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ABSTRACT
We present ConXsense, the first framework for context-
aware access control on mobile devices based on context
classification. Previous context-aware access control systems
often require users to laboriously specify detailed policies or
they rely on pre-defined policies not adequately reflecting
the true preferences of users. We present the design and
implementation of a context-aware framework that uses a
probabilistic approach to overcome these deficiencies. The
framework utilizes context sensing and machine learning to
automatically classify contexts according to their security
and privacy-related properties. We apply the framework
to two important smartphone-related use cases: protection
against device misuse using a dynamic device lock and pro-
tection against sensory malware. We ground our analysis on
a sociological survey examining the perceptions and concerns
of users related to contextual smartphone security and ana-
lyze the effectiveness of our approach with real-world context
data. We also demonstrate the integration of our framework
with the FlaskDroid [7] architecture for fine-grained access
control enforcement on the Android platform.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls, Invasive software

Keywords
Mobile security; Context sensing; Privacy policies; Context-
awareness

1. INTRODUCTION
Mobile devices today are equipped with a wide variety of

sensors for sensing the context of the device. Applications
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that make use of this information are becoming increasingly
popular. Examples include location-based applications like
Foursquare and Tencent WeChat, augmented reality appli-
cations like Layar, Wikitude, Google Goggles and HERE City
Lens among many more. Even mainstream applications like
social network apps support context-based enhancements.

The improved sensing capabilities of modern smart de-
vices also provide an attractive attack surface against the
contextual privacy of users, as the recent development of
sensory malware shows: malicious code, typically a Trojan
Horse appearing to be a legitimate app, uses the sensors
of the device to extract sensitive information from the sur-
roundings of the user. Context-aware access control can be
used to encounter this threat by limiting the access of un-
trusted 3rd-party applications to context information.

Various context-aware access control mechanisms and sys-
tems have been proposed. Some of these works are based on
modifications of the RBAC model [12, 13] in which context-
awareness is realized through roles that are triggered based
on context parameters. Other approaches use explicit poli-
cies conditioned on contextual parameters [33, 2, 11, 5] or
rules for expressing higher-level contextual preferences [21].

All of these works are based on user-defined or pre-defined
policies. User-defined policies are very laborious to set up
and maintain. This can be encountered with pre-defined
policies provided by system administrators or app vendors,
but these are inaccurate and inflexible: they cannot ade-
quately capture and adapt to the highly personal and dy-
namic nature of individual users’ contexts and privacy pref-
erences. In our work, we overcome these deficiencies by using
automatic context classification as a basis for access control
decisions instead of static access control policies.

Furthermore, improved sensing capabilities also provide
better possibilities to encounter threats arising from the con-
text, like the threat of physical device misuse. Current static
device locking methods severely deteriorate device usability
with unnecessary password prompts in low-risk contexts,
causing many users to leave their device unprotected [38].
Some earlier works attempted to improve device locking by
using context information to probabilistically determine a
level of confidence in the user’s authenticity [31, 19]. We
take a different approach: we do not try to authenticate
users, but adjust device locking criteria according to the
perceived security risk level of a context.
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To ground our work we use an interdisciplinary approach
in which a sociological study is used to identify the concerns
and perceptions of smartphone users in different contexts.

Contributions. Our contributions are as follows:

• We introduce ConXsense, the first context-aware ac-
cess control framework for smartphones that uses con-
text profiling and automatic, adaptive and per-
sonalized context classification for making con-
text-aware access control decisions.

• We apply our framework to two important smartphone
use cases: protecting against device misuse, and
defending against sensory malware. ConXsense,
however, is also applicable to a wide range of other
security and privacy-related use cases.

• We apply context profiling and machine learning
techniques on real-world data collected in a user study
and evaluate the efficiency of automatic context clas-
sification in addressing the aforementioned threats.

• We integrate ConXsense with the FlaskDroid [7] ar-
chitecture for fine-grained access control enforcement
on the Android platform in order to realize the first
adaptive, personalized and context-aware access con-
trol system of its kind for mobile devices.

The rest of this paper is structured as follows. A descrip-
tion of the problem and the ConXsense framework is given
in Sections 2 and 3. In Section 4 we introduce the results of
a sociological study on users’ concerns and perceptions re-
lated to smartphones and present use cases addressing these
concerns in Section 5. The design and implementation of our
context model are described in Sections 6 and 7. The results
of a user study evaluating the performance of context clas-
sification are presented in Section 8, and Section 9 shows its
integration with the FlaskDroid architecture. After summa-
rizing related work in Section 10, we conclude with outlines
of future work in Section 11.

2. PROBLEM DESCRIPTION
While the idea of context-aware access control is not new

[12, 21, 13, 11], currently proposed solutions mostly rely on
policies specifying access control rules conditioned on values
of contextual parameters.

User-specified policies have the potential to correctly re-
flect the user’s true security and privacy preferences, but
the amount of work required to set up and maintain a com-
prehensive set of context-dependent policies is high. Av-
erage users of mobile devices are hardly willing to spend
significant amounts of time maintaining their policy set. In
addition, it is questionable, whether regular users are capa-
ble to fully understand the implications of the policy set-
tings they define. A study concerning location sharing poli-
cies [33] showed that the initial accuracy of location disclo-
sure rules specified by users was only 59% and improved
to 65% after users modified the rules based on a review of
concrete enforcement decisions resulting from these rules. A
recent study on the users’ willingness to share their data
with prominent single-sign on services [3] showed that the
majority of users did not correctly understand the sharing
implications of a sign-on dialog directly presented to them.
These results suggest that the users’ practical ability to con-
trol their security and privacy settings is limited.
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Figure 1: Context-based access control enforcement in
ConXsense

An approach to tackle this problem of complexity and
required user effort is to simplify things for users by pre-
defined policies provided by administrators or app vendors.
While this effectively reduces the user’s burden, it fails to ad-
dress the individual needs and privacy preferences of users.
Pre-defined policies are by necessity only generalizations and
not capable of accurately capturing concrete contexts and
situations in individual users’ lives. Also the fact that the
privacy preferences of users may vary significantly from per-
son to person can be very difficult to address using pre-
defined policies.

It seems also unlikely that the privacy and security impli-
cations of pre-defined policies would be fully understood by
regular users. This may lead to undesired situations: users
under- or overestimating the level of privacy and security
protection that the pre-defined policy provides to them.

User- or pre-defined policies alone are not sufficient to
capture the highly dynamic and highly personal nature of
a user’s context (i.e., the ambient environment the device
finds itself in) due to the problems outlined above. We aim
at encountering these deficiencies by designing a context-
aware access control framework that captures and adapts to
the user’s perception of the context and performs automatic
context classification for making fine-grained context-aware
access control decisions without the need for users to explic-
itly define contextual constraints. In the following section
we describe the ConXsense framework in more detail.

3. FRAMEWORK DESCRIPTION
The ConXsense framework provides context-aware access

control decisions by performing automatic classification of
the context with regard to its security-relevant properties.
The classification is based on machine learning models and
user feedback providing ground truth information for train-
ing these models. Figure 1 shows a high-level overview of
the framework.

The framework architecture is driven by context data ob-
served with the sensors of the mobile device. The data are
fed to a Profiler to calculate features describing the context.
The Profiler implements a context model and aggregates pro-
files for relevant objects (e.g., significant places of the user



or devices the user encounters) in the model. The Profiler
evaluates incoming observations based on the profiles and
the context model, and periodically calculates feature vec-
tors characterizing the current context of the user.

Apart from sensed context data, the framework obtains
input through user feedback. This feedback can be derived
from explicit user interaction (e.g., feedback given through
the device’s UI) or by monitoring the user’s actions.

The Classifier uses the context feature vectors and user
feedback events to train and update the context classifica-
tion models. Once the models have been trained, they are
used to classify new observations with regard to the context’s
security and privacy-relevant properties. The classification
estimate of the Classifier and its associated confidence value
are forwarded to the Access Control Layer, which takes them
into account when making access control decisions. The
framework can be used to address any use case for which
contextual factors play a role, and it can accommodate any
sensors, resources, functionalities, communication links or
other data objects for which the Access Control Layer pro-
vides enforcement support.

In the following, we instantiate the ConXsense framework
for protecting the privacy of the user. We consider two cen-
tral use cases we identified and demonstrate the applicabil-
ity and effectiveness of our approach by evaluating it with
real-world contextual data obtained from a user study.

4. USER SURVEY
To investigate smartphone users’ perceptions and con-

cerns with regard to their smartphones in different contexts,
we conducted a user survey following a Mixed Methods [40]
approach commonly applied in sociological studies. We de-
signed a statistical-quantitative survey [41] using quantita-
tive questions to identify facts by statistical analysis [1] com-
bined with open-ended, qualitative questions for investigat-
ing the underlying reasons for the users’ perceptions.

The survey was answered by 122 participants aged 18-56
including people from different household types and repre-
senting different organizational positions. The participants
were recruited using word-of-mouth, electronic communica-
tions like e-mail and social networks, targeting particularly
smartphone users, to obtain a cross-sectional sample of dif-
ferent age groups and backgrounds. Thus, the set of respon-
dents in our sample is representative of the target group of
our framework, namely active smartphone users.

The survey contained questions on which contexts and
contextual factors users deem relevant for their perceptions
of contextual privacy and security. The answers to the open-
ended questions confirmed our initial assumptions that two
major context-related concerns dominate the users’ minds.
Firstly, people are concerned about device misuse, i.e., that
their device is stolen and/or misused without their knowl-
edge. The second concern relates to privacy exposure: users
fear that private or confidential context information related
to their life is revealed to unauthorized parties.

In some earlier studies on contextual behavior patterns of
mobile device users, two central contexts have been used:
“home” and “work” [43]. Also lifetime studies in social sci-
ences suggest that these contexts are the most important
contexts in average users’ lives [37]. Therefore, we included
dedicated questions about these context types as prototypes
of very familiar contexts. Tables 1 and 2 show the results.

Table 1: Perceptions of Home vs. Work

Privacy exposure Risk of misuse
Context high low low high
Home 46% 17% 94% 4%
Work 42% 21% 55% 40%

Table 2: Influence of people on the perceived privacy expo-
sure and risk of misuse in the context

Question Yes No
Low risk of misuse depends on people 66% 14%
High risk of misuse depends on people 68% 11%
High privacy exposure depends on people 39% 43%
Low privacy exposure depends on people 36% 42%

4.1 Survey Results
Risk of device misuse. As can be seen in Table 1, the ma-
jority of people (94% and 55%, respectively) perceive“home”
and “work” as having a low risk of misuse. This is explained
by answers to open-ended questions, like “(. . .) places like
home or office tend to remain secure regardless of time of
day”, supporting the intuition that familiar places are com-
monly perceived as having a low risk of misuse. While it is
not surprising that “home” is perceived as safe, perceptions
of “work” are more diverse [10], as reflected in our survey
results. A significant fraction of people perceive “work” as a
context with high risk of misuse. The reasons for this are in-
dicated in several answers to the open-ended questions, e.g.,
“At work there are people around that I don’t know and I
don’t trust them.” This suggests that the familiarity of the
context alone is not a sufficient indicator for estimating the
risk level, also the people in context play an important role.

From Table 2 we can see that the people present in the
context clearly affect the perceived risk of device misuse in
that context. A clear majority of respondents stated that a
low or high risk of device misuse is dependent on the persons
present. From the responses to open-ended questions, we
identified that the feeling of low risk is particularly caused
by people that are familiar to the user (e.g., “I trust my
friends and colleagues”). Similarly, the presence of unfa-
miliar persons in the context was indicated as a reason for
perceiving the context as having a high risk of device misuse
(e.g., “Where there are people around me that I don’t know,
I don’t feel secure”, or “Unknown people represent threat”).

This underlines the fact that location information alone
is not a sufficient basis for access control decisions. Also
other context information affecting the perceptions of secu-
rity need to be taken into account.
Privacy exposure. The data in Table 1 suggest that a
significant fraction of respondents feel that a familiar con-
text also has high privacy exposure, i.e., contains private or
confidential context information related to the user.

Table 2 shows, however, that the perception of privacy
exposure does not appear to be affected by the presence of
people. More respondents believe that the people present in
the context do not contribute to the level of privacy exposure
of the context.
Conclusions and Discussion. Based on the analysis of
the survey results above, we see that two main factors affect
users’ perceptions on privacy exposure and risk of misuse in
contexts: the familiarity of the context itself and the famil-
iarity of persons present in the context. Therefore, we need



to design our context model in a way that we can (1) identify
relevant contexts and model their familiarity, and, (2) track
encounters with other persons and measure their familiarity
by observing their mobile devices. In Section 6 we construct
such a context model.

The analysis presented above supports our common un-
derstanding and shows which factors typically influence the
perception of contexts. However, exceptions exist, like, e.g.,
those 4% who consider home a high-risk environment. Rea-
sons for this can be various. Answers to open-ended ques-
tions suggest that even in familiar contexts the perception
of risk of misuse changes when untrusted people appear, or,
it is caused by what we call the “Toddler Scenario”, i.e., the
influence of familiar people (e.g., a young child, or spouse)
considered as “clueless” or “honest but curious”, causing a
person to consider the risk of device misuse significant also
in familiar surroundings. To investigate these special cases,
more detailed questions on familiar contexts would need to
be included. However, sociological literature suggests that
questions about such contexts are perceived as intrusive and
will therefore not be answered [4, 10]. This concern was also
reflected in some of the feedback we received about the on-
line questionnaire. Hence, and because exceptional cases
seem to be a marginal phenomenon, we focus on the com-
mon cases and address more exceptional cases in subsequent
studies.

5. USE CASES
Based on the user survey, we focus on the most prominent

concerns expressed by the users: fear of device misuse and
disclosure of private or confidential context information. To
mitigate these concerns, we identified following use cases.

5.1 Misuse Protection: Usable Device Lock
Several surveys [9, 38] point out that many mobile users

do not use device locks (also known as idle screen locks) to
protect their phones even though that would effectively pro-
tect against device misuse. One reason for this is that screen
locks and other similar access control techniques on mobile
devices today are both too inflexible and hard to use. A so-
lution could be to make the locking mechanism more usable,
so that users would be more willing to use device locking.
The approach taken by Gupta et al. [17] was to use context
data to adapt the locking time out of the device lock in dif-
ferent contexts. We adopt this approach and want to use
the estimated risk of device misuse in a context as a means
to decide, whether and how fast to lock the device in case it
is not used.
Adversary model. For this use case, the adversary is a
person in the context with physical access to the device. The
person may be malicious (a thief) or honest-but-curious (a
colleague or sibling) or “clueless” (a small child).
Goal. We want to protect the applications and data on the
device from potential threats in the context by limiting the
potential damage arising from someone physically accessing
the device without the user’s approval. Therefore, we want
to minimize the chances that an unauthorized person in the
context has access to the user’s data. We do this by config-
uring the device lock dynamically based on the risk of device
misuse in the context, while trying to strike a balance be-
tween maximizing protection on one hand and minimizing
user annoyance of having to unlock the device in low-risk
contexts on the other hand.

5.2 Resisting Sensory Malware
Sensory malware is an emerging class of malicious appli-

cations (typically Trojans) that use the context sensors of
a mobile device to collect potentially sensitive information
from the user’s context. Prominent examples of sensory
malware are Stealthy Video Capturer [44] (video via cam-
era), (sp)iPhone [25] (keystrokes via accelerometer) Sound-
comber [36] (spoken secrets via microphone), or the recent
PlaceRaider [42] Trojan (3D models via camera). Users may
also have granted sensor access privileges to benign apps
which use them too intrusively: for instance an augmented
reality app may take pictures of surroundings even when the
user is not actively using augmented reality, as a means of
enriching the app vendor’s data collection.
Adversary Model. For this use case, the adversary is an
app already installed on the device. We assume that the
application has been granted the necessary privileges during
installation and has therefore access to the contextual sen-
sors on the mobile device, but cannot circumvent the access
control system1. The application may be a Trojan Horse
(e.g., sensory malware) or a benign but somewhat intrusive
application.
Goal. We aim at protecting sensitive information in the
context of the device from the adversary. We do this by
preventing or limiting the ability of the adversary to gather
information from contexts with high privacy exposure, i.e.,
contexts that contain information that the user would want
to protect from the adversary. Such information can be ei-
ther private, i.e., information about the user herself, or, con-
fidential, i.e., other sensitive information not directly related
to the user. The user’s home (private) and workplace (con-
fidential) are examples of typical contexts with high privacy
exposure.

6. CONTEXT MODEL
In this section, we present a context model used to ex-

tract context features reflecting the familiarity of contexts
and the persons in the context. The context features are
input for the Classifier and used for classifying contexts as
having high or low privacy exposure and/or risk of misuse.
The context model is based on two main concepts: Contexts
of Interest (CoI) for modelling the familiarity of contexts
and Bluetooth devices for modelling familiar and unfamiliar
people in context.

6.1 Detection of Contexts of Interest (CoIs)
For our purpose, Contexts-of-Interest (CoIs) correspond

to locations that a user often visits and/or spends a sig-
nificant amount of time in, e.g., home, workplace, grocery
store, etc. We consider two kinds of CoIs: GPS-based CoIs
which are geographical areas on the surface of the earth, and
WiFi-based CoIs that are characteristic sets of WiFi access
points usually observed in a specific place and thus identify-
ing the RF environment there. GPS CoIs capture significant
places of the user in outdoor areas, and WiFi CoIs cover also
indoor locations in urban areas, where GPS can’t be used
but coverage of WiFi access points typically is available. By
combining both types of CoIs, we can identify and detect
most significant places that users typically visit.

1Malware that uses operating system (root) exploits to cir-
cumvent the enforcement of the context-aware access control
system is outside the scope of this paper.



6.1.1 GPS-based CoIs
To identify GPS-based CoIs, we adopt the notions of stay

points and stay regions as introduced by Zheng et al. [46]
and developed further by Montoliu et al. [26]. The identifi-
cation of GPS-based CoIs is based on position observations
obtained via GPS.

The sequence of GPS observations is divided into GPS
stay points, which represent visits of the user to different
places, during which the user stays within a radius of rsp =
100 m from the first GPS observation. In order for a visit to
be considered a stay point, the visit is also required to last
longer than t minsp = 10 min and not to contain observation
gaps longer than t gapsp = 5 min.

We calculate for each stay point an average position poss̄p

as the average of all position observations belonging to the

stay point, i.e., poss̄p = (lats̄p, lons̄p), s.t. lats̄p =
∑n

k=1 latk
n

,

and lons̄p =
∑n

k=1 lonk

n
. The average position of a stay point

represents the predominant location where the user has been
located during her visit to the stay point.

The average positions poss̄p of individual stay points are
aggregated to form rectangular geographical areas of at most
gpsmax = 100 m width and length. An area is a GPS-
based Context-of-Interest, if (i) the user has visited the area
more than f mincoi = 5 times and (ii) has spent longer than
t mincoi = 30 min in total in the area.
Example. As an illustrative running example, let us con-
sider a user who regularly commutes between her workplace
and home. Other places she regularly visits are a grocery
store and a public sports facility. She usually carries her
smartphone with her, which continuously senses her GPS
location and other context data.

When the user goes to the grocery store and stays there for
15 minutes, i.e., longer than t minsp = 10 min and moves
only within a radius of rsp = 100 m, a stay point sp of
duration dur(sp) = 15 min will be generated. The average
of all position observations posi during the stay point visit
will be the stay point average position poss̄p , most likely
located in or near the grocery store. Waypoints along her
daily commuting routes, however, would not generate any
stay points, since on her way she does not spend sufficiently
long time in the same limited area.

If our user visits the grocery store 10 times and stays
each time for 15 minutes, ten stay points will be generated.
These average positions will be aggregated into a GPS-based
CoI C , because their total stay duration of 2 hours and
30 minutes is longer than the required t mincoi = 30 min
and there are more than the required f mincoi = 5 stay
points falling inside the CoI. The area of the CoI will be
the smallest rectangle containing all the stay point average
positions poss̄p .

6.1.2 WiFi-based CoIs
For identifying WiFi-based CoIs, WiFi access point obser-

vations rf i are used. Each observation consists of the MAC
address of a detected WiFi access point and the timestamp
of the observation. The sequence of individual WiFi observa-
tions is divided into WiFi snapshots, which are subsequences
corresponding to observations obtained during a single WiFi
scan of duration t maxwifi = 10 sec.

Following the notion of stay points for GPS observations,
we extend this concept to WiFi and divide the sequence of
WiFi snapshots into so-called WiFi stay points. The sim-

ilarity between snapshots is determined by calculating the
Jaccard distance2 between the first snapshot and subsequent
snapshots one-by-one. As long as the Jaccard distance be-
tween the snapshots is less than or equal to 0.5, which means
that the intersection of the snapshots is at least as large as
half of their union, the subsequent snapshots are assigned to
the stay point. The staypoint is considered complete, if the
Jaccard distance to new WiFi snapshots grows beyond 0.5
or there is a gap between consecutive WiFi snapshots that
is longer than t gapsp .

These criteria for WiFi stay points were selected, because
it is not uncommon that WiFi access points are missed in
scans [14]. This is apparently not dependent on the signal
strength of the missed access point, so one needs to take into
account that even very strong access point beacons will be
missed from time to time.

A WiFi stay point has a characteristic set of access points
char(wifi sp) that includes those access points that occur at
least in half of all WiFi snapshots of the stay point. A set
of access points is a WiFi-based CoI, if there are at least
f mincoi WiFi stay points having this set of access points as
their characteristic set of access points, and the stay points
have a duration of at least t mincoi in total.
Example. When our example user arrives at her work-
place, a WiFi snapshot wifi is recorded. This snapshot and
following snapshots having a Jaccard distance of less than or
equal to 0.5 to the first one form a WiFi stay point wifi sp,
given that the time difference of the first and last snap-
shot is greater than t minsp and there are no gaps in the
WiFi snapshot observations longer than t gapsp . The char-
acteristic set char(wifi sp) of access points of this stay point
consists of access points mostly observed at the workplace.
During subsequent visits to the workplace, more WiFi stay
points with the same characteristic set will be generated. If
at least f mincoi such stay points have been observed and the
total visit duration dur(wifi sp) of these stay points reaches
t mincoi , the characteristic set constitutes a WiFi-based CoI
C for the user’s workplace.

6.2 Context Detection
Once the GPS- and WiFi-based CoIs have been identified,

new incoming GPS, WiFi and Bluetooth observations can be
used to identify the location context and social context of
the user at any point in time.

6.2.1 Location context
The location context of the user is defined in terms of the

CoIs that the user visits at a specific point in time.

Definition 1 (Visits). A user’s visit VC to a GPS-
based CoI C = (latmin, lonmin, latmax, lonmax) is a sequence
of position observations posi = (lati, loni) falling within the
CoI and having timestamps at most εV apart from each
other: VC = (pos1, pos2, . . . , posn), where ∀posi ∈ VC :
latmin < lati ∧ lonmin < loni ∧ lati < latmax ∧ loni <
lonmax, and ∀i, 1 < i ≤ n : t(posi) − t(posi−1) < εV .
Similarly, a visit VC to a WiFi-based CoI C is a sequence
of WiFi snapshots wifi falling within the CoI and having
timestamps at most εV apart from each other. That is,
VC = (wifi1,wifi2, . . . ,wifin), where Jδ(C ,wifi i) ≤ 0.5 and

2The Jaccard distance measures the dissimilarity between

two sets A and B as Jδ(A,B) = |A∪B|−|A∩B|
|A∪B|



∀i, 1 < i ≤ n : t(wifi i)− t(wifi i−1) < εV . We denote the set
of all visits VC of the user to CoI C with VC .

Definition 2 (Location Context). A location con-
text Lt at timestamp t is the set of CoIs C that the user is
visiting during that point of time.

Note, that CoIs can be overlapping, which means that a
user can be visiting several CoIs simultaneously. If the user
is not visiting any of the CoIs at a specific point in time, the
corresponding location context will be empty.

6.2.2 Social context
In order to capture people in the user’s surroundings, we

observe their mobile devices that can be sensed through
proximity sensing technologies like Bluetooth (BT). Blue-
tooth has a range of approximately 30 meters given a di-
rect line of sight, so its physical properties quite well reflect
our notion of a context comprising the space immediately
observable by the user (e.g., a room). Bluetooth has been
commonly used in ubiquitous computing literature to model
the presence of persons in a perimeter (cf., e.g., [27]). To
capture only devices that are typically carried by persons,
we filter the BT observations by their device class so that
we consider only mobile devices like cell phones, headsets,
PDAs and other portable devices.

Some users may not keep Bluetooth enabled and discover-
able on their devices or always carry their devices with them.
Therefore, we will not always be able to reliably detect the
presence of all persons in the context using Bluetooth alone.
However, this is not necessary, since our probabilistic frame-
work utilizes Bluetooth as one factor for identifying the type
of context the user is in and not as a ’tripwire’ for detecting
potentially malicious users. Especially in public contexts
where many persons are present and the likelihood that at
least some Bluetooth devices can be detected is high, Blue-
tooth works well as a context classification factor. In ad-
dition, familiar, known devices (e.g. devices of family and
friends) can be polled even if they are in hidden mode, if the
BDADDR of the target device is known. For example, two
devices that are paired can detect each other this way even
if they remain invisible to other devices.

The social context is defined in terms of the devices that
are detected in the user’s context at a specific point in time.

Definition 3 (Encounters). An encounter Ed of a
user with a device d is a sequence of Bluetooth observations
bt i of device d with timestamps that are at most εE apart
from each other: E = (bt1, bt2, . . . , btn), where ∀i, 1 < i ≤
n : bt i = d ∧ t(bt i)− t(bt i−1) < εE. We denote the set of all
encounters of the user with a device d with Ed .

When our example user arrives at her workplace, her de-
vice obtains a Bluetooth observation bt1 = d of her col-
league’s device d . This observation and any subsequent
device observations bt i = d of the colleague’s device form
an encounter Ed with the colleague’s device, as long as the
time distance between consecutive device observations is less
than εE = 5 minutes. The purpose of allowing gaps of this
size is to be able to handle missed device observations not
uncommon with Bluetooth sensing.

Definition 4 (Device Context). The device context
Dt at timestamp t is the set of devices d that are encountered
during that point of time.

Definition 5 (Familiar Devices). The set of famil-
iar devices Dfam is the set of all such devices that the user
has encountered at least f minfamdev times and for which the
total duration of the encounters is at least t minfamdev .

Familiar devices d for our example user would be the mo-
bile devices of familiar people like her spouse or her col-
leagues at work which she has encountered more often than
f minfamdev = 5 times and the total duration of these en-
counters is longer than t minfamdev = 30 minutes.

6.3 Context Profiles
Based on the above context model, context profiles are

aggregated for the user: a CoI profile CoIs and a device
profile Devs. The CoI profile CoIs = {C,P} consists of the
set of all identified CoIs C, and a mapping P : C → N ×
R,C 7→ (visitsC , durC ) providing the total amount visitsC

and total duration durC of visits to each CoI C ∈ C.
Similarly, the device profile Devs = {D,Dfam,O} consists

of the set of all encountered devices D, the set of familiar de-
vices Dfam and a mapping O : D → N×R, d 7→ (encd , durd)
providing the total amount encd and total duration durd of
encounters with each device d ∈ D.

6.4 Context Features
Based on the context model, we define following features:

Context familiarity features.
Let CGPS denote the subset of all GPS-based CoIs and CWiFi

the subset of all Wifi-based CoIs in C. Then we have:
fGPS

maxdur
: maximum total visit time of any GPS-based CoI in

current location context

fGPS
maxdur

(t) =

{
maxC∈{CGPS∩Lt} durC , Lt ∩ CGPS 6= ∅

0, otherwise

fGPS
maxdur

: number of visits to the GPS-based CoI with the
maximum total visit time

fGPS
maxdur

(t) =


visitsCi , i = arg maxC∈{CGPS∩Lt} durC∧

Lt ∩ CGPS 6= ∅
0, otherwise

fWiFi
maxdur

: maximum visit time of any WiFi-based CoI in the
location context

fWiFi
maxdur

(t) =

{
maxC∈{CWiFi∩Lt} durC , Lt ∩ CWiFi 6= ∅

0, otherwise

fWiFi
maxfreq

: number of visits to the WiFi-based CoI with the
maximum total visit time

fWiFi
maxfreq

(t) =


visitsCi , i = arg maxC∈{CWiFi∩Lt} durC∧

Lt ∩ CWiFi 6= ∅
0, otherwise

Device familiarity features.
fBT

num: Number of Bluetooth devices and familiar Bluetooth
devices in device context Dt

fBT
num(t) = |Dt|, fBT

fam(t) = |Dt ∩ Dfam|
fBT

famavg-time
: Average encounter time of familiar devices in Dt

fBT
famavg-time

(t) =

{ ∑
d∈{Dt∩Dfam} durd

|Dt∩Dfam|
, Dt ∩ Dfam 6= ∅

0, otherwise



fBT
famavg-freq

: Average number of encounters of familiar de-
vices in Dt

fBT
famavg-freq

(t) =

{ ∑
d∈{Dt∩Dfam} encd

|Dt∩Dfam|
, Dt ∩ Dfam| 6= ∅

0, otherwise

The Profiler calculates context feature values based on a
history of observation data and labels them based on user
feedback. The feature values are used by the Classifier to
train machine learning-based classifiers for classifying new
observations. In the following sections, we show how we
applied this context model on real-world context data to
evaluate the effectiveness of the model and the Classifier.

7. IMPLEMENTATION
To evaluate the ConXsense framework, we created a pro-

totype implementation consisting of a Data Collector app,
a Profiler and Classifier. The output of the Classifier was
integrated with the Access Control Layer (cf. section 9) to
provide enforcement.

7.1 Data Collector
For collecting context data, we implemented a Data Collec-

tor app for Android. It uses a background Service to collect
context data in intervals of 60 seconds. This is a required
tradeoff between the battery lifetime and the quantity of
collected data for reaching a battery lifetime of at least a
working day (12h) on, e.g., the Samsung Galaxy Nexus and
Nexus S devices. The collected data comprise location infor-
mation, nearby Bluetooth devices and WiFi access points,
acceleration sensor information as well as information about
user presence and her interaction with apps (Activities).3

The Data Collector app also collects ground truth data.
The user regularly reports the perceived risk of device mis-
use in the current context by specifying the context to be
“safe” (low risk of misuse) or “unsafe” (high risk of misuse).
In addition, users are asked to classify the current context as
“home” or “work”, if the context has high privacy exposure
due to context information being either private or confiden-
tial, respectively, or, “public” if the context has low privacy
exposure. By using concise words that are easy to follow and
relate to helped us in keeping the user interaction as simple
as possible. To avoid misunderstandings, an introductory
explanation was given to study participants beforehand.

The users provided the above feedback for the current con-
text either by using context feedback buttons on the device’s
UI or by using dedicated NFC tags provided to the partic-
ipants for triggering context reporting (cf. Figure 2). The
feedback UI was either spontaneously invoked by the user,
or, if no ground truth had been provided during the last
two hours, the app reminded the user to do so via sound, vi-
bration and flashing LED notifications. Context and ground
truth data were stored in a SQLite database and periodically
uploaded to a server via HTTPS.

7.2 Profiler and Classifier
We implemented the functionality of the Profiler as off-line

data processing scripts utilizing bash shell scripting, awk and
Python. The scripts were used to identify individual GPS

3Data Collector is a generic solution collecting more data
than required by the current Profiler.

(a) Feedback using Con-
text Feedback Buttons

(b) Feedback using Con-
text NFC Tags.

Figure 2: Android Data Collector App

and WiFi CoIs for each user, and to calculate the famil-
iarity of Bluetooth devices that the users had encountered
during the data collection period. Scripts were also used for
extracting the context feature vectors.

The functionality of the Classifier was realized and evalu-
ated using the Weka data mining suite [18] and its provided
algorithm implementations for k-NN, Random Forest and
Näıve Bayes classifiers.

8. EVALUATION
To evaluate the context classification, the Data Collector

app was installed on the Android smartphones of 15 test
users having technical and non-technical backgrounds. A
test user group of this size is large enough for verifying the
validity of the concept and is in line with previous works
evaluating context-aware access control by Riva et al. [31]
(n = 9) and Sadeh et al. [33] (n = 12 and n = 19). Users
provided context and feedback data over a period of 68 days,
56 days per user on the average. The total dataset contained
data from 844 distinct user days. On the average, users pro-
vided ground truth feedback on 46 days of the data collection
period, resulting in a ground truth dataset containing 3757
labeled data points.

From the collected data, the Profiler calculated personal
context profiles and context features. The features were used
by the Classifier to train classification models for predicting
the privacy exposure and misuse risk levels of contexts. The
context labels obtained through user feedback were used to
attach class labels to the context feature vectors.

Each test user provided at least 50 or more feedback la-
bels. This would roughly correspond to the user providing
2-3 feedbacks per day over a period of three weeks, which
seems like a manageable burden on the user. After this ini-
tial training period of the Classifier, the need for explicit
user feedback would significantly diminish. The user would
need to provide only occasional corrective feedback in cases
of incorrect predictions of the Classifier.

In constructing the Classifier, we experimented with three
different machine learning algorithms: 1) A k-nearest neigh-
bors (kNN) classifier, which bases its prediction on compar-



ing a testing datapoint to the n closest observations to it
in the training dataset. The prediction is the most frequent
class label in this set of observations. 2) A Näıve Bayes (NB)
classifier is a simple probabilistic classifier which has been
successfully used, e.g., in spam e-mail detection [34]. 3) Ran-
dom Forest (RF) is an ensemble method that is commonly
used for classification tasks. It randomly picks subsets of in-
put attributes and trains decision trees for them. It uses the
most frequently predicted label provided by this set of tree
classifiers as the final prediction. For each participant, we
trained the Classifier using the labeled context feature vec-
tors and evaluated the performance of the classifiers using
10-fold cross-validation.

We assume that by default restrictive protection measures
are in place (access to sensors disabled, device lock active).
The Classifier’s task is therefore to predict situations, in
which the protections could be relaxed, i.e., if the context
has low privacy exposure or a low risk of device misuse.

Even though most accurate results would be obtained by
direct measurement of on-line enforcement on users’ mobile
devices, we had to rely on an offline evaluation of the Classi-
fiers performance, since we wanted to be able to experiment
with several different machine learning algorithms. Imple-
menting or porting several different algorithms on the mobile
device and conducting a separate user study for each of them
was not feasible given the resource limitations. Therefore we
intend to evaluate the performance of on-line enforcement in
a subsequent user study involving devices with enhanced de-
vice locking functionality.
Protecting against device misuse. Figure 3 shows the
average receiver operating characteristic (ROC) curves of
the classifiers for users who provided at least five feedback
datapoints for each context class.
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Figure 3: Average receiver operating characteristic (ROC)
curves for classifying contexts with low risk of device misuse.

All classifiers perform reasonably well on the testing data,
providing usable results for practical use. The classifiers
reach a true positive rate of approximately 70% with a fairly
moderate false positive rate of 10%. This would mean that
by applying a relaxed device locking scheme in low-risk con-
texts, we can potentially reduce the amount of unnecessary
authentication prompts shown to the user by 70%. Only
one time in ten would a relaxed locking mechanism be en-
forced while the user is in a context with higher risk of mis-
use. This means that a thief or other unauthorized user
would likely have a less than 10% chance of finding the de-
vice in an unlocked state, when obtaining physical access to

it. These results clearly outperform the progressive authen-
tication scheme presented by Riva et al. [31], who report
a reduction of 42% in unnecessary authentication prompts
presented to the user.
Protecting against sensory malware. Figure 4 shows
the average performance of the classifiers in identifying con-
texts with low privacy exposure.
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Figure 4: Average ROC curves for classifying contexts with
low privacy exposure.

For this use case, the Random Forest and kNN classifiers
provide best performance. They reach a true positive rate
of 70% at a very low false positive rate of 2-3.5%. This
would mean that if a sensory malware protection scheme
with a ’default deny’ policy is enforced, only in less than
3.5% of the cases would access control be relaxed in contexts
with high privacy exposure. In practice, this would severely
limit a sensory malware application’s ability to extract useful
sensitive information about the user.

Through the use of a default deny policy, our framework
errs by default on the safe side, i.e., sensory malware is by
default denied access to sensor information. The true posi-
tive rate of 70% means that our scheme is able to relax the
access restrictions to sensors in public or low-privacy expo-
sure contexts in 70% of the cases. The remaining 30% can
be handled through manual overriding of the default policy
by the user. Fortunately, the use of context information by
many apps is often user-driven, i.e., sensor data are utilized,
when the user is actively using the app (e.g., using a naviga-
tion app to locate a nearby restaurant). Adding an override
confirmation dialog to the user interaction in such situations
should therefore be easy, since the device already is in the
focus of the user’s attention. This approach also has the
benefit that the overriding action can be used as additional
ground truth data for updating the classification model and
thus improving subsequent classification accuracy.

9. ENFORCEMENT
To verify the applicability of our framework to practical

access control enforcement, we integrated it with an Ac-
cess Control Layer for which we adopted and adapted the
FlaskDroid [7] architecture, a fine-grained mandatory access
control framework for Android 4.0.4 (cf. Figure 5). We now
show how the combination of ConXsense and FlaskDroid can
address the previously defined use-cases, namely Resisting
Sensory Malware and Usable Device Lock (cf. Section 5).
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Figure 5: Enforcement of Context-based policies

For our implementation we use a Samsung Galaxy Nexus
smartphone.

9.1 Implementation
FlaskDroid extends Security Enhanced Android (SEAn-

droid) [39] with fine-grained type enforcement on Android’s
middleware layer. In FlaskDroid , Android components that
provide access to sensitive resources, such as the SensorSer-
vice which provides access to sensor information, act as User-
Space Object Managers (USOMs) which control access to
resources they manage. More specifically, USOMs control
operations from subjects (i.e., apps) to objects (e.g., data)
using types assigned to subjects and objects.

At boot time, FlaskDroid’s PolicyServer (cf. Figure 5)
parses an Access Control Policy and proceeds to assign app
types (e.g., trusted or untrusted) to all installed apps based
on application metadata (e.g., package name or developer
signature). Apps installed by the user are assigned types
during their installation. Whenever apps request access to a
USOM, for example the SensorService to query the device’s
sensors or the CameraService to take pictures, the USOM
queries the PolicyServer, which is part of Android’s System-
Server, for access control decisions. FlaskDroid supports
conditional access control rules by means of ContextProviders
that evaluate the current context and enable or disable rules
at runtime.

To meet our goals we extended FlaskDroid with additional
USOMs and implemented a ConXsense ContextProvider. It
uses the context classification information and confidence
values provided by the Classifier to activate or deactivate
conditional rules at runtime (cf. Figure 5) and to influence
the Lockscreen behaviour. The ContextProvider can be tuned
with individual user-, use-case and sensor-specific thresh-
olds for the expected confidence values. These thresholds
could be set, e.g., by specifying a desired maximal false pos-
itive rate and adjusting the confidence threshold accordingly
based on the observed historical performance of the context
classifier. Access to more sensitive context sensors like GPS
could require a higher prediction confidence than less sensi-
tive sensors like the magnetometer.
Mitigation of Sensory Malware. To mitigate, respec-
tively reduce the effects of sensory malware (e.g., Placerai-
der [42] or SoundComber [36]), access control on the sensors
of a device is required. For example, Placeraider uses the
device’s camera and the acceleration sensor to covertly con-
struct 3D images of the surroundings of the user. We trans-

formed Android’s CameraService into an USOM which fil-
ters queries to the takePicture and startPreviewMode meth-
ods. Furthermore, we used FlaskDroid to filter accelera-
tion sensor events delivered to SensorEventListeners regis-
tered by apps. It should be noted that FlaskDroid’s origi-
nal implementation of the SensorManager USOM is insuffi-
cient to block sophisticated attacks, since the SensorMana-
ger is loaded into the memory space of (potentially mali-
cious) apps. Thus, we replaced FlaskDroid’s SensorManager
USOM with a corresponding USOM in Android’s SensorSer-
vice, which is not under the control of apps.

Similarily, the combination of ConXsense and FlaskDroid
can address also other variants of sensory malware, such
as Soundcomber [36], by identifying the relevant Android
APIs, instrumenting them as USOMs and extending the
FlaskDroid policy with corresponding conditional rules.
Usable Device Lock. To allow for changes in the An-
droid Lockscreen policy based on the current risk for device
misuse, we use the ConXsense ContextProvider to configure
Android’s Lockscreen dynamically at runtime. We modified
Android’s Settings component to be notified by our Con-
textProvider about changes in the current risk for device
misuse by means of a Broadcast Intent. We further mod-
ified Android’s LockPatternKeyguardView which is used to
display the Lockscreen to query the Settings component for
context information. While the device is used in a context
with low risk for device misuse, the LockPatternKeyguard-
View class automatically dismisses the Lockscreen. When-
ever the device is rebooted or the risk for device misuse
changes to high, a low-watermark mechanism ensures that
the Lockscreen is always displayed regardless of the current
risk for device misuse. This mechanism is required to pre-
vent an attacker from bypassing the Lockscreen by chang-
ing the context, emulating a context the user considers to
have low risk for device misuse or rebooting the device. In
addition, to mitigate the effect of sensory malware which
uses the acceleration sensor as a side channel to derive user
credentials (e.g., Lockscreen PIN or password) [45, 30, 8],
we use the SensorService USOM, our ContextProvider and
corresponding conditional access control rules to block ac-
cess to the acceleration sensor by 3rd-party apps while the
Lockscreen is displayed.

9.2 Evaluation
Mitigation of Sensory Malware. To mitigate the ef-
fects of the PlaceRaider [42] sensory malware we designed
a FlaskDroid policy to assign the type trusted to all pre-
installed system apps (e.g., the camera app), and the type
untrusted to all 3rd-party apps. In a real-world scenario this
trust level could be derived from the app’s reputation in an
app market. We use conditional access control rules for the
CameraService and SensorService USOMs to prevent all un-
trusted apps from accessing the acceleration sensor and the
camera when the risk for privacy exposure is high.

We tested our implementation using a slightly modified
version of the PlaceRaider malware generously provided to
us by its authors4. By installing the malware on our device
and logging the context information and access control de-
cisions we verified that FlaskDroid successfully filtered all
data delivered from Android’s SensorService and CameraSer-
vice components to the untrusted PlaceRaider app when the
risk for privacy exposure was high, thus rendering the at-

4The sample we received is incompatible with Android 4.0.4.



tack futile. We further verified that trusted apps could still
use the sensors and the camera. No false positives or false
negatives emerged during the evaluation of the Access Con-
trol Layer, which is not surprising since it merely enforces
context-dependent access control rules.

To evaluate the performance impact of the Access Con-
trol Layer we implemented an app which automatically trig-
gers 10, 000 access control queries by reading sensor data
and taking pictures. On average, the Access Control Layer
caused an overhead µ of 4.9 ms (standard deviation σ 17.6
ms) for the SensorService and CameraService USOMs on a
Samsung Galaxy Nexus smartphone. The high standard de-
viation σ is caused by the garbage collector used in An-
droid’s Dalvik Virtual Machine: While studying Android’s
system logs we noticed that during the irregularly slow ac-
cess control queries, which are responsible for the high stan-
dard deviation, the garbage collector started and caused a
stall. Overall, 95% of all access control decisions are handled
in less than 4.2 ms, which we consider reasonable.
Usable Device Lock. To test our implementation of the
context-aware device lockscreen we modified the Android
operating system to periodically wake the device from sleep
and switch on the screen. We furthermore installed a syn-
thetic malware, which registers SensorEventListeners in An-
droid’s SensorService to be notified of acceleration sensor
readings. By logging and analyzing the Lockscreen behavior,
context information and sensor readings we verified that the
Lockscreen was only automatically dismissed in valid situ-
ations and that our synthetic malware did not receive any
sensor readings while the Lockscreen was active.

10. RELATED WORK
In the digital society, context data have been extensive-

ly used to analyze numerous aspects of human everyday
life. Examples range from the prediction of health status
by interpreting context data [24] to analyzing ethnograph-
ics [20] or person matching based on similar interests [15].
Our framework brings this idea of contextual analysis to the
area of security and privacy protection for the most impor-
tant tool of modern life - the smartphone.

A number of works have approached the problem of con-
text-aware access control. Contrary to our work, all of them
rely on user-defined or pre-defined policies in the form of role
definitions, conditions on context parameters, or context-
dependent rules. For example, Covington et al. [12] use a
Generalised Role Based Access Control (GRBAC) model uti-
lizing Environment Roles that are activated and deactivated
based on context observations, and Damiani et al. [13] utilize
roles in their spatially-aware RBAC model using location as
a component for access control decisions.

Others have used user- or pre-defined policies conditioned
on context parameters. Examples include Sadeh et al. [33]
who investigate a policy definition and management system
for the PeopleFinder application and Kelley et al. [23], who
introduced a user-controllable policy learning system that
builds on incremental policy improvements proposed to the
users based on recorded history events. For mobile devices,
Bai et al. propose a solution for fine-grained usage control on
Android [2]. Their work extends the UCON access control
model [35] by using context information (e.g., location and
time) as an additional input for policy decisions.

Hull et al. [21] present the Houdini framework for mitigat-
ing the complexity that value-based customization of poli-

cies implies by using user-provided higher-level preferences
to generate rules for privacy enforcement. They mention the
possibility for automatically-learned preferences, but do not
provide support for such automation at the time of writing.

Many recent papers have addressed context-aware access
control enforcement on mobile devices. For example, Conti
et al. [11] describe the CRePe framework for Android for
enforcement of context-dependent access control policies al-
lowing or denying access to specific resources depending on
the currently detected active context. In the MOSES frame-
work [32] Rusello et al. propose a combination of dynamic
taint tracking using the TaintDroid architecture [16] and
policy enforcement on Android’s middleware layer to en-
able context based access control on resources and apps with
the goal of providing isolated environments called security
profiles. Similarly, the TrustDroid [6] architecture provides
lightweight security domain isolation on Android with ba-
sic support for context-based network access control poli-
cies. Saint [29] features a context-aware fine-grained access
control framework for Android, which focuses on enabling
app developers to define context-dependent runtime con-
straints on inter-app communication. Nauman et al. present
Apex [28], which extends the Android operating system with
conditional permissions. It provides to some extent sup-
port for context-based access control by allowing the user to
define context-dependent resource restrictions (e.g., based
on the time of day). All of these works heavily rely on
user- or pre-defined rules, whereas our work relies on dy-
namic context classification utilizing machine learning as a
source for access control enforcement. Also, in contrast to
MOSES, TrustDroid and Apex, our access control architec-
ture is based on the more generic and flexible FlaskDroid
platform [7], which is also able to cover (most of) the use
cases described in Saint.

A recent patent application by Bell et al. [5] discloses a
system using context-triggered policies controlling the access
of applications to sensors and other resources on a smart-
phone. Also their approach relies on either pre-defined poli-
cies or policies uploaded to the devices by external entities.

Addressing the problem of more usable user authentica-
tion on mobile devices, Riva et al. [31] use various contex-
tual clues to (partially) authenticate the user by estimating
the likelihood that the user is in proximity and use this in-
formation to configure the device lock. Similarly, Hayashi
et al. [19] introduce Context-Aware Scalable Authentication,
an approach which uses the location of the device in a prob-
abilistic framework to determine the active authentication
factors to be used for user authentication (e.g., PIN or pass-
word) on smartphones. Although we cover a similar use
case as these papers, our approach is very different. We do
not authenticate the user, but rather adjust device locking
behavior based on automatic classification of the context
according to its perceived risk level.

Kang et al. [22] introduced the idea of time-based cluster-
ing of position observations, which Zheng et al. [46] used to
introduce the concepts of stay points and stay regions, fur-
ther developed by Montoliu et al. [26]. We adopt a slightly
modified form of the notion of stay regions to define our
GPS-based CoIs. In addition, we also extend the notion of
a stay points to non-locational data in the form of WiFi stay
points. Dousse et al. [14] have successfully demonstrated the
use of WiFi fingerprints for identifying and detecting places
based on WiFi. We adopt a simplified version of their place



identification scheme considering only intersections of WiFi
snapshots for our WiFi-based CoI detection.

Gupta et al. [17] were the first to use context profiling
and the notion of CoI and device familiarity for estimat-
ing the ’safety’ level of a context. Their system relied on a
simple heuristic model based on time-discounted familiarity
measures and suffered from having to specify a fixed thresh-
old for distinguishing between context classes, which fails
to take into account context- and user specific differences.
Since we apply a sophisticated context model and more pow-
erful machine learning models for context classification, our
approach is capable to take better into account also context-
and user-specific differences in perceptions of risk level and
privacy exposure.

11. CONCLUSIONS AND FUTURE WORK
In this paper, we described ConXsense, a context-aware

access control framework for mobile devices utilizing au-
tomated classification of contexts based on sensed context
data. We applied it to two concrete smartphone-related
use cases: defending against sensory malware and device
misuse. We showed that context classification can be used
for context-aware access control enforcement, effectively ad-
dressing true security concerns that smartphone users have.
In this, however, we do not see the task merely as a predic-
tion problem, but rather we consider true contextuality as
a continuous process of learning from and adapting to the
individual needs and preferences of smartphone users.

Having validated the effectiveness of ConXsense, the next
step is to evaluate its usability. We plan to implement on-
device versions of the Profiler and Classifier and create a mo-
bile app for user studies focusing on the usability aspects
related to our framework. We intend also to develop further
richer context models incorporating more context sensors,
and addressing other context-aware access control use cases.
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Y. Zhauniarovich. CRêPE: A system for enforcing
fine-grained context-related policies on android.
Information Forensics and Security, IEEE
Transactions on, 7(5):1426–1438, 2012.

[12] M. Covington, P. Fogla, Z. Zhan, and M. Ahamad. A
context-aware security architecture for emerging
applications. In 18th Annual Computer Security
Applications Conference, pages 249 – 258, 2002.

[13] M. L. Damiani, E. Bertino, B. Catania, and
P. Perlasca. GEO-RBAC: A spatially aware RBAC.
ACM Trans. Inf. Syst. Secur., 10(1), Feb. 2007.

[14] O. Dousse, J. Eberle, and M. Mertens. Place Learning
via Direct WiFi Fingerprint Clustering. In IEEE 13th
International Conference on Mobile Data Management
(MDM), pages 282–287, 2012.

[15] N. Eagle and A. Pentland. Social serendipity:
mobilizing social software. Pervasive Computing,
IEEE, 4(2):28–34, 2005.

[16] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In 9th USENIX
conference on Operating systems design and
implementation, OSDI’10, pages 1–6, Berkeley, CA,
USA, 2010. USENIX Association.

[17] A. Gupta, M. Miettinen, N. Asokan, and M. Nagy.
Intuitive security policy configuration in mobile
devices using context profiling. In International
Conference on Privacy, Security, Risk and Trust
(PASSAT), and 2012 International Confernece on
Social Computing (SocialCom), pages 471–480. IEEE,
Sept. 2012.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[19] E. Hayashi, S. Das, S. Amini, J. Hong, and I. Oakley.
CASA: context-aware scalable authentication. In Ninth
Symposium on Usable Privacy and Security, SOUPS
’13, pages 3:1–3:10, New York, NY, USA, 2013. ACM.
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