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Abstract— This paper presents a sufficient condition that
establishes closed loop stability for linear time invariant dy-
namical systems with transfer functions that are analytic in
the open right half complex plane. The condition is suitable
for analyzing a large class of highly complex, possibly inter-
connected, systems. The result is based on bounding Nyquist
curves by using frequency dependent half planes. It provides
(usually non-trivial) robustness guarantees for the provably
stable systems and generalizes to the multidimensional case
using matrix field of values. Concrete examples illustrate the
applications of the condition. From our condition, it is easy
to derive a relaxed version of the classical result that the
interconnection of a positive real and strictly positive real linear
system under feedback is closed loop stable.

I. INTRODUCTION

In the modeling and analysis of complex systems, it
is useful to capture system properties of importance for
the application with sufficient accuracy but abstract away
irrelevant details, and also to select an analysis technique
that matches the complexity of the model without being
too conservative. Although the forgiving nature of feedback
often allows the use of simple models to analyze closed loop
properties, simple models may not always be available. This
is the case, for example, when a system is intended to operate
over a wide range of conditions, exhibits complex dynamics
over a wide range of time scales, and has a bandwidth that
is sensitive to parameter changes and is consequently not
explicitly known a priori. For such scenarios we have to rely
on methods that hide the “details”, at the price of somewhat
conservative results.

The dynamics of interconnections of even very simple
dynamical systems tends to be very complex. They are inher-
ently hard to analyze due to the decentralized structure and
typically requires a fairly sophisticated machinery. Analysis
and synthesis of such systems has lately attracted much
interest; see [3], [8], [11], [13] and references therein. This
line of work, however, does not explicitly address scalabil-
ity. Here, scalability means that a class of interconnection
structures can be shown to be stable, without requiring a
new centralized analysis whenever an agent is added or
removed, which subsequently alters the system equilibrium.
Such scalability is required by many applications, such as
data networks, flocking phenomena and power networks, but
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has received relatively little attention [9], [10], [12]. The
results in the present paper sprung from an analysis [16] of
Internet congestion control: a distributed, highly heteroge-
neous and continually changing system and a domain where
scalability is essential. A centralized analysis, which would
require distributing global information whenever a computer
or router connects or disconnects, is simply infeasible. The
common approach in this type of work has been to work
in the frequency domain and use the Nyquist criterion to
establish closed loop stability. Due to the complexity, this
typically involves taking a convex hull of some aspect of the
Nyquist curve [12], [9], potentially introducing a significant
degree of conservativeness.

This paper proposes a less conservative stability criterion,
in which the loop gain is decomposed into two factors, which
must satisfy two half-plane inclusion conditions. This crite-
rion, which can involve a frequency-independent half plane,
implicitly bounds the Nyquist curve by a set of frequency-
dependent half planes whose union does not include the
set (−∞,−1]. Frequency dependent half plane conditions
have previously been used in the context of interconnected
systems [12], [15]; similarly, the convex hull conditions for
stability in [9], [10], [18], need only hold pointwise over
frequency (cf. the conditions in [6]). Considering half planes
per frequency reduces conservatism, at the price of greater
complexity in the stability test. The approach taken here
circumvents the frequency dependence in the half planes.
The complexity in the stability condition is transformed from
finding infinitely many bounding half planes, into finding a
suitable factorization of the loop gain.

Our criterion is related to notions of dissipativity and
passivity [20], which have recently been applied to commu-
nication systems [21]. They have also long been applied to
process control engineering, which also requires that closed
loop stability be maintained in a multiloop control system
when any subset of the control loops is detuned or even
turned off; see [22] and references therein. In that context,
the notion of scalable stability is referred to as decentralized
unconditional stability.

The paper is organized as follows. Preliminary concepts
and notation are introduced in Section II. Section III then
presents the main results: a stability condition with a follow-
ing robustnesses corollary. In Section IV, concrete examples
including both SISO and MIMO systems are presented to
illustrate our main results.

II. PRELIMINARIES

Let R and C denote the fields of real and complex
numbers, and let C+ be the open right half plane, C̄+ the



closed right half plane and Cu be the open upper half plane.
Let Z+ be the set of non-negative integers.

Let σ(A) denote the spectrum of a square matrix A ∈
C
n×n. If A is Hermitian, we further use λ(A) and λ(A) to

denote its largest and smallest eigenvalue respectively. The
field of values (also called the numerical range) of a matrix
A ∈ Cn×n is the set

F (A) := {x∗Ax |x ∈ C
n, x∗x = 1} .

We will use the properties [4]: σ(A) ⊂ F (A), σ(AB−1) ⊂
F (A)/F (B) for 0 /∈ F (B), and Re (F (A)) =
F ((A+A∗)/2) where A∗ is the conjugate transpose of A.

Negative feedback is always implicitly assumed if not
stated otherwise. The gain and phase margins are defined as
in [14]: The gain margin (GM) of a stable feedback system
with return ratio L(s) is defined as GM = 1/|L(jω180)|,
where the phase cross-over frequency ω180 is where the
Nyquist curve of L(jω) crosses the negative real axis be-
tween −1 and 0. The phase margin (PM) is defined as PM =
arg (L(jωc))+180◦, where the gain crossover frequency ωc
is where L(jω) first crosses 1 from above, i.e., |L(jωc)| = 1.

All angles are interpreted as equivalence classes modulo
2π. Thus, for example, −3π/2 ∈ (0, π).

III. MAIN RESULT

We will now present the main contributions of the paper.
We will start by deriving conditions on the individual parts of
a factorization of the loop gain that are sufficient for closed
loop stability. Then we will show how fulfilling stronger
requirements also provides robustness guarantees.

A. Stability

In the following, we consider closed loop stability of a
(negative) feedback system with open loop transfer function
denoted L(s).

Theorem 1: Assume L(s) ∈ CM×M is a transfer function
analytic everywhere in the closed right half plane C̄+ except
possibly at a finite number N of points jωi, ωi ∈ R, i =
1, . . . , N along the imaginary axis, and with a factorization

L(s) = Q(s)P−1(s).

Let
Cθ = {z | Im (ze−jθ) < 0}

(i.e., an open complex half plane with angle θ and which
touches the origin), and let α ∈ [0, 1].

A system with open loop transfer function L(s) is then
closed loop stable if for all ω ≥ 0, ω �= ωi, i = 1, . . . , N ,
there exists a θ ∈ R such that both

F (P (jω)) ⊆ Cθ, (1)

F (Q(jω)) + αF (P (jω)) ⊆ Cθ (2)

and either N = 0 or for all i = 1, . . . , N

(−∞,−1] ∩ σ (L(si)) = ∅
when si traverses an infinitesimal semi-circle into the right
half plane around jωi.

Proof: Define the set of angles

ψ(ω) = θ − arg (F (P (jω)))

and let the open cone to the right of all of the lines that pass
through −α+ j0 with angles in ψ(ω) be denoted by

C(ω) = {z | arg(z + α) − ψ(ω) ⊂ (−π, 0)}. (3)

The subset condition (1) implies that ψ(ω) ⊂ (0, π) (modulo
2π) for all ω ≥ 0, ω �= ωi; it follows that

(−∞,−1] ∩
⋃

ω≥0;ω �=ωi

C(ω) = ∅.

Since by hypothesis (−∞,−1]∩σ (L(si)) = ∅ when circum-
venting the points on the imaginary axis where L(s) fails to
be analytic, invoking the generalized Nyquist criterion [14]
yields that the system is closed loop stable if

σ (L(jω)) ⊆ C(ω),

for all ω ≥ 0, ω �= ωi. This is equivalent to

arg (σ (L(jω)) + α) − ψ(ω) ⊆ (−π, 0). (4)

Note that (1) implies 0 /∈ F (P (jω)) and thus [4]:

σ (L(jω)) = σ
(
Q(jω)P−1(jω)

) ⊂ F (Q(jω))
F (P (jω))

.

It follows since

arg (σ (L(jω)) + α) ⊂ arg
(
F (Q(jω))
F (P (jω))

+ α

)
,

that (4) is satisfied if

arg (F (Q(jω)) /F (P (jω)) + α) − ψ(ω)
= arg (F (Q(jω)) + αF (P (jω)))−arg (F (P (jω)))−ψ(ω)

= arg (F (Q(jω)) + αF (P (jω))) − θ ⊆ (−π, 0), (5)

which is equivalent to (2).
Remark 2: The result is independent of whether a left

or right factorization is used; L(s) = P −1(s)Q(s) may
be preferred. Note, however, that different choices of Q(s)
and P (s) may yield predictions with different degree of
conservativeness.

Remark 3: There are two forms of frequency dependence
in Theorem 1. In the simplest case, θ is fixed and the C(ω)
are (intersections of) frequency dependent half planes. If
F (P (jω)), ω ≥ 0, does not reside in a single half plane
Cθ , then θ may also vary with ω so that the conditions on
P and Q depend on frequency-dependent half planes.

The use of Theorem 1 is illustrated in Section IV by the
means of a series of examples.

B. Robustness

By putting stronger sector requirements on P (s), we will
now show how bounds on the gain and phase margin and
the peak of the sensitivity function S(s) = (1+L(s))−1 can
be achieved when α < 1. Note that in the multidimensional
case analogous margins are of limited use since they are only
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Fig. 1. Geometric illustration of robustness bounds.

valid for a simultaneous parameter change in all of the loops.
This section will therefore consider only scalar systems.

Corollary 4: Assume there exists a ψmin ∈ (0, π/2) such
that for all ω ≥ 0, ω �= ωi, i = 1 . . . , N , there exists a θ
satisfying condition (2) and also

P (jω) ∈ Cψmin,θ ⊂ Cθ, (6)

where

Cψmin,θ = {z | arg(z) − θ ∈ (−π + ψmin,−ψmin]} .
Then the following bounds hold:

‖S‖∞ = sup
ω≥0

|S(jω)| ≤ 1
(1 − α) sin(ψmin)

, (7)

PM ≥ ψmin − arcsin(α sinψmin) (8a)

≥ (1 − α)ψmin. (8b)
Proof: For all ω = ωi, i = 1, . . . , N , trivially (7)

is fulfilled since limω→ωi |S(jω)| = 0, and by definition
ωc �= ωi. Now consider ω ≥ 0, ω �= ωi. The restriction
P (jω) ∈ Cψmin,θ implies that ψ(ω) ∈ [ψmin, π − ψmin),
that is the angle of the half planes C(ω) containing L(jω).
Consider first the case ψ ∈ (ψmin, π/2]. The shortest distance
between the line defining the half plane C(ω) and −1 is
simply

Δ = (1 − α) sin(ψ),

as shown in Fig. 1. Since S−1(jω) by definition correspond
to the line from −1 + j0 to L(jω), we have

1/|S(jω)| ≥ Δ ≥ (1 − α) sin(ψmin),

and thus (7). The case ψ ∈ (π/2, π−ψmin) is equivalent by
symmetry.

The angle φ can be computed by applying the sine rule
to the triangle shown in Fig. 1 containing the origin and the
point −α+ j0. This gives

sin(ψ − φ)
α

= sin(ψ),

and since ψ − φ < π/2 from the geometry, this gives

φ = ψ − arcsin(α sin(ψ)) (9a)

≥ ψ(1 − α), (9b)

where the inequality uses α sin(ψ) ≤ sin(αψ) and
arcsin(sin(αψ)) ≤ αψ for α ∈ [0, 1] and ψ ∈ [0, π]. Both
of the right hand sides of (9) are non-decreasing in ψ, since
d
dψ arcsin(α sin(ψ)) ≤ 1 for the parameter values of interest,
which establishes (8).

Remark 5: The phase margin bound (8) still holds if the
sector condition on P (s) is relaxed to P (jω) ∈ Cψ̃min

with

Cψ̃min
= {z | arg(z) − θ ∈ (−π,−ψmin], ψmin ∈ (0, π/2)} .

Note that Cψmin ⊂ Cψ̃min
⊂ Cθ .

Remark 6: It follows directly from the definition of the
gain margin, that any scalar system satisfying Theorem 1
must have gain margin GM ≥ 1/α.

Remark 7: By the circle criterion [7], it is possible to
derive sector conditions similar to (6) that guarantee stability
when sector bounded static nonlinearities are present in the
the loop.

IV. EXAMPLES

The results of Section III will now be illustrated by
considering specific examples, from a very simple example
to a very general interconnected system.

The first serves as an introduction to Theorem 1 and also
demonstrates that it is capable of producing tight bounds.
The second, involving heterogeneous delays, demonstrates
the robustness results. The third is a realistic example,
modeling congestion control on a single Internet link. The
final example demonstrates a relationship between the new
criterion and passivity.

A. Simple Example: Delay and two poles

Consider the closed loop system with loop gain

L(s) = k
e−sτ

s(s+ a)
(10)

where a ≥ 0 and τ ≥ 0 are given, and where k > 0 is a
constant control gain to be determined such that the system is
stable. Clearly k cannot be arbitrarily large since the phase
of the system decreases linearly with increasing frequency
due to the delay present in the loop.

The system is analytic everywhere in the closed right half
plane except at s = 0 and thus Theorem 1 is applicable. Since
limε→0 arg

(
L(εejφ)

)
= −φ it follows that when s traverses

an infinitesimal semi-circle into the right half plane around
the origin, εejφ, the Nyquist curve of L(s) remains in C̄+.
One possible factorization of L(s) = Q(s)P −1(s) is

Q(s) = k
e−sτ

s
, (11)

P (s) = s+ a. (12)

Since P (jω) is in the interior of the first quadrant of the
complex plane, two natural candidates for θ in Theorem 1
are θ = π/2, corresponding to Cπ/2 = C+, and θ = π
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Fig. 2. Log-log plot of the relative looseness of Theorem 1 for transfer
function (10) for various α’s and τ ’s.

corresponding to Cπ = Cu. Both contain the Nyquist curve
of P (jω). However, since

lim
ω→0+

arg (Q(jω) + P (jω)) = −π/2,

there exist ω > 0 where

Q(jω) + P (jω) /∈ Cπ = Cu,

which means that θ = π does not satisfy the axioms of
Theorem 1.1 Instead, we continue with θ = π/2 (Cθ = C+).

The Nyquist curve satisfies P (jω) ∈ C+ for all frequen-
cies. Therefore, by Theorem 1, the closed loop system is
provably stable if for ω > 0

Re (Q(jω)) > −Re (P (jω)) = −a.

This means that we can completely ignore the complexity in
the imaginary part of Q(jω) + P (jω). Since

−Re (Q(jω)) = k
sin(ωτ)
ω

= kτ
sin(ωτ)
ωτ

≤ kτ,

a sufficient condition for closed loop stability is that

k ≤ a/τ.

Since calculating the phase cross-over frequency requires
solving a transcendental equation, the maximum possible
stable k (i.e., the gain margin of L(s)/k) cannot be ex-
pressed analytically. This means that any analytical stability
condition must introduce some degree of conservativeness.
By computing the gain margin numerically for different
parameters a and τ and comparing it with the largest stable
k̂ = a/τ we have predicted, we get an estimate on how
conservative our method is for this particular example. The
relative gain looseness (k − k̂)/k as a function of the pole
location a for different values of the delay τ is plotted in a
log-log plot in Fig. 2. The worst case relative error seems
to be about 35 % which occur for large a. However, the
error monotonically decreases when a and τ decrease, and
Theorem 1 thus is arbitrarily tight. To establish that tightness

1It is still possible to use the technique to check that L(jω) does not
intersect (−∞,−1] for some frequencies.

formally, note that

arg(L(jω180)) = −π − ω180τ + arctan (a/ω180)

= −π − ω180τ +
a

ω180
+O

((
a

ω180

)2
)
.

Thus

ω2
180 =

a

τ
+O

(
a2

ω180τ

)
=
a

τ
+O

(√
a3

τ

)
.

Then

L(jω180) =
k

(
exp(−j(ω180τ + a/ω180)) +O

((
a

ω180

)2))
(jω180)2

= − k (1 +O(aτ))
a
τ +O

(√
a3/τ

) = − kτ

a(1 +O(
√
aτ))

.

This shows that (k − k̂)/k = O(
√
aτ), in keeping with the

slope of 2 in Fig. 2.

B. Multiple time delays

In the next example, the pole −a in the loop gain of the
previous example is replaced with a sum of exponentials
parametrized by τi. The open loop transfer function is then

L(s) = k
e−sτ

s
(
a+

∑N
i=1 e

−sτi

) . (13)

This system is considerably more complex to analyze using
standard tools because of the transcendental denominator.
However, if a > N then the system is analytic everywhere
in C̄+, except at the origin, and this system fits well into the
framework derived in Section III.

First note that the behavior of the system when encircling
the origin is analogous to the previous example. Next,
consider the factorization with Q(s) given by (11) and

P (s) = a+
N∑
i=1

e−sτi .

Since a > N by assumption,

Re (P (jω)) ≥ a−N > 0,

and therefore the half plane C+ contains P (jω). Analo-
gously to the previous example, the system thus is closed
loop stable provided

k ≤ a−N

τ
.

Consider now the robustness. Writing

P (jω) =
N∑
i=1

1
N

(
a+Ne−jωτi

)
,

which has the form of a convex sum over points located on
the circle centered at a with radius N , shows that P (jω) is



contained in the closed disk centered in a with radius N .
From basic trigonometric identities,

arg (P (jω)) ∈ [−π/2 + ψmin, π/2 − ψmin],

where ψmin = arccos (N/a) ∈ (0, π/2). Corollary 4 is
thus directly applicable and yields bounds on the phase
margin and the peak of the sensitivity function. To achieve
robustness, we must relax the previous stability condition.
Let α ∈ (0, 1) and choose

k ≤ α
a−N

τ

which implies a gain margin GM ≥ 1/α.
In the case that N/a = 1/

√
2 and α = 1/2, the bound

(8b) gives a phase margin PM ≥ 22.5◦. Furthermore, we
have from Corollary 4 that

‖S‖∞ ≤ 2
sin (arccos(N/a))

=
2√

1 −N2/a2
.

The bounds are illustrated in Fig. 3. Fulfilling the gain margin
bound corresponds to crossing the imaginary axis right of
−α. Fulfilling the phase margin bound corresponds to not
entering the unit circle (the solid black curved line) above
the solid black line. (The dash-dotted line corresponds to
the more accurate bound (8a).) Fulfilling the bound on the
peak of the sensitivity function corresponds to not entering
the disk defined by the circle shown by the dashed black
line. The gray dots corresponds to Nyquist curves of 1000
realizations of L(jω) where N is chosen to be a random
integer between 1 and 10, and τ and τi, i = 1, . . . , N , are
chosen uniformly in the interval [0, 10]. The parameter a =
N
√

2 (to keep the ratio N/a fixed) and the gain is set to
k = α(a − N)/τ . From the figure it is apparent that all
bounds predicted are satisfied. Our predictions seem correct
but slightly conservative for this case.
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Fig. 3. Graphical illustration of robustness bounds for (13). See text.

C. Internet Congestion Control

We next illustrate the usefulness of our results by studying
the closed loop stability of a highly complex transfer function
that appears in Internet congestion control.

Consider the following open loop transfer function:

L(s) =
1/c

xc/c+
∑

i
xi

c
1

1−exp(−sτi)

∑
i

e−sτi

1 − e−sτi
Wi(s),

(14)
where c > 0, xc ∈ [0, c], xi ∈ [0, c], τi > 0, and the
conservation law ∑

i

xi + xc = c (15)

holds. This transfer function derives from [5] (see also [1])
where the general version of the model is shown to accurately
model the equilibrium dynamics of a communication net-
work where sources apply window based congestion control
(such as TCP [23]). In particular (14) models the specific
case of a single bottleneck link network where the ith
source updates its window size according to Wi(s) using the
observed queuing delay as input signal, which is considered
to reflect the amount of congestion in the network. The model
is thus suitable for studying, for example, FAST TCP [19]
and TCP Vegas [2]. The parameter c corresponds to the
capacity of the link, xc models the amount of uncontrolled
traffic (UDP traffic and short lived TCP flows), and xi and τi
are the ith source’s equilibrium sending rate and experienced
loop (round trip) delay respectively. The conservation law
(15) corresponds to a fully-utilized link: at the equilibrium
point, the traffic flowing into the link equals the capacity. We
remark that results from analyzing FAST TCP [17] suggests
that applying standard low order Padé approximations of
the exponential functions is not sufficient to study scalable
stability of the closed loop system. This is due to the
periodic narrow resonance peaks introduced by the multiple
1 − e−sτi terms in the denominator that are challenging
to capture over a sufficiently wide frequency interval for
arbitrary parameters.

Apparently L(s) is quite a non-standard transfer function,
and even assuming the simplest possible window control,
a constant gain Wi(s) = ki, stability analysis seems quite
cumbersome at a first glance. However, it can be shown [5]
that L(s) is analytic in C̄+ if Wi(s) is asymptotically stable
as well for all i. Thus, under the assumption of a static
gain window update, Theorem 1 is applicable, it is also very
useful since it “hides” much of the complexity of the model.

A suitable factorization L(s) = Q(s)/P (s) is

Q(s) =
1
c

∑
i

e−sτi

1 − e−sτi
ki,

P (s) =
xc
c

+
∑
i

xi
c

1
1 − e−sτi

.

A key observation is that 1/(1 − e−jωτi) lies on the line
Re(z) = 1/2. In particular it monotonically traces the line
from 1/2− j∞ to 1/2+ j∞ when ω increases from n2π/τi
to (n+1)2π/τi, where n ∈ Z+. Fortunately we do not have



to consider the complexity in the imaginary part explicitly
as demonstrated next. Since Re

(
1/(1 − e−jωτi)

)
= 1/2,

Re (P (jω)) =
xc
c

+
∑
i

xi
c

Re
(

1
1 − e−jωτi

)
=

1
2
+
xc
2c

≥ 1
2
,

whence P (jω) ∈ C+. Theorem 1 then yields that any
combination of ki’s such that

Re (Q(jω)) > −1
2

provides closed loop stability. Now, since

Re (Q(jω)) =
1
c

∑
i

kiRe
(
− 1

1 − ejωτi

)
= −1

2

∑
i

ki
c

and
∑

i xi ≤ c it follows that if each source scales the
window gain ki to be proportional to but smaller than its
sending rate, ki < xi, the closed loop system is stable.
This information is available locally at each source and need
not be communicated over the network explicitly. Note that,
in this case, the step of factoring the loop gain reflects the
physical structure of the system.

D. Relation to passivity

Consider the multidimensional open loop system L(s) =
Q(s)P−1(s) and assume for simplicity that L(s), Q(s) and
P (s) are analytic everywhere in C̄+, Assume further that, for
all ω, P (jω) + P ∗(jω) is positive definite, or equivalently
λ(P (jω) + P ∗(jω)) > 0. That is, P (·) is strictly positive
real or strictly passive [20]. Then, F (P (jω)) ⊂ C+, since,
for any square matrix A, [4]

Re(F (2A)) = F (A+A∗) = [λ(A+A∗), λ(A+A∗)]. (16)

By Theorem 1, the system is closed loop stable if

F (P (jω)) + F (Q(jω)) ⊂ C+,

or equivalently if

λ(P (jω) + P ∗(jω)) + λ(Q(jω) +Q∗(jω)) > 0. (17)

Clearly, closed loop stability is achieved if λ(Q(jω) +
Q∗(jω)) ≥ 0, corresponding to Q(s) being positive real (i.e.,
passive). It is well-known that interconnection of a positive
real and strictly positive real linear system under feedback
is closed loop stable [7]. Similarly, an interconnection of a
strictly passive and a non-passive system can be stable if the
sum of their “storage functions” [7] is decreasing. Condition
(17) is analogous to this less restrictive form, and explicitly
quantifies how far Q(s) can be from being passive, in terms
of how passive P (s) is.

V. CONCLUSIONS

This paper has presented a sufficient condition that estab-
lishes closed loop stability for linear time invariant dynamical
systems with transfer functions that are analytic in the open
right complex half plane. The technique is based on bounding
Nyquist curves by using frequency dependent half planes and
is suitable for analyzing a large class of highly complex,
possibly interconnected, systems. Robustness guarantees for
the provably stable systems were also derived.
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