(α, θ) = H(θ) + (α− θ)H ′(θ)−H(α).

Finally,

α > θ ⇐⇒ m

xτ
>

τ

ω

⇐⇒ x <
mω

τ2
, (13)

giving the claimed result.

According to [Peterson 1972],E(α, θ) < 0 whenx > mω
τ2 . So, whenx > mω

τ2 , the lower
bound indicates that the tail of the binomial distribution increases exponentially with re-
spect tox. It is also true thatE(α, θ) > 0 when Inequality (11) is satisfied [Peterson 1972].
The upper bound indicates that the tail of the binomial distribution can be exponentially
bounded away from1 whenx is not close tomω

τ2 . For example, whenx is 25% away from
mω
τ2 (i.e.,x = 0.75 ∗ mω

τ2 = 413) andm = 200, τ = 2, andω = 11, then the upper bound
is e−5.089 = 0.006, which is two orders of magnitude smaller than1. Hence,mω

τ2 can be
used as an estimation (upper bound) on the value ofx where the fraction of compromised
links increases exponentially with respect tox. So the adversary can obtain higher payoff
when the number of nodes it compromises is close tomω

τ2 . The results shown in Fig. 4
verify that this estimation is quite accurate.

Based on the above discussion, the number of nodes an adversary needs to compromise
to gain a significant payoff is linearly related to the amount of the memory used whenω
andτ are fixed. That is, if the probability of any two nodes sharing at least one space,
pactual, is fixed, then increasing the memory space at each node linearly increases the
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degree of security. For fixed memory usage, the security is linearly related toω
τ2 . Since

ω andτ are related topactual, one should choose those values ofω andτ that satisfy the
requirement on global connectivity and at the same time yield the largest value ofω

τ2 . For
example, by using Inequality (4), one may find all pairs(ω, τ) satisfying the requirement
on the global connectivity. Among all the pairs, the one with the largest value ofω

τ2 gives
the best security.

6. OVERHEAD ANALYSIS

6.1 Communication Overhead

According to our previous discussions, the probabilitypactual that two neighbor nodes
share a key space is less than 1. When two neighboring nodes are not connected directly,
they need to find a path (in the key-sharing graph) to connect to each other. In this section,
we investigate the number of hops required on this path for various parameters of our
scheme. When the two neighbors are connected directly, the number of hops needed to
connect them is obviously 1. When more hops are needed to connect two neighbor nodes,
the communication overhead of setting up the security association between them is higher.

Let ph(`) be the probability that the smallest number of hops needed to connect two
neighboring nodes is̀. Obviously,ph(1) is pactual. Forph(2), the third node connecting
these two nodes must be in the overlapped region of the transmission range of nodei and
nodej, as shown in Fig. 5.

�

�

�

�

Fig. 5. Overlap RegionAoverlap(z)

The size of this overlapped region is:

Aoverlap(z) = 2r2 cos−1
( z

2r

)
− z ·

√
r2 −

(z

2

)2

, (14)

wherer is the transmission range of each node. The total number of nodes in the overlap
region is:

Noverlap(z) =
n

πr2
Aoverlap(z),

wheren is the total number of sensor nodes in the transmission range of a sensor node.
We then calculateph(2, z), the probability thati andj are not connected directly but

there exists at least a common neighbor connecting them, given that the distance between
i andj is z:

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 ·

ph(2, z) = (1− pactual)[1− p2,1(z)]

wherep2,1(z) is the probability that none of the common neighbors ofi andj is connected
to both of them given thati andj are not connected.

The value ofph(2) can be calculated as the average ofph(2, z) throughout all the possi-
ble values ofz:

ph(2) =
∫ r

0

f(z)p(2, z)dz

wheref(z) is the Probability Density Function (PDF) ofz:

f(z) =
∂F (Z)

∂z
=

∂ [Pr(Z ≤ z)]
∂z

=
∂

∂z

[
πz2

πr2

]
=

2z

r2
.

A similar approach may be used to calculateph(3). The only difference is that, in the
case ofph(3), we need to find the probability that two nodes, nodesu and v, that are
neighboring to nodesi andj, respectively, should provide a secure link between nodesi
andj, as shown in Fig. 6.

�
�

�

�

�

� �

�

Fig. 6. Overlap Region forph(3)

We provide the full derivations ofph(2) andph(3) in Appendix A. The final results are
as follows:

ph(2) = (1− pactual)

·


1− 2

∫ 1

0

yp

n
π

[
2cos−1( y

2 )−y·
√

1−( y
2 )2

]

2,2 dy





ph(3) ≈ [1− ph(1)− ph(2)]
[
1− 2

∫ 1

0

z

· (p̃3,2)
∫ 2π
0

∫ 1
0

n2

π2

[
2cos−1( x

2 )−x
√

1−( x
2 )2

]
dydθ

dz

]

where
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Fig. 7. Distribution on the number of hops required to connect neighbors (ω = 50)
.
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) [(
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+
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)(
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·
(
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)(
ω − 2τ − (τ − a)

τ − b− c

)

x =
√

y2 + z2 + 2yz cos(θ).

We plot the values ofph(1), ph(2), andph(3) in Fig. 7. From these figures, we can
observe thatph(1) + ph(2) ≈ 1 whenτ is large (i.e., the probability that at most 2 hops
are required is essentially 1).

6.2 Computational Overhead

As indicated in Section 3, it is necessary for nodes to calculate the common keys by using
the corresponding columns of matrixG. If the Vandermonde matrix is chosen as theG
matrix, the dominating computation cost in our scheme is due to2λ − 1 multiplications
in the fieldGF (q): λ − 1 come from the need to regenerate the corresponding column
of G from a seed, while the otherλ come from the inner product of the corresponding
row of (DG)T with this column ofG. Note that this can easily be reduced to onlyλ
multiplications using Horner’s rule for polynomial evaluation. (AlthoughO(λ) additions
in GF (q) are also necessary, these are dominated by the field multiplications.)

To analyze the computational overhead of these modular multiplications, we compare
our computation with theRSA public key encryption algorithm, whose cost makes it un-
suitable for sensor networks. We show that the energy consumption of the modular multi-
plications in our scheme is far less than that of RSA. This is due to two factors:λ is small
and the block size is small.

According to Equation (5), whenm = 200 andτ = 4, λ is about50; the total number
of multiplications is then roughly100 (this assumes a naive implementation which does
not apply Horner’s rule). If we choose 64 bits as the size of a secret key, then our mod-
ular multiplications are 64-bit computations. In total, then, we need roughly100 64-bit
modular multiplications. For the RSA signature scheme using a 1024-bit modulus, the
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length of the private exponent usually needs to be roughly 1024 bits as well. Thus, a single
exponentiation requires approximately 1500 multiplications. Moreover, a single multipli-
cation modulo a 1024-bit integer is roughly( 1024

64 )2 = 256 times more expensive than a
single multiplication modulo a 64-bit number. Therefore, computing an RSA signature
is roughly256 ∗ 1500

100 = 3840 times more expensive than deriving a shared key in our
scheme. Assuming that the energy cost is proportional to the number of multiplications,
the cost of our scheme is about13840 that of RSA. In a mid-range processor such as the
Motorola MC68328 “DragonBall” (see [Carman et al. 2000]), the cost of our scheme is
only 25 times more expensive than a 128-bit AES block cipher evaluation (AES is consid-
ered as very energy-efficient); i.e., the computational cost of our scheme is equivalent to
encrypting a 3200-bit message using AES.

Moreover, we mention two simple ways to improve the efficiency of our scheme. First,
note that generating the necessary column ofG need only be doneonceby each node;
that is, nodei can generateG(i) once (at the outset of the key-establishment phase) and
then broadcast this column to each node with whom it desires to establish a common key.
This reduces theamortizedcost of establishing a key to onlyλ multiplications (this is
an improvement if Horner’s rule is not used above); this can also be further optimized if
it is expected that nodes will need to compute a large number of shared keys. Second,
to derive 64-bit keys it is not necessary work over a single fieldGF (q) with |q| ≥ 64;
instead, one can define the key as the concatenation of four “sub-keys” that each lie in a
field GF (q) with |q| ≥ 16. (For example, a single key space overGF (264) can be mapped
to four independent key spaces overGF (216). This assumes216 > N .) This will be more
efficient since4λ multiplications in a 16-bit field are more efficient thanλ multiplications
in a 64-bit field. The key observation is that security is not affected by working overGF (q)
whereq is “small”; this is because our security arguments are information-theoretic and do
not rely on any “cryptographic hardness” of the fieldGF (q).

7. IMPROVING SECURITY USING TWO-HOP NEIGHBORS

In this section we describe a way to further improve the security of our key pre-distribution
scheme. Based on Inequality (4), we have

1− (1− τ

ω
)(1− τ

ω − 1
) · · · (1− τ

ω − τ + 1
)

≥ (N − 1)
nN

(ln(N)− ln(− ln(Pc))). (15)

Notice that the left side is smaller whenω is larger, and the right side is smaller when
n is larger when other parameters are fixed. Therefore, when the network sizeN , the
global connectivityPc, andτ are fixed, we can select a largerω if the expected number
of neighborsn increases while still satisfying the above inequality. We know immediately
from Inequality (11) that the larger the value ofω is, the more resilient the network will
be. Therefore, increasingn can lead to security improvement.

There are two ways to increasen for an existing sensor network: the first is to increase
the communication range, but this also increases energy consumption. The second way is
to use two-hop neighbors. A two-hop neighbor of nodev is a node that can be reached
via one ofv’s one-hop (or direct) neighbors. To send a message to a two-hop neighbor,
v needs to ask its direct neighbor to forward the message. Since the intermediate node
only forwards the message and does not need to read the contents of the message, there

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 23

is no need to establish a secure channel between the sender and the intermediate node, or
between the intermediate node and the two-hop neighbor. As long as the sender and its
two-hop neighbor can establish a secure channel, the communication between them will
be secured.

If two nodes,i andj, are two-hop neighbors and both of them carry key information from
a common key space, they can find a secret key between themselves using the following
approach: First, they find an intermediate nodeI that is a neighbor to both of them. Nodes
i andj then exchange their identities and public part of key space information viaI. Then,
i andj find a common key space, and compute their secret key in that common key space.
i andj can then encrypt any future communication between themselves using this secret
key. Although all future communication still needs to go through an intermediate node,
e.g.,I, the intermediate node cannot decrypt the message because it does not have the key.

After all direct neighbors and two-hop neighbors have established secure channels among
themselves, the entire network forms anExtended Key-Sharing GraphGeks, in which two
nodes are connected by an edge if there is a secure channel between them, i.e. these
two nodes (1) have at least one common key space, and (2) are either direct neighbors
or two-hop neighbors. Once we have formed theGeks, key agreement between any pair
of two neighboring nodesi andj can be performed based onGeks in the same way as it
is performed based on the original Key-Sharing GraphGks. The difference between this
scheme and theGks-based key agreement scheme is that in theGeks-based key agreement
scheme, some edges along a secure path might be an edge between two-hop neighbors,
thus forwarding is needed.

7.1 Security Improvement

Security can be improved significantly if key agreement is based onGeks. When we treat
a two-hop neighbor as a neighbor, the radius of the range covered by a node doubles,
so the area that a node can cover is increased by four times. Therefore, the expected
number of neighborsn′ for each node inGeks is about four times as large as that inGks.
According to Equations (1) and (2), to achieve the same connectivityPc as that ofGks,
the value ofprequired for Geks is one fourth of the value ofprequired for Gks. Thus,
the value ofpactual for Geks is one fourth of the value ofpactual for Gks. As we have
already shown, whenτ is fixed, the larger the value ofω is, the smaller the value ofpactual

is. For example, assuming a network sizeN = 10, 000 and the desirable connectivity
Pc = 0.99999, if we fix τ = 2, we need to selectω = 7 for theGks-based key agreement
scheme; however, usingGeks-based scheme, we can selectω = 31. The security of the
latter scheme is improved significantly. By using Equation (11), there is about31/7(≈
4.5) times security improvement of the two-hop-neighbor scheme over the basic 1-hop-
neighbor scheme. Using Equation (9), we plot the security property of the above two cases
in Fig. 8.

7.2 Overhead Analysis

Such security improvement does come with a cost. If the length (the total number of
edges) of a path between two nodes inGeks is `, the actual number of hops along this path
is larger thaǹ because some edges inGeks connect two two-hop neighbors. For each
node, the number of two-hop neighbors on the average is three times the number of one-
hop neighbors if nodes are uniformly distributed. Therefore, assuming that the probability
of selecting a two-hop edge and a one-hop edge is the same, for a path of length`, the
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Fig. 8. Comparison: The left curve uses the 1-hop-neighbor scheme (withω = 7 andτ = 2), and the right
curve uses the 2-hop-neighbor scheme (withω = 31, andτ = 2). Both figures achieve the same desirable global
connectivityPc = 0.99999.

expected actual length is34 ∗ 2` + 1
4 ∗ ` = 1.75` (note: in practice, we can achieve better

than1.75` because we usually prefer the one-hop edge if both a one-hop edge and a two-
hop edge are candidates for a secure path). Letp′h(`) be theph(`) value of the two-hop-
neighbor scheme and letp′′h(`) be theph(`) value of the basic scheme (only using direct
neighbors); assume the maximum length of the shortest path between two neighbors isL.
Therefore, the ratio between the overhead of the two-hop-neighbor scheme and that of the
basic scheme can be estimated using the following formula:

Relative Overhead=
p′h(1) +

∑L
`=2 1.75` · p′h(`)∑L

`=1 ` · p′′h(`)
, (16)

where we do not need to multiply first term with1.75 since if two neighbors share a com-
mon key, then the length of path between them is 1 and is never a two-hop edge. For
example, the overhead ratio of the two schemes used in Fig. 8 is3.18, namely with3.18
times more overhead, the resilience can be improved by4 times. The communication cost
discussed here occurs only during the key setup phase, so it is a one-time cost. The idea of
two-hop neighbors can be extended to multi-hop neighbors, and the security can be further
improved.

8. CONCLUSIONS

We have proposed a framework in which to analyze the security of key pre-distribution
schemes. We hope this framework will be useful to others working in this area. Much
work remains to fully flesh out these definitions, and perhaps to achieve a more efficient
construction of a secure pairwise authentication scheme without relying on the random
oracle model.

We have also presented a new pairwise key pre-distribution scheme for wireless sensor
networks. Our scheme has a number of appealing properties. First, our scheme is scalable
and flexible. For a network that uses 64-bit secret keys, our scheme allows up toN = 264

sensor nodes. These nodes do not need to be deployed at the same time; they can be added
later, and still be able to establish secret keys with existing nodes. Second, compared to
existing key pre-distribution schemes, our scheme is substantially more resilient against
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node capture. Our analysis and simulation results have shown, for example, that to com-
promise10% of the secure links in the network secured using our scheme, an adversary has
to compromise 5 times as many nodes as he/she has to compromise in a network secured
by Chan-Perrig-Song scheme or Eschenauer-Gligor scheme. Furthermore, we have also
shown that network resilience can be further improved if we use multi-hop neighbors.

We have conducted a thorough analysis of the efficiency of our scheme. We have shown
that whenpactual ≥ 0.33, a node can (with very high probability) reach any neighbor
within at most 3 hops. The computational requirements of our scheme are modest. Al-
though our scheme involves modular multiplications, we have shown that the energy cost
in establishing a key is (at worst) about the same as encrypting a 3200-bit message using
AES. We also noted a number of ways to further optimize the computation of our scheme.

APPENDIX

A. CALCULATION OF PH(2) AND PH(3)

We present our calculation ofph(2) andph(3) in this appendix. We assume the distance
between two nodesi andj is z.

A.1 Calculation of ph(2)

The third node connecting these nodes must be in the overlapped region of the transmission
range of nodei and nodej, as shown in Fig. 5.

As stated in Equation (14) the size of this overlapped region is:

Aoverlap(z) = 2r2 cos−1
( z

2r

)
− z ·

√
r2 −

(z

2

)2

,

wherer is the transmission range of each node.
Since, on the average, each node hasn neighbors that are connected to it with wireless

communication, the nodal density inside the transmission range is:

ρ =
n

πr2
.

Thus, the total number of nodes in the overlap region is:

Noverlap(z) = ρAoverlap(z).

Let ph(2, z) be the probability thati andj are not connected directly but there exists at
least a common neighbor connecting them, given that the distance betweeni andj is z:

ph(2, z) = Pr{[i ⇔/ j] ∩ [∃` ∈ Ni ∩Nj s.t.` ⇔ i and` ⇔ j]}
= Pr{i ⇔/ j} · Pr{∃` ∈ Ni ∩Nj s.t.` ⇔ i and` ⇔ j|i ⇔/ j}
= (1− pactual)[1− p2,1(z)]

whereNi andNj represent the set of nodes that are in range of nodei andj, respectively,
p2,1(z) is the probability that none of the common neighbors ofi andj is connected to
both of them given thati andj are not connected, and⇔ means two nodes share at least
one key space (connected). According to independence of key selections on each node,
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p2,1(z) = (p2,2)
Noverlap(z)

,

wherep2,2 is the probability that a neighbor node,`, of i andj is not connected to both of
them given thati andj are not connected:

p2,2 = 1−
(
ω
τ

)(
ω−τ

τ

)
(
ω
τ

)3 ·
{(

ω

τ

)
− 2

(
ω − τ

τ

)
+

(
ω − 2τ

τ

)}

= 1−
(
ω−τ

τ

) [(
ω
τ

)− 2
(
ω−τ

τ

)
+

(
ω−2τ

τ

)]
(
ω
τ

)2 ,

where
(
ω
τ

)
is the number of ways to selectτ keys fromω key spaces fori,

(
ω−τ

τ

)
is the

number of ways to select completely differentτ keys forj, and
(
ω
τ

) − 2
(
ω−τ

τ

)
+

(
ω−2τ

τ

)
gives the number of ways to select keys for` such that̀ is connected to bothi andj.

The PDF ofz can be expressed asf(z),

f(z) =
∂F (Z)

∂z
=

∂ [Pr(Z ≤ z)]
∂z

=
∂

∂z

[
πz2

πr2

]
=

2z

r2
,

thus,ph(2) is

ph(2) =
∫ r

0

(1− pactual)
2z

r2

[
1− (p2,2)

Noverlap(z)
]
dz

= (1− pactual)



1− 2

∫ 1

0

yp

n
π

[
2 cos−1( y

2 )−y·
√

1−( y
2 )2

]

2,2 dy





where we substitutez with y = z
r .

A.2 Calculation of ph(3)

ph(3) can be calculated with a similar method. We defineph(3, z) as the probability that
3 hops are needed to connect nodei and nodej, given that the distance between them isz
(z ≤ r):

ph(3, z) = Pr{[i ⇔/ j] ∩ [∀` ∈ Ni ∩Nj ` is not connected to bothi andj ] ∩
[∃u ∈ Ni andv ∈ Nj s.t.u ⇔ i andv ⇔ j andu ⇔ v]}

= [1− ph(1)− ph(2)][1− p3,1(z)]

where1 − p3,1(z) is the probability that there exists at least a pair of nodesu andv con-
nected to each other and connected toi andj separately, given thati andj are not directly
connected, nor can they be connected through another common neighbor.

The exact calculation ofp3,1(z) is complicated. We give an approximation as follows:
For every neighborv of nodej, we find all the possible nodeu, which may satisfyi ⇔
u ⇔ v ⇔ j. We calculate the number of such pairs of(u, v).

Assuming that nodev is at location(y, θ) from origin of j, the distance between nodev
andi is x:
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x =
√

y2 + z2 + 2yz cos(θ).

Obviously, nodeu should reside in the shaded area in Fig. 6. The expected number of
nodes residing in the small neighborhood of(y, θ) is ρy · dy · dθ. The number of nodes in
the overlap region of circlei and circlev, Aoverlap(x), can be expressedρ · Aoverlap(x).
So the total number of pairs of(u, v), given that the distance betweeni andj is z, is:

N3(z) =
∫ 2π

0

∫ r

0

ρ2y ·Aoverlap(x) dy dθ

where, similar to Eq. (14),Aoverlap(x) = 2r2 cos−1
(

x
2r

)− x ·√r2 − (x
2 )2.

So,

p3,1(z) = (p3,2)
N3(z) (17)

wherep3,2 is the probability that for a pair of nodesu ∈ Ni andv ∈ Nj , security con-
nections cannot be made through pathi, u, v, andj given thati and j are not directly
connected or through a common neighbor.p3,2 can be estimated6 as follows:

p̃3,2 ≈ 1−
(
ω
τ

)(
ω−τ

τ

)
(
ω
τ

)4 ·
τ−1∑
a=1

τ−1∑

b=1

τ−max(a,b)∑
c=1

(
τ

a

)(
τ

b

)

·
(

ω − 2τ

c

)(
ω − 2τ − c

τ − a− c

)(
ω − 2τ − (τ − a)

τ − b− c

)
(18)

where
(
ω
τ

)
is the number of ways to selectτ keys fromω key spaces fori,

(
ω−τ

τ

)
is the

number of ways to select completely differentτ keys forj, a represents the number com-
mon keys shared byu andi, b represents the number common keys shared byv andj, c
represents the number common keys shared byu andv,

(
ω−2τ

c

)
gives the number of ways

to select the common keys different toi andj from the pool of key spaces,
(
ω−2τ−c
τ−a−c

)
is the

number of ways to select theτ − a− c keys foru, and
(
ω−2τ−(τ−a)

τ−b−c

)
gives the number of

ways to select theτ − b− c keys forv.
Based on the distribution ofz, ph(3) is:

ph(3) ≈
∫ r

0

2z

r2
[1− ph(1)− ph(2)]

[
1− (p̃3,2)

N3(z)
]
dz.

We substitutex, y, andz with x′ = x
r , y′ = y

r , andz′ = z
r . We further simplify our

notation by dropping the primes from these variables. Thus,

ph(3) ≈ [1− ph(1)− ph(2)]

[
1− 2

∫ 1

0

z (p̃3,2)
∫ 2π
0

∫ 1
0

n2

π2

[
2 cos−1( x

2 )−x
√

1−( x
2 )2

]
dydθ

dz

]
.

6Eq. (18) is an approximation because the probability is obtained by assuming only that nodei andj are not
connected.
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