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ABSTRACT

Coordinated Multi-Point (CoMP) transmission is an infrastructural enhance-

ment under consideration for next-generation wireless networks. In this dis-

sertation, the capacity gain achieved through CoMP transmission is studied

in various models of wireless networks that have practical significance. The

capacity gain is analyzed through the degrees of freedom (DoF) criterion.

The DoF available for communication provides an analytically tractable way

to characterize the capacity of interference channels. The considered channel

model has K transmitter/receiver pairs, and each receiver is interested in one

unique message from a set of K independent messages. Each message can be

available at more than one transmitter. The maximum number of transmit-

ters at which each message can be available is defined as the cooperation order

M . For fully connected interference channels, it is shown that the asymptotic

per user DoF, as K goes to infinity, remains at 1
2

as M is increased from 1

to 2. Furthermore, the same negative result is shown to hold for all M ≥ 2

for any message assignment that satisfies a local cooperation constraint. On

the other hand, when the assumption of full connectivity is relaxed to local

connectivity, and each transmitter is connected only to its own receiver as

well as L neighboring receivers, it is shown that local cooperation is opti-

mal. The asymptotic per user DoF is shown to be at least max
{

1
2
, 2M

2M+L

}
for locally connected channels, and is shown to be 2M

2M+1
for the special case

of Wyner’s asymmetric model where L = 1. An interesting feature of the

proposed achievability scheme is that it relies on simple zero-forcing transmit

beams and does not require symbol extensions. Also, to achieve the optimal

per user DoF for Wyner’s model, messages are assigned to transmitters in an

asymmetric fashion unlike traditional assignments where message i has to be

available at transmitter i. It is also worth noting that some receivers have to

be inactive, and fractional reuse is needed to achieve equal DoF for all users.

The obtained results for locally connected channels are then extended to each
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of the following scenarios. First, a multiple-antenna transmitters setting is

studied to highlight the comparison between dedicating multiple antennas to

each message and sharing multiple antennas between messages. Second, an

average transmit set size constraint is considered, where instead of impos-

ing a constraint on the number of transmitters carrying each message, the

considered constraint is a backhaul load constraint that limits the number

of messages that can be delivered from a centralized controller to the base

station transmitters. Third, an interference channel with block erasures is

studied, where long-term fluctuations (shadow fading) in the wireless channel

can lead to any link being erased with probability p. For each value of p, our

goal is to find a fixed assignment of messages to transmitters that maximizes

the average per user DoF.
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CHAPTER 1

INTRODUCTION

In the past decade, there has been a significant growth in the usage of wireless

networks, and in particular, cellular networks, because of the increased data

demands (see e.g. [1]-[4]). This has been the driver of recent research for new

ways of managing interference in wireless networks.

Due to the superposition and broadcast properties of the wireless medium

(see e.g. [5]), interfering signals pose a significant limitation to the rate of

communication of users in a wireless network. Hence, it is of interest to

understand the fundamental limits of communication in interference channels

and to capture the effect of interference on optimal encoding and decoding

schemes. The problem of finding the capacity region of even the simple

two-user Gaussian interference channel is still an open problem because of

several challenges including the identification of optimal choices for both

the codebook and decoding scheme. However, approximations exist in the

literature, where the capacity region or the sum capacity is known in the

special scenario where the interference is strong enough such that the channel

can appear to each receiver as a multiple access channel [6], and where the

interference is weak enough such that the channel can appear to each receiver

as a point to point channel (see [7], [8], and [9]).

1.1 Degrees of Freedom of the Fully Connected

Interference Channel

Another effective approximation that simplifies the problem of finding the ca-

pacity of interference channels is to consider only the sum degrees of freedom

(DoF) or the pre-log factor of the sum capacity at high signal-to-noise ratio

(SNR). The DoF criterion provides an analytically tractable way to charac-

terize the sum capacity and captures the number of interference-free sessions
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that can be supported in a given multi-user channel. One clear advantage of

this analysis is that it is not sensetive to the received power of the extracted

interference free desired signal at the decoder. Another insight into why the

problem is easier for this model, is that it ignores the effect of the Gaussian

noise, since at high signal to noise ratio, the effect of interfering signals will

be dominant. In [10], an upper bound of K
2

is derived for the DoF of the

K-user fully connected Gaussian interference channel. The key idea makes

use of the elimination of the Gaussian noise in the analysis, as the received

signal becomes a linear combination of the the transmitted signals with a

zero constant term. This leads to the conclusion that for any reliable coding

scheme for the case when K = 2, where each receiver can decode its intended

signal, it will also be able to decode the interference. Hence, any value for

the DoF achievable for the two-user Gaussian interference channel is also

achievable for a two-user Gaussian multiple access channel, and the DoF for

the latter is 1. By a simple counting argument, we reach the K
2

upperbound.

Interestingly, it is conjectured in [10] that the bound is loose, based on the

slackness in the counting argument (the argument simply bounds the DoF

for each pair of users by assuming all other signals to be known at these two

receivers).

In [11], Cadambe and Jafar showed that the K
2

bound is achievable for

a time varying channel, where the channel coefficients are drawn from a

continuous joint distribution. The coding scheme employs linear precoding

in a manner that exploits the diversity in the channel to align all interfering

signals in a dimension that does not contain all of the desired signal. By

zero forcing the interference, each receiver can recover part of the signal

that is linearly independent from a subspace containing all the interference,

thus achieving half degree of freedom. It is clear that one cannot design

the transmit beams such that interfering signals perfectly align at more than

one receiver. However, it is shown in [11] that by using a time extension at

each receiver, all vectors corresponding to interfering signals can align in a

subspace whose size approaches half the received signal space as the block

length goes to infinity.
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1.2 Asymptotic Interference Alignment

A time division based scheme that avoids interference, can only achieve one

degree of freedom for the K-user fully connected Gaussian interference chan-

nel, since at each time slot, the channel is equivalent to a single point-to-point

channel. To understand why the idea of aligning interference when the re-

ceived signal space has a dimension that is more than one, can achieve more

than a single degree of freedom, consider a three-user channel, where we use

three time slots to have a three-dimensional signal space. One of the users

(call it user 1) transmits its message in two linearly independent directions,

and each of the remaining users uses only one beam. By fixing the direction

of one of the beams, and choosing each other beam to align with another

transmitted vector at an unintended receiver, one can reduce the summation

of dimensions of interference subspaces at all receivers by three. We note

that the total number of interfering vectors is eight (two at the first receiver,

and three at each other receiver). Hence, the total dimension of subspaces

containing interference is five, leaving a four-dimensional subspace for the

desired signal. Therefore, four degrees of freedom can be achieved over three

time slots, or a 4
3

DoF per time slot. The details can be found in [11].

Now, we provide a sketch of the asymptotic interference alignment used

in [11] to achieve a half degree of freedom per user. Define the sequences,

αn = nK(K−1), (1.1)

γn = αn + αn+1, (1.2)

then the transmitted signal at transmitter k and time t is given by,

Xk = Bnbk, (1.3)

where the time index is removed for brevity, Xk, bk are the γn × 1, αn × 1-

dimensional vectors, corresponding to the transmitted vector, and the αn

encoded symbols corresponding to the message of user k, respectively. Bn is

the γn × αn -dimensional matrix whose columns are the elements of the set,

Bn =


 ∏
j,k∈{1,2,...,K},k 6=j

H
pjk
j,k

w : ∀pjk ∈ {0, . . . , n− 1}

 , (1.4)

3



where w is a γn × 1 vector, whose elements are selected independently from

a continuous distribution, Hj,k is the γn × γn -dimensional diagonal matrix,

representing the channel coefficients from transmitter k to receiver j for the

γn symbol extension.

Now, considering the received message at receiver j, it can be easily verified

that a non-intended message belonging to user k, k 6= j, will arrive at a

direction that belongs to the set Bn+1, i.e.,

Hj,kvk ∈ Bn+1. (1.5)

Thus, a total degrees of freedom of K
2
− ε can be achieved for any ε > 0, by

choosing n large enough, since

αn+1

αn
→ 1, (1.6)

and it can be shown that the matrix,

S = [Hk,kBn Bn+1] , (1.7)

has full rank of γn with probability one, ∀k ∈ {1, 2, . . . , K}, if the channel

coefficients are drawn from a continuous joint distribution.

Now, we argue why no more than K
2

DoF is achievable from the perspective

of the considered coding scheme. A possible line of thought attempting to

increase the achieved DoF by using the above coding scheme, would suggest

that not only should beams corresponding to different messages be aligned,

but beams originating at the same transmitter should be aligned at an un-

intended receiver. However, it is still required that these very beams be

distinguishable at their intended receiver (the desired signal should span a

subspace of dimension αn). This is not possible since vectors transmitted by

one transmitter undergo the same transformations by the channel, hence if

aligned at one receiver, it will be aligned at all other receivers.

Now, we note that the K
2

achievable DoF many not be sufficient to meet

the demands of wireless applications in many scenarios of practical interest,

and hence, it is of interest to study ways to enhance the infrastructure of

wireless networks in order to increase the rate of communication. We also

note that it is intuitive to think that asymptotic interference alignment can

be extended to achieve more than K
2

DoF if each message can be transmitted
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from more than one transmitter. Hence, the transmit beams corresponding

to the same message can be transformed differently by the channel.

1.3 Coordinated Multi-Point Transmission

Managing wireless interference through infrastructural enhancements is a

major consideration for next-generation cellular networks. One example of

such an enhancement is in cellular downlink through the assignment of one re-

ceiver’s message to multiple base station transmitters and managing interfer-

ence through a Coordinated Multi-Point Transmission (CoMP) scheme [12].

The cost of delivering messages to multiple transmitters over a backhaul link

is highlighted in this dissertation.

Motivated by the cellular downlink scenario (see e.g. [13], [14] and [15]),

we consider an extension of the information theoretic model of the K-user

Gaussian interference channel, where each message can be available at more

than one transmitter. In the extreme case where all messages are known

at all transmitters, the channel is equivalent to the Multiple Input Single

Output (MISO) broadcast channel with K antennas at a single transmitter,

and K single antenna receivers. The K-user MISO broadcast channel has

K degrees of freedom, achievable by a simple linear beam-forming strategy

that nulls out each message at exactly K − 1 receivers.

In order to bridge the gap between the two cases of No Cooperation and Full

Cooperation, we study the DoF in a scenario where each message is available

at a number of transmitters that is bounded by a maximum transmit set

size M . It is not difficult to see that a gain in the DoF is always achievable

for the case where M is proportional to the number of users. For example,

when M = K − 1, by communicating only M messages, a linear beam-

forming strategy can null out each message at M−1 receivers, thus achieving

M degrees of freedom, which is considerably larger than K
2

for large fully

connected networks. Therefore, it is more interesting to study the possible

gain when fixing a value of the maximum transmit set size constraint as

the size of the network increases. It is also useful for practical applications

to understand the potential gains enabled by CoMP transmission through

fixed-sized transmit sets in large networks.

By assuming that each message is available at the transmitter carrying
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the same index as the message as well as M − 1 succeeding transmitters, we

show in Chapter 3 that an extension of the asymptotic interference alignment

scheme of [11] can be used to prove that the DoF of the channel is lower

bounded by K+M−1
2

,∀K < 10, and it is conjectured that this lower bound

is valid for all values of K. We note that this DoF cooperation gain beyond

K/2 does not scale linearly with K as K goes to infinity. In other words, the

asymptotic per user DoF remains 1/2. We then study whether there exists

an assignment of messages satisfying the fixed maximum transmit set size

constraint that enables the achievability of an asymptotic per user DoF that

is strictly greater than 1/2.

1.3.1 Assigning Messages to Transmitters

The selection of an assignment of messages to transmitters is instrumental to

the potential gain offered by CoMP transmission in interference networks [16].

For example, a message assignment based on the traditional idea of clustering

does not lead to DoF gains for the fully connected channel. More precisely, if

the network is split into small subnetworks, and the message corresponding

to a user in a subnetwork can be available only at all transmitters in the

subnetwork, then the DoF of the channel remains K
2

. However, assigning

each message to the transmitter carrying the same index as well as M − 1

succeeding transmitters can lead to DoF gains in fully connected networks,

as shown in Chapter 3.

The choice of message assignment should be based on the channel con-

nectivity. For example, we show in Chapter 3 that for the fully connected

channel, message assignments based on local cooperation cannot lead to a

DoF gain that scales with the size of the network. However, we show in

Chapter 4 that local cooperation is optimal for locally connected channels,

and can be used to achieve gains in the asymptotic per user DoF.

1.4 Locally Connected Interference Channels

The assumption of full connectivity is key to the results obtained in [10], [11],

[17], and in Chapter 3 of this dissertation. For the fully connected interference

channel, interference mitigating schemes are designed to avoid the interfer-
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ence caused by all other transmitters in the network. However, in practice,

each receiver gets most of the destructive interference from a few dominant

interfering transmitters. For example, in cellular networks, the number of

dominant interfering transmit signals at each receiver ranges from two to

seven. All the interference from the remaining transmitters may contribute

to the interference floor, and the improvement obtained by including them

in the dominant interferers set may not justify the corresponding overhead.

For this reason, we study locally connected channels in Chapter 4, where the

channel coefficients between transmitters and receivers that lie at a distance

that is greater than some threshold are approximated to equal zero.

For the locally connected channel model, we assume that each transmitter

is connected to L neighboring receivers as well as the receiver carrying its

own index,
⌊
L
2

⌋
preceding receivers and

⌈
L
2

⌉
succeeding receivers. The special

case of this model where L = 1 is Wyner’s asymmetric model [18]. This

special case was considered in [19], and it was assumed that each message

is available at the transmitter carrying the same index as well as M − 1

succeeding transmitters. The asymptotic per user DoF was shown under

this setting to equal M
M+1

. The achieving scheme relies only on zero-forcing

transmit beam-forming. In Chapter 4, we extend this result and characterize

the asymptotic per user DoF for Wyner’s asymmetric model as 2M
2M+1

under

a general cooperation order constraint. The message assignment enabling

this result uses only local cooperation, that is, each message is available only

at neighboring transmitters. The size of the neighborhood does not scale

linearly with the size of the network, and therefore, our assignment scheme

enjoys the same advantage as the message assignment considered in [19].

1.5 Practical Considerations

1.5.1 Channel Knowledge

We assume that global channel state information is available at all transmit-

ters and receivers for all considered models. In practice, the channel coeffi-

cients are approximately estimated at the receivers by transmitting known

pilot signals, and then they are fed back to the transmitters (see e.g. [20], [21]

and [22]). It is a common practice in information theoretic analysis to ignore
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the overhead of the estimation and communication of channel coefficients, in

order to derive insights relevant to the remaining design parameters of the

coding scheme; we follow this layered approach in this dissertation.

1.5.2 Symbol Extension and Delay

One major obstacle toward a practical implementation of asymptotic inter-

ference alignment is that the achievable DoF is approached only with a very

large number of signal dimensions. The feasibility of alignment with a fi-

nite symbol extension is studied in [23] and [24]. We also note that CoMP

transmission can be used to achieve DoF gains without the need for infinite

symbol extensions. For example, assigning each message to two transmitters

in a four-user fully connected network can lead to the achievability of 9
4

per

user DoF, by coding over four time slots, which is greater than the 1
2

per user

DoF achieved without cooperation using infinite symbol extensions. Also, we

show in Chapter 4 how CoMP transmission can lead to scalable DoF gains

for locally connected channels without the need for symbol extensions.

1.5.3 Backhaul Constraint

The appropriate constraint to consider for the assignment of messages to

transmitters should depend on the nature of the backhaul link used in prac-

tice (see e.g. [12] and [25]). For example, in the context of heterogeneous

networks, the backhaul can be a wireless network. In this case, a study of

multi-hop networks can be relevant (see [26]). On the other hand, for the

case of wireline or fiber optics backhaul links, the considered model can be

useful. In particular, a constraint that bounds the average transmit set size

is more relevant than imposing a maximum constraint on each transmit set

size. We show in Chapter 5 how the solutions provided to our setting can be

used to find solutions for the CoMP transmission problem under an average

transmit set size constraint.

8



1.5.4 Dynamic Interference Management

In Chapter 6, we generalize the solutions obtained for locally connected in-

terference channels to networks with changing topology. The goal is to find a

fixed assignment of messages to transmitters that achieves the optimal aver-

age per user DoF in an interference network with dynamic connectivity. We

note that the topology can change in practice due to either design choices

as in heterogeneous network or long-term fluctuations in the channel (deep

fading conditions).

1.5.5 Synchronization

It is worth noting that one major practical consideration for the implemen-

tation of CoMP transmission coding schemes is the synchronization between

different transmitters that carry the same message. The problem of synchro-

nization is outside the scope of this dissertation, and is discussed in [27].

1.6 Related Problems

Many existing works studying interference networks with cooperating trans-

mitters use the term cognitive radios (e.g. [28], [29], [30], [31], [32]). Cooper-

ation through cumulative message sharing is studied for the fully connected

channel in [33], where each message is available at the transmitter carry-

ing the same index and all following transmitters. We use a similar setting

of cooperation to that of cumulative message sharing in the coding scheme

for locally connected channels in Section 4.3. In another body of work, un-

like the considered setting where we assume that transmitters cooperate by

sharing complete messages, cooperation through sharing partial message in-

formation that is considered as side information is studied (see e.g., [34]).

In [35] and [36], the transmitters are allowed to cooperate through noise-free

bit pipes or over the air, respectively.

Communication scenarios with cooperating multiple antenna transmitters

have been considered in [37] and [38] under the umbrella of the x-channel.

However, in the x-channel, mutually exclusive parts of each message are

given to different transmitters. This is extended in [39] to allow each part of
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each message to be available at more than one transmitter, and in [34] the

MIMO x-channel is studied in the setting where transmitters share further

side information.

In the considered setting, we implicitly assume the coordinated design of

the transmit beams between all transmitters. This kind of coordination is

also referred to in the literature as transmitter cooperation, even without the

sharing of messages (see e.g. [40]). Finally, it is worth noting that CoMP

Reception settings have been studied in [17] and [41]. In [17], sharing of

analog signals is allowed between receivers, and in [41], neighboring receivers

are assumed to share the decoded messages.

1.7 Dissertation Outline

In Chapter 2, we provide the system model and notation. The first channel

model we consider is the fully connected channel model, which we study in

Chapter 3. We show that CoMP transmission can offer DoF gains in Sec-

tion 3.1, and then study whether the offered DoF gains can scale with the

size of the network in Section 3.3. We then relax the assumption of full

connectivity and study locally connected channel models in Chapter 4. We

show in Section 4.3 that scalable DoF gains are possible for locally connected

channels, and that these gains can be enabled through a local cooperation

mechanism. We then show in Section 4.4 that local cooperation is optimal

for locally connected channels. We extend the obtained results for locally

connected channels to a channel with multiple-antenna transmitters in Sec-

tion 4.7. In Chapter 5, we study the more practically relevant constraint

on the average transmit set size, and show that solutions provided for the

maximum transmit set size constraint can be used to solve the more general

problem. We finally consider the problem of maximizing the average DoF

in a network with changing topology in Chapter 6. We provide concluding

remarks in Chapter 7
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CHAPTER 2

SYSTEM MODEL

We use the standard model for the K-user interference channel [42]. We

assume that each transmitter and receiver has a single antenna unless stated

otherwise,

Yi(t) =
K∑
j=1

Hi,j(t)Xj(t) + Zi(t), (2.1)

where t is the time index, Xj(t) is the transmitted signal of transmitter j,

Yi(t) is the received signal at receiver i, Zi(t) is the zero mean unit variance

Gaussian noise at receiver i, and Hi,j(t) is the channel coefficient from trans-

mitter j to receiver i over the time slot t. We remove the time index in the

rest of the dissertation for brevity unless it is needed.

2.1 Channel Model

In Chapter 3, we consider a fully connected interference channel where all

channel coefficients are drawn from a continuous joint distribution. We next

consider in Chapter 4 a locally connected channel model where channel co-

efficients between well separated nodes are approximated to be identically

zero. The locally connected channel model is a function of the number of

interferers L as follows:

Hi,j is not identically 0 if and only if i ∈
[
j −

⌊
L

2

⌋
, j +

⌈
L

2

⌉]
, (2.2)

and all channel coefficients that are not identically zero are drawn from a

continuous joint distribution. We note that for values of L = 1 and L =

2, the locally connected channel reduces to the commonly known Wyner’s

asymmetric and symmetric linear models, respectively [18]. We illustrate
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(a) (b)

Figure 2.1: Figure showing examples of the considered channel models with
a number of users K = 5. In (a), a fully connected channel model is shown.
In (b), a locally connected channel model with connectivity parameter
L = 2 is shown.

examples for the described fully and locally connected channel models in

Figure 2.1.

In Chapter 6, we consider a linear interference channel (L = 1) with block

erasures [43], where in order to consider the effect of long-term fluctuations

(shadowing), we assume that communication takes place over blocks of time

slots, and let p be the probability of block erasure. In each block, we assume

that for each j, and each i ∈ {j, j+1}, Hi,j = 0 with probability p. Moreover,

short-term channel fluctuations allow us to assume that in each time slot, all

non-zero channel coefficients are drawn from a continuous joint distribution.

We assume that channel state information is known at all transmitters and

receivers for all considered models.

2.2 Cooperation Model

For each i ∈ {1, 2, . . . , K}, let Wi be the message intended for receiver i, and

Ti ⊆ {1, 2, . . . , K} be the transmit set of receiver i, i.e., those transmitters

with the knowledge of Wi. The transmitters in Ti cooperatively transmit the

message Wi to the receiver i. We assume that each transmit set size is upper

bounded by a cooperation order M ,

|Ti| ≤M,∀i ∈ {1, 2, . . . , K}. (2.3)
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In Chapter 5, instead of the maximum transmit set size constraint of (2.3),

we impose an average transmit set size constraint, where the average transmit

set size is upper bounded by a backhaul load B,∑K
i=1 |Ti|
K

≤ B. (2.4)

2.2.1 Message Assignment Strategy

A message assignment strategy is defined by a sequence of supersets. The kth

element in the sequence consists of the transmit sets for a k-user channel. We

use message assignment strategies to define a pattern for assigning messages

to transmitters in large networks.

A message assignment strategy is defined by a sequence of transmit sets

(Ti,K), i ∈ {1, 2, . . . , K}, K ∈ {1, 2, . . .}. For each positive integer K and

∀i ∈ {1, 2, . . . , K}, the transmit sets {Ti,K}i∈{1,2,...,K} satisfy the considered

cooperation and define a message assignment for a K-user channel.

2.2.2 Local Cooperation

We say that a message assignment strategy satisfies the local cooperation

constraint, if and only if there exists a function r(K) such that r(K) = o(K),

and for every K ∈ Z+, the transmit sets defined by the strategy for a K-user

channel satisfies the following,

Ti ⊆ {i− r(K), i− r(K) + 1, . . . , i+ r(K)}, ∀i ∈ {1, 2, . . . , K}. (2.5)

2.3 Degrees of Freedom

Let P be the average transmit power constraint at each transmitter, and let

Wi denote the alphabet for message Wi. Then the rates Ri(P ) = log |Wi|
n

are

achievable if the decoding error probabilities of all messages can be simul-

taneously made arbitrarily small for a large enough coding block length n,

and this holds for almost all channel realizations. The degrees of freedom

di, i ∈ {1, 2, . . . , K} are defined as di = limP→∞
Ri(P )
logP

. The DoF region D
is the closure of the set of all achievable DoF tuples. The total number of
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degrees of freedom (η) is the maximum value of the sum of the achievable

degrees of freedom, η = maxD
∑

i∈{1,2,...,K} di.

For a sequence of K-user channels, K ∈ {1, 2, . . .}, if the limit of the

ratio between the degrees of freedom and the number of users exists, then

we call the value of this limit the asymptotic per user DoF. We say that a

message assignment strategy is optimal, if and only if there exists a sequence

of coding schemes achieving the asymptotic per user DoF using the transmit

sets defined by the message assignment strategy.

2.4 Notation

2.4.1 Performance Criteria

For the K-user fully connected channel model considered in Chapter 3, we

define η(K,M) as the best achievable DoF η over all choices of transmit sets

satisfying the maximum transmit set size constraint in (2.3). We define the

asymptotic per user DoF τ(M) to measure how η(K,M) scales with K, while

all other parameters are fixed,

τ(M) = lim
K→∞

η(K,M)

K
. (2.6)

We use η(loc)(K,M) to denote that maximum achievable DoF under the

maximum transmit set size constraint of (2.3) and the additional local co-

operation constraint of (2.5) for a K-user fully connected channel. Similary,

we use τ (loc)(M) to denote the local cooperation asymptotic per user DoF for

fully connected channels.

For the locally connected channel model of (2.2) and considered in Chap-

ter 4, we use ηL(K,M) to denote the DoF of a K-user channel with con-

nectivity parameter L, and τL(M) to denote the asymptotic per user DoF.

We also use η(loc)

L (K,M) and τ (loc)

L (M) to denote the corresponding DoF and

asymptotic per user DoF values for local cooperation, respectively.

For the locally connected channel model with the average transmit set size

constraint of B (2.4) considered in Chapter 5, we use η(avg)

L (K,B) to denote

the DoF of a K-user channel with connectivity parameter L, and τ (avg)

L (B)

to denote the asymptotic per user DoF.
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For the linear interference channel with block erasures considered in Chap-

ter 6, we use ηp(K,M) to denote the DoF of a K-user channel with block

erasure probability p and a maximum transmit set size constraint M , and

τp(M) to denote the asymptotic per user DoF.

2.4.2 Other Notation

We use [K] to denote the set {1, 2, . . . , K}, and φ to denote the empty set.

For any set A ⊆ [K], we use the abbreviations XA, YA, and ZA to denote the

sets {Xi, i ∈ A}, {Yi, i ∈ A}, and {Zi, i ∈ A}, respectively. For A,B ⊆ [K],

we let HA,B be the |A| × |B| matrix of channel coefficients between XB and

YA. We use H(·) to denote the binary entropy function.

For any set A ⊆ [K], we define CA as the set of messages carried by

transmitters with indices in A, i.e., the set {i : Ti ∩ A 6= φ}, and UA as

the set of indices of transmitters that exclusively carry the messages for the

receivers in A, and the complement set ŪA is the set of indices of transmitters

that carry messages for receivers outside A. More precisely, ŪA = ∪i/∈ATi.
We call a finite set of real random variables generic if and only if each

element has a continuous probability distribution conditioned on any subset

of the set of all other elements. Note that any subset of a generic set, is

generic. For any considered channel model, the set of channel coefficients

that are not identically zero is generic.
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CHAPTER 3

FULLY CONNECTED CHANNEL

Recall that for a K-user fully connected channel, we use η(K,M) as the best

achievable DoF η over all choices of transmit sets satisfying the maximum

transmit set size constraint in (2.3), and τ(M) to denote the asymptotic per

user DoF.

In this chapter, we investigate whether τ(M) > 1
2

for M > 1, and message

assignment strategies that may lead to a positive conclusion.

3.1 Achievable Scheme

We know from [10] and [11] that the sum DoF of a fully connected interference

channel without cooperation is K
2

, i.e., η(K, 1) = K
2

. We now show that

η(K,M) > K
2

, for M > 1, by using the following spiral message assignment

for each K-user channel:

Ti =


{i, i+ 1, . . . , i+M − 1}, ∀i ∈ [K − (M − 1)]

{i, i+ 1, . . . , K, 1, 2, . . . ,M − (K − i+ 1)},

∀i ∈ {K − (M − 2), . . . , K}.
Using this message assignment strategy and an asymptotic interference

alignment scheme, we prove the following result.

Theorem 1.

η(K,M) ≥ K +M − 1

2
,∀M ≤ K < 10 (3.1)

Proof. The proof is relegated to Section 3.5, and we provide a sketch here. To

achieve the stated lower bound, the M transmitters carrying each message

are used to cancel the interference introduced by this message at the first

M−1 receivers, thereby allowing each of these receivers to enjoy one degree of

freedom. By coding over multiple parallel channels corresponding to different
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time slots, we use an interference alignment scheme to align the interfering

signals at each other receiver to occupy half the signal space as the number

of parallel channels goes to infinity.

The achievable scheme is based on transmit beam-forming. The beam

design process is broken into two steps as illustrated in Figure 3.1. First,

we transform each parallel CoMP channel into a derived channel. Then, we

design an asymptotic interference alignment scheme over the derived channel

achieving the required DoF in an asymptotic fashion as the number of parallel

channels goes to infinity. Figure 3.2 provides a description of the derived

channel for the special case of K = 4 and M = 2. In order to use asymptotic

interference alignment in the achievable scheme, we need to show that at

each receiver, polynomial transformations defining a set of derived channel

coefficients determined by the receiver index, are algebraically independent

as functions of the original channel coefficients. We could verify in MATLAB

that this is true for all the values of K and M that we checked. Specifically,

we checked until K ≤ 9, but we conjecture that the result holds true for any

K and M .

Original
Channel

ZF
Encoder

Asymptotic
IA

Encoder

Asymptotic
IA

Decoder

Derived Channel

Figure 3.1: Summary of the achievable scheme of Theorem 1.

It is worth noting that using tools from algebraic geometry to study the

feasibility of interference alignment was introduced in the context of MIMO

interference channels in [44]. Now, We note that the achieved DoF gain due

to CoMP transmission shown in Theorem 1 (beyond K
2

) does not scale with

the number of users K. Hence, the question of whether τ(M) > 1
2

for M > 1

remains open. Here, we note that the spiral message assignment strategy

satisfies the local cooperation constraint in (2.5) and in Section 3.3, we show

that no gain in the asymptotic per user DoF can be achieved through any

message assignment strategy that satisfies the local cooperation constraint.
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Figure 3.2: The derived channel when K = 4 and M = 2. The thick green
lines indicate the links carrying signal. The dashed red lines indicate the
links carrying interference.

3.2 DoF Upper Bound

In order to characterize the DoF of the channel τ(M), we need to consider all

possible strategies for message assignments satisfying the maximum trans-

mit set size constraint defined in (2.3). Through the following corollary of

Lemma 5 in Appendix A, we provide a way to bound the DoF number η of

a K-user fully connected channel with a fixed message assignment, thereby,

introducing a criterion for comparing different message assignments satisfy-

ing (2.3) using the special cases where this bound holds tightly. Recall that

for a set of transmitter indices S, the set CS is the set of messages carried by

transmitters in S, and for a set of receiver indices A, the set UA is the set of

indices of transmitters that exclusively carry the messages for the receivers

in A

Corollary 1. For any m, m̄ : m+m̄ ≥ K, if there exists a set S of indices for

transmitters carrying no more than m messages, and |S| = m̄, then η ≤ m,

or more precisely,

η ≤ min
S⊆[K]

max(|CS |, K − |S|). (3.2)

Proof. For each subset of transmitter indices S ⊆ [K], we apply Lemma 5

with the set A defined as follows.
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Initially, set A as the set of indices for messages carried by transmitters

with indices in S. That is, A = CS . Now, if |A| < K − |S|, then augment

the set A with arbitrary message indices such that |A| = K − |S|.
We now note that the above construction guarantees that |A| + |S| ≥ K

and that UA ⊆ S̄. Hence, using Lemma 5, it suffices to show the existence of

functions f1 and f2 such that f1(YA, XS) = XS̄ + f2(ZA), where f2 is a linear

function that does not depend on the transmit power.

Consider the following argument. Given YA, ZA, and XS , we can construct

the set of signal ỸA as follows:

Ỹi = Yi −

(∑
j∈S

Hi,jXj + Zi

)
=

∑
j∈S̄

Hi,jXj,∀i ∈ A. (3.3)

Since the channel is fully connected, by removing the Gaussian noise signals

ZA and transmit signals in XS from received signals in YA, we obtain the set

of signals {Ỹi : i ∈ A}, which has at least K−|S| = |S̄| linear equations in the

transmit signals in XS̄ . Moreover, since the channel coefficients are generic,

these equations will be linearly independent with high probability. Now, if we

do not remove the noise signals ZA from (3.3), then by using YA and XS , we

can reconstruct XS̄+f2(ZA), where f2 depends on the inverse transformation

of |S̄| linearly independent equations in XS̄ , and the coefficients of the linear

equations depend only on the channel coefficients.

Refer to Figure 3.3 for an example illustration of Corollary 1.

3.3 Asymptotic DoF Cooperation Gain

We now use Corollary 1 to prove upper bounds on the asymptotic per user

DoF τ(M).

In an attempt to reduce the complexity of the problem of finding an optimal

message assignment strategy, we begin by considering message assignment

strategies satisfying the local cooperation constraint defined in Section 2.2.2.

We now show that a scalable cooperation DoF gain cannot be achieved using
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Figure 3.3: Example application of Corollary 1, with S = {1, 2} and
CS = {1, 2, 3}. Transmit signals with indices in S, and messages as well as
receive signals with indices in CS are shown in tilted red font and dashed
boxes. The DoF η ≤ |CS | = K − |S| = 3.

local cooperation. Recall that τ (loc)(M) is the maximum achievable asymp-

totic per user DoF under the additional local cooperation constraint of (2.5).

We obtain the following result.

Theorem 1. Any message assignment strategy satisfying the local cooper-

ation constraint of (2.5) cannot be used to achieve an asymptotic per user

DoF greater than that achieved without cooperation. More precisely,

τ (loc)(M) =
1

2
, for all M. (3.4)

Proof. Fix M ∈ Z+. For any value of K ∈ Z+, we use Corollary 1 with

the set S = {1, 2, . . . ,
⌈
K
2

⌉
}. Note that CS ⊆ {1, 2, . . . ,

⌈
K
2

⌉
+ r(K)}, where

limK→∞
r(K)
K

= 0, and hence, it follows that η(loc)(K,M) ≤
⌈
K
2

⌉
+ r(K). Fi-

nally, τ (loc)(M) = limK→∞
η(loc)(K,M)

K
≤ 1

2
. The lower bound follows from [11]

without cooperation.

We now investigate if it is possible for the cooperation gain to scale linearly

with K for fixed M . It was shown in Theorem 1 that such a gain is not

possible for message assignment strategies that satisfy the local cooperation

constraint. Here, we only impose the maximum transmit set size constraint

in (2.3) and prove in Theorem 2 an upper bound on τ(M) that is tight enough

for finding τ(2).

Theorem 2. For any cooperation order constraint M ≥ 2, the following
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upper bound holds for the asymptotic per user DoF,

τ(M) ≤ M − 1

M
. (3.5)

Proof. For any value of M and K, we show that η(K,M) ≤ K(M−1)
M

+ o(K).

For every value of K such that K−1
M

is an integer, we show that η(K,M) ≤
K(M−1)+1

M
. When K−1

M
is not an integer, we add x = o(K) extra users such

that K+x−1
M

is an integer, and bound the DoF as follows,

η(K,M) ≤ η(K + x,M) (3.6)

≤ (K + x)(M − 1) + 1

M
(3.7)

=
K(M − 1)

M
+ o(K). (3.8)

It then suffices to consider the case where K−1
M

is an integer. The idea is to

show that for any assignment of messages satisfying the cooperation order

constraint, there exists a set of indices S ⊆ [K] for K−1
M

transmitters that

do not carry more than K − K−1
M

messages, and then the DoF upper bound

follows by applying Corollary 1. More precisely, it suffices to show that the

following holds,

∀K :
K − 1

M
∈ Z+,∃S ⊆ [K] : |S| = K − 1

M
, |CS | =

K(M − 1) + 1

M
= K−|S|.

(3.9)

We first illustrate simple examples that demonstrate the validity of (3.9).

Consider the case where K = 3, M = 2, we need to show in this case that

there exists a transmitter that does not carry more than two messages, which

follows by the pigeonhole principle since each message can only be available

at a maximum of two transmitters. Now, consider the slightly more complex

example of K = 5, M = 2, we need to show in this case that there exists

a set of two transmitters that do not carry more than three messages. We

know that there is a transmitter carrying at most two messages, and we

select this transmitter as the first element of the desired set. Without loss of

generality, let the two messages available at the selected transmitter be W1

and W2. Now, we need to find another transmitter that carries at most one

message among the messages in the set {W3,W4,W5}. Since each of these

three messages can be available at a maximum of two transmitters, and we
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have four transmitters to choose from, one of these transmitters has to carry

at most one of these messages. By adding the transmitter satisfying this

condition as the second element of the set, we obtain a set of two transmitters

carrying no more than three messages, and (3.9) holds.

We extend the argument used in the above examples through Lemmas 1

and 2 that are provided in Section 3.6. We know by induction using these

lemmas that (3.9) holds, and the theorem statement follows.

Together with the achievability result in [11], the statement in Theorem 2

implies the following corollary.

Corollary 2. For any message assignment strategy such that each message

is available at a maximum of two transmitters, the asymptotic per user DoF

is the same as that achieved without cooperation. More precisely,

τ(2) =
1

2
. (3.10)

The characterization of τ(M) for values of M > 2 remains an open ques-

tion, as Theorem 2 is only an upper bound. Moreover, the following result

shows that the upper bound in Theorem 2 is loose for M = 3.

Theorem 3. For any message assignment strategy such that each message

is available at a maximum of three transmitters, the following bound holds

for the asymptotic per user DoF,

τ(3) ≤ 5

8
. (3.11)

Proof. In a similar fashion to the proof of Theorem 2, we prove the statement

by induction. The idea is to prove the existence of a set S with approximately
3K
8

transmitter indices, and these transmitters are carrying no more than

approximately 5K
8

= K − |S| + o(K) messages, and then use Corollary 1 to

derive the DoF outer bound. In the proof of Theorem 2, we used Lemmas 1

and 2 in Section 3.6, to provide the basis and induction step of the proof,

respectively. Here, we follow the same path until we show that there exists

a set S such that |S| = K+1
4

and |CS | ≤ (M − 1)|S| + 1, and then we use

Lemma 4 in Section 3.6 to provide a stronger induction step that establishes

a tighter bound on the size of the set CS .
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We note that it suffices to show that η(K, 3) ≤ 5K
8

+ o(K) for all values

of K such that K+1
4

is an even positive integer, and hence, we make that

assumption for K. Define the following,

x1 =
K + 1

4
, (3.12)

x2 =
K − 7

8
, (3.13)

x3 = 2x1 + 1 + x2. (3.14)

Now, we note that

x3 = K − (x1 + x2), (3.15)

and by induction, it follows from Lemmas 1 and 2 that ∃S1 ⊂ [K], |S1| = x1,

|CS1| ≤ 2x1+1. We now apply induction again with the set S1 as a basis, and

use Lemma 4 for the induction step to show that ∃S2 ⊂ [K], |S2| = x1 + x2,

|CS2| ≤ x3 = K − |S2|. Hence, we get the following upper bound using

Corollary 1,

η(K, 3) ≤ x3

=
5(K + 1)

8
, (3.16)

from which (3.11) holds.

3.4 Connection between DoF Upper Bound and

Bipartite Vertex Expanders

We note that all the DoF upper bounding proofs used so far employ Corol-

lary 1. We now show that under the hypothesis that the upper bound in

Corollary 1 is tight for any K-user fully connected interference channel with

a cooperation order constraint M , then scalable DoF cooperation gains are

achievable for any value of M ≥ 3. Hence, a solution to the general problem

necessitates the discovery of either new upper bounding techniques or new

coding schemes.

In this section, we restrict our attention to upper bounds on τ(M) that

follow by a direct application of Corollary 1. More precisely, for a K-user
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fully connected channel with an assignment of the transmit sets {Ti}i∈[K],

define B(K, {Ti}) as the upper bound that follows by Corollary 1 for this

channel, i.e.,

B(K, {Ti}) = min
S⊆[K]

max(|CS |, K − |S|). (3.17)

Now, let ηout(K,M) and τout(M) be the corresponding upper bounds that

apply on η(K,M) and τ(M),

ηout(K,M) = max
{Ti}i∈[K]:Ti⊆[K],|Ti|≤M,∀i∈[K]

B(K, {Ti}),

(3.18)

τout(M) = lim
K→∞

ηout(K,M)

K
. (3.19)

All the facts that we stated above about τ(M) hold for τout(M), as all the

upper bounding proofs follow by a direct application of Corollary 1. We now

identify a property for message assignment strategies, that lead us to prove

that τout(M) > 1
2
,∀M > 2. Note that this does not necessarily imply that

τ(M) > 1
2
,∀M > 2, but it provides some insight into whether this statement

might be true [45].

For each possible message assignment, define a bipartite graph with partite

sets of size K. Vertices in one of the partite sets represent transmitters, and

vertices in the other set represent messages. There exists an edge between two

vertices if and only if the corresponding message is available at the designated

transmitter. We note that the maximum transmit set size constraint implies

that the maximum degree of nodes in one of the partite sets is bounded

by M . We now observe that for any set A of transmitters, CA = {i :

Ti∩A 6= φ} is just the neighboring set NG(A) in the corresponding bipartite

graph G. Please refer to Figure 3.4 for an illustration of the bipartite graph

representation of message assignments.

Let UG,VG, denote the partite sets corresponding to transmitters and mes-

sages in graph G, with respect to order. For all values of i ∈ [K], define the

following:

eG(i) = min
A⊆UG:|A|=i

|NG(A)|, (3.20)

then we can readily see that

ηout(K,M) = max
G∈GM (K)

min
i∈[K]

max(K − i, eG(i)), (3.21)
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Figure 3.4: The bipartite graph on the right side represents the message
assignment for the 5−user channel shown on the left side.

where GM(K) is the set of all bipartite graphs, whose equi-sized partite sets

have size K, and the maximum degree of the nodes in the partite set VG is

M .

For values of M > 2, Pinsker proved the following result in 1973 [46].

Theorem 4. For any M > 2, ∃ a constant c > 1, and a sequence of

M−regular bipartite graphs (GM,K) whose partite sets have K vertices, such

that the following is true.

lim
K→∞

eGM,K (αK)

αK
≥ c,∀0 < α ≤ 1

2
(3.22)

We next show that the above statement implies that τout(M) > 2,∀M > 2.

Corollary 3.

τout(M) >
1

2
,∀M > 2. (3.23)

Proof. For each bipartite graph G with partite sets of size K, define imin(G)

as,

imin(G) = argmini max(K − i, eG(i)). (3.24)

Now, assume that τout(M) ≤ 1
2
, then for the sequence (GM,K) chosen as in

the statement of Theorem 4,

lim
K→∞

max(K − imin(GM,K), eGM,K (imin(GM,K)))

K
≤ 1

2
. (3.25)

It follows that

lim
K→∞

K − imin(GM,K)

K
≤ 1

2
, (3.26)
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or,

lim
K→∞

imin(GM,K)

K
≥ 1

2
. (3.27)

But then as eG(i) is non-decreasing in i, (3.22) implies that

lim
K→∞

eGM,K (imin(GM,K))

K
>

1

2
. (3.28)

Therefore, the result in (3.22) implies that τout(M) > 1
2
,∀M > 2.

It is worth noting that a sequence of bipartite graphs satisfying (3.22)

is said to define a vertex expander as K → ∞. To summarize, we have

shown that because of message assignment strategies corresponding to ver-

tex expanders, one cannot apply the bound in (3.17) directly to show that

τ(M) = τ(1) = 1
2

for any M > 2. Finally, we show that in case the upper

bound τout(M) is tight, then using partial cooperation, the DoF gain can

approach that achieved through assigning each message to all transmitters

(full cooperation). More precisely, we show the following.

Theorem 5.

lim
M→∞

τout(M) = 1 (3.29)

Proof. We show that

∀ε > 0,∃M(ε) : ∀M ≥M(ε), τout(M) > (1− ε). (3.30)

For each positive integer K, we construct a bipartite graph GM(K), whose

partite sets are of order K, by taking the union of M random perfect match-

ings between the two partite sets. That is, the matchings are probabilistically

independent, and each is drawn uniformly from the set of all possible match-

ings. One can easily see that the maximum degree of nodes in GM(K) is

bounded by M . i.e., ∆ (GM(K)) ≤ M , and hence, GM(K) ∈ GM(K). We

will prove that for any ε > 0, there exists an M(ε) sufficiently large, such

that for any M ≥ M(ε), the probability that each set of εK nodes in the

partite set UGM (K) have more than (1−ε)K neighbors, is bounded away from

zero for large enough K. More precisely, we show that

lim
K→∞

Pr[∀A ⊂ UGM (K) : |A| = εK, |NGM (K)(A)| > (1− ε)K] > 0, (3.31)
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and hence, for large enough K, there exists a graph G in GM(K) where all

subsets of UG of order εK have more than (1− ε)K neighbors in VG, i.e.,

eG(i) > (1− ε)K, ∀i ≥ εK, (3.32)

and it follows that ηout(K,M) > (1− ε)K, and (3.30) holds.

We now show that (3.31) holds. Let A ⊂ UGM (K),B ⊂ VGM (K) such that

|A| = εK, |B| = (1− ε)K. For any random perfect matching, the probability

that all the neighbors of A are in B is
((1−ε)K

εK )
(KεK)

. By independence of the

matchings, we get the following,

Pr[NGM (K)(A) ⊆ B] =

((
(1−ε)K
εK

)(
K
εK

) )M

≤
(
(1− ε)εK

)M
. (3.33)

A direct application of the union bound results in the following,

Pr[|NGM (K)(A)| ≤ (1− ε)K]

≤
∑

B⊂VGM (K):|B|=(1−ε)K

Pr[NGM (K)(A) ⊆ B]

≤
(

K

(1− ε)K

)
(1− ε)εMK , (3.34)

and,

Pr[∃A ⊂ UGM (K) : |A| = εK, |NGM (K)(A)| ≤ (1− ε)K]

≤
∑

A⊂UGM (K):|A|=εK

Pr[|NGM (K)(A)| ≤ (1− ε)K]

≤
(
K

εK

)(
K

(1− ε)K

)
(1− ε)εMK

=

(
K

εK

)2

(1− ε)εMK

(a)
≈ 22KH(ε)(1− ε)εMK

= 2(2H(ε)+εM log(1−ε))K , (3.35)

where H(·) is the binary entropy function, and (a) follows as
(
n
εn

)
≈ 2nH(ε)

for large enough n. Now, we choose M(ε) > 2H(ε)
−ε log(1−ε) , to make the above

27



exponent negative, and the above probability will be strictly less than unity,

i.e., we showed that for any M ≥M(ε),

lim
K→∞

Pr[∃A ⊂ UGM (K) : |A| = εK, |NGM (K)(A)| ≤ (1− ε)K] < 1, (3.36)

which implies that (3.31) is true.

3.5 Proof of Theorem 1

In this section, we show that the DoF of a K-user fully connected interference

channel with a maximum transmit set size constraint of M is lower-bounded

by

η(K,M) ≥ K +M − 1

2
.

We prove this by assigning each message to the transmitter with the same

index as well as M − 1 succeeding transmitters, and arguing that the DoF

vector

di =

{
1 1 ≤ i ≤M − 1

0.5 M ≤ i ≤ K

is achievable; i.e., the first M − 1 users benefit from cooperation and achieve

1 degree of freedom, whereas the remaining K −M + 1 users achieve 1/2

degree of freedom just like in the interference channel without cooperation.

Conceptually, the achievable scheme in this section is based on converting

the CoMP channel into a derived channel and then employing the asymp-

totic interference alignment scheme on the derived channel, as summarized

in Figure 3.1. We now provide a detailed description of the design steps

summarized in Figure 3.1.

3.5.1 Derived Channel

Since our objective is to achieve a DoF vector that is asymmetric, the derived

channel is also chosen to be asymmetric. The derived channel we consider in

this section has two antennas for each of the first M − 1 transmitters, and

one antenna for each of the remaining K−M + 1 transmitters. The received
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signal at receiver i is given by,

Yi =
K∑
j=1

g
(1)
i,j X

(1)
j +

M−1∑
j=1

g
(2)
i,j X

(2)
j + Zi, (3.37)

where g
(m)
i,j is the derived channel coefficient between the mth antenna at

transmitter j and receiver i, and X
(m)
j is the transmit signal of the mth

antenna at transmitter j in the derived channel. We assume that the channel

inputs of the CoMP channel are related to the channel inputs of the derived

channel through a linear transformation. The contribution of the derived

channel input X
(m)
j in the real transmit signals Xj, Xj+1, · · · , Xj+Mt−1 is

defined by a M × 1 beam-forming vector, i.e.,
Xj

Xj+1

...

Xj+M−1

 = (∗) + v
(m)
j X

(m)
j ,

where (∗) represents the contribution from other derived channel inputs. It

is easy to see that the derived channel coefficients are related to the original

channel coefficients as

g
(m)
i,j = Hi,Tjv

(m)
j ,

for all i, j ∈ [K] and appropriate m. Since we are designing the achievable

scheme to achieve 1 degree of freedom for the first M−1 users, it must be that

the first M − 1 receivers in the derived channel do not see any interference.

3.5.2 Zero-Forcing Step

We now explain our choice of the beam-forming vectors that ensures that the

first M − 1 receivers do not see any interference.

ZF Beam Design

We first describe the general idea of constructing a zero-forcing beam. Con-

sider the problem of designing a zero-forcing beam v to be transmitted by n

transmit antennas indexed by the set T ⊆ [K] such that it does not cause
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interference at n− 1 receive antennas indexed by the set I ⊆ [K], i.e.,

HI,T v = 0.

Since HI,T is an n− 1× n matrix, the choice for v is unique up to a scaling

factor. For any arbitrary row vector a of length n, we can use the Laplace

expansion to expand the determinant

det

[
HI,T

a

]
=

n∑
j=1

ajcj,

where cj is the cofactor of aj, that depends only on the channel coefficients

in HI,T , and is independent of a. By setting the beam-forming vector v

as v = [c1 c2 · · · cn], we see that an arbitrary receiver i sees the signal

transmitted along the beam v with a strength equal to

g = H{i},T v = det

[
HI,T

H{i},T

]
= detHI∪{i},T .

Clearly, this satisfies the zero-forcing condition H{i},T v = 0 for all i ∈ I.

Design of Transmit Beam v
(1)
j for j ≥M

The signal X
(1)
j is transmitted by the M transmitters from the transmit set

Tj = {j, j + 1, . . . , j + M − 1}. The corresponding beam v
(1)
j is designed to

avoid the interference at the first M − 1 receivers I = [M − 1]. Therefore,

we see that the contribution of X
(1)
j at receiver i is given by

g
(1)
i,j = detHA,B, (3.38)

where

A = {1, 2, · · · ,M − 1, i}

B = {j, j + 1, · · · , j +M − 1}.
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Design of Transmit Beams v
(1)
j and v

(2)
j for j < M

The signals X
(1)
j and X

(2)
j are transmitted by the M transmitters from the

transmit set Tj = [M ]. They must avoid interference at the M − 2 receivers

I = {1, 2, · · · , j − 1, j + 1, · · · ,M − 1}.

Since we only need to avoid interference at M − 2 receivers, it is sufficient

to transmit each signal from M − 1 transmitters. We use the first M − 1

antennas of the transmit set Tj to transmit X
(1)
j , and the last M−1 antennas

of the transmit set Tj to transmit X
(2)
j . Thus, we obtain

g
(1)
i,j = detHA,B1

g
(2)
i,j = detHA,B2 ,

(3.39)

where

A = {1, 2, · · · , j − 1, j + 1,M − 1, i}

B1 = {j, j + 1, · · · , j +M − 2}

B2 = {j + 1, j + 1, · · · , j +M − 1}.

Thus, the derived channel (3.37) can be simplified as

Yi = g
(1)
i,i X

(1)
j + g

(2)
i,i X

(2)
j + Zi, 1 ≤ i < M

Yi =
K∑
j=1

g
(1)
i,j X

(1)
j +

M−1∑
j=1

g
(2)
i,j X

(2)
j + Zi, M ≤ i ≤ K,

(3.40)

where the derived channel coefficients are as described in (3.38) and (3.39).

3.5.3 Asymptotic Interference Alignment

In this section, we consider L parallel derived channels, and propose a scheme

achieving a DoF arbitrary close to (K +M − 1)/2 in the limit L→∞. We
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can combine L parallel derived channels (3.40) and express them together as

Y i = G
(1)
i,i X

(1)
j + G

(2)
i,i X

(2)
j + Zi, 1 ≤ i < M

Y i =
K∑
j=1

G
(1)
i,jX

(1)
j +

Mt−1∑
j=1

G
(2)
i,jX

(2)
j + Zi, M ≤ i ≤ K,

where X
(m)
j , Y i and Zi are L× 1 column vectors and G

(m)
i,j is L×L diagonal

channel transfer matrix given by

G
(m)
i,j =


g

(m)
i,j (1)

g
(m)
i,j (2)

. . .

g
(m)
i,j (L)

 .

The achievable scheme that we propose is based on the asymptotic alignment

scheme introduced by Cadambe and Jafar in [11].

Definition 1 (Cadambe-Jafar (CJ) subspace). The order-n CJ subspace gen-

erated by the diagonal matrices

G1,G2, · · · ,GN

is defined as the linear subspace spanned by the vectors

{Ga1
1 Ga2

2 · · ·G
aN
N 1 : a ∈ ZN+ and

∑
i

ai ≤ n},

where 1 is the L× 1 column vector of all ones. The matrix containing these(
N+n
n

)
vectors as columns is said to be the order-n CJ matrix.

Let V denote the order-n CJ subspace (and the corresponding matrix)

generated by the nontrivial channel matrices carrying interference:

{G(1)
i,j ,G

(2)
i,j : i ≥M, j < M} ∪ {G(1)

i,j : i 6= j ≥M}. (3.41)

We use V, defined as the transmit beam-forming matrix at every trans-

mitter of the derived channel. The first M − 1 receivers do not see any

interference. Therefore, for each k < M , the receiver k can decode all the
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desired streams free of interference if the matrix

Mk =
[

G
(1)
kkV G

(2)
kkV

]
has full column rank. Assuming that the number of rows in Mk, equal to

the number of parallel channels L, is greater than or equal to the number of

columns, i.e., L ≥ 2|V|, the matrix Mk has full column rank for generic (orig-

inal) channel coefficients {Hi,j} if the following claim is true. See Corollary 1

in Appendix B for an explanation.

Claim 1. For each k < M , the polynomials denoted by the variables

{g(1)
k,k, g

(2)
k,k} ∪ {g(1)

i,j , g
(2)
i,j : i ≥M, j < M}

∪ {g(1)
i,j : i 6= j ≥M} (3.42)

are algebraically independent.

For each k ≥ M , the interference seen at receiver k is limited to the

order−(n+ 1) CJ subspace, denoted by INT. Therefore, the receiver k can

decode all the desired streams free of interference if the matrix

Mk =
[

G
(1)
kkV INT

]
has full column rank. Assuming that the number of rows is greater than

or equal to the number of columns, i.e., L ≥ |V| + |INT|, the matrix Mk

has full column rank for generic (original) channel coefficients {Hi,j} if the

following claim is true.

Claim 2. For each k ≥M , the polynomials denoted by the variables

{g(1)
k,k} ∪ {g(1)

i,j , g
(2)
i,j : i ≥M, j < M}

∪ {g(1)
i,j : i ≥M, j ≥M, i 6= j} (3.43)

are algebraically independent.

To satisfy the requirements on L, we choose L as

L = max(2|V|, |V|+ |INT|) = |V|+ |INT|.
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Observe that

|V| =
(
N + n

n

)
and |INT| =

(
N + n+ 1

n+ 1

)
,

where N is the number of matrices (3.41) used to generate the CJ subspace,

and is given by

N = 2(K −M + 1)(M − 1) + (K −M + 1)(K −M)

= (K −M + 1)(K +M − 2).
(3.44)

Therefore, if we let η(K,M,L) be the maximum achievable DoF by coding

over at most L parallel channels, then we obtain the following,

η(K,M,L) ≥ 2(M − 1)|V|+ (K −M + 1)|V|
L

=
(K +M − 1)|V|
|V|+ |INT|

=
K +M − 1

2 + N
n+1

.

Therefore, we obtain that

η(K,M) = lim sup
L→∞

η(K,M,L)

≥ lim
n→∞

K +M − 1

2 + N
n+1

=
K +M − 1

2
.

3.5.4 Proof of Algebraic Independence

We use the Jacobian criterion of Lemma 6 in Appendix B to prove Claims 1

and 2. Recall that each derived channel coefficient is a polynomial in K2

variables {Hi,j : 1 ≤ i, j,≤ K}. Let g denote the vector consisting of the

polynomials specified by the derived channel coefficients in the respective

claims. The exact description of the polynomials can be obtained from (3.38)

and (3.39) in Section 3.5.2. The number of polynomials in Claims 1 and 2

is equal to N + 2 and N + 1, respectively, where N is given by (3.44).

From Lemma 6 in Appendix B, we see that a collection of polynomials is
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algebraically independent if and only if the corresponding Jacobian matrix

has full row rank. It can be easily verified that N + 2 ≤ K2, and hence

N + 1 ≤ K2, for any K and M , which is a necessary condition for the

corresponding Jacobian matrices to have full row rank. It is easy to verify

that the Jacobian matrices corresponding to the polynomials in Claims 1 and

2 have full row rank using symbolic toolbox of MATLAB for any fixed K and

M . In particular, we verified that the Jacobian matrices have full row rank

for all values of M < K ≤ 9.

3.6 Auxiliary Lemmas for Large Networks Upper

Bounds

Lemma 1. For a K-user channel where each message is available at a max-

imum of M transmitters, there exists a transmitter carrying at most M mes-

sages,

There exists i ∈ [K] such that |C{i}| ≤M.

Proof. The statement follows by the pigeonhole principle, since the following

holds,
K∑
i=1

|C{i}| =
K∑
i=1

|Ti| ≤MK. (3.45)

Lemma 2. For a K-user channel, if each message is available at a maximum

of M transmitters, and M ≥ 2, if there exists a set A of n transmitters

carrying at most (M − 1)n + 1 messages, then there exists a set B of n + 1

transmitters carrying at most (M−1)(n+1)+1 messages. More precisely, if

∃A ⊂ [K] such that |A| = n < K, and |CA| ≤ (M − 1)n+ 1, then ∃B ⊆ [K]

such that |B| = n+ 1, and |CB| ≤ (M − 1)(n+ 1) + 1.

Proof. We only consider the case where K > (M−1)(n+1)+1, as otherwise,

the statement trivially holds. In this case, we can show that

M(K − |CA|) < (K − n)((M − 1)(n+ 1) + 2− |CA|). (3.46)

The proof of (3.46) is available in Lemma 3 below. Note that the left-hand

side in (3.46) is the maximum number of message instances for messages
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outside the set CA, i.e.,∑
i∈[K],i/∈A

|C{i}\CA| ≤ M(K − |CA|)

< (K − n)((M − 1)(n+ 1) + 2− |CA|).

(3.47)

Since the number of transmitters outside the set A is K−n, it follows by the

pigeonhole principle that there exists a transmitter whose index is outside A
and carries at most (M − 1)(n + 1) + 1 − |CA| messages whose indices are

outside CA. More precisely,

∃i ∈ [K]\A : |C{i}\CA| ≤ (M − 1)(n+ 1) + 1− |CA|. (3.48)

It follows that there exists a transmitter whose index is outside the set A and

can be added to the set A to form the set B that satisfies the statement.

Lemma 3. For a K-user channel, if each message is available at a maximum

of M transmitters and K ≥ (M − 1)(n + 1) + 1, M ≥ 2, and there exists a

set S ⊆ [K] such that |S| ≤ (M − 1)n+ 1, then the following holds,

M(K − |S|) < (K − n) ((M − 1)(n+ 1) + 2− |S|) . (3.49)

Proof. We first prove the statement for the case where |S| = (M − 1)n + 1.

This directly follows as,

M(K − |S|) = M(K − ((M − 1)n+ 1))

≤ M(K − (n+ 1))

< M(K − n)

= (K − n) ((M − 1)(n+ 1) + 2− |S|) .

(3.50)

In order to complete the proof, we note that each decrement of |S| leads to

an increase in the left hand side by M , and in the right-hand side by K − n,
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and,

K − n ≥ (M − 1)(n+ 1) + 1− n

= (M − 2)n+M

≥ M. (3.51)

Lemma 4. For a K-user channel, if each message is available at a maximum

of M = 3 transmitters, and there exists a set A of n transmitters carrying at

most n+ K+1
4

+ 1 messages, and K+1
4
≤ n < K, then there exists a set B of

n+ 1 transmitters carrying at most n+ K+1
4

+ 2 messages. More precisely, if

∃A ⊂ [K] such that |A| = n, K+1
4
≤ n < K, and |CA| ≤ n + K+1

4
+ 1, then

∃B ⊂ [K] such that |B| = n+ 1, |CB| ≤ n+ K+1
4

+ 2.

Proof. The proof follows in a similar fashion to that of Lemma 2. Let x =

n+ K+1
4

+ 1. We only consider the case where K > x+ 1, as otherwise, the

proof is trivial. We first assume the following,

3(K − |CA|) < (K − n)

(
n+

K + 1

4
+ 3− |CA|

)
. (3.52)

Now, it follows that∑
i∈[K],i/∈A

|C{i}\CA| ≤ M(K − |CA|)

< (K − n)

(
n+

K + 1

4
+ 3− |CA|

)
,

(3.53)

and hence,

∃i ∈ [K]\A : |C{i}\CA| ≤ n+
K + 1

4
+ 2− |CA|, (3.54)

and then the set B = A ∪ {i} satisfies the statement of the lemma. Finally,
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we need to show that (3.52) is true. For the case where |CA| = x,

3x =
3K

4
+

15

4
+ 3n

= (2n+K) +

(
n− K

4
+

15

4

)
> 2n+K, (3.55)

and hence, 3(K − x) < 2(K − n), which implies (3.52) for the case where

|CA| = x. Moreover, we note that each decrement of |CA| increases the left-

hand side of (3.52) by 3 and the right-hand side by (K − n), and we know

that,

K > x+ 1

= n+
K + 1

4
+ 2

≥ n+ 2, (3.56)

and hence, K − n ≥ 3, so there is no loss of generality in assuming that

|CA| = x in the proof of (3.52), and the proof is complete.
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CHAPTER 4

LOCALLY CONNECTED CHANNELS

In Section 2.1, we defined the locally connected channel model as a function

of the number of dominant interferers per receiver L, by connecting each

transmitter to
⌊
L
2

⌋
preceding receivers and

⌈
L
2

⌉
succeeding receivers. Recall

that for a K-user locally connected channel with connectivity parameter L,

we use ηL(K,M) as the best achievable DoF η over all choices of transmit

sets satisfying the maximum transmit set size constraint in (2.3), and τL(M)

to denote the asymptotic per user DoF.

For the locally connected channel model where L > 1, let x =
⌊
L
2

⌋
. We

silence the first x transmitters, deactivate the last x receivers, and relabel

the transmit signals to obtain a (K − x)-user channel, where transmitter j

is connected to receivers in the set {Yi : i ∈ {j, j + 1, . . . , j + L}}. We note

that the new channel model gives the same value of τL(M) as the original

one, since x = o(K). Unless explicitly stated otherwise, we will be using this

equivalent model in the rest of this chapter. More precisely, we consider the

following channel model,

Hi,j is not identically 0 if and only if i ∈ [j, j + 1, . . . , j + L] , (4.1)

and all non-zero channel coefficients are generic. We show an example con-

struction of the equivalent channel model in Figure 4.1.

4.1 Prior Work

In [19], the special case of Wyner’s asymmetric model (L = 1) was considered,

and the spiral message assignment strategy mentioned in Section 3.1 was

fixed, i.e., each message is assigned to its own transmitter as well as M − 1

following transmitters. The asymptotic per user DoF was then characterized
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(a) (b)

Figure 4.1: Construction of the equivalent locally connected channel model
with a number of users K = 5 and connectivity parameter L = 2. In (a),
the original model of (2.2) is shown. In (b), the new model is shown.

as M
M+1

. This shows for our problem that

τ1(M) ≥ M

M + 1
. (4.2)

In [47, Remark 2], a message assignment strategy was described to enable

the achievability of an asymptotic per user DoF as high as 2M−1
2M

, it can be

easily verified that this is indeed true, and hence, we know that

τ1(M) ≥ 2M − 1

2M
. (4.3)

The main difference in the strategy described in [47, Remark 2] from the

spiral message assignment strategy considered in [19], is that unlike the spiral

strategy, messages are assigned to transmitters in an asymmetric fashion,

where we say that a message assignment is symmetric if and only if for all

j, i ∈ [K], j > i, the transmit set Tj is obtained by shifting forward the

indices of the elements of the transmit set Ti by (j − i).
We show that both the message assignment startegy analyzed in [19] and

the one suggested in [47] are suboptimal for L = 1, and the value of τ1(M)

is in fact strictly larger than the bounds in (4.2) and (4.3). The key idea

enabling our result is that each message need not be available at the trans-

mitter carrying its own index. We start by illustrating a simple example

for the case of no cooperation (M = 1) that highlights the idea behind our

scheme.
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Figure 4.2: Achieving 2/3 per user DoF for M = L = 1. Each transmitter is
carrying a message for the receiver connected to it by a solid line. The
figure shows only signals corresponding to the first three users in a general
K-user network. Signals in dashed boxes are deactivated. Note that the
deactivation of X3 splits this part of the network from the rest.

4.2 Example: M = L = 1

Let W1 be available at the first transmitter, W3 be available at the second

transmitter, and deactivate both the second receiver and the third transmit-

ter. Then it is easily seen that messages W1 and W3 can be received without

interfering signals at their corresponding receivers. Moreover, the deactiva-

tion of X3 splits this part of the network from the rest, i.e., the same scheme

can be repeated by assigning W4,W6, to the transmitters with transmit sig-

nals X4, X5, respectively, and so on. Thus, two degrees of freedom can be

achieved for each set of three users, thereby, achieving an asymptotic per user

DoF of 2
3
. The described message assignment is depicted in Figure 4.2. It is

evident now that a constraint that is only a function of the load on the back-

haul link may lead to a discovery of better message assignments than the one

considered in [19]. In Section 4.3, we show that the optimal message assign-

ment strategy under the cooperation order constraint (2.3) is different from

the spiral strategy. The above described message assignment strategy and

coding scheme for the special case of M = L = 1 are shown to be optimal. It

is worth noting that the optimality of a TDMA scheme in this case follows

as a special case from a general result in [48], where necessary and sufficient

conditions on channel connectivity and message assignment are derived for

TDMA schemes to be optimal.

4.3 Achieving Scalable DoF Cooperation Gains

In this section, we consider a simple linear precoding coding scheme, where

each message is assigned to a set of transmitters with successive indices, and a

zero-forcing transmit beam-forming strategy is employed [49]. The transmit
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signal at the jth transmitter is given by,

Xj =
∑
i:j∈Ti

Xj,i, (4.4)

where Xj,i depends only on message Wi.

Using simple zero-forcing transmit beams with a fractional reuse scheme

that activates only a subset of transmitters and receivers in each channel use,

we extend the example in Section 4.2 to achieve scalable DoF cooperation

gains for any value of M > L
2
.

Theorem 6. The following lower bound holds for the asymptotic per user

DoF of a locally connected channel with connectivity parameter L,

τL(M) ≥ max

{
1

2
,

2M

2M + L

}
, ∀M ∈ Z+. (4.5)

Proof. Showing that τL(M) ≥ 1
2
,∀M ≥ 1 follows by a straightforward ex-

tension of the asymptotic interference alignment scheme of [11], and hence,

it suffices to show that τL(M) ≥ 2M
2M+L

.

We treat the network as a set of clusters, each consisting of consecutive

2M +L transceivers. The last L transmitters of each cluster are deactivated

to eliminate inter-cluster interference. It then suffices to show that 2M DoF

can be achieved in each cluster. Without loss of generality, consider the

cluster with users of indices in the set [2M + L]. We define the following

subsets of [2M + L],

S1 = [M ],

S2 = {L+M + 1, L+M + 2, . . . , L+ 2M}.

We next show that each user in S1 ∪ S2 achieves one degree of freedom,

while messages {WM+1,WM+2, . . . ,WL+M} are not transmitted. In the pro-

posed scheme, users in the set S1 are served by transmitters in the set

{X1, X2, . . . , XM} and users in the set S2 are served by transmitters in the

set {XM+1, XM+2, . . . , X2M}. Let the message assignments be as follows,

Ti =

{i, i+ 1, . . . ,M}, ∀i ∈ S1,

{i− L, i− L− 1, . . . ,M + 1}, ∀i ∈ S2.
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Now, we note that messages with indices in S1 are not available outside

transmitters with indices in [M ], and hence, do not cause interference at re-

ceivers with indices in S2. Also, messages with indices in S2 are not available

at transmitters with indices in [M ], and hence, do not cause interference at

receivers with indices in S1.

In order to complete the proof by showing that each user in S1∪S2 achieves

one degree of freedom, we next show that transmissions corresponding to

messages with indices in S1(S2) do not cause interference at receivers with

indices in the same set. To avoid redundancy, we only describe in detail

the design of transmit beams for message W1 to cancel its interference at all

receivers in S1 except its own receiver. First, the encoding of W1 into X1,1

at the first transmitter is done in a way that is oblivious to the existence

of other receivers in the network except the first receiver, and a capacity

achieving code for the point-to-point link H1,1 is used [50]. We then design

X2,1 at the second transmitter to cancel the interference caused by W1 at the

second receiver, i.e.,

X2,1 = −H2,1

H2,2

X1,1. (4.6)

Similarly, the transmit beam X3,1 is then designed to cancel the interfer-

ence caused by W1 at the third receiver. The transmit beams Xi,1, i ∈
{2, 3, . . . ,M} are successively designed with respect to order of the index

i such that the received signal due to Xi,1 at the ith receiver cancels the

interference caused by W1.

In general, the availability of channel state information at the transmitters

allows a design for the transmit beams for message Wi that delivers it to the

ith receiver with a capacity achieving point-to-point code and simultaneously

cancels its effect at receivers with indices in the set Ci, where,

Ci =

{i+ 1, i+ 2, . . . ,M}, ∀i ∈ S1,

{i− 1, i− 2, . . . , L+M + 1}, ∀i ∈ S2.

Note that both CM and CL+M+1 equal the empty set, because both WM

and WL+M+1 do not contribute to interfering signals at receivers with indices

in the set S1∪S2. We conclude that each receiver with index in the set S1∪S2

suffers only from Gaussian noise, thereby enjoying one degree of freedom.
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(a) (b)

Figure 4.3: The figure shows the assignment of messages in the proof of
Theorem 6 for the case where M = 3, L = 1 in (a), and the case where
M = L = 2 in (b). Only signals corresponding to the first cluster are shown.
Signals in dashed red boxes are deactivated. Note that the last L transmit
signals are deactivated to eliminate inter-cluster interference. Also,
messages {WM+1, . . . ,WM+L} are not transmitted, while each other
message with indices in {1, 2, . . . , 2M + L} has one degree of freedom.

Refer to Figure 4.3 for an illustration of the above described coding scheme.

We note that in the above coding scheme, some messages are not being trans-

mitted in order to allow for interference-free communication for the remaining

messages. It is worth noting that this can be done while maintaining fairness

in the allocation of the available DoF over all users through fractional reuse

in a system where multiple sessions of communication take place, and dif-

ferent sets of receivers are deactivated in different sessions, e.g., in different

time slots or different sub-carriers (in an OFDM system).

4.4 Irreducible Message Assignments and Optimality

of Local Cooperation

In order to find an upper bound on the per user DoF τL(M), we have to

consider all possible message assignment strategies satisfying the cooperation

order constraint (2.3). In this section, we characterize necessary conditions

for the optimal message assignment. The constraints we provide for transmit

sets are governed by the connectivity pattern of the channel. For example,

for the case where M = 1, any assignment of message Wi to a transmitter
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that is not connected to Yi is reducible, i.e., the rate of transmitting message

Wi has to be zero for these assignments, and hence, removing Wi from its

carrying transmitter does not reduce the sum rate in these cases.

We now introduce a graph theoretic representation that simplifies the pre-

sentation of the necessary conditions on irreducible message assignments. For

message Wi, and a fixed transmit set Ti, we construct the following graph

GWi,Ti that has [K] as its set of vertices, and an edge exists between any

given pair of vertices x, y ∈ [K] if and only if:

• x, y ∈ Ti.

• |x− y| ≤ L.

Vertices corresponding to transmitters connected to Yi are given a special

mark, i.e., vertices with labels in the set {i, i− 1, . . . , i− L} are marked for

the considered channel model. Refer to Figure 4.4 for an example illustration

of GWi,Ti .

We now have the following statement.

Lemma 1. For any k ∈ Ti such that the vertex k in GWi,Ti is not connected

to a marked vertex, removing k from Ti does not decrease the sum rate.

Proof. Let S denote the set of indices of vertices in a component with no

marked vertices. We need to show that removing any transmitter index in

S from Ti does not decrease the sum rate. Let S ′ be the set of indices of

received signals that are connected to at least one transmitter with an index

in S. To prove the lemma, we consider two scenarios, where we add a tilde

over symbols denoting signals belonging to the second scenario. For the first

scenario, Wi is made available at all transmitters with indices in S. Let

Q be a random variable that is independent of all messages and has the

same distribution as Wi, then for the second scenario, Wi is not available at

any transmitter with an index in S, and a realization q of Q is generated

and given to all transmitters with indices in S before communication starts.

Moreover, the given realization Q = q contributes to the encoding of X̃S in

the same fashion as a message Wi = q contributes to XS . Assuming a reliable

communication scheme for the first scenario that uses a large block length n,

the following argument shows that the achievable sum rate is also achievable

after removing Wi from the designated transmitters. And therefore, proving
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that removing any transmitter in S from Ti does not decrease the sum rate.

n
∑
j

Rj =
∑
j

H(Wj)

(a)

≤
∑
j

I(Wj;Y
n
j ) + o(n)

=
∑
j∈S′c

I(Wj, Y
n
j ) +

∑
j∈S′

I(Wj;Y
n
j ) + o(n)

(b)
=

∑
j∈S′c

I(Wj, Ỹ
n
j ) +

∑
j∈S′

I(Wj;Y
n
j ) + o(n)

(c)
=

∑
j∈S′c

I(Wj, Ỹ
n
j ) +

∑
j∈S′

I(Wj; Ỹ
n
j ) + o(n)

=
∑
j

H(Wj)− H(Wj|Ỹ n
j ) + o(n),

where H(·) is the entropy function for discrete random variables, (a) follows

from Fano’s inequality, (b) follows as the difference between the two scenarios

lies in the encoding of XS which affects only YS′ , and (c) holds because any

two transmitters carrying Wi and connected to a receiver whose index is in

S ′ must belong to the same component, and hence, Wi contributes to YS′

only through XS , it follows that (Wj, Y
n
j ) has the same joint distribution as

(Wj, Ỹ
n
j ) for every j ∈ S ′. Now, it follows that∑

j

H(Wj|Ỹ n
j ) = o(n), (4.7)

and hence, the rates Rj, j ∈ [K] are achievable in the second scenario.

We call a message assignment irreducible if no element in it can be re-

moved without decreasing the sum rate. The following corollary to Lemma 1

characterizes a necessary condition for any message assignment satisfying the

cooperation order constraint in (2.3) to be irreducible. Recall that two ver-

tices in a graph G are at a distance d if and only if the shortest path in G

between the two vertices has d edges.

Corollary 4. Let Ti be an irreducible message assignment and |Ti| ≤ M ,

then ∀k ∈ [K], k ∈ Ti only if the vertex k in GWi,Ti lies at a distance that is

less than or equal M − 1 from a marked vertex.
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Figure 4.4: Figure showing the construction of GW3,T3 in a 5−user channel
with L = 1. Marked vertices are represented with filled circles. W3 can be
removed at both X4 and X5 without decreasing the sum rate, as the
corresponding vertices lie in a component that does not contain a marked
vertex.

Note that in the considered channel model, the above result implies that

Ti ⊆ {i −ML, i −ML + 1, . . . , i + (M − 1)L}, from which we obtain the

following result.

Theorem 7. Local cooperation is optimal for locally connected channels,

τ
(loc)
L (M) = τL(M), ∀M,L ∈ Z+. (4.8)

And so we note that even though local cooperation does not achieve a

scalable DoF gain for the fully connected channel, not only does it achieve

a scalable gain when the connectivity assumption is relaxed to local connec-

tivity, but the confinement to local cooperation no longer results in a loss in

the available DoF.

4.5 DoF Upper Bounds

In this section, we prove upper bounds on τ1(M) and τL(1) that establishes

the tightness of the lower bound in Theorem 6 for the special cases where

either L = 1 or M = 1. First, in order to assess the optimality of the

coding scheme introduced in Section 4.3 for arbitrary values of the system

parameters, we prove a general upper bound for a class of coding schemes

that only employs a zero-forcing transmit beam-forming strategy.
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4.5.1 ZF Transmit Beam-Forming

Consider only coding schemes with transmit signals of the form (4.4) and

each message is either not transmitted or allocated one degree of freedom.

More precisely, let Ỹj = Yj −Zj,∀j ∈ [K], then in addition to the constraint

in (4.4), it is either the case that the mutual information I(Ỹj;Wj) = 0 or it is

the case that Wj completely determines Ỹj. Note that Ỹj can be determined

from Wj for the case where user j enjoys interference-free communication

and I(Wj; Ỹj) = 0 for the other case where Wj is not transmitted. We

say that the jth receiver is active if and only if I(Ỹj;Wj) > 0. Note that

using zero-forcing transmit beam-forming, if the jth receiver is active, then

I(Wi;Yj) = 0,∀i 6= j.

Let τ
(zf)
L (M) denote the asymptotic characterization of the per user DoF

under the restriction to the above described class of coding schemes. In

Theorem 8 below, we show that the coding scheme in the proof of Theorem 6

achieves the optimal value of τ
(zf)
L (M). We first prove Lemma 2 that bounds

the number of receivers at which the interference of a given message can be

cancelled.

For a set S ⊆ [K], let VS be the set of indices for active receivers connected

to transmitters with indices in S. More precisely, VS = {j : I(Ỹj;Wj) > 0,S∩
{j, j − 1, . . . , j −L} 6= φ}, where φ is the empty set. To obtain the following

results, we assume that for each transmitter in Ti, message Wi contributes to

the transmit signal of this transmitter. i.e., ∀j ∈ Ti, I(Wi, Xj) > 0. Note that

this assumption does not introduce a loss in generality, because otherwise the

transmitter can be removed from Ti. We need Lemma 2 for the proof of the

upper bound on τ
(zf)
L (M) in Theorem 8.

Lemma 2. For any message Wi, the number of active receivers connected to

at least one transmitter carrying the message is no greater than the number

of transmitters carrying the message.

|VTi | ≤ |Ti|. (4.9)

Proof. We only consider the non-trivial case where Ti 6= φ. For each receiver

j ∈ VTi , there exists a transmit signal Xk,i, k ∈ [K] such that conditioned

on all other transmit signals, the received signal Yj is correlated with the

message Wi. More precisely, I (Wi;Yj|{Xv,i, v ∈ [K], v 6= k}) > 0. Now,
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since we impose the constraint I(Wi;Yj) = 0,∀j ∈ VTi , the interference seen

at all receivers in VTi has to be cancelled. Finally, since the probability of a

zero Lebesgue measure set of channel realizations is zero, the |Ti| transmit

signals carrying Wi cannot be designed to cancel Wi at more than |Ti| − 1

receivers for almost all channel realizations.

Theorem 8. Under the restriction to ZF Transmit Beam-Forming coding

schemes (interference avoidance), the asymptotic per user DoF of a locally

connected channel with connectivity parameter L is given by

τ
(zf)
L (M) =

2M

2M + L
. (4.10)

Proof. The proof of the lower bound is the same as the proof of Theorem 6

for the case where 2M
2M+L

> 1
2
. It then suffices to show that τ

(zf)
L (M) ≤ 2M

2M+L
.

In order to prove the upper bound, we show that the sum degree of freedom

in each set S ⊆ [K] of consecutive 2M + L users is bounded by 2M . We

now focus on proving this statement by fixing a set S of consecutive 2M +L

users, and make the following definitions. For a user i ∈ [S], let Ui be the

set of active users in S with an index j > i, i.e.,

Ui = {j : j > i, j ∈ S, I(Ỹj;Wj) > 0}.

Similarly, let Di be the set of active users in S with an index j < i,

Di = {j : j < i, j ∈ S, I(Ỹj;Wj) > 0}.

Assume that S has at least 2M + 1 active users, then there is an active user

in S that lies in the middle of a subset of 2M + 1 active users in S. More

precisely, ∃i ∈ S : |Ti| > 0, |Ui| ≥ M, |Di| ≥ M , we let this middle user have

the ith index for the rest of the proof.

Let smin and smax be the users in S with minimum and maximum indices,

respectively, i.e., smin = mins{s : s ∈ S} and smax = maxs{s : s ∈ S}, we

then consider the following cases to complete the proof,

Case 1: Wi is being transmitted from a transmitter that is connected to

the receiver with index smin, i.e., ∃s ∈ Ti : s ∈ {smin, smin− 1, . . . , smin−L}.
It follows from Lemma 1 that VTi ⊇ Di ∪ {i}, and hence, |VTi | ≥ M + 1,

which contradicts (4.9), as |Ti| ≤M .
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Case 2: Wi is being transmitted from a transmitter that is connected to

the receiver with index smax, i.e., ∃s ∈ Ti : s ∈ {smax, smax−1, . . . , smax−L}.
It follows from Lemma 1 that VTi ⊇ Ui∪{i}, and hence, |VTi | ≥M+1, which

again contradicts (4.9).

Case 3: For the remaining case, there is no transmitter in Ti that is

connected to any of the receivers with indices smin and smax. In this case, it

follows from Lemma 1 that Ti does not contain a transmitter that is connected

to a receiver with an index less than smin or greater than smax, and hence, all

the receivers connected to transmitters carrying Wi belong to S. It follows

that at least L+|Ti| receivers in S are connected to one or more transmitter in

Ti, and since S has at least 2M+1 active receivers, then any subset of L+|Ti|
receivers in S has to have at least 2M + 1− ((2M +L)− (L+ |Ti|)) = |Ti|+ 1

active receivers, and the statement is proved by reaching a contradiction

to (4.9) in the last case.

4.5.2 Wyner’s Asymmetric Model

Now, we consider the special case of L = 1, and prove that the lower bound

stated in Theorem 6 is tight in this case [51]. We use Lemma 5 in Appendix A

to prove the DoF upper bound for Wyner’s model. Recall that for any set of

receiver indices A ⊆ [K], we use UA as the set of indices of transmitters that

exclusively carry the messages for the receivers in A, and the complement

set ŪA is the set of indices of transmitters that carry messages for receivers

outside A. More precisely, ŪA = ∪i/∈ATi.

Theorem 9. The asymptotic per user DoF for Wyner’s asymmetric model

with CoMP transmission is given by,

τ1(M) =
2M

2M + 1
,∀M ∈ Z+. (4.11)

Proof. The lower bound follows from Theorem 6. In order to prove the

converse, we use Lemma 5 with a set A of size K 2M
2M+1

+o(K). We also prove

the upper bound for the channel after removing the first M transmitters(
X[M ]

)
, while noting that this will be a valid bound on τ1(M) since the

number of removed transmitters is o(K).

Inspired by the coding scheme in the proof of Theorem 6, we define the
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set A as the set of receivers that are active in the coding scheme. That is,

the complement set Ā = {i : i ∈ [K], i = (2M + 1)(j − 1) +M + 1, j ∈ Z+}.
We know from Corollary 4 that messages belonging to the set WĀ do not

contribute to transmit signals with indices that are multiples of 2M + 1, i.e.,

i ∈ UA for all i ∈ [K] that is a multiple of 2M + 1. More precisely, let the

set S be defined as follows:

S = {i : i ∈ [K], i is a multiple of 2M + 1},

then S ⊆ UA. In particular, XS ⊆ XUA , and hence it suffices using Lemma 5

to show the existence of linear functions f1 and f2 such that f1 (YA, XS) =

XS̄\X[M ] + f2(ZA), where the coeffcients of the function f2 depend only on

the channel coefficients.

In what follows we show how to reconstruct a noisy version of the signals in

the set {XM+1, XM+2, . . . , X2M} ∪ {X2M+2, X2M+3, . . . , X3M+1}, where the

reconstruction noise depends only on ZA in a linear fashion. Then it will

be clear by symmetry how to reconstruct the rest of transmit signals in the

set XS̄\X[M ]. Since X2M+1 ∈ XS and Y2M+1 is also given, X2M + Z2M+1

can be reconstructed. Now, with the knowledge of X2M + Z2M+1 and Y2M ,

we can reconstruct X2M−1 + Z2M − Z2M+1, and so by iterative processing,

a noisy version of all transmit signals in the set {XM+1, XM+2, . . . , X2M}
can be reconstructed, where the noise is a linear function of the signals

{ZM+2, ZM+3, . . . , Z2M+1}. In a similar fashion, given X2M+1 and Y2M+2,

the signal X2M+2 + Z2M+2 can be reconstructed. Then with the knowledge

of Y2M+3, we can reconstruct X2M+3 + Z2M+3 − Z2M+2, and we can proceed

along this path to reconstruct a noisy version of all transmit signals in the

set {X2M+2, X2M+3, . . . , X3M+1}, where the noise is a linear function of the

signals {Z2M+2, Z2M+3, . . . , Z3M+1}. This proves the existence of linear func-

tions f1 and f2 such that f1(Y1, XS) = XS̄\X[M ]+f2(ZA), and the coefficients

for f2 do not depend on the transmit power constraint P , and so by Lemma 5

we obtain the converse of Theorem 9.

In Figure 4.5 (b), we illustrate how the proof works for the case where

M = 3. Note that the missing received signals {Y4, Y11, . . .} in the upper

bound proof correspond to the inactive receivers in the coding scheme.
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(a) (b)

Figure 4.5: Figure illustrating the proof of Theorem 9 for M = 3, τ(3) = 6
7
.

In (a), the message assignments in the first cluster for the proposed coding
scheme are illustrated. Note that both X7 and Y4 are deactivated. In (b),
an illustration of the upper bound is shown. The messages W4 and W11

cannot be available at X7, hence it can be reconstructed from WA. A noisy
version of all transmit signals shown in figure can be reconstructed from X7

and the signals {Y5, . . . , Y10}, where the reconstruction noise is a linear
function of {Z5, . . . , Z10}.

No Cooperation

We note that even for the case of no cooperation, an asymptotic per user DoF

of more than 1
2

per user DoF is achievable, i.e., τ1(1) = 2
3
. Also, it is straight-

forward to see that the interference alignment scheme can be generalized to

show that τL(1) ≥ 1
2

for any locally connected channel with parameter L.

The next theorem generalizes the upper bound in [10] for locally connected

channels, where each message can be available at one transmitter that is not

necessarily the transmitter carrying its own index. In particular, we show

that τL(1) > 1
2

only if L = 1.

Lemma 3 serves as a building block for the upper bound proof in The-

orem 10. We define Ri as the set of indices of received signals that are

connected to transmitter Xi, i.e., Ri = {i, i + 1, . . . , i + L}. Note that as

we are considering the case of no cooperation, hence, Ti contains only one

element. Recall that di denotes the available DoF for the communication of

message Wi.

Lemma 3. If Ti = {Xj}, then di + ds ≤ 1,∀s ∈ Rj, s 6= i.

Proof. We assume that all messages other than Wi and Ws are deterministic,
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and then apply Lemma 5 in Appendix A with the set A = {s}, and functions

f1 and f2 defined such that the following holds,

f1

(
Ys, X[K]\{j}

)
= H−1

s,j

(
Ys −H{s},[K]\{j}X[K]\{j}

)
= Xj +H−1

s,j Zs

= Xj + f2(Zs),

and then the bound follows.

Theorem 10. Without cooperation (M = 1), the asymptotic per user DoF

of locally connected channels is given by,

τL(1) =

2
3
, if L = 1,

1
2
, if L ≥ 2.

Proof. The case where L = 1 is a special case of the result in Theorem 9. The

lower bound for the case where L ≥ 2 follows by assigning each message to the

transmitter with the same index, and a simple extension of the asymptotic

interference alignment scheme of [11], and hence, it suffices to show that

τL(1) ≤ 1

2
, ∀L ≥ 2. (4.12)

In this proof, we use the original locally connected channel model defined

in (2.2). Each transmitter is connected to
⌊
L
2

⌋
preceding receivers and

⌈
L
2

⌉
succeeding receivers. In order to prove the theorem statement, we establish

the stronger statement,

ηL(K, 1) ≤ K + 1

2
,∀K, ∀L ≥ 2. (4.13)

We prove (4.13) by induction. The basis to the induction step is given by

the following,

For M = 1,∀L, d1 + d2 ≤ 1. (4.14)

The proof of (4.14) follows from Lemma 3 and the fact that all transmitters

connected to Y1 are also connected to Y2. In order to state the induction

step, we first define Bk as a Boolean variable that is true if and only if the

following is true:
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•
∑k
i=1 di
k
≤ 1

2
.

• dk−1 + dk ≤ 1.

The induction step is given by the following:

For L ≥ 2, k ≥ 2, if Bk is true, then either Bk+1 or Bk+2 is true. (4.15)

In order to prove (4.15), consider the assignment of message Wk+1, and note

that Wk+1 is available at a transmitter connected to Yk+1. Now, note that

∀L ≥ 2, the channel model of (6.1) implies that any transmitter connected

to Yk+1 is either connected to Yk+2, or to both Yk and Yk−1. The proof follows

by considering these two cases separately.

Case 1: If Wk+1 is available at a transmitter that is connected to Yk+2,

then it follows from Lemma 3 that dk+1 + dk+2 ≤ 1. Since Bk is true, it

follows that
∑k
i=1 di
k
≤ 1

2
, and hence,

∑k+2
i=1 di
k+2

≤ 1
2
. In this case, (4.15) holds

since Bk+2 is true.

Case 2: If Wk+1 is available at a transmitter that is connected to both Yk

and Yk−1, then it follows from Lemma 3 that dk+1 +dk ≤ 1, and dk+1 +dk−1 ≤
1. Now, since Bk is true, it follows that dk + dk−1 ≤ 1, and hence,

dk+1 + dk + dk−1

3
≤ 1

2
. (4.16)

Also, sinceBk is true, we know that
∑k−2
i=1 di
k−2

≤ 1
2
, and hence, we get from (4.16)

that
∑k+1
i=1 di
k+1

≤ 1
2
. In this case, (4.15) holds since Bk+1 is true.

It follows by induction from (4.14) and (4.15) that it is either the case that

BK−1 is true, or BK is true. If BK−1 is true, then
∑K−1

i=1 di ≤ K−1
2

, and the

DoF number η ≤ K+1
2

. If BK is true, then it follows that the DoF number

η ≤ K
2

.

4.6 Discussion: SISO Interference Channels with

Maximum Transmit Set Size Constraint

There are two design parameters in the considered problem, the message

assignment strategy satisfying the maximum transmit set size constraint,
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and the design of transmit beams. We characterized the asymptotic per user

DoF when one of the design parameters is restricted to a special choice, i.e.,

restricting message assignment strategies by a local cooperation constraint

or restricting the design of transmit beams to zero-forcing transmit beams.

The restriction of one of the design parameters can significantly simplify the

problem because of the inter-dependence of the two design parameters. On

one hand, the achievable scheme is enabled by the choice of the message

assignment strategy, and on the other hand, the assignment of messages to

transmitters is governed by the technique followed in the design of transmit

beams, e.g. zero-forcing transmit beam-forming or interference alignment.

In the following, we discuss each of the design parameters.

4.6.1 Message Assignment Strategy

The assignment of each message to more than one transmitter (CoMP trans-

mission) creates a virtual Multiple Input Single Output (MISO) network. A

real MISO network, where multiple dedicated antennas are assigned to the

transmission of each message (see e.g. [52]), differs from the created virtual

one in two aspects. First, in a CoMP transmission setting, the same trans-

mit antenna can carry more than one message. Second, for locally connected

channels, the number of receivers at which a message causes undesired inter-

ference depends on the number of transmit antennas carrying the message.

We study MISO networks in Section 4.7.

For fully connected channels, the number of receivers at which a message

causes undesired interference is the same regardless of the size of the transmit

set as long as it is non-empty. The only aspect that governs the assignment

of messages to transmitters is the pattern of overlap between transmit sets

corresponding to different messages. It is expected that the larger the sizes

of the intersections between sets of messages carried by different transmit

antennas, the more dependent the coefficients of the virtual MISO channel

are, and hence, the lower the available DoF. For the spiral assignments of

messages considered in Section 3.1, |Ti ∩ Ti+1| = M − 1, and the same value

holds for the size of the intersection between sets of messages carried by suc-

cessive transmitters. In general, local cooperation implies large intersections

between sets of messages carried by different transmitters, and hence, the
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negative conclusion we reached for τ (loc)(M).

For the case where we are restricted to zero-forcing transmit beam-forming

as in Section 4.3, the number of receivers at which each message causes unde-

sired interference governs the choice of transmit sets, and hence, we saw that

for locally connected channels, the message assignment strategy illustrated

in Theorem 6 selects transmit sets that consist of successive transmitters,

to minimize the number of receivers at which each message should be can-

celled. This strategy is optimal under the restriction to zero-forcing transmit

beam-forming schemes.

4.6.2 Design of Transmit Beams

While it was shown in Section 3.1 that CoMP transmission accompanied

by both zero-forcing transmit beams and asymptotic interference alignment

can achieve a DoF cooperation gain beyond what can be achieved using

only transmit zero-forcing, this is not obvious for locally connected channels.

Unlike in the fully connected channel, the addition of a transmitter to a

transmit set in a locally connected channel may result in an increase in the

number of receivers at which the message causes undesired interference.

We note that unlike the asymptotic interference alignment scheme, the

zero-forcing transmit beam-forming scheme illustrated in Section 4.3 does not

need symbol extensions, since it achieves the stated DoF of Theorem 6 in one

channel realization. However, it is not clear whether asymptotic interference

alignment can be used to show an asymptotic per user DoF cooperation gain

beyond that achieved through simple zero-forcing transmit beam-forming; we

believe that the answer to this question is closely related to both problems

that remain open after this work, i.e., characterizing τ(M) and τL(M).

4.7 Multiple Antenna Transmitters

In order to compare between the cases of having dedicated versus shared an-

tennas for the transmission of each message, we consider in this section the

scenario where each transmitter is equipped with N antennas. We use the

standard model for the K-user interference channel with N -antenna trans-
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mitters and single antenna receivers,

Yi =
K∑
j=1

N∑
n=1

H
(n)
i,j X

(n)
j + Zi, (4.17)

where X
(n)
i (t) is the transmitted signal of the nth antenna at transmitter i,

and H
(n)
i,j is the channel coefficient from the nth antenna at transmitter j to

receiver i. The condition for the equivalent channel model of (4.1) is here

extended to the following,

H
(n)
i,j is not identically 0 if and only if i ∈ [j, j + 1, . . . , j + L] , n ∈ [N ],

(4.18)

and all channel coefficients that are not identically zero are generic.

In [53], we extended the characterization of the asymptotic per user DoF

under the restriction to zero-forcing transmit beam-forming coding schemes

to the considered locally connected channel with multiple antenna transmit-

ters. More precisely, let τ
(zf)
L (M,N) be the asymptotic per user DoF for

locally connected channels with connectivity parameter L, N antennas at

each transmitter, a maximum transmit set size constraint M , and under the

restriction to the class of zero-forcing transmit beam-forming coding schemes

that are defined as follows.

Recall from Section 4.5.1 that Ỹj = Yj − Zj, ∀j ∈ [K], then we impose the

following constraints on allowed coding schemes:

• The transmit signal at the nth antenna of the jth transmitter is given

by

X
(n)
j =

∑
i:j∈Ti

X
(n)
j,i , (4.19)

where X
(n)
j,i depends only on message Wi.

• It is either the case that the mutual information I(Ỹj;Wj) = 0 or it

is the case that Wj completely determines Ỹj. Note that Ỹj can be

determined from Wj for the case where user j enjoys interference-free

communication and I(Wj; Ỹj) = 0 for the other case where Wj is not

transmitted.

We say that the jth receiver is active if and only if I(Ỹj;Wj) > 0. Note that

using zero-forcing transmit beam-forming, if the jth receiver is active, then
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I(Wi;Yj) = 0,∀i 6= j.

The results of Theorem 6 and Theorem 8 can be extended to obtain the

following characterization.

Theorem 11. Under the restriction to ZF Transmit Beam-Forming coding

schemes (interference avoidance), the asymptotic per user DoF of a locally

connected channel with connectivity parameter L and N−antenna transmit-

ters is given as follows.

If MN ≥M + L, then τ
(zf)
L (M,N) = 1, otherwise,

τ
(zf)
L (M,N) =

2MN

M(N + 1) + L
. (4.20)

Proof. The proofs of the lower and upper bounds are available in Section 4.7.1

and Section 4.7.2, respectively.

4.7.1 Coding Scheme

We first consider the case where MN < L + M by treating the network

as clusters, each consisting of consecutive M(N + 1) + L transceivers. The

last L transmitters in each cluster are deactivated to eliminate inter-cluster

interference, and hence, it suffices to show that 2MN DoF can be achieved

in each cluster. Without loss of generality, consider the cluster with users of

indices in the set [M(N + 1) + L]. Define the following subsets of [M(N +

1) + L],

S1 = [MN ] (4.21)

S2 = {L+M + 1, L+M + 2, . . . , L+M(N + 1)}, (4.22)

where in the proposed scheme, messages with indices in the set [M(N +

1) + L]\(S1 ∪ S2) are not transmitted and the corresponding receivers are

deactivated. The remaining messages are assigned as follows:

Ti =

{1, 2, . . . ,M}, ∀i ∈ S1

{MN + 1,MN + 2, . . . ,M(N + 1)}, ∀i ∈ S2,

and all other transmitters in the cluster are deactivated. In other words, the

first MN messages in the cluster are assigned to transmitters in the set [M ],

and the last MN messages in the cluster are assigned to the M transmitters
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with indices in the set {MN + 1,MN + 2, . . . ,M(N + 1)}.
Now, we note that messages with indices in S1 are not available outside

transmitters with indices in [M ], and hence, do not cause interference at re-

ceivers with indices in S2. Also, messages with indices in S2 are not available

at transmitters with indices in [MN ], and hence, do not cause interference

at receivers with indices in S1.

In order to complete the proof by showing that each user in S1∪S2 achieves

one degree of freedom, we next show that transmissions corresponding to mes-

sages with indices in S1(S2) do not cause interference at receivers with indices

in the same set. Let S1,j denote the set {(j− 1)N + 1, (j− 1)N + 2, . . . , jN}
where j ∈ [M ], and consider the design of transmit beams for messages

Wi, i ∈ S1,j. Our aim is to create an interference-free communication be-

tween the (i− (j − 1)N)th antenna at the jth transmitter to the ith receiver.

We prove this by showing the existence of an assignment for the transmit

signals {X(n)
k,i : n ∈ [N ], k ∈ [M ], (k, n) 6= (j, i − (j − 1)N)} to cancel the

interference caused by Wi at the MN − 1 receivers in S1\{i}. Consider the

design of the transmit beam at the nth antenna of the kth transmitter X
(n)
k,i ,

where n ∈ [N ], k ∈ [M ], (k, n) 6= (j, i − (j − 1)N), and note that given all

other transmit signals carrying Wi, X
(n)
k,i can be designed such that the inter-

ference caused by Wi at the ((k − 1)N + n)th receiver is canceled. Therefore,

the interference cancellation constraints pose a system of MN − 1 equations

in MN−1 variables, where each equation is assigned a distinct variable, that

can be set to satisfy it, given any assignment of the other MN − 2 variables.

We now show a simple algorithm that finds an assignment for the variables

to satisfy the equations. Fix an order on the above mentioned equations and

label them from 1 to MN − 1, and recall that each equation is assigned a

distinct variable that can be set to satisfy it given all other variables. For the

xth equation, x ∈ [MN + 1], let that above mentioned distinct variable have

the label x. In the first step of the algorithm, the first variable is removed

by setting it as a function of all other variables to satisfy the first equation,

and we have a reduced problem of MN − 2 equations in MN − 2 variables.

Similarly, in the xth step of the algorithm, the xth variable is set as a function

of all variables in the set {x + 1, . . . ,MN + 1} to satisfy the xth equation.

Now, once we reach the (MN + 1)st and final step, the (MN + 1)st variable

will be set to satisfy the (MN + 1)st equation, and recursively, all variables

will be set to satisfy all the equations. A solution is found using the above
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described algorithm for almost all channel realizations, as the assumption of

a generic set of channel coefficients leads to linearly independent equations,

almost surely.

Note that the validity of the above argument relies on the fact that ∀j ∈
[M ], the jth transmitter is connected to all receivers in the set {(j − 1)N +

1, (j − 1)N + 2, . . . , jN}. This follows as we consider the case where MN <

L + M which implies that jN < L + j,∀j ∈ [M ], and the jth transmitter is

connected to receivers with indices in the set {j, j + 1, . . . , L+ j}.
We finally note that the channel between transmitters with indices in the

sequence (M(N + 1),M(N + 1)− 1, . . . ,MN + 1) and receivers with indices

in the sequence (L + M(N + 1), L + M(N + 1) − 1, . . . , L + M + 1) has

the same connectivity pattern as the channel between transmitters with in-

dices in the sequence (1, 2, . . . ,M) and receivers with indices in the sequence

(1, 2, . . . ,MN), and hence the argument in the previous paragraph can be

used to construct transmit beams for messages Wi, i ∈ S2 such that each user

in S2 gets access to an interference-free transmission (one degree of freedom).

The proof is simpler for the case where NM ≥ L + M . Let xmin =

minx{x ∈ N : Nx ≥ L+ x}, then xmin ≤ M , and the messages are assigned

as Ti = {i, i+ 1, . . . , i+xmin−1}. Consider the design of transmit beams for

message Wi. Our aim is to allow for interference-free communication between

the first antenna at the ith transmitter and the ith receiver, and eliminate

the interference caused by Wi at all receivers in the set {i + 1, . . . , i + L +

xmin− 1}. In a similar fashion to the above described proof, each receiver in

{i+1, . . . , i+L+xmin−1} is assigned a distinct transmit signal from the set

{X(n)
j,i , n ∈ [N ], j ∈ Ti, (j, n) 6= (i, 1)}, where given all other transmit signals,

that transmit signal can be set to cancel the interference caused by Wi at that

receiver, and hence, there exists a setting for all transmit signals carrying Wi

that cancels its interference at all receivers connected to transmitters in Ti
other than its own receiver.

Please refer to Figure 4.6 for an illustration of the above described coding

scheme.
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Figure 4.6: Figure showing the assignment of messages in the proof of
Theorem 11 for the case where N = M = 2 and L = 3. Only signals
corresponding to the first cluster are shown. Signals in dashed red boxes
are deactivated. Note that the last L signals are deactivated to eliminate
inter-cluster interference. Also, W5 is not transmitted, while each other
message with indices in {1, . . . , 9} has one degree of freedom.

4.7.2 ZF Transmit Beam-Forming Upper Bound

We first extend Lemma 2 of Section 4.5.1 to draw an upper bound on the

number of active receivers connected to a transmit set in the considered

multiple antenna transmitters setting.

Lemma 4. For any message Wi, the number of active receivers connected to

at least one transmitter carrying the message is no greater than the number

of transmit antennas carrying the message,

|VTi | ≤ N |Ti|. (4.23)

Proof. We only consider the non-trivial case where Ti 6= φ. For each receiver

j ∈ VTi , there exists a transmit signal X
(n)
k,i , k ∈ [K], n ∈ [N ] such that

conditioned on all other transmit signals, the received signal Yj is correlated
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with the message Wi. More precisely,

I
(
Wi;Yj|{X(m)

v,i , (v,m) ∈ [K]× [N ], (v,m) 6= (k, n)}
)
> 0.

Now, since we impose the constraint I(Wi;Yj) = 0,∀j ∈ VTi , the interference

seen at all receivers in VTi has to be cancelled. Finally, since the probability

of a zero Lebesgue measure set of channel realizations is zero, the N |Ti|
transmit signals carrying Wi cannot be designed to cancel Wi at more than

N |Ti| − 1 receivers for almost all channel realizations.

The proof of the upper bound on τ
(zf)
L (M,N) is an extension of the proof of

Theorem 8 for the multiple antenna transmitters setting. We show that the

sum degree of freedom in each set S ⊆ [K] of consecutive M(N+1)+L users

is bounded by 2MN . We now focus on proving this statement by fixing a

set S of consecutive M(N + 1) +L users, and make the following definitions.

For a user i ∈ [S], let Ui be the set of active users in S with an index j > i,

i.e.,

Ui = {j : j > i, j ∈ S, I(Ỹj;Wj) > 0}.

Similarly, let Di be the set of active users in S with an index j < i,

Di = {j : j < i, j ∈ S, I(Ỹj;Wj) > 0}.

Assume that S has at least 2MN + 1 active users, then there is an active

user in S that lies in the middle of a subset of 2MN + 1 active users in S.

More precisely, ∃i ∈ S : |Ti| > 0, |Ui| ≥ MN, |Di| ≥ MN , we let this middle

user have the ith index for the rest of the proof.

Let smin and smax be the users in S with minimum and maximum indices,

respectively, i.e., smin = mins{s : s ∈ S} and smax = maxs{s : s ∈ S}, we

then consider the following cases to complete the proof,

Case 1: Wi is being transmitted from a transmitter that is connected to

the receiver with index smin, i.e., ∃s ∈ Ti : s ∈ {smin, smin− 1, . . . , smin−L}.
It follows from Lemma 1 that VTi ⊇ Di ∪ {i}, and hence, |VTi | ≥ MN + 1,

which contradicts (4.9), as |Ti| ≤M .

Case 2: Wi is being transmitted from a transmitter that is connected to

the receiver with index smax, i.e., ∃s ∈ Ti : s ∈ {smax, smax−1, . . . , smax−L}.
It follows from Lemma 1 that VTi ⊇ Ui ∪ {i}, and hence, |VTi | ≥ MN + 1,

which again contradicts (4.9).
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Case 3: For the remaining case, there is no transmitter in Ti that is

connected to any of the receivers with indices smin and smax. In this case, it

follows from Lemma 1 that Ti does not contain a transmitter that is connected

to a receiver with an index less than smin or greater than smax, and hence, all

the receivers connected to transmitters carrying Wi belong to S. It follows

that at least L+ |Ti| receivers in S are connected to one or more transmitter

in Ti, and since S has at least 2MN + 1 active receivers, then any subset of

L + |Ti| receivers in S has to have at least 2MN + 1 − ((M(N + 1) + L) −
(L+ |Ti|)) = MN + |Ti| − (M − 1), and hence,

|VTi | ≥ MN + |Ti| − (M − 1)

= N |Ti|+ (M − |Ti|)(N − 1) + 1

≥ N |Ti|+ 1,

and the statement is proved by reaching a contradiction to (4.9) in the last

case.

4.7.3 Successive Transmit Sets Upper Bound

We note that in the coding scheme used to prove Theorem 11, we use a mes-

sage assignment that satisfies the irreducible message assignments condition

in Corollary 4. Furthermore, each transmit set consists of a successive set of

transmitter indices. More precisely,

Ti = {s, s+ 1, . . . , s+ x− 1},

s ∈ {i− L− (x− 1), i− L− (x− 1) + 1, . . . , i},

x ∈ {1, 2, . . . ,M}, (4.24)

and hence, assigning each message to a successive set of transmitters is a

property of the optimal message assignments with the restriction to zero-

forcing transmit beam-forming coding schemes. While we observe that Lemma

1 does not imply that transmit sets have to consist of successive transmitter

indices, it might be intuitive to think that such a condition is necessary as it

minimizes the number of receivers at which each message causes undesired

interference.
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Let τ̃L(M,N) be the maximum achievable per user DoF for the considered

channel model with parameters M , N , and L, where only message assign-

ments satisfying (4.24) are considered. We now provide a DoF upper bound

for general values of the system parameters.

Theorem 12. Under the restriction to successive transmit sets defined

in (4.24), the asymptotic per user DoF of a locally connected channel with

connectivity parameter L and N−antenna transmitters is given as follows.

If MN ≥M + L, then τ̃L(M,N) = 1, otherwise,

2MN

M(N + 1) + L
≤ τ̃L(M,N) ≤ M(N + 1) + L− 1

M(N + 1) + L
. (4.25)

Proof. Since the coding scheme used to prove Theorem 11 is based on a

message assignment that satisfies (4.24), the lower bound follows from the

same coding scheme. We only need to show the upper bound for the case

where NM < L + M . We apply Lemma 5 in Appendix A with the set

A defined as follows. We view the network as clusters, each consisting of

successive M(N+1)+L users, and we exclude from A the (L+M)th receiver

from each cluster. It then suffices to show that the condition in Lemma 5

holds for this choice of the set A. More precisely, let the set A be defined as

follows,

A = {i, i ∈ [K], i 6= (M(N + 1) + L)(j − 1) + L+M, ∀j ∈ Z+}. (4.26)

We then need to show that there exist functions f1 and f2, such that

f1 (YA, XUA) = XŪA + f2(ZA), where the definition of f2 does not depend on

the transmit power. The function f2 that we construct is a linear function

whose coefficients depend only on the channel coefficients.

We first show the existence of functions f1 and f2 for the case where each

transmitter has a single antenna, i.e., N = 1. Note that using the condi-

tion in (4.24), we know that for any message with an index that lies at the

intersection between the set Ā and a given cluster, all members of its trans-

mit set have indices that belong to the same cluster. We now show how

to reconstruct transmit signals in XŪA that lie in the first cluster. That is,

transmit signals in the set {Xi : i ∈ TL+M}, and the rest of the proof for

the remaining clusters will follow similarly. Note that because of (4.24), we

know that TL+M ⊆ [L+ 2M − 1], and also L+ 2M /∈ Ti,∀i /∈ A. Now, given
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Y1 and Z1

H
(1)
1,1

, one can obtain X
(1)
1 as X

(1)
1 = Y1−Z1

H
(1)
1,1

. Also, given X
(1)
1 , Y2, and

a linear function of Z2 whose coefficients depend only on the channel coef-

ficients, one can obtain X
(1)
2 . Similarly, transmit signals X

(1)
3 , . . . , X

(1)
L+M−1

can be reconstructed from Y[L+M−1] and a linear function of the noise sig-

nals Z[L+M−1]. It remains to show how to obtain transmit signals in the set

{X(1)
L+M , X

(1)
L+M+1, . . . , X

(1)
L+2M−1}. We note that the relation between those

transmit signals and the signals {Yi : i ∈ {L + M + 1, . . . , L + 2M} and

{Zi : i ∈ {L+M + 1, . . . , L+ 2M} is given as follows,
ỸL+M+1 − ZL+M+1

ỸL+M+2 − ZL+M+2

...

ỸL+2M − ZL+2M

 = M1


X

(1)
L+M

X
(1)
L+M+1

...

X
(1)
L+2M−1

 , (4.27)

where ∀i ∈ {L + M + 1, . . . , L + 2M}, Ỹi = Yi −
∑L+M−1

j=1 H
(1)
i,j X

(1)
j −

H
(1)
i,L+2MX

(1)
L+2M , and M1 is the MxM matrix defined as the matrix in (4.28),


H

(1)
L+M+1,L+M H

(1)
L+M+1,L+M+1 0 0 . . . 0

H
(1)
L+M+2,L+M H

(1)
L+M+2,L+M+1 H

(1)
L+M+2,L+M+2 0 . . . 0

...

H
(1)
L+2M,L+M H

(1)
L+2M,L+M+1 . . . . . . H

(1)
L+2M,L+2M−2 H

(1)
L+2M,L+2M−1

 ,
(4.28)

Now, if M1 is invertible, then all the transmit signals in X[L+2M−1] can be

reconstructed, and it follows that all the transmit signals encoding the mes-

sage WL+M can be obtained. We show in Section 4.8.1 that the matrix M1 is

full rank for almost all channel realizations. By constructing a similar proof

for the remaining clusters, the upper bound proof for the case where N = 1

is complete.

We next prove the statement for the case where N > 1. As in the above

proof, we show how to obtain the transmit signals carrying WL+M in the first

cluster, then the proof follows similarly for the remaining clusters. Let i be

the smallest index in TL+M , then we know from (4.24) that i ∈ [L+M ] and

that TL+M ⊆ {i, i+1, . . . , i+M−1}. Hence, it suffices to show how to obtain

the transmit signals in the set XS where S = {i, . . . , i+M − 1} from YA,

XUA\XS , and a linear function of ZA whose coefficients depend only on the

channel coefficients. Let Ỹk = Yk −
∑

j∈UA\S,n∈[N ] H
(n)
k,jX

(n)
j ,∀k ∈ [K], then
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each of the signals Ỹk − Zk, k ∈ [M(N + 1) + L] is a (possibly zero) linear

combination of the transmit signals in XS . As |S| = M , and each transmitter

has N antennas, then we need at least MN such linear combinations to be

able to reconstruct XS . In order to do so, we pick MN + 1 received signals,

among which at most one is in the set YĀ. We also will show that the

linear equations corresponding to any MN signals of the picked ones are

linearly independent, and hence suffice to reconstruct XS . By observing

that we are considering the case where NM < L + M , or in particular that

L+1 ≥M(N−1)+2, we pick the MN+1 received signals as the M−1 signals

{Yi, . . . , Yi+M−2} together with the last M(N − 1) + 2 signals connected to

the transmitter with index i+M − 1. i.e., the set {i+M − 1 + x, i+M +

x, . . . , i + M − 1 + L}, where x = L + 1 − (M(N − 1) + 2). The relation

between those signals and XS can be described as,



Ỹi − Zi
...

Ỹi+M−2 − Zi+M−2

Ỹi+M−1+x − Zi+M−1+x

...

Ỹi+M−1+L − Zi+M−1+L


= MN



X
(1)
i
...

X
(N)
i

X
(1)
i+1
...
...

X
(N)
i+M−1


, (4.29)

where MN is the MN + 1 x MN matrix given in (4.30),



H
(1)
i,i . . . H

(N)
i,i 0 . . . . . . . . . . . . 0

H
(1)
i+1,i . . . . . . . . . H

(N)
i+1,i+1 0 . . . . . . 0

...

H
(1)
i+M−2,i . . . . . . . . . . . . H

(N)
i+M−2,i+M−2 0 . . . 0

H
(1)
i+M−1+x,i . . . . . . . . . . . . . . . . . . . . . H

(N)
i+M−1+x,i+M−1

...

H
(1)
i+L,i . . . . . . . . . . . . . . . . . . . . . H

(N)
i+L,i+M−1

0 . . . 0 H
(1)
i+L+1,i+1 . . . . . . . . . . . . H

(N)
i+L+1,i+M−1

...

0 . . . . . . . . . . . . 0 H
(1)
i+M−1+L,i+M−1 . . . H

(N)
i+M−1+L,i+M−1



.

(4.30)

We note here that the missing received signal YL+M can be one of the con-

sidered MN + 1 received signals. However, we show in Section 4.8.2 that

any MN ×MN sub-matrix of MN is full rank for all values of N > 1, hence

proving that the transmit signals in XS can be obtained from the remain-
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ing MN received signals and the corresponding linear combinations of the

Gaussian noise signals, where the linear coefficients depend only on channel

coefficients. This completes the proof for the case where N > 1.

By carefully inspecting the lower and upper bounds, we note that they

coincide for the case where NM = L+M − 1. However, we recall that even

in this special case, the tight characterization of the asymptotic per user DoF

is available only under the restriction to successive transmit sets as defined

in (4.24).

We also note that the lower bound in Theorem 12 is not optimal for general

values of the parameters, as for fixed values of N and M , 2MN
M(N+1)+L

→ 0 as

L → ∞, while we know that the interference alignment scheme introduced

in [11] can be applied in the considered channel model to achieve a per user

DoF number of 1
2

without using multiple antennas or assigning any message

to more than one transmitter. Furthermore, it is not intuitive to think that

the L+M(N+1)−1
L+M(N+1)

upper bound is tight in general, as for fixed L, it has a lower

value for the case where two antennas are dedicated for the transmission of

each message (N = 2,M = 1) than the case where each message is allowed

to be available at two antennas that may be carrying other messages as well

(N = 1,M = 2).

4.7.4 Discussion: Dedicated versus Shared Antennas

Consider a comparison between two different scenarios. In the first, each

message can be transmitted from a single transmitter that has x antennas,

i.e., N = x,M = 1, while in the second scenario, each message can be trans-

mitted from x single antenna transmitters, i.e., N = 1,M = x. We note that

the number of receivers at which a given message causes undesired interfer-

ence is L in the first scenario, and is at least L + x − 1 in the second. This

leads to the result that τ
(zf)
L (M = 1, N = x) > τ

(zf)
L (M = x,N = 1),∀x > 1.

It is worth noting that the number of receivers at which each message causes

undesired interference is not the only difference between the considered sce-

narios. In particular, other differences between the two scenarios affect the

available DoF when considering general coding schemes beyond the simple

zero-forcing transmit beam-forming scheme. In the fully connected model,

the number of receivers at which a given message causes undesired interfer-
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ence is the same for both considered scenarios. However, the per user DoF

number for the first scenario where x antennas are dedicated to each mes-

sage is x
x+1

, while for the case where each transmitter has a single antenna,

and M = x = 2, the per user DoF number τ(M = 2) is shown to be 1
2

in

Chapter 3.

4.8 Proof of Multiple Antenna Transmitters Upper

Bound

4.8.1 Proof of Non-Singularity of the Matrix M1

The matrix M1 has the following form,

a1,1 a1,2 0 0 0 0 . . . . . . 0

a2,1 a2,2 a2,3 0 0 0 . . . . . . 0
...

0 . . . 0 . . . aM−2,M−L−1 . . . . . . aM−2,M−1 0

0 . . . . . . 0 0 aM−1,M−L . . . . . . aM−1,M

0 . . . . . . 0 0 0 aM,M−L+1 . . . aM,M


,

(4.31)

where ai,j = 0 if (i − j) ≥ L or (i − j) < −1, and the set of all other

entries is generic. We show that any matrix of this form is full rank with

high probability for any positive integer value of the connectivity parameter

L. The statement holds trivially for the case where M = 1 as a1,1 6= 0 with

high probability, hence, in the rest of the proof, we only consider the case

where M > 1.

For a matrix of the form in (4.31), assume there exists a linear combination

of the rows that equals zero and has coefficients α1, α2, . . . , αM where αi is

the coefficient of the ith row and not all the coefficients equal zero. It follows

that αM−1aM−1,M + αMaM,M = 0. Now, for the case where αM−1 = 0, since

aM,M 6= 0 with high probability, it almost surely follows that αM = 0. Also, if

aM−2,M−1 6= 0 then αM−2 = 0. We conclude that if αM−1 = 0, then for almost

all realizations of the elements it must be the case that αi = 0,∀i ∈ [M ],

hence, we only consider the case where αM−1 6= 0. Consider the following

new matrix obtained by replacing the last two rows by one row that is a
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linear combination of them in the direction that nulls the last entry. More

precisely, the new matrix has the following form,

a
(1)
1,1 a

(1)
1,2 0 0 0 . . . . . . 0

a
(1)
2,1 a

(1)
2,2 a

(1)
2,3 0 0 . . . . . . 0

...

0 . . . 0 a
(1)
M−2,M−L−1 . . . . . . a

(1)
M−2,M−1 0

0 . . . 0 0 a
(1)
M−1,M−L . . . a

(1)
M−1,M−1 0


, (4.32)

where ∀j ∈ [M ], a
(1)
i,j = ai,j,∀i ∈ [M − 2] and a

(1)
M−1,j = aM−1,j + αM

αM−1
aM,j =

aM−1,j− aM−1,M

aM,M
aM,j. Note that α1, α2, . . . , αM−1 are the coefficients for a lin-

ear combination of the rows of the new matrix that equals zero. In particular,

it follows that the following M − 1 x M − 1 matrix is rank deficient,

a
(1)
1,1 a

(1)
1,2 0 0 0 . . . . . .

a
(1)
2,1 a

(1)
2,2 a

(1)
2,3 0 0 . . . . . .

...

0 . . . 0 a
(1)
M−2,M−L−1 . . . . . . a

(1)
M−2,M−1

0 . . . 0 0 a
(1)
M−1,M−L . . . a

(1)
M−1,M−1


. (4.33)

Note that a
(1)
i,j = 0 if (i − j) ≥ L or (i − j) < −1, and the set of all other

entries is generic, and hence, the form in (4.33) is the same as the form

in (4.31) with M replaced by M − 1. Now, by repeating application of the

above argument, we find that a matrix of the below form is rank deficient,[
a

(M−2)
1,1 a

(M−2)
1,2

a
(M−2)
2,1 a

(M−2)
2,2

]
, (4.34)

where ∀k ∈ {2, 3, . . . ,M − 2}, ∀j ∈ [M ], a
(k)
i,j = a

(k−1)
i,j ,∀i ∈ [M − k − 1],

and a
(k)
M−k,j = a

(k−1)
M−k,j −

a
(k−1)
M−k,M−k+1

a
(k−1)
M−k+1,M−k+1

a
(k−1)
M−k+1,j. We now note that in each step

of the argument, the set of non-zero entries remains generic, hence the set

of elements in the matrix of the form in (4.34) is generic. It follows that

a matrix of the form in (4.34) is full rank with high probability, thereby

reaching a contradiction to the assumption of rank deficiency of the matrix

of the form in (4.31) for almost all realizations of its elements.
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4.8.2 Proof of Non-Singularity of any MN ×MN Sub-Matrix
of MN

The matrix MN has the following form,



a1,1 . . . a1,N 0 . . . . . . . . . . . . . . . 0

a2,1 . . . . . . . . . a2,2N 0 . . . . . . . . . 0
...

aM−1,1 . . . . . . . . . . . . . . . aM−1,(M−1)N 0 . . . 0

aM,1 . . . . . . . . . . . . . . . . . . . . . . . . aM,MN

...

aM(N−1)+2,1 . . . . . . . . . . . . . . . . . . . . . . . . aM(N−1)+2,MN

0 . . . 0 aM(N−1)+3,N+1 . . . . . . . . . . . . . . . aM(N−1)+3,MN

...

0 . . . . . . . . . . . . . . . 0 aMN+1,(M−1)N+1 . . . aMN+1,MN



,

(4.35)

where N > 1, and the set of all the elements that are not identically zeros

in (4.35) is generic. The proof follows similar steps to those followed in the

above proof of non-singularity of M1. For the case where M = 1, the set of

all elements of any N x N submatrix of any matrix of the form in (4.35) is

generic, hence the statement holds for this case. We only consider the case

where M > 1 in the rest of the proof.

For any matrix that has the form in (4.35), consider a submatrix that is

obtained by removing one of the rows, and assume that there exists a linear

combination of the remaining rows that equals zero, hence, there is a linear

combination of the MN + 1 rows of the original matrix that equals zero and

has coefficients α1, α2, . . . , αMN+1 where αi is the coefficient of the ith row,

and there exists i∗ ∈ [MN + 1] such that αi∗ = 0.

Let βN be the number of rows where the last N entries are not identically

zeros and not including the row indexed i∗ whose corresponding coefficient

αi∗ = 0. If βN ≤ N then all the corresponding coefficients are zeros almost

surely, i.e., αi = 0,∀i ∈ {M,M + 1, . . . ,MN + 1}. It follows that,

[
α1 α2 . . . αM−1

]


a1,1 . . . a1,N 0 . . . . . . . . . . . . . . . 0

a2,1 . . . . . . . . . a2,2N 0 . . . . . . . . . 0
...

aM−1,1 . . . . . . . . . . . . . . . aM−1,(M−1)N 0 . . . 0

 =
[
0 0 . . . 0

]
,

(4.36)

and it follows from (4.36) that αi = 0,∀i ∈ [M − 1] almost surely, thereby,

contradicting the assumption that not all the coefficients are zeros, and hence,
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we only consider the case where βN > N . Now, consider the following matrix

obtained by replacing the rows in (4.35) with a generic set of elements in the

last N entries, by N fewer rows that form a basis for a subspace whose vector

elements have zeros in the last N entries,
a

(1)
1,1 . . . a

(1)
1,MN

...

a
(1)
x,1 . . . a

(1)
x,MN

 , (4.37)

where,

x =

(M − 1)N if i∗ ∈ {(M − 1)N + 1, . . . ,MN + 1}

(M − 1)N + 1 otherwise
, (4.38)

and a
(1)
i,j = ai,j, ∀i ∈ [M − 1], j ∈ [MN ]. In order to describe the remaining

elements a
(1)
i,j , i ∈ {M,M + 1, . . . , x}, j ∈ [MN ], we first define the matrices

A, B, C, and D, as follows,

A =


aM,(M−1)N+1 . . . aM,MN

...

ax,(M−1)N+1 . . . ax,MN

 . (4.39)

The N x N matrix B is defined as follows for the case where i∗ ∈ {(M −
1)N + 1, . . . ,MN + 1},

B =



a(M−1)N+1,(M−1)N+1 . . . a(M−1)N+1,MN

...

ai∗−1,(M−1)N+1 . . . ai∗−1,MN

ai∗+1,(M−1)N+1 . . . ai∗+1,MN

...

aMN+1,(M−1)N+1 . . . aMN+1,MN


, (4.40)

and for the case where i∗ ∈ [(M − 1)N ],

B =


a(M−1)N+2,(M−1)N+1 . . . a(M−1)N+2,MN

...

aMN+1,(M−1)N+1 . . . aMN+1,MN

 . (4.41)
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Note that as we consider the case where the number of rows with a generic

set of elements in the last N entries is greater than N , it follows that B is full

rank almost surely, hence, the following definition of the matrix C is valid,

C = −AB−1. (4.42)

For the case where i∗ ∈ {(M − 1)N + 1, . . . ,MN + 1}, the N x MN matrix

D is defined as follows,

D =



a(M−1)N+1,1 . . . a(M−1)N+1,MN

...

ai∗−1,1 . . . ai∗−1,MN

ai∗+1,1 . . . ai∗+1,MN

...

aMN+1,1 . . . aMN+1,MN


, (4.43)

and for the case where i∗ ∈ [(M − 1)N ],

D =


a(M−1)N+2,1 . . . a(M−1)N+2,MN

...

aMN+1,1 . . . aMN+1,MN

 . (4.44)

Now, the elements a
(1)
i,j , i ∈ {M,M + 1, . . . , x}, j ∈ [MN ] are obtained as

follows, 
a

(1)
M,1 . . . a

(1)
M,MN

...

a
(1)
x . . . a

(1)
x,MN

 =


aM,1 . . . aM,MN

...

ax . . . ax,MN

+ CD. (4.45)

We next show that the new matrix in (4.37) has the following form,

a
(1)
1,1 . . . a

(1)
1,N 0 . . . . . . . . . . . . . . . 0

a
(1)
2,1 . . . . . . . . . a

(1)
2,2N 0 . . . . . . . . . 0

...

a
(1)
M−1,1 . . . . . . . . . . . . . . . a

(1)
M−1,(M−1)N 0 . . . 0

a
(1)
M,1 . . . . . . . . . . . . . . . a

(1)
M,(M−1)N 0 . . . 0

...

a
(1)
x,1 . . . . . . . . . . . . . . . a

(1)
x,(M−1)N 0 . . . 0


, (4.46)

72



where the set of all the elements that are not marked with zeros is generic.

Moreover,

[
α1 α2 . . . αx

]
a

(1)
1,1 . . . a

(1)
1,MN

...

a
(1)
x,1 . . . a

(1)
x,MN

 =
[
0 0 . . . 0

]
. (4.47)

Since the first M − 1 rows in (4.35) have zero entries in the last N positions,

we know that,

[
αM αM+1 . . . αMN+1

]
aM,(M−1)N+1 . . . aM,MN

...

aMN+1,(M−1)N+1 . . . aMN+1,MN

 =
[
0 0 . . . 0

]
.

(4.48)

Let E be the 1 x N vector defined as follows,

E =


[
α(M−1)N+1 . . . αi∗−1 αi∗+1 αMN+1

]
if i∗ ∈ {(M − 1)N + 1, . . . ,MN + 1},[

α(M−1)N+2 . . . αMN+1

]
otherwise .

(4.49)

Now, the equality in (4.48) implies that,[
αM . . . αx

]
A = −EB, (4.50)

and consequently, [
αM . . . αx

]
C = E. (4.51)
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It follows that,

[
αM . . . αx

]
a

(1)
M,1 . . . a

(1)
M,MN

...

a
(1)
x . . . a

(1)
x,MN



=
[
αM . . . αx

]
aM,1 . . . aM,MN

...

ax . . . ax,MN

+
[
αM . . . αx

]
CD

=
[
αM . . . αx

]
aM,1 . . . aM,MN

...

ax . . . ax,MN

+ ED

=
[
αM . . . αMN+1

]
aM,1 . . . aM,MN

...

aMN+1,1 . . . aMN+1,MN

 . (4.52)

We can now see that (4.47) follows from (4.52) and the fact that a
(1)
i,j =

ai,j,∀i ∈ [M − 1], j ∈ [MN ].

To prove (4.46), we first validate the positions of the zero entries, then

prove that the set of all remaining elements is generic. The positions of the

zero entries in the first M − 1 rows follows from (4.35) and the fact that

a
(1)
i,j = ai,j,∀i ∈ [M−1], j ∈ [MN ]. To show that all remaining rows in (4.46)

have zeros in the last N positions, consider the following equality that follows

from (4.45),
a

(1)
M,(M−1)N+1 . . . a

(1)
M,MN

...

a
(1)
x,(M−1)N+1 . . . a

(1)
x,MN

 (a)
=


aM,(M−1)N+1 . . . aM,MN

...

ax,(M−1)N+1 . . . ax,MN

+ CB

= A+ CB

= A− AB−1B

=


0 . . . . . . 0
...

...

0 . . . . . . 0

 , (4.53)

where (a) follows as the matrix B is formed by taking the last N columns of

the matrix D. In order to prove that the set of all elements in (4.46) that
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are not identically zero is generic, we first note that

a
(1)
i,j = ai,j + f({ak,q : x < k ≤MN + 1 or M(N − 1) < q ≤MN}),

∀i ∈ [x], j ∈ [M(N − 1)]. (4.54)

In particular, for all i ∈ [x], j ∈ [M(N −1)], the element ai,j contributes only

to a
(1)
i,j among the set S = {a(1)

i,j : i ∈ [x], j ∈ [M(N − 1)]}. Since the set of

elements that are not identical to zero in (4.46) is a subset of S, it follows

from (4.54) that the former set is generic as a result of the fact that the

set {ai,j : i ∈ [MN + 1], j ∈ [MN ]} is generic. The proof of the statement

in (4.46) and (4.47) is now complete. Moreover, the same conclusions hold

for the submatrix obtained by removing the last N columns in (4.46), i.e.,

for the matrix,

a
(1)
1,1 . . . a

(1)
1,N 0 . . . . . . . . . 0

a
(1)
2,1 . . . . . . . . . a

(1)
2,2N 0 . . . 0

...

a
(1)
M−1,1 . . . . . . . . . . . . . . . . . . a

(1)
M−1,(M−1)N

a
(1)
M,1 . . . . . . . . . . . . . . . . . . a

(1)
M,(M−1)N

...

a
(1)
x,1 . . . . . . . . . . . . . . . . . . a

(1)
x,(M−1)N


, (4.55)

the set of all elements not identically zero is generic, and,

[
α1 α2 . . . αx

]
a

(1)
1,1 . . . a

(1)
1,(M−1)N

...

a
(1)
x,1 . . . a

(1)
x,(M−1)N

 =
[
0 0 . . . 0

]
. (4.56)

We next show that α1, . . . , αx are not all zeros. Assume otherwise, then it

follows that

[
αx+1 . . . αMN+1

]
ax+1,1 . . . ax+1,MN

...

aMN+1,1 . . . aMN+1,MN

 =
[
0 0 . . . 0

]
. (4.57)
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Since αi∗ = 0, then it follows that

ED =
[
0 0 . . . 0

]
. (4.58)

In particular, since B is formed by taking the last N columns of D, then

EB is an all zero vector, which almost surely implies that E is an all zero

vector, as B is full rank. We conclude from this argument that α1, . . . , αx

cannot be all zeros as otherwise αi = 0, ∀i ∈ [MN + 1] which contradicts the

assumption. We have proved so far that in case any MN x MN submatrix

of any matrix of the form in (4.35) is rank deficient, then it follows that a

matrix of the form in (4.55) is rank deficient. Note also that {(i, j) : a
(1)
i,j =

0} ⊆ {(i, j) : ai,j = 0}. We can then repeat the above argument by replacing

the rows in (4.55) whose last N entries are not identically zero by N fewer

rows whose last N entries are identically zero and then removing the last N

columns, to finally show that the matrix in (4.59) is rank deficient,
a

(M−1)
1,1 . . . a

(M−1)
1,N

...

a
(M−1)
N,1 . . . a

(M−1)
N,N

 , (4.59)

where the set of all elements in (4.59) is generic, which implies that any

matrix in the form (4.59) is full rank with high probability, and hence, proving

that the assumption that there exists a rank deficient MN x MN submatrix

of MN is not true with high probability.
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CHAPTER 5

BACKHAUL LOAD CONSTRAINT

In this chapter, we first consider the linear interference channel model (L =

1), and recall that the characterization we obtained in Chapter 4 for the

asymptotic per user DoF under a maximum transmit set size constraint M

is tight for linear interference channels, τ1(M) = 2M
2M+1

. We also note that

maximum transmit set size constraint is not tightly met by the optimal mes-

sage assignment strategy. In this section, we therefore consider a cooperation

constraint that is more general and relevant to many scenarios of practical

significance. In particular, we define the backhaul load constraint B as the

ratio between the sum of the transmit set sizes for all the messages and the

number of users. In other words, we allow the transmit set size constraints

to vary across the messages, while maintaining a constraint on the average

transmit set size of B. We establish in this chapter that the asymptotic per

user DoF in this new setting is 4B−1
4B

for all integer values of the average

transmit set size constraint B, which is larger than the per user DoF of 2B
2B+1

obtained with the more stringent per message transmit set size constraint of

B.

Furthermore, we show that the scheme that achieves the optimal DoF of
4B−1

4B
uses only zero-forcing beam-forming at the transmitters, and assigns

messages non-uniformly across the transmitters, with some messages being

assigned to more than B transmitters and others being assigned to fewer

than B transmitters. We show that these insights can apply to more general

channel models than the simple linear model considered in this chapter.

More precisely, we assume that the average transmit set size is upper

bounded by an integer valued backhaul load constraint B, as defined in the

constraint (2.4), ∑K
i=1 |Ti|
K

≤ B,

and recall that η(avg)

L (K,B) is used to denote the DoF of a K-user channel
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with connectivity parameter L, and τ (avg)

L (B) is used to denote the asymptotic

per user DoF, under an average transmit set size constraint B.

5.1 Example: B = 1

Before introducing the characterization of τ (avg)

1 (B), we illustrate through a

simple example that the potential flexibility in the backhaul design according

to the constraint in (2.4) can offer DoF gains over a traditional design where

all messages are assigned to the same number of transmitters. We know

from Section 4.5.2 that any asymptotic per user DoF greater than 2
3

cannot

be achieved through assigning each message to one transmitter. We now

show that τ (avg)

1 (B = 1) ≥ 3
4
, by allowing few messages to be available at

more than one transmitter at the cost of not transmitting other messages.

Consider the following assignment of the first four messages, T1 = {1, 2},
T2 = {2}, T3 = φ, and T4 = {3}. Message W1 is transmitted through X1

to Y1 without interference. Since the channel state information is known at

the second transmitter, the transmit beam for W1 at X2 can be designed to

cancel the interference caused by W1 at Y2, and then W2 can be transmitted

through X2 to Y2 without interference. Finally, W4 is transmitted through

X3 to Y4 without interference. It follows that the sum DoF for the first

four messages
∑4

i=1 di ≥ 3. Since the fourth transmitter is inactive, the

subnetwork consisting of the first four users does not interfere with the rest

of the network, and hence, we can see that τ (avg)

1 (B = 1) ≥ 3
4

through similar

assignment of messages in each consecutive four-user subnetwork.

5.2 Asymptotic per User DoF

We now characterize the asymptotic per user DoF τ (avg)

1 (B) for any integer

value of the backhaul load constraint.

Theorem 13. The asymptotic per user DoF τ (avg)

1 (B) is given by

τ (avg)

1 (B) =
4B − 1

4B
,∀B ∈ Z+. (5.1)
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Proof. We provide the proof for the inner and outer bounds in the Sec-

tions 5.2.1 and 5.2.2, respectively.

5.2.1 Coding Scheme

We treat the network as a set of subnetworks, each consisting of consecutive

4B transceivers. The last transmitter of each subnetwork is deactivated to

eliminate inter-subnetwork interference. It then suffices to show that 4B − 1

DoF can be achieved in each subnetwork. Without loss of generality, consider

the cluster of users with indices in the set [4B]. We define the following

subsets of [4B],

S1 = [2B]

S2 = {2B + 2, 2B + 3, . . . , 4B}.

We next show that each user in S1∪S2 achieves one degree of freedom, while

message W2B+1 is not transmitted. Let the message assignments be as fol-

lows,

Ti =

{i, i+ 1, . . . , 2B}, ∀i ∈ S1,

{i− 1, i− 2, . . . , 2B + 1}, ∀i ∈ S2,

and note that
∑4B
i=1 |Ti|
4B

= B, and hence, the constraint in (2.4) is satisfied.

Now, due to the availability of channel state information at the transmitters,

the transmit beams for message Wi can be designed to cancel its effect at

receivers with indices in the set Ci, where,

Ci =

{i+ 1, i+ 2, . . . , 2B}, ∀i ∈ S1

{i− 1, i− 2, . . . , 2B + 2}, ∀i ∈ S2

.

Note that both C2B and C2B+2 equal the empty set, as both W2B and W2B+2

do not contribute to interfering signals at receivers in the set YS1 ∪ YS2 . The

above scheme for B = 2 is illustrated in Figure 5.1. We conclude that

each receiver whose index is in the set S1 ∪ S2 suffers only from Gaussian

noise, thereby enjoying one degree of freedom. Since |S1 ∪ S2| = 4B − 1, it

follows that
∑4B

i=1 di ≥ 4B − 1. Using a similar argument for each following

subnetwork, we establish that τ (avg)

1 (B) ≥ 4B−1
4B

, thereby proving the lower
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bound of Theorem 13.

Figure 5.1: Achieving 7/8 per user DoF with a backhaul constraint B = 2.
The figure shows only signals corresponding to the first subnetwork in a
general K-user network. The signals in the dashed boxes are deactivated.
Note that the deactivation of X8 splits this part of the network from the
rest.

We note that the illustrated message assignment strategy satisfies the local

cooperation constraint of (2.5). In other words, the network can be split into

subnetworks, each of size 4B, and the messages corresponding to users in a

subnetwork can only be assigned to transmitters with indices in the same

subnetwork.

5.2.2 Upper Bound

We prove the converse of Theorem 13 in two steps. First, we provide an

information theoretic argument in Lemma 5 to prove an upper bound on

the DoF of any network that has a subset of messages whose transmit set

sizes are bounded. We then finalize the proof with a combinatorial argument

that shows the existence of such a subset of messages in any assignment of

messages satisfying the backhaul constraint of (2.4).
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In order to prove the information theoretic argument in Lemma 5, we use

Lemma 5 in Appendix A. Recall that for any set of receiver indices A ⊆ [K],

we use UA as the set of indices of transmitters that exclusively carry the

messages for the receivers in A. We also need Corollary 4 in the proof of

Lemma 5 to provide conditions on irreducible message assignments as defined

in Section 4.4.

We now make the following definition to use in the proof of the follow-

ing lemma. For any set S ⊆ [K], let gS : S → {1, 2, . . . , |S|} be a func-

tion that returns the ascending order of any element in the set S, e.g.,

gS (min {i : i ∈ S}) = 1 and gS (max {i : i ∈ S}) = |S|.

Lemma 5. For any K-user linear interference channel with DoF η, if there

exists a subset of messages S ⊆ [K] such that each message in S is available

at a maximum of M transmitters, i.e., |Ti| ≤ M,∀i ∈ S, then the DoF is

bounded by

η ≤ K − |S|
2M + 1

+ CK , (5.2)

where limK→∞
CK
K

= 0.

Proof. We use Lemma 5 in Appendix A with a set A such that the size of

the complement set |Ā| = |S|
2M+1

− o(K). We define the set A such that

Ā = {i : i ∈ S, gS(i) = (2M + 1)(j − 1) +M + 1, j ∈ Z+}.
Now, we let s1, s2 be the smallest two indices in Ā. We see that gS(s1) =

M + 1, gS(s2) = 3M + 2. Note that X1 + Z1

H1,1
= Y1

H1,1
, and

X2 +
Z2 − H2,1

H1,1
Z1

H2,2

=
Y2 − H2,1

H1,1
Y1

H2,2

.

Similarly, it is clear how the first s1 − 1 transmit signals X[s1−1] can be

recovered from the received signals Y[s1−1] and linear combinations of the

noise signals Z[s1−1]. In what follows, we show how to reconstruct a noisy

version of the signals {Xs1 , Xs1+1, . . . , Xs2−1}, where the reconstruction noise

is a linear combination of the signals ZA. Then it will be clear by symmetry

how the remaining transmit signals can be reconstructed.

We now notice that it follows from Corollary 4 that message Ws1 can

be removed from any transmitter in Ts1 whose index is greater than s1 +

M − 1, without affecting the sum rate. Similarly, there is no loss in gen-

erality in assuming that ∀si ∈ S, si 6= s1, Tsi does not have an element
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with index less than si − M . Since si − s1 ≥ gS(si) − gS(s1) ≥ 2M + 1,

it follows that Xs1+M ∈ XUA . The signal Xs1+M+1 +
Zs1+M+1

Hs1+M+1,s1+M+1
can

be reconstructed from Ys1+M+1 and Xs1+M . Then, it can be seen that

the transmit signals {Xs1+M+2, Xs1+M+3, . . . , Xs2−1} can be reconstructed

from {Ys1+M+1, Ys1+M+2, . . . , Ys2−1}, and linear combinations of the noise sig-

nals {Zs1+M+1, Zs1+M+2, . . . , Zs2−1}. Similarly, since Xs1+M is known, the

transmit signals {Xs1+M−1, Xs1+M−2, . . . , Xs1} can be reconstructed from

{Ys1+M , Ys1+M−1, . . . , Ys1+1}, and linear combinations of the noise signals

{Zs1+M , Zs1+M−1, . . . , Zs1+1}. By following a similar argument to reconstruct

all transmit signals from the signals YA, XUA , and linear combinations of the

noise signals ZA, we can show the existence of functions f1 and f2 of Lemma 5

to complete the proof.

We now explain how Lemma 5 can be used to prove that τ (avg)

1 (B) ≤ 3
4
.

For any message assignment satisfying (2.4) for a K-user channel, let Rj be

defined as follows for every j ∈ {0, 1, . . . , K},

Rj =
| {i : i ∈ [K], |Ti| = j} |

K
. (5.3)

Rj is the fraction of users whose messages are available at exactly j trans-

mitters. Now, if R0 + R1 ≥ 3
4
, then Lemma 5 can be used directly to show

that η ≤ 3K
4

+ o(K). Otherwise, more than K
4

users have their messages at

two or more transmitters, and it follows from (2.4) that R0 ≥
∑K

j=2 Rj ≥ 1
4
,

and hence, η ≤ (1−R0)K ≤ 3K
4

.

We generalize the above argument in the proof of Lemma 6 to complete

the proof that τ (avg)

1 (B) ≤ 4B−1
4B

,∀B ∈ Z+.

Lemma 6. For any message assignment satisfying (2.4) for a K-user chan-

nel with an average transmit set size constraint B, there exists an integer

M ∈ {0, 1, . . . , K}, and a subset S ⊆ [K] whose size |S| ≥ 2M+1
4B

K, such

that each message in S is available at a maximum of M transmitters, i.e.,

|Ti| ≤M,∀i ∈ S.

Proof. Fix any message assignment satisfying (2.4) for a K-user channel with

backhaul constraint B, and let Rj, j ∈ {0, 1, . . . , K} be defined as in (5.3).

If
∑K

j=2B Rj ≤ 1
4B

, then more than 4B−1
4B

K users have a transmit set whose

size is at most 2B − 1, and the lemma follows with M = 2B − 1. It then

suffices to assume that
∑K

j=2B Rj >
1

4B
in the rest of the proof. We show
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in the following that there exists an integer M ∈ {0, . . . , 2B − 2} such that∑M
j=0Rj >

2M+1
4B

, thereby completing the proof of the lemma.

Define R∗j , j ∈ {0, 1, . . . , 2B} such that R∗0 = R∗2B = 1
4B

, and R∗j = 1
2B
,∀j ∈

{1, . . . , 2B−1}. Now, note that
∑2B

j=0R
∗
j = 1, and

∑2B
j=0 jR

∗
j = B. It follows

that if Rj = R∗j ,∀j ∈ {0, . . . , 2B}, and Rj = 0,∀j ≥ 2B + 1, then the

constraint in (2.4) is tightly met, i.e.,
∑K
i=1 |Ti|
K

= B. We will use this fact in

the rest of the proof.

We prove the statement by contradiction. Assume that
∑K

j=2B Rj > R∗2B =
1

4B
, and that ∀M ∈ {0, 1, . . . , 2B − 2},

∑M
j=0 Rj ≤

∑M
j=0R

∗
j = 2M+1

4B
. We

know from (2.4) that
∑K

j=0 jRj ≤
∑2B

j=0 jR
∗
j = B. Also, since

∑K
j=0 Rj =∑2B

j=0R
∗
j = 1 and

∑K
j=2B Rj > R∗2B, it follows that there exists an integer

M ∈ {0, 1, . . . , 2B − 1} such that RM > R∗M ; let m be the smallest such

integer. Since
∑m

j=0Rj ≤
∑m

j=0 R
∗
j , and ∀j ∈ {0, 1, . . . ,m − 1}, Rj ≤ R∗j ,

we can construct another message assignment by removing elements from

some transmit sets whose size is m, such that the new assignment satis-

fies (2.4), and has transmit sets T ∗i where ∀j ∈ {0, 1, . . . ,m}, |{i : i ∈
[K], |T ∗i | = j}| ≤ R∗j . By successive application of the above argument,

we can construct a message assignment that satisfies (2.4), and has transmit

sets T ∗i where ∀j ∈ {0, 1, . . . , 2B − 1}, |{i : i ∈ [K], |T ∗i | = j}| ≤ R∗j and

|{i : i ∈ [K], |T ∗i | ≥ 2B}| ≥ R∗2B. Note that the new assignment has to

violate (2.4) since
∑2B

j=0 jR
∗
j = B, and we reach a contradiction.

We now know from Lemmas 5 and 6 that under the backhaul load con-

straint of (2.4), the DoF for anyK-user channel is upper bounded by 4B−1
4B

K+

o(K). It follows that the asymptotic per user DoF τ (avg)

1 (B) ≤ 4B−1
4B

, thereby

proving the upper bound of Theorem 13.

5.3 Discussion and Generalizations

We note that for the considered linear interference channel model an average

transmit set size constraint B, the per user DoF τ (avg)

1 (B) can be achieved

using a combination of the schemes that are characterized as optimal in

Section 4.5.2 for the cases of M = 2B − 1 and M = 2B. We note that

even though the maximum transmit set size constraint may not reflect a

physical constraint, the solutions obtained in Chapter 4 under this constraint
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provide a useful toolset that can be used to achieve the optimal per user DoF

value under the more natural constraint on the total backhaul load that is

considered in this section.

5.3.1 General Values of the Connectivity Parameter L

Using a convex combination of the schemes that we derived under the max-

imum transmit set size constraint can also provide good coding schemes for

the more general locally connected channel model, where each receiver can

see interference from L neighbouring transmitters. We can use a convex com-

bination of the schemes that are characterized in Section 4.3 to achieve the

inner bounds stated in Table 5.1 for the case where B = 1.

Now, we note that the inner bounds stated in Table 5.1 can be achieved

through the use of only zero-forcing transmit beam-forming. In other words,

there is no need for the symbol extension idea required by the asymptotic

interference alignment scheme of [11]. In Theorem 10, it is shown that for

L ≥ 2, by allowing each message to be available at one transmitter, the

asymptotic per user DoF is 1
2
; it is also shown in Theorem 8 that the 1

2
per

user DoF value cannot be achieved through zero-forcing transmit forming for

L ≥ 3. In contrast, in Table 5.1 it can be seen that for L ≤ 6, the 1
2

per user

DoF value can be achieved through zero-forcing transmit beam-forming and

a flexible design of the backhaul links, without incurring additional overall

load on the backhaul (B = 1).

5.3.2 Two-Dimensional Networks

The insights we have in this section on the backhaul design for linear in-

terference networks, may apply in denser networks by treating the denser

network as a set of interfering linear networks. For example, consider the

Table 5.1: Achievable per user DoF values for locally connected channels
with a backhaul constraint

∑K
i=1 |Ti| ≤ K.

L = 2 L = 3 L = 4 L = 5 L = 6
τ (avg)

L (B = 1) ≥ 2
3

3
5

5
9

11
21

1
2
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(a) (b)

Figure 5.2: Two-dimensional interference network. In (a), we plot the
channel model, with each transmitter being connected to four surrounding
cell edge receivers. In (b), we show an example coding scheme where dashed
red boxes and lines represent inactive nodes and edges. The signals
{X1, . . . , X√K} and {Y1, . . . , Y√K} form a linear subnetwork. Similarly, the
signals {X√K+1, . . . , X2

√
K} and {Y2

√
K+1, . . . , Y3

√
K} form a linear

subnetwork
.

two-dimensional network depicted in Figure 5.2a where each transmitter is

connected to four cell edge receivers. The precise channel model for a K-user

channel is as follows,

Hi,j is not identically 0, if and only if

i ∈
{
j, j + 1, j +

⌊√
K
⌋
, j +

⌊√
K
⌋

+ 1
}
.

(5.4)

For this channel model, we can show that by assigning each message to

one transmitter, i.e., imposing the constraint |Ti| ≤ 1,∀i ∈ [K], the asymp-

totic per user DoF is at most 1
2
, and the use of only zero-forcing transmit

beam-forming can lead to at most 4
9

per user DoF. However, under the back-

haul load constraint
∑K
i=1 |Ti|
K

≤ 1, a per user DoF value of 5
9

can be achieved

using only zero-forcing transmit beam-forming. This can be done by deacti-

vating every third row of transmitters, and splitting the rest of the network

into non-interfering linear subnetworks (see Figure 5.2b). In each subnet-

work, a backhaul load constraint of 3
2

is imposed. For example, the following

constraint is imposed on the first row of users,
∑b√Kc
i=1 |Ti|
b√Kc ≤ 3

2
. A convex

combination of the schemes that are characterized as optimal for linear in-
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terference networks in Section 4.5.2 for the cases of maximum transmit set

size constraints M = 2 and M = 3 is then used to achieve 5
6

per user DoF

in each active subnetwork while satisfying a backhaul load constraint of 3
2
.

Since 2
3

of the subnetworks are active, a per user DoF of 5
9

is achieved while

satisfying a backhaul load constraint of unity.
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CHAPTER 6

BLOCK ERASURE CHANNEL

We realize through the results presented in Chapters 3, 4, and 5 that conclu-

sions related to the optimal assignment of messages to transmitters and the

achievable DoF differ dramatically based on network topology. For exam-

ple, under the maximum transmit set size constraint (2.3), local cooperation

cannot lead to achieving a gain in the asymptotic per user DoF for the

fully connected channel. However, local cooperation is optimal for locally

connected channels and can lead to achieving scalable DoF gains, and the

optimal assignment of messages to transmitters depends on the connectivity

parameter L. In practice, the topology may change due to deep fading con-

ditions (see e.g. [5]) or even intentionally to exploit spectrum opportunities

(see e.g. [54]). In this chapter, we extend our results to dynamic interference

networks where a fixed assignment of messages is selected to achieve average

DoF optimal performance in networks with changing topology.

In [55], the authors analyzed the average capacity for a point-to-point

channel model where slow changes result in varying severity of noise. In this

chapter, we apply a similar concept to interference networks by assuming that

slowly changing deep fading conditions result in link erasures. We consider

the linear interference network (L = 1), with the consideration of two fading

effects. Long-term fluctuations that result in link erasures over a complete

block of time slots, and short-term fluctuations that allow us to assume

that any specific joint realization for the non-zero channel coefficients, will

take place with zero probability. We study the problem of achieving the

optimal average degrees of freedom (DoF) under a maximum transmit set size

constraint (2.3). We note that the studied problem in Section 4.5.2 reduces

here to the case of no erasures. In this chapter, we extend the schemes

in Chapter 4 to consider the occurrence of link erasures, and propose new

schemes that lead to achieving better average DoF at high probabilities of

erasure.
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6.1 Channel Model

Each transmitter can only be connected to its corresponding receiver as well

as one following receiver, and the last transmitter can only be connected to

its corresponding receiver. More precisely,

Hi,j is identically 0 iff i /∈ {j, j + 1},∀i, j ∈ [K]. (6.1)

In order to consider the effect of long-term fluctuations (shadowing), we

assume that communication takes place over blocks of time slots, and let p

be the probability of block erasure. In each block, we assume that for each

j, and each i ∈ {j, j + 1}, Hi,j = 0 with probability p. Moreover, short-term

channel fluctuations allow us to assume that in each time slot, all non-zero

channel coefficients are drawn independently from a continuous distribution.

As in the previous chapters, we assume that global channel state information

is available at all transmitters and receivers.

Recall that we use ηp(K,M) to denote the DoF of a K-user channel with

block erasure probability p and a maximum transmit set size constraint M ,

and τp(M) to denote the asymptotic per user DoF. We call a message as-

signment strategy optimal for a given erasure probability p, if there exists

a sequence of coding schemes achieving τp(M) using the transmit sets de-

fined by the message assignment strategy. A message assignment strategy

is universally optimal if it is optimal for all values of p. We characterize

τp(M = 1) in Section 6.2, and show that there is no universally optimal

message assignment strategy for the case of M = 1.

6.2 Cell Association

We first consider the case where each receiver can be served by only one

transmitter. This reflects the problem of associating mobile users with cells

in a cellular downlink scenario. We start by discussing orthogonal schemes

(TDMA-based) for this problem, and then show that the proposed schemes

are optimal. It will be useful in the rest of this section to view each realization

of the network where some links are erased, as a series of subnetworks that

do not interfere. We say that a set of k users with successive indices {i, i +

1, . . . , i + k − 1} form a subnetwork if the following two conditions hold:
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The first condition is that i = 1 or it is the case that message Wi−1 does not

cause interference at Yi, either because the direct link between the transmitter

carrying Wi−1 and receiver (i−1) is erased, or the transmitter carrying Wi−1

is not connected to the ith receiver. Second, i + k − 1 = K or it is the

case that message Wi+k−1 does not cause interference at Yi+k, because the

carrying transmitter is not connected to one of the receivers (i+ k − 1) and

(i+ k).

We say that the subnetwork is atomic if the transmitters carrying messages

for users in the subnetwork have successive indices and for any transmitter

t carrying a message for a user in the subnetwork, and receiver r such that

r ∈ {t, t+ 1} and r ∈ {i, i+ 1, . . . , i+k−1}, the channel coefficient Hr,t 6= 0.

For i ∈ [K], let Ni be the number of messages available at the ith trans-

mitter, and let NK = (N1, N2, . . . , NK). It is clear that the sequence NK can

be obtained from the transmit sets Ti, i ∈ [K]; it is also true, as stated in

Lemma 7, that the converse holds. We use the notion of irreducible message

assignments from Section 4.4. For M = 1, an irreducible message assignment

will have each message assigned to one of the two transmitters that can be

connected to its designated receiver.

Lemma 7. For any irreducible message assignment where each message is

assigned to exactly one transmitter, i.e., |Ti| = 1, ∀i ∈ [K], the transmit sets

Ti, i ∈ [K], are uniquely characterized by the sequence NK.

Proof. Since each message can only be available at one transmitter, then this

transmitter has to be connected to the designated receiver. More precisely,

Ti ⊂ {i−1, i},∀i ∈ {2, . . . , K}, and T1 = {1}. It follows that each transmitter

carries at most two messages and the first transmitter carries at least the

message W1, i.e., Ni ∈ {0, 1, 2},∀i ∈ {2, . . . , K}, and N1 ∈ {1, 2}. Assume

that Ni = 1, ∀i ∈ [K], then Ti = {i},∀i ∈ [K]. For the remaining case, we

know that there exists i ∈ {2, . . . , K} such that Ni = 0, since
∑K

i=1Ni = K;

we handle this case in the rest of the proof.

Let x be the smallest index of a transmitter that carries no messages,

i.e., x = min{i : Ni = 0}. We now show how to reconstruct the transmit

sets Ti, i ∈ {1, . . . , x} from the sequence (N1, N2, . . . , Nx). We note that

Ti ⊆ [x],∀i ∈ [x], and since Nx = 0, it follows that Ti * [x],∀i /∈ [x]. It

follows that
∑x−1

i=1 Ni = x. Since Ti ⊂ {i−1, i},∀i ∈ {2, . . . , x}, we know that

at most one transmitter in the first x− 1 transmitters carries two messages.
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Since
∑x−1

i=1 Ni = x, and Ni ∈ {1, 2},∀i ∈ [x− 1], it follows that there exists

an index y ∈ [x − 1] such that Ny = 2, and Ni = 1,∀i ∈ [x − 1]\{y}. It is

now clear that the yth transmitter carries messages Wy and Wy+1, and each

transmitter with an index j ∈ {y + 1, . . . , x − 1} is carrying message Wj+1,

and each transmitter with an index j ∈ {1, . . . , y} is carrying message Wj.

The transmit sets are then determined as follows. Ti = {i},∀i ∈ [y] and

Ti = {i− 1},∀i ∈ {y + 1, . . . , x}.
We view the network as a series of subnetworks, where the last transmitter

in each subnetwork is either inactive or it is the last transmitter in the net-

work. If the last transmitter in a subnetwork is inactive, then the transmit

sets in the subnetwork are determined in a similar fashion to the transmit sets

Ti, i ∈ [x], in the above scenario. If the last transmitter in the subnetwork is

the Kth transmitter, and NK = 1, then each message in this subnetwork is

available at the transmitter with the same index.

We use Lemma 7 to describe message assignment strategies for large net-

works through repeating patterns of short ternary strings. Given a ternary

string S = (S1, . . . , Sn) of fixed length n such that
∑n

i=1 Si = n, we define

NK , K ≥ n as follows:

• Ni = Si mod n if i ∈
{

1, . . . , n
⌊
K
n

⌋}
,

• Ni = 1 if i ∈
{
n
⌊
K
n

⌋
+ 1, . . . , K

}
.

We now evaluate all possible message assignment strategies satisfying the

cell association constraint using ternary strings through the above represen-

tation. We restrict our attention to irreducible message assignments, and

note that if there are two transmitters with indices i and j such that i < j

and each is carrying two messages, then there is a third transmitter with

index k such that i < k < j that carries no messages. It follows that any

string defining message assignment strategies that satisfy the cell association

constraint has to have one of the following forms:

• S(1) = (1),

• S(2) = (2, 1, 1, . . . , 1, 0),

• S(3) = (1, 1, . . . , 1, 2, 0),

• S(4) = (1, 1, . . . , 1, 2, 1, 1, . . . , 1, 0).
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(a) (b) (c)

Figure 6.1: The optimal message assignment strategies for the cell
association problem. The red dashed boxes represent transmit signals that
are inactive in all network realizations. The strategies in (a), (b), and (c)
are optimal at high, low, and middle values of the erasure probability p,
respectively.

We now introduce the three candidate message assignment strategies illus-

trated in Figure 6.1, and we characterize the TDMA per user DoF achieved

through each of them; we will show later that the optimal message assignment

strategy at any value of p is given by one of the three introduced strategies.

We first consider the message assignment strategy defined by the string hav-

ing the form S(1) = (1). Here, each message is available at the transmitter

having the same index.

Lemma 8. Under the restriction to the message assignment strategy Ti,K =

{i},∀K ∈ Z+, i ∈ [K], and orthogonal TDMA schemes, the average per user

DoF is given by

τ (1)
p =

1

2

(
1− p+ (1− p)

(
1− (1− p)2

)2
)

+
∞∑
i=1

1

2

(
1− (1− p)2

)2
(1− p)4i+1. (6.2)

Proof. We will first show how 1
2

(
1− p+ (1− p) (1− (1− p)2)

2
)

DoF can be

achieved, and then modify the transmission scheme to show how to achieve

τ
(1)
p . For each user with an odd index i, message Wi is transmitted whenever

the channel coefficient Hi,i 6= 0; the rate achieved by these users contributes

to the average per user DoF by 1
2
(1 − p). For each user with an even index

i, message Wi is transmitted whenever the following holds: Hi,i 6= 0, Wi−1

does not cause interference at Yi, and the transmission of Wi will not disrupt

the communication of Wi+1 to its designated receiver; we note that this hap-
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pens if and only if Hi,i 6= 0 and (Hi−1,i−1 = 0 or Hi,i−1 = 0) and (Hi+1,i =

0 or Hi+1,i+1 = 0). It follows that the rate achieved by users with even indices

contributes to the average per user DoF by 1
2
(1− p) (1− (1− p)2)

2
.

We now discuss a modification of the above scheme to achieve τ
(1)
p . As

above, users with odd indices have priority, i.e., their messages are delivered

whenever their direct links exist, and users with even indices deliver their

messages whenever their direct links exist and the channel connectivity allows

for avoiding conflict with priority users. However, we make an exception to

the priority setting in atomic subnetworks consisting of an odd number of

users, and the first and last users have even indices; in these subnetworks, one

extra DoF is achieved by allowing users with even indices to have priority and

deliver their messages. The resulting extra term in the average per user DoF

is calculated as follows. Fixing a user with an even index, the probability

that this user is the first user in a subnetwork consisting of an odd number of

users in a large network is
∑∞

i=1 (1− (1− p)2)
2

(1− p)4i+1; for each of these

events, the sum DoF is increased by 1, and hence the added term to the

average per user DoF is equal to half this value, since every other user has

an even index.

The optimality of the above scheme within the class of orthogonal TDMA-

based schemes follows directly from [48, Theorem 1] for each realization of

the network.

We will show later that the above scheme is optimal at high erasure prob-

abilities. In Chapter 4, the optimal message assignment for the case of no

erasures is characterized. The per user DoF is shown to be 2
3
, and is achieved

by deactivating every third transmitter and achieving 1 DoF for each trans-

mitted message. We now consider the extension of this message assignment

illustrated in Figure 6.1b, which will be shown later to be optimal for low

erasure probabilities.

Lemma 9. Under the restriction to the message assignment strategy defined

by the string S = (2, 1, 0), and orthogonal TDMA schemes, the average per

user DoF is given by

τ (2)
p =

2

3
(1− p) +

1

3
p (1− p)

(
1− (1− p)2) . (6.3)

Proof. For each user with an index i such that (i mod 3 = 0) or (i mod 3 = 1),
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message Wi is transmitted whenever the link between the transmitter carry-

ing Wi and the ith receiver is not erased; these users contribute to the average

per user DoF by a factor of 2
3

(1− p). For each user with an index i such that

(i mod 3 = 2), message Wi is transmitted through Xi−1 whenever the follow-

ing holds: Hi,i−1 6= 0, message Wi−1 is not transmitted because Hi−1,i−1 = 0,

and the transmission of Wi will not be disrupted by the communication of

Wi+1 through Xi because (Hi,i = 0) or (Hi+1,i = 0); these users contribute

to the average per user DoF by a factor of 1
3
p (1− p)

(
1− (1− p)2). Using

the considered message assignment strategy, the TDMA optimality of this

scheme follows from [48, Theorem 1] for each network realization.

We now consider the message assignment strategy illustrated in Figure 6.1c.

We will show later that this strategy is optimal for a middle regime of erasure

probabilities.

Lemma 10. Under the restriction to the message assignment strategy defined

by the string S = (1, 2, 1, 0), and orthogonal TDMA schemes, the average per

user DoF is given by

τ (3)
p =

1

2
(1− p)

+
1

4
(1− p)

(
1− (1− p)2) (1 + p+ (1− p)3) .

(6.4)

Proof. As in the proof of Lemma 8, we first introduce a transmission scheme

achieving part of the desired rate, and then modify it to show how the ex-

tra term can be achieved. Let each message with an odd index be delivered

whenever the link between the transmitter carrying the message and the des-

ignated receiver is not erased; these users contribute to the average per user

DoF by a factor of 1
2

(1− p). For each user with an even index i, if i mod 4 =

2, then Wi is transmitted through Xi whenever the following holds: Hi,i 6= 0,

message Wi+1 is not transmitted through Xi because Hi+1,i = 0, and the

transmission of Wi will not be disrupted by the communication of Wi−1

through Xi−1 because either Hi,i−1 = 0 or Hi−1,i−1 = 0; these users con-

tribute to the average per user DoF by a factor of 1
4
p (1− p)

(
1− (1− p)2).

For each user with an even index i such that i is a multiple of 4, Wi is

transmitted through Xi−1 whenever Hi,i−1 6= 0, and the transmission of Wi
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will not disrupt the communication of Wi−1 through Xi−2 because either

Hi−1,i−1 = 0 or Hi−1,i−2 = 0; these users contribute to the average per user

DoF by a factor of 1
4

(1− p)
(
1− (1− p)2).

We now modify the above scheme to show how τ
(3)
p can be achieved. Since

the ith transmitter is inactive for every i that is a multiple of 4, users {i −
3, i−2, i−1, i} are separated from the rest of the network for every i that is a

multiple of 4, i.e., these users form a subnetwork. We explain the modification

for the first four users, and it will be clear how to apply a similar modification

for every following set of four users. Consider the event where message W1

does not cause interference at Y2, because either H1,1 = 0 or H2,1 = 0, and

it is the case that H2,2 6= 0, H3,2 6= 0, H3,3 6= 0, and H4,3 6= 0; this is

the event that users {2, 3, 4} form an atomic subnetwork, and it happens

with probability
(
1− (1− p)2) (1− p)4. In this case, we let messages W2

and W4 have priority instead of message W3, and hence the sum DoF for

messages {W1,W2,W3,W4} is increased by 1. It follows that an extra term

of 1
4

(
1− (1− p)2) (1− p)4 is added to the average per user DoF.

The TDMA optimality of the illustrated scheme follows from [48, Theorem

1] for each network realization.

In Figure 6.2, we plot the values of
τ
(1)
p

1−p ,
τ
(2)
p

1−p , and
τ
(3)
p

1−p , and note that

max
{
τ

(1)
p , τ

(2)
p , τ

(3)
p

}
equals τ

(1)
p at high probabilities of erasure, and equals

τ
(2)
p at low probabilities of erasure, and equals τ

(3)
p in a middle regime.
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Figure 6.2: The average per user DoF achieved through the strategies in
Lemmas 8, 9, and 10, normalized by (1− p).

We now show that under the restriction to TDMA schemes, one of the
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message assignment strategies illustrated in Lemmas 8, 9, and 10 is optimal

at any value of p.

Theorem 14. For a given erasure probability p, let τ
(TDMA)
p be the average

per user DoF under the restriction to orthogonal TDMA schemes, then at

any value 0 ≤ p ≤ 1 the following holds,

τ (TDMA)
p = max

{
τ (1)
p , τ (2)

p , τ (3)
p

}
, (6.5)

where τ
(1)
p , τ

(2)
p , and τ

(3)
p are given in (6.2), (6.3), and (6.4), respectively.

Proof. The inner bound follows from Lemmas 8, 9, and 10. In order to

prove the converse, we need to consider all irreducible message assignment

strategies where each message is assigned to a single transmitter. We know

from Lemma 8 that the TDMA average per user DoF achieved through the

strategy defined by the string of all ones having the form S(1) = (1) equals

τ
(1)
p , and hence the upper bound holds in this case.

We now show that the TDMA average per user DoF achieved through

strategies defined by strings of the form S(2) = (2, 1, . . . , 1, 0) is upper bounded

by a convex combination of τ
(1)
p and τ

(2)
p , and hence, is upper bounded by

max
{
τ

(1)
p , τ

(2)
p

}
. The considered message assignment strategy splits each

network into subnetworks consisting of a transmitter carrying two messages

followed by a number of transmitters, each is carrying one message, and the

last transmitter in the subnetwork carries no messages. We first consider the

case where the number of transmitters carrying single messages is odd. We

consider the simple scenario of the message assignment strategy defined by

the string (2, 1, 1, 1, 0), and then the proof will be clear for strategies defined

by strings of the form (2, 1, 1, . . . , 1, 0) that have an arbitrary odd number

of ones. In this case, it suffices to show that the average per user DoF in

the first subnetwork is upper bounded by a convex combination of τ
(1)
p and

τ
(2)
p . The first subnetwork consists of the first five users; W1 and W2 can be

transmitted through X1. W3, W4 and W5 can be transmitted through X2,

X3, and X4, respectively, and the transmit signal X5 is inactive.

We now explain the optimal TDMA scheme for the considered subnetwork.

We first explain a simple scheme and then modify it to get the optimal

scheme. Each of the messages W1, W3, and W5 is delivered whenever the

direct link between its carrying transmitter and its designated receiver is not

95



erased. Message W2 is delivered whenever message W1 is not transmitted,

and message W3 is not causing interference at Y2. Message W4 is transmitted

whenever W5 is not causing interference at Y4, and the transmission of W4

through X3 will not disrupt the communication of W3. We now explain the

modification. If there is an atomic subnetwork consisting of users {2, 3, 4},
then we switch the priority setting within this subnetwork, and messages W2

and W4 will be delivered instead of message W3. The TDMA optimality of

this scheme for each realization of the network follows from [48, Theorem

1]. Now, we note that the average sum DoF for messages {W1, . . . ,W5}
is equal to their sum DoF in the original scheme plus an extra term due

to the modification. The average sum DoF for messages {W1,W2,W5} in

the original scheme equals 3τ
(2)
p , and the sum of the average sum DoF for

messages {W3,W4} and the extra term is upper bounded by 2τ
(1)
p . It follows

that the average per user DoF is upper bounded by 2
5
τ

(1)
p + 3

5
τ

(2)
p . The proof

can be generalized to show that the average TDMA per user DoF for message

assignment strategies defined by strings of the form S(2) with an odd number

of ones n, is upper bounded by n−1
n+2

τ
(1)
p + 3

n+2
τ

(2)
p .

For message assignment strategies defined by a string of the form S(2) with

an even number of ones n, it can be shown in a similar fashion as above that

the TDMA average per user DoF is upper bounded by n
n+2

τ
(1)
p + 2

n+2
τ

(2)
p .

Also, for strategies defined by a string of the form S(3) = (1, 1, . . . , 1, 2, 0)

with a number of ones n, the TDMA average per user DoF is the same

as that of a strategy defined by a string of the form S(2) with the same

number of ones, and hence, is upper bounded by a convex combination of

τ
(1)
p and τ

(2)
p . Finally, for strategies defined by a string of the form S(4) =

(1, 1, . . . , 1, 2, 1, 1, . . . , 1, 0) with a number of ones n, it can be shown in a

similar fashion as above that the average per user DoF is upper bounded by
n−2
n+2

τ
(1)
p + 4

n+2
τ

(3)
p .

We now characterize the average per user DoF for the cell association prob-

lem by proving that TDMA schemes are optimal for any candidate message

assignment strategy. In order to prove an information theoretic upper bound

on the per user DoF for each network realization, we use Lemma 5 from

Appendix A. Recall that for any set of receiver indices A ⊆ [K], we use UA

as the set of indices of transmitters that exclusively carry the messages for

the receivers in A.
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Theorem 15. The average per user DoF for the cell association problem is

given by

τp (M = 1) = τ (TDMA)
p = max

{
τ (1)
p , τ (2)

p , τ (3)
p

}
, (6.6)

where τ
(1)
p , τ

(2)
p , and τ

(3)
p are given in (6.2), (6.3), and (6.4), respectively.

Proof. In order to prove the statement, we need to show that τp(M = 1) ≤
τ

(TDMA)
p ; we do so by using Lemma 5 to show that for any irreducible mes-

sage assignment strategy satisfying the cell association constraint, and any

network realization, the asymptotic per user DoF is given by that achieved

through the optimal TDMA scheme.

Consider message assignment strategies defined by strings having one of

the forms S(1) = (1), S(2) = (2, 1, 1, . . . , 1, 0), and S(3) = (1, 1, . . . , 1, 2, 0).

We view each network realization as a series of atomic subnetworks, and show

that for each atomic subnetwork, the sum DoF is achieved by the optimal

TDMA scheme. For an atomic subnetwork consisting of a number of users

n, we note that
⌊
n+1

2

⌋
users are active in the optimal TDMA scheme; we

now show in this case using Lemma 5 that the sum DoF for users in the

subnetwork is bounded by
⌊
n+1

2

⌋
. Let the users in the atomic subnetwork

have the indices {i, i+1, . . . , i+n−1}, then we use Lemma 5 with the set A ={
i+ 2j : j ∈

{
0, 1, 2, . . . ,

⌊
n−1

2

⌋}}
, except the cases of message assignment

strategies defined by strings having one of the forms S(1) = (1) and S(3) =

(1, 1, . . . , 1, 2, 0) with an even number of ones, where we use the set A ={
i+ 1 + 2j : j ∈

{
0, 1, 2, . . . , n−2

2

}}
. We now note that each transmitter that

carries a message for a user in the atomic subnetwork and has an index in ŪA,

is connected to a receiver in A, and this receiver is connected to one more

transmitter with an index in UA, and hence, the missing transmit signals XŪA

can be recovered from YA −ZA and XUA . The condition in the statement of

Lemma 5 is then satisfied; allowing us to prove that the sum DoF for users

in the atomic subnetwork is upper bounded by |A| =
⌊
n+1

2

⌋
.

The proof is similar for message assignment strategies defined by strings

that have the form S(4) = {1, 1, . . . , 1, 2, 1, 1, . . . , 1, 0}. However, there is a

difference in selecting the set A for atomic subnetworks consisting of users

with indices {i, i+ 1, . . . , i+x, i+x+ 1, . . . , i+n− 1}, where 1 ≤ x ≤ n− 2,

and messages Wi+x and Wi+x+1 are both available at transmitter i + x. In

this case, we apply Lemma 5 with the set A defined as above, but including
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indices {i + x, i + x + 1} and excluding indices {i + x − 1, i + x + 2}. It

can be seen that the condition in Lemma 5 will be satisfied in this case, and

the proved upper bound on the sum DoF for each atomic subnetwork, is

achievable through TDMA.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

p

τ p(M
=

1)

Figure 6.3: The average per user DoF for the cell association problem.

In Figure 6.3, we plot τp(M = 1) at each value of p. The result of The-

orem 15 implies that the message assignment strategies considered in Lem-

mas 8, 9, 10 are optimal at high, low, and middle values of the erasure prob-

ability p, respectively. We note that in densely connected networks at a low

probability of erasrue, the interference-aware message assignment strategy

in Figure 6.1b is optimal; through this assignment, the maximum number

of interference free communication links can be created for the case of no

erasures. On the other hand, the linear nature of the channel connectivity

does not affect the choice of optimal message assignment at high probability

of erasure. As the effect of interference diminishes at high probability of

erasure, assigning each message to a unique transmitter, as in the strategy in

Figure 6.1a, becomes the only criterion of optimality. At middle values of p,

the message assignment strategy in Figure 6.1c is optimal; in this assignment,

the network is split into four user subnetworks. In the first subnetwork, the

assignment is optimal as the maximum number of interference free commu-

nication links can be created for the two events where there is an atomic

subnetwork consisting of users {1, 2, 3} or users {2, 3, 4}.
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6.3 Coordinated Multi-Point Transmission

We have shown that there is no message assignment strategy for the cell

association problem that is optimal for all values of p. We show in this

section that this statement is true even for the case where each message can

be available at more than one transmitter (M > 1). Recall that for a given

value of M , we say that a message assignment strategy is universally optimal

if it can be used to achieve τp(M) for all values of p.

Theorem 16. For any value of the cooperation constraint M ∈ Z+, there

does not exist a universally optimal message assignment strategy.

Proof. The proof follows from Theorem 15 for the case where M = 1. We

show that for any value of M > 1, any message assignment strategy that en-

ables the achievability of τp(M) at high probabilities of erasure, is not optimal

for the case of no erasures, i.e., cannot be used to achieve τp(M) for p = 0.

For any message assignment strategy, consider the value of limp→1
τp(M)

1−p and

note this value equals the average number of transmitters in a transmit set

that can be connected to the designated receiver. More precisely,

lim
p→1

τp(M)

1− p
=

∑K
i=1 |Ti ∩ {i− 1, i}|

K
, (6.7)

where Ti in (6.7) corresponds to an optimal message assignment strategy at

high probabilities of erasure. It follows that there exists a value 0 < p̄ < 1

such that for any message assignment strategy that enables the achiev-

ability of τp(M) for p ≥ p̄, almost all messages are assigned to the two

transmitters that can be connected to the designated receiver, i.e., if we let

SK = {i : Ti,K = {i− 1, i}}, then limK→∞
|SK |
K

= 1.

We recall from Section 4.5.2 that for the case of no erasures, the average

per user DoF equals 2M
2M+1

. We also note that following the same footsteps as

in the proof of Theorem 9 in Section 4.5.2, we can show that for any message

assignment strategy such that limK→∞
|SK |
K

= 1, the per user DoF for the

case of no erasures is upper bounded by 2M−2
2M−1

; we do so by using Lemma 5

in Appendix A for each K-user channel with the set A defined such that the

complement set Ā = {i : i ∈ [K], i = (2M − 1)(j − 1) +M, j ∈ Z+}.

The condition of optimality identified in the proof of Theorem 16 for mes-

sage assignment strategies at high probabilities of erasure suggest a new
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(a) (b)

Figure 6.4: The message assignment in (a) is optimal for a linear network
with no erasures (p = 0). We extend this message assignment in (b) to
consider non-zero erasure probabilities. In both figures, the red dashed
boxes correspond to inactive signals.

role for cooperation in dynamic interference networks. The availability of a

message at more than one transmitter may not only be used to cancel its

interference at other receivers, but to increase the chances of connecting the

message to its designated receiver. This new role leads to three effects at

high erasure probability. The achieved DoF in the considered linear interfer-

ence network becomes larger than that of K parallel channels, in particular,

limp→1
τp(M>1)

1−p = 2. Secondly, as the effect of interference diminishes at

high probabilities of erasures, all messages can simply be assigned to the

two transmitters that may be connected to their designated receiver, and a

simple interference avoidance scheme can be used in each network realiza-

tion, as we show later in the scheme of Theorem 18. It follows that channel

state information is no longer needed at transmitters, and only information

about the slow changes in the network topology is needed to achieve the

optimal average DoF. Finally, unlike the optimal scheme of Theorem 6 in

Section 4.3 for the case of no erasures, where some transmitters are always

inactive, achieving the optimal DoF at high probabilities of erasure requires

all transmitters to be used in at least one network realization.

We now restrict our attention to the case where M = 2. Here, each

message can be available at two transmitters, and transmitted jointly by

both of them. We study two message assignment strategies that are optimal

in the limits of p→ 0 and p→ 1, and derive inner bounds on the average per

user DoF τp(M = 2) based on the considered strategies. In Chapter 4, the

message assignment of Figure 6.4a was shown to be DoF optimal for the case
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of no erasures (p = 0). The network is split into subnetworks, each with five

consecutive users. The last transmitter of each subnetwork is deactivated to

eliminate inter-subnetwork interference. In the first subnetwork, message W3

is not transmitted, and each other message is received without interference

at its designated receiver. Note that the transmit beams for messages W1

and W5 contributing to the transmit signals X2 and X5, respectively, are

designed to cancel the interference at receivers Y2 and Y4, respectively. An

analog scheme is used in each following subnetwork. The value of τp(M = 2)

is thus 4
5

for the case where p = 0. In order to prove the following result,

we extend the message assignment of Figure 6.4a to consider the possible

presence of block erasures.

Theorem 17. For M = 2, the following average per user DoF is achievable,

τp(M = 2) ≥ 2

5
(1− p) (2 + A.p) , (6.8)

where

A = p+ 1−
(
(1− p)2 (1− p (1− p))

)
− 1

2
p(1− p), (6.9)

and is asymptotically optimal as p→ 0.

Proof. We know from Theorem 9 in Section 4.5.2 that limp→0 τp(2) = 4
5
, and

hence, it suffices to show that the inner bound in (6.8) is valid. For each

i ∈ [K], message Wi is assigned as follows,

Ti =


{i, i+ 1}, if i ≡ 1 mod 5

{i− 1, i− 2}, if i ≡ 0 mod 5

{i− 1, i}, otherwise .

We illustrate this message assignment in Figure 6.4b. We note that the

transmit signals {Xi : i ≡ 0 mod 5} are inactive, and hence, we split the

network into five user subnetworks with no interference between successive

subnetworks. We explain the transmission scheme in the first subnetwork

and note that a similar scheme applies to each following subnetwork. In the

proposed transmission scheme, any receiver is either inactive or receives its

desired message without interference, and any transmitter will not transmit

more than one message for any network realization. It follows that one DoF

is achieved for each message that is transmitted.
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Messages W1, W2, W4, and W5 are transmitted through X1, X2, X3, and

X4, respectively, whenever the coefficients H1,1 6= 0, H2,2 6= 0, H4,3 6= 0,

and H5,4 6= 0, respectively. Note that the transmit beam for message W1

contributing to X2 can be designed to cancel its interference at Y2. Similarly,

the interference caused by W5 at Y4 can be cancelled through X3. It fol-

lows that (1 − p) DoF is achieved for each of {W1,W2,W4,W5}, and hence,

τp(2) ≥ 4
5
(1 − p). Also, message W2 is transmitted through X1 if it can-

not be transmitted through X2 and message W1 is not transmitted through

X1. More precisely, message W2 is transmitted through X1 if H2,2 = 0 and

H2,1 6= 0 and H1,1 = 0, thereby achieving an extra p2(1− p) DoF. Similarly,

message W4 can be transmitted through X4 if H4,3 = 0 and H4,4 6= 0 and

H5,4 = 0. It follows that

τp(2) ≥ 4

5
(1− p) +

2

5
p2(1− p). (6.10)

Finally, message W3 will be transmitted through X3 if message W4 is not

transmitted through X3, and message W2 is not causing interference at Y3.

Message W4 is not transmitted through X3 whenever the coefficient H4,3 = 0,

and message W2 does not cause interference at Y3 whenever the coefficient

H2,2 = 0 or the coefficient H3,2 = 0 or W2 can be transmitted through X1.

More precisely, message W3 is transmitted through X3 if and only if all the

following is true:

• H3,3 6= 0, and H4,3 = 0.

• H2,2 = 0, or H3,2 = 0, or it is the case that H1,1 = 0 and H2,1 6= 0.

It follows that f(p) DoF is achieved for message W3, where

f(p) = p (1− p)
(
1−

(
(1− p)2 (1− p (1− p))

))
. (6.11)

Similary, W3 can be transmitted through X2 if and only if message W2 is

not transmitted through X2 and message W4 is either not transmitted or can

be transmitted without causing interference at Y3, i.e., if and only if all the

following is true:

• H3,2 6= 0, and H2,2 = 0.

• H4,3 = 0, or H3,3 = 0, or it is the case that H5,4 = 0 and H4,4 6= 0.
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The above conditions are satisfied with probability f(p). Since we have

counted twice the event that H3,3 6= 0 and H4,3 = 0 and H3,2 6= 0 and

H2,2 = 0, it follows that 2f(p)−p2(1−p)2 DoF is achieved for W3. Summing

the DoF achieved for other messages in (6.10), we conclude that

τp(2) ≥ 4

5
(1− p) +

2

5
p2(1− p) +

1

5

(
2f(p)− p2(1− p)2

)
, (6.12)

which is the same inequality as in (6.8).

Although the scheme of Theorem 17 is optimal for the case of no erasures

(p = 0), we know from Theorem 16 that better schemes exist at high erasure

probabilities. Since in each five-user subnet in the scheme of Theorem 17,

only three users have their messages assigned to the two transmitters that

can be connected to their receivers, and two users have only one of these

transmitters carrying their messages, we get the asymptotic limit of 8
5

for the

achieved average per user DoF normalized by (1 − p) as p → 1. This leads

us to consider an alternative message assignment where the two transmit-

ters carrying each message i are the two transmitters {i− 1, i} that can be

connected to its designated receiver. Such assignment would lead the ratio
τp(2)

1−p → 2 as p → 1. In the following theorem, we analyze a transmission

scheme based on this assignment.

Theorem 18. For M = 2, the following average per user DoF is achievable,

τp(M = 2) ≥ 1

3
(1− p)

(
1 + (1− p)3 +B.p

)
, (6.13)

where

B = 3 +
(
1 + (1− p)3) (1− (1− p)2 + p (1− p)3)

+ p
(
1 + (1− p)2

)
, (6.14)

and

lim
p→1

τp(2)

1− p
= 2. (6.15)

Proof. For any message assignment, no message can be transmitted if the

links from both transmitters carrying the message to its designated receiver

are absent, and hence, the average DoF achieved for each message is at most

1−p2. It follows that limp→1
τp(2)

1−p ≤ limp→1
(1−p)(1+p)

1−p = 2. We then need only
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to prove that the inner bound in (6.13) is valid. In the achieving scheme,

each message is assigned to the two transmitters that may be connected to

its designated receiver, i.e., Ti = {i − 1, i},∀i ∈ [K]. Also, in each net-

work realization, each transmitter will transmit at most one message and

any transmitted message will be received at its designated receiver without

interference. It follows that 1 DoF is achieved for any message that is trans-

mitted, and hence, the probability of transmission is the same as the average

DoF achieved for each message.

Each message Wi such that i ≡ 0 mod 3 is transmitted through Xi−1

whenever Hi,i−1 6= 0, and is transmitted through Xi whenever Hi,i−1 = 0 and

Hi,i 6= 0. It follows that n0 DoF is achieved for each of these messages, where

n0 = (1− p)(1 + p). (6.16)

We now consider messages Wi such that i ≡ 1 mod 3. Any such message

is transmitted through Xi−1 whenever Hi,i−1 6= 0 and Hi−1,i−1 = 0. We note

that whenever the channel coefficient Hi−1,i−1 6= 0, message Wi cannot be

transmitted through Xi−1 as the transmission of Wi through Xi−1 in this

case will prevent Wi−1 from being transmitted due to either interference

at Yi−1 or sharing the transmitter Xi−1. It follows that n
(1)
1 = p(1 − p)

DoF is achieved for transmission of Wi through Xi−1. Also, message Wi is

transmitted through Xi whenever it is not transmitted through Xi−1 and

Hi,i 6= 0 and either Hi,i−1 = 0 or message Wi−1 is transmitted through Xi−2.

More precisely, Wi is transmitted through Xi whenever all the following is

true: Hi,i 6= 0, and either Hi,i−1 = 0 or it is the case that Hi,i−1 6= 0 and

Hi−1,i−1 6= 0 and Hi−1,i−2 6= 0. It follows that n
(2)
1 = p (1− p) + (1− p)4 is

achieved for transmission of Wi through Xi, and hence, n1 DoF is achieved

for each message Wi such that i ≡ 1 mod 3, where

n1 = n
(1)
1 + n

(2)
1 = 2p (1− p) + (1− p)4 . (6.17)

We now consider messages Wi such that i ≡ 2 mod 3. Any such message

is transmitted through Xi−1 whenever all the following is true:

• Hi,i−1 6= 0.

• Either Hi−1,i−1 = 0, or Wi−1 is not transmitted.
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• Wi+1 is not causing interference at Yi.

The first condition is satisfied with probability (1 − p). In order to com-

pute the probability of satisfying the second condition, we note that Wi−1 is

not transmitted for the case when Hi−1,i−1 6= 0 only if Wi−2 is transmitted

through Xi−2 and causing interference at Yi−1, i.e., only if Hi−2,i−3 = 0 and

Hi−2,i−2 6= 0 and Hi−1,i−2 6= 0. It follows that the second condition is satisfied

with probability p + p(1 − p)3. The third condition is not satisfied only if

Hi,i 6= 0 and Hi+1,i 6= 0, and hence, will be satisfied with probability at least

1 − (1− p)2. Moreover, even if Hi,i 6= 0 and Hi+1,i 6= 0, the third condition

can be satisfied if message Wi+1 can be transmitted through Xi+1 without

causing interference at Yi+2, i.e., if Hi+1,i+1 6= 0 and Hi+2,i+1 = 0. It follows

that the third condition will be satisfied with probability 1−(1−p)2+p(1−p)3,

and n
(1)
2 DoF is achieved by transmission of Wi through Xi−1, where

n
(1)
2 = p (1− p)

(
1 + (1− p)3) (1− (1− p)2 + p (1− p)3) . (6.18)

Message Wi such that i ≡ 2 mod 3 is transmitted through Xi whenever

Hi,i 6= 0, and Hi+1,i = 0, and either Hi,i−1 = 0 or Wi−1 is transmitted through

Xi−2. It follows that n
(2)
2 DoF is achieved by transmission of Wi through Xi,

where

n
(2)
2 = p (1− p)

(
p+ d

(1)
1 (1− p)

)
(6.19)

= p2 (1− p)
(
1 + (1− p)2

)
, (6.20)

and hence, n2 = n
(1)
2 + n

(2)
2 DoF is achieved for each message Wi such that

i ≡ 2 mod 3. We finally get

τp(2) ≥ n0 + n1 + n2

3
, (6.21)

which is the same inequality as in (6.13).

We plot the inner bounds of (6.8) and (6.13) in Figure 6.5. We note that

below a threshold erasure probability p ≈ 0.34, the scheme of Theorem 17 is

better, and hence is proposed to be used in this case. For higher probabilities

of erasure, the scheme of Theorem 18 should be used. It is worth mentioning

that we also studied a scheme based on the message assignment Ti = {i, i+

1},∀i ∈ [K − 1], that is introduced in [19]. However, we did not include
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Figure 6.5: Achieved inner bounds in Theorems 4 and 5. In (a) we plot the
achieved per user DoF. In (b), we plot the achieved per user DoF
normalized by (1− p).

it here as it does not increase the maximum of the bounds derived in (6.8)

and (6.13) at any value of p.

Although the considered channel model allows for using the interference

alignment scheme of [11] over multiple channel realizations (symbol exten-

sions), all the proposed schemes require only coding over one channel real-

ization because of the sparsity of the linear network. Finally, it is worth

mentioning that while we have only focused on maximizing the sum rate of

communication, it is natural to study the diversity-multiplexing tradeoff [56]

for the channel model considered in this chapter.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We studied the DoF gain achieved through CoMP transmission. In partic-

ular, it was of interest to know whether the achievable gain scales linearly

with K as it goes to infinity, under a cooperation constraint that limits the

number of transmitters at which any message can be available by a coop-

eration order M . In Chapter 3, we showed that the answer is negative for

the fully connected channel where message assignment strategies satisfy the

local cooperation constraint, as well as all possible message assignments for

the case where M = 2. The problem is still open for fully connected channels

and values of M ≥ 3.

For locally connected channels where each transmitter is connected to

the receiver carrying the same index as well as L neighboring receivers, we

showed in Chapter 4 that the asymptotic per user DoF is lower bounded

by max
{

1
2
, 2M

2M+L

}
. The achieving coding scheme is simple as it relies only

on zero-forcing transmit beam-forming. We showed that this lower bound is

tight for the case where L = 1. In particular, the characterized asymptotic

per user DoF for that case is 2M
2M+1

, and is higher than previous results in [19],

and [47].

We also revealed insights on the optimal way of assigning messages to

transmitters under a cooperation order constraint. For instance, we consid-

ered a local cooperation constraint, where each message can only be available

at a neighborhood of transmitters whose size does not scale linearly with the

number of users. While we showed that local cooperation does not achieve

a scalable DoF gain for the fully connected channel, we also showed that

local cooperation is optimal for locally connected channels. Furthermore, we

have shed light on the intimate relation between the selection of message

assignments and the design of transmit beams. We have shown that assign-

ing messages to successive transmitters is beneficial for zero-forcing transmit

beam-forming in locally connected channels as it minimizes the number of
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receivers at which each message causes undesired interference. However, the

same message assignment strategy can be an impediment to other techniques

such as asymptotic interference alignment, because the overlap of sets of mes-

sages carried by transmit antennas is large for this assignment of messages.

In Chapter 5, we considered a backhaul load constraint that limits the

average transmit set size across the users. We characterized the asymptotic

per user DoF in linear interference channels, and showed that the backhaul

constraint is satisfied in the optimal scheme by assigning some messages to

more than B transmitters and others to fewer than B transmitters, where B

is the average transmit set size. We showed that local cooperation is sufficient

to achieve the DoF in large linear interference networks. We also noted that

the characterized asymptotic per user DoF for linear interference networks

can be achieved by using a convex combination of the coding schemes that are

identified as optimal under the cooperation order constraint that limits the

maximum size of a transmit set, as opposed to the average as we considered

in Chapter 5. We then illustrated that these results hold in more general

networks of practical relevance to achieve rate gains and simplify existing

coding schemes. In particular, we showed that CoMP transmission can lead

to significant DoF gains without incurring additional load on the backhaul

link.

In Chapter 6, we considered the problem of assigning messages to trans-

mitters in a linear interference network with link erasure probability p, under

the cooperation order constraint that limits the number of transmitters M

at which each message can be available. For the case where M = 1, we

identified the optimal message assignment strategies at different values of p,

and characterized the average per user DoF. For general values of M ≥ 1,

we proved that there is no message assignment strategy that is optimal for

all values of p. We finally introduced message assignment strategies for the

case where M = 2, and derived inner bounds on the average per user DoF

that are asymptotically optimal as p→ 0 and as p→ 1.

In [41], a CoMP reception model was studied, where base station receivers

can share decoded messages in cellular uplink. We are considering an exten-

sion of the model introduced in [41] for future work, where both choices for

the association of transmitters to receivers and the design of backhaul links

can be optimized based on the channel connectivity. It is not difficult to find

parallel schemes to the ZF transmit beam-forming coding schemes presented
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in Chapters 4, 5, and 6 to achieve the same DoF in the CoMP reception

model. These parallel schemes enjoy a practical advantage as there is no

need for synchronization between transmitters or making the channel state

information available at transmitters as in the presented CoMP transmis-

sion schemes. We believe that this line of work can lead to useful insights

for the design of practical schemes for exploiting backhaul links to manage

interference in cellular networks.
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APPENDIX A

DEGREES OF FREEDOM UPPER BOUND

In order to characterize the DoF of any of the considered channel models

under a constraint on the transmit set sizes, we need to consider all possi-

ble strategies for message assignments satisfying the considered cooperation

constraint. In this appendix, we provide in Lemma 5 the key information the-

oretic argument that we use to upper bound the maximum achievable DoF

for each such assignment, thereby, reducing the problem of finding a DoF

upper bound for each considered channel model to a combinatorial problem.

Recall that for any set A ⊆ [K], UA is the set of indices of transmitters

that exclusively carry the messages for the receivers in A, then we have the

following lemma for any K-user Gaussian interference channel with a DoF

number of η.

Lemma 5. If there exists a set A ⊆ [K], a function f1, and a function f2

whose definition does not depend on the transmit power constraint P , and

f1 (YA, XUA) = XŪA + f2(ZA), then η ≤ |A|.

Proof. We first provide a sketch of the proof. Recall that YA = {Yi, i ∈ A},
and WA = {Wi, i ∈ A}, and note that XUA is the set of transmit signals that

do not carry messages outside WA. Fix a reliable communication scheme for

the considered K-user channel, and assume that there is only one centralized

decoder that has access to the received signals YA. We show that using the

centralized decoder, the only uncertainty in recovering all the messages W[K]

is due to the Gaussian noise signals. In this case, the sum DoF is bounded

by |A|, as it is the number of received signals used for decoding.

Using YA, the messages WA can be recovered reliably, and hence, the sig-

nals XUA can be reconstructed. Using YA and XUA , the remaining transmit

signals can be approximately reconstructed using the function f1 of the hy-

pothesis. Finally, using all transmit signals, the received signals YĀ can be

approximately reconstructed, and the messages WĀ can then be recovered.
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We now provide the proof. In any reliable n-block coding scheme,

H(Wi|Y n
i ) ≤ nε,∀i ∈ [K].

Therefore,

H(WA|Y n
A ) ≤

∑
i∈A

H(Wi|Y n
i ) ≤ n|A|ε.

Now, the sum
∑

i∈[K] Ri =
∑

i∈ĀRi +
∑

i∈ARi can be bounded as

n

(∑
i∈Ā

Ri +
∑
i∈A

Ri

)
= H(WĀ) + H(WA)

≤ I (WĀ;Y n
Ā ) + I (WA;Y n

A )

+nKε, (A.1)

where ε can be made arbitrarily small, by choosing n large enough. The two

terms on the right-hand side of (A.1) can be bounded as

I (WA;Y n
A ) = h (Y n

A )− h (Y n
A |WA)

≤
∑
i∈A

n∑
t=1

h (Yi(t))− h (Y n
A |WA)

= |A|n logP + n(o(logP ))− h (Y n
A |WA) ,

I (WĀ;Y n
Ā ) ≤ I (WĀ;Y n

Ā , Y
n
A ,WA)

= I(WĀ;Y n
A |WA) + I(WĀ;Y n

Ā |WA, Y
n
A )

≤ h (Y n
A |WA)− h (Zn

A) + h (Y n
Ā |WA, Y

n
A )− h (Zn

Ā) .

Now, we have

I (WA;Y n
A ) + I (WĀ;Y n

Ā ) ≤ |A|n logP + h (Y n
Ā |WA, Y

n
A )

+n(o(logP )).

Therefore, if we show that

h (Y n
Ā |WA, Y

n
A ) = n(o(logP )),

then from (A.1), we have the required outer bound. Since WA contains all
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the messages carried by transmitters with indices UA, they determine Xn
UA

.

Therefore,

h (Y n
Ā |WA, Y

n
A ) = h

(
Y n
Ā |WA, Y

n
A , X

n
UA

)
≤ h

(
Y n
Ā |Y

n
A , X

n
UA

)
≤

n∑
t=1

h (YĀ(t)|YA(t), XUA(t))

(a)

≤
n∑
t=1

h
(
YĀ(t)|XUA(t), XŪA(t) + f2(ZA(t))

)
(b)

≤ n(o(logP )),

where (a) follows from the existence of the function f1 such that f1(YA, XUA) =

XŪA + f2(ZA). Recall that for S1 ⊆ [K],S2 ⊆ [K], HS1,S2 denotes the

|S1| × |S2| matrix of channel coefficients between XS2 and YS1 , then (b) fol-

lows as,

YĀ = HĀ,UAXUA + HĀ,ŪAXŪA + ZĀ

= HĀ,UAXUA + HĀ,ŪA
(
XŪA + f2(ZA)

)
+ ZĀ −HĀ,ŪAf2(ZA),

and hence,

h
(
YĀ|XUA , XŪA + f2(ZA)

)
≤ h

(
YĀ|HĀ,UAXUA + HĀ,ŪA

(
XŪA + f2(ZA)

))
≤ h

(
ZĀ −HĀ,ŪAf2(ZA)

)
= o(logP ).
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APPENDIX B

ALGEBRAIC GEOMETRY

In this appendix, we present results in algebraic geometry that are essential in

proving the achievability results in Chapter 3 for the fully connected channel.

We start by recalling some basic terminology in algebraic geometry. We refer

the reader to the book [57] for an excellent introduction.

B.1 Varieties and Ideals

Let C[t1, t2, · · · , tn] and C(t1, t2, · · · , tn) denote the set of multivariate poly-

nomials and rational functions, respectively, in the variables t1, t2, · · · , tn.

For any polynomials f1, f2, · · · , fm ∈ C[t1, t2, · · · , tn], the affine variety gen-

erated by f1, f2, · · · , fm is defined as set of points at which the polynomials

vanish:

V (f) = {t ∈ Cn : f(t) = 0}.

Any subset I ⊆ C[t1, t2, · · · , tn] is called an ideal if it satisfies the following

three properties:

• 0 ∈ I.

• If f1, f2 ∈ I, then f1 + f2 ∈ I.

• If f1 ∈ I and f2 ∈ C[t1, t2, · · · , tn], then f1f2 ∈ I.

For any set A ⊆ Cn, the ideal generated by A is defined as

I(A) = {f ∈ C[t1, t2, · · · , tn] : f(t) = 0 ∀t ∈ A}.

For any ideal I, the affine variety generated by I is defined as

V (I) = {t ∈ Cn : f(t) = 0 ∀f ∈ I}.
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The Zariski topology on the affine space Cn is obtained by taking the affine

varieties as closed sets. For any set A ∈ Cn, the Zariski closure Ā is defined

as

Ā = V (I(A)).

A set A ⊆ Cn is said to be constructible if it is a finite union of locally closed

sets of the form U ∩Z with U closed and Z open. If A ⊆ Cn is constructible

and Ā = Cn, then A must be dense in Cn, i.e., Ac ⊆ W for some non-trivial

variety W ( Cn.

B.2 Algebraic Independence and Jacobian Criterion

The rational functions f1, f2 · · · , fm ∈ C(t1, t2, · · · , tn) are called algebraically

dependent (over C) if there exists a non-zero polynomial F ∈ C[s1, s2 · · · , sm]

such that F (f1, f2, · · · , fm) = 0. If there exists no such annihilating polyno-

mial F , then f1, f2, · · · , fm are algebraically independent.

Lemma 6 (Theorem 3 on page 135 of [58]). The rational functions f1, f2 · · · ,
fm ∈ C(t1, t2, · · · , tn) are algebraically independent if and only if the Jacobian

matrix

Jf =

(
∂fi
∂tj

)
1≤i≤m,1≤j≤n

(B.1)

has full row rank equal to m.

The Jacobian matrix is a function of the variables t1, t2, · · · , tn, and hence

the Jacobian matrix can have different ranks at different points t ∈ Cn.

Lemma 6 refers to the structural rank of the Jacobian matrix which is equal

to m if and only if there exists at least one realization t ∈ Cn where the

Jacobian matrix has full row rank.

B.3 Dominant Maps and Generic Properties

A polynomial map f : Cn → Cm is said to be dominant if the Zariski closure

of the image f(Cn) is equal to Cm. The image of a polynomial map is

constructible. Therefore, the image of a dominant polynomial map is dense,

i.e., the complement of f(Cn) is contained in a non-trivial variety W ( Cm.
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The implication of this is that the system of polynomial equations

s1 = f1(t1, t2, · · · , tn)

s2 = f2(t1, t2, · · · , tn)

...

sm = fm(t1, t2, · · · , tn)

(B.2)

has a solution t ∈ Cn for generic s, where the notion of a generic property is

defined below.

Definition 2. A property is said to be true for generic s ∈ Cm if the property

holds true for all s ∈ Cm except on a non-trivial affine variety W ( Cm. Such

a property is said be a generic property.

For example, a generic square matrix A has full rank because A is rank

deficient only when it lies on the affine variety generated by the polynomial

f(A) = det A. If the variables are generated randomly according to a contin-

uous joint distribution, then any generic property holds true with probability

1.

Observe that the Zariski closure of the image f(Cn) is equal to Cm if and

only if the ideal I generated by the image set is equal to {0}. Since I is equal

to the set of annihilating polynomials

I = {F ∈ C[s1, s2, · · · , sm] : F (s) = 0 ∀s ∈ f(Cn)}

= {F ∈ C[s1, s2, · · · , sm] : F (f1, f2, · · · , fm) = 0},

the map f is dominant if and only if the polynomials f1, f2, · · · , fm are alge-

braically independent. Thus we obtain Lemma 7.

Lemma 7. The system of polynomial equations (B.2) admits a solution for a

generic s ∈ Cm if and only if the polynomials f1, f2, · · · , fm are algebraically

independent, i.e., if and only if the Jacobian matrix (B.1) has full row rank.
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B.4 A Lemma on Full-Rankness of Certain Random

Matrix

Let t ∈ Cn be a set of original variables, and let s ∈ Cm be a set of derived

variables obtained through polynomial transformation s = f(t) for some

rational map f . Suppose we generate p instances of t

t(1), t(2), · · · , t(p) (B.3)

and the corresponding p instances of s

s(1), s(2), · · · , s(p)

and generate the p× q matrix

M =


s(1)a1 s(1)a2 · · · s(1)aq

s(2)a1 s(2)a2 · · · s(2)aq

...
...

. . .
...

s(p)a1 s(p)a2 · · · s(p)aq


for some exponent vectors a1, a2, · · · , aq ∈ Zm+ and p ≥ q. We are interested

in determining the set of variables (B.3) such that the matrix M has full

column rank. If there exists an annihilating polynomial F ∈ C[s1, s2, · · · , sm]

of the form

F (s) =

q∑
i=1

cis
ai (B.4)

such that F (f1, f2, · · · , fm) = 0, then the matrix M satisfies Mc = 0, and

hence the matrix M does not have full column rank for any realizations of

the variables (B.3). Interestingly, even the converse holds true.

Lemma 8. The matrix M has full column rank for generic realizations of the

variables (B.3) if and only if there does not exist an annihilating polynomial

F of the form (B.4) satisfying F (f1, f2, · · · , fm) = 0.

Proof. We have already proved that M does not have full column rank if there

exists an annihilating polynomial F of the form (B.4). We now prove the

converse; i.e., we assume that there does not exist an annihilating polynomial

of the form (B.4), and prove that the matrix M has full column rank for
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generic realizations of the variables (B.3). Without any loss of generality,

we assume that p = q. Otherwise, we can work with the q × q submatrix

obtained after deleting the last q − p rows.

Consider expanding the determinant det M in terms of the variables (B.3).

Since the variables s(1), s(2), · · · , s(q) are rational functions of t(1), t(2), · · · ,
t(q), respectively, the determinant is also a rational function; i.e.,

det M =
d1(t(1), t(2), · · · , t(q))

d2(t(1), t(2), · · · , t(q))
.

The determinant can either be identically equal to zero, or a nonzero function.

If the determinant is a nonzero function, then M has full column rank for

generic realizations of the variables (B.3) because M is rank deficient only

when d1(t(1), t2), · · · , t(q)) = 0 or when (t(1), t(2), · · · , t(q)) belongs to the

affine variety V (d1) ( Cnq generated by the polynomial d1.

Therefore, it remains to prove that detM is not identically equal to zero

under the assumption that no annihilating polynomial F of the form (B.4)

exists. We prove this claim by induction on q. The claim is trivial to check

for q = 1. We now prove the induction step. We may assume that the

determinant of the (q − 1) × (q − 1) submatrix M̃, obtained after deleting

the last row and column, is a nonzero function in (t(1), t(2), · · · , t(q − 1)).

Therefore, there must exist specific realizations

(t(1), t(2), · · · , t(q − 1)) = (a(1), a(2), · · · , a(q − 1)) (B.5)

such that M̃ has full rank. Consider the matrix M∗(t) obtained from M̃

by setting t(q) = t for each t ∈ Cn. If det M is identically equal to zero,

then the matrix M∗(t) must be rank deficient for all t; i.e., there must exist

c(t) 6= 0 such that M∗(t)c(t) = 0 for each t ∈ Cn. Since the first q − 1

rows are linearly independent and do not depend on t, the vector c(t) = c∗

is unique (up to a scaling factor) and is determined by (B.5). Therefore,

we have that M∗(t)c∗ = 0 for each t ∈ Cn. By expanding the last row of

M∗(t)c∗ = 0, we obtain
q∑
i=1

c∗i f(t)ai = 0.

This is a contradiction since we assumed that no annihilating polynomial of

the form (B.4) exists. Therefore, det M is not identically equal to zero and
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hence M has full rank for generic realizations of the variables (B.3).

If the rational functions f1, f2, · · · , fm are algebraically independent, then

there cannot exist an annihilating polynomial F (of any form) satisfying

F (f1, f2, · · · , fm) = 0. Thus, we immediately have the following corollary.

Corollary 1. The matrix M has full column rank for generic realizations

of the variables (B.3) if the rational functions f1, f2, · · · , fm are algebraically

independent, i.e., if the Jacobian matrix (B.1) has full row rank.
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