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Abstract

We consider the following queueing system which arises as a model of a wireless

link shared by multiple users. There is a �nite number N of input ows served by a
server. The system operates in discrete time t = 0; 1; 2; : : : . Each input ow can be

described as an irreducible countable Markov chain; waiting customers of each ow are

placed in a queue. The sequence of server states m(t); t = 0; 1; 2; : : : , is a Markov chain

with �nite number of states M . When server is in state m it can serve �mi customers

of ow i (in one time slot).

The scheduling discipline is a rule that in each time slot chooses the ow to serve

based on the server state and the state of the queues. Our main result is that a

simple online scheduling discipline, Modi�ed Largest Weighted Delay First, along with

its generalizations, is throughput optimal, namely it ensures that the queues are stable

as long as the vector of average arrival rates is within the system maximum stability

region.

1 Introduction

We consider a model motivated by the problem of scheduling transmissions of multiple data
users (ows) sharing the same wireless channel (server). The unique \wireless" feature of
this problem is the fact that the capacity (service rate) of the channel varies with time
randomly and asynchronously for di�erent users. The variations of the channel capacity are
due to di�erent, random interference levels observed by di�erent users, and also due to fast
fading of the signal received by a user. We will refer to this problem as the variable channel
scheduling problem.
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The variable channel problem arises, for example, in the 3G CDMA High Data Rate (HDR)
system [6]. (See also [26] for a background on CDMA wireless systems.) In HDR, multiple
mobile users in a cell share the same CDMA wireless channel. On the downlink (the link from
cell base station to users), time is divided into �xed size (1:67 msec) time slots. This slot size
is short enough so that (each user's) channel quality stays approximately constant within
one or even a few consecutive time slots. (To be more precise, this is true only for relatively
low mobile user velocities, see [26].) In each time slot data can be transmitted to only one
user. Each user constantly reports to the base station its \instantaneous" channel capacity,
i.e., the rate at which data can be transmitted if this user is scheduled for transmission in
the current time slot.

In the HDR system (and in the generic variable channel model as well) a scheduling algorithm
can take advantage of channel variations by giving some form of priority to users with
(temporarily) better channels. Since channel capacities of di�erent users vary in time in an
asynchronous manner, the Quality of Service (QoS) of all users can be improved, as compared
to scheduling schemes which do not take channel conditions into account. A scheduling rule
providing proportional fairness in the achieved long-term throughput of di�erent users was
proposed and analyzed in [25]. (See also [27].)

The QoS of a data user can be de�ned in di�erent ways. If data users are real-time users,
then the packet delays of each ow need to be kept below a certain threshold. This means
that the primary goal of a scheduling algorithm is to keep all queues stable, i.e., to be able
to handle all the o�ered traÆc without queues \blowing up".

In this paper, we consider the generic variable channel scheduling model. Our main result
is that a simple online scheduling discipline, Modi�ed Largest Weighted Delay First (M-
LWDF), is throughput optimal, namely, it ensures that the queues are stable as long as the
vector of average arrival rates is within the system maximum stability region.

In a time slot t, the M-LWDF discipline serves the ow j for which

j[Wj(t)]
��j(t) (1)

is maximal, where Wj(t) is the head-of-the-line packet delay for ow j, �j(t) is the server
capacity for ow j at time t, and � and the j's are arbitrary positive constants. (The
name M-LWDF is because this discipline is a generalization of the LWDF discipline [1,
22].) Moreover, as we discuss in Section 4, our result actually holds for a quite wide class
of disciplines (of which M-LWDF is a member), and a more general class of models. In
particular, the throughput optimality holds if instead of maximizing (1) the scheduling rule
maximizes

j[Vj(t)]
��j(t) (2)

where Vj(t) = �
(W )
j Wj(t) + �

(Q)
j Qj(t). Here, �

(W )
j � 0 and �

(Q)
j � 0 are arbitrary parameters

for ow j, not equal to 0 simultaneously, and possibly dependent on j.

Our main stability results are closely related to the series of results on the stability of
MaxWeight type scheduling algorithms in queueing networks and in input-bu�ered crossbar

2



switches. The �rst results of this type were obtained by Tassiulas-Ephremides [23, 24] in the
context of wireless systems. For the switch scheduling stability results, see papers [15, 17, 10],
and a recent paper [10]. In the context of interactive parallel server systems and systems
with randomly varying connectivity, MaxWeight-type stability results were obtained in [3, 5].
(See also [4], which is a recent extension of [3].)

The underlying intuition behind the stability of a MaxWeight-type algorithm is the fact
that it minimizes the drift of a Lyapunov function of the form

P
j[Vj(t)]

�+1. Most of the
algorithms studied before are for the case � = 1 and Vj(t) = Qj(t). As far as we are
aware, the paper [17] was the �rst where the stability result for a MaxWeight-type rule using
ow delays Wj(t) (as opposed to queue lengths Qj(t)) was derived. (A similar result was
formulated but not proved in [14].)

The main contribution of this paper is that we show that a MaxWeight-type algorithm retains
stability properties even if the \weight" of an individual queue j has a form as general as
[Vj(t)]

�. Such a generalization is important because the additional parameters �, �
(W )
j and

�
(Q)
j allow for a more exible control of queue lengths and delay distributions, to satisfy a
variety of QoS constraints. For example, if we are interested in giving tight delay bounds
to a ow j with a low arrival rate then the \weight" for ow j should be based more on
head-of-the-line packet delay than on queue length, i.e. �

(W )
j should be large relative to

�(Q)
j . Conversely, if ow j has a high arrival rate and we want to bound its bu�er space

requirements then �
(Q)
j should be large relative to �

(W )
j .

To prove our stability results, we use the uid limit technique [19, 8, 7, 20, 9]. (For a
MaxWeight-type rule, the technique was also used in [10] in a \switch" model context.) Use
of this technique makes the above described generalization very natural. Roughly speaking,
in the \uid limit" and after some initial period of time, Qj(t) andWj(t) stay proportional to
each other, and thus a MaxWeight-type algorithm using Qj(t), Wj(t) or a linear combination
Vj(t) are in some sense \indistinguishable" in the uid limit.

It is shown recently in [21], which analyzes a more general (described in Section 4.2) version
of our model, that, in addition to throughput optimality, MaxWeight-type rules have certain
asymptotic optimality properties when the system is heavily loaded.

Practical implications of using M-LWDF to provide QoS for real time data users are addressed
in [2]. In particular, we show in [2] that the M-LWDF discipline, with \appropriately"
chosen parameters i, provides good QoS de�ned in terms of the probabilities of packet
delays exceeding prede�ned thresholds.

The rest of the paper is organized as follows. In Section 2 we introduce the formal variable
channel scheduling queueing model. Necessary and suÆcient stability conditions are derived
and the system stability region is de�ned in Section 3. In Section 4 we introduce the M-
LWDF scheduling rule, and formulate our main result, Theorem 3, which states that M-
LWDF (along with a wide class of rules generalizing it) is throughput optimal. The proof of
Theorem 3 is presented in Section 5.
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2 Variable Channel Scheduling Model

Consider the following queueing system. There is a �nite number N of input ows, indexed
by i = 1; 2; : : : ; N , served by a server. Each input ow consists of discrete customers. (One
customer models one byte or bit of data). The system operates in discrete time t = 0; 1; 2; : : : .
By convention, we will
(a) identify an (integer) time t, with the unit time interval [t; t + 1), which will sometimes
be referred to as the time slot t;
(b) assume all processes we consider are constant within each time slot.

There is a �nite set f1; : : : ;Mg of server states. This set itself we also denote by M (as
well as its cardinality). Associated with each state m 2 M is a �xed vector of service rates
(�m1 ; : : : ; �

m
N), where all �

m
i are non-negative integers. The meaning of �mi is as follows. If

in time slot t the server is in state m and the service (in this time slot) is given exclusively
to queue i, then �mi type i customers are served from those present at time t (or the entire
queue i content at t, whichever is less). We assume that, within each type, customers are
served in the order of their arrival in the system.

The random server state process m is assumed to be an irreducible (see [12]) discrete time
Markov chain with the (�nite) state space M . The (unique) stationary distribution of this
Markov chain we denote by � = (�1; : : : ; �M). Note that, due to irreducibility, �m > 0 for
all m 2 M .

We make a non-degeneracy assumption that for each ow i, there is at least one server state
m 2 M such that �mi > 0. (Otherwise, we would have ows which simply can never be
served.)

Denote by Ai(t) the number of type i customers arrived at time t, and assume by convention
that these customer are immediately available for service. We assume that each input process
Ai is an irreducible positive recurrent (see [12]) Markov chain with countable state space,
and the input processes are mutually independent. (This condition can be relaxed as follows.
The aggregate arrival process A = f(A1(t); : : : ; AN(t)); t = 1; 2; : : : g can be described by
a �nite number of regenerative processes [12] with �nite mean regeneration cycles.) Let
us denote by �i; i = 1; : : : ; N , the mean arrival rate for ow i, i.e., the mean number of
type i customers arriving in one time slot. The vector of mean arrival rates is denoted by
�
:
= (�1; : : : ; �N).

The random process describing the behavior of the entire system is S = (S(t); t = 0; 1; 2; : : : ),
where

S(t) = f(Ui1(t); : : : ; UiQi(t)(t)); i = 1; : : : ; N ; m(t)g;

Qi(t) is the type i queue length at time t, and Uik(t) is the current sojourn time, or delay, of
the k-th type i customer present in the system at time t. (Within each type, the customers
are numbered in the order of their arrivals.)

A mapping H which takes a system state S(t) in a time slot into a �xed probability distribu-
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tion H(S(t)) on the set of queues N , will be called a scheduling rule, or a queueing discipline.
With a �xed discipline H, the queue to serve at time t is chosen randomly according to the
distribution H(S(t)). So, the number Di(t) of type i customers served in the time slot t is

equal to minfQi(t); �
m(t)
i g if queue i is chosen for service and equal to 0 otherwise. According

to our conventions, for each time t,

Qi(t + 1) = Qi(t)�Di(t) + Ai+1(t); 8i :

Our assumptions imply that with any scheduling rule, S is a discrete time countable Markov
chain. By stability of the Markov chain S (and stability of the system) we mean the following
property: the set of positive recurrent states is non-empty, and it contains a �nite subset
which is reached with probability one (within �nite time) from any initial state. Stability
implies the existence of a stationary probability distribution. (If all positive recurrent states
are connected, the stationary distribution is unique.)

We conclude this section with some basic notation we use throughout the paper. Vector
inequalities are understood componentwise; bzc and dze denote the integer part and the
\ceiling" of a real number z. We say that a function f(t) of a real variable t is RCLL, if
it is right-continuous and has left limit in every point t of its domain. The abbreviation
\u.o.c." in a convergence statement means that the convergence is uniform on any �xed
compact subset of the corresponding function domain. We denote by N = f1; 2; : : : g the set
of positive natural numbers.

3 Necessary and SuÆcient Stability Conditions. Sta-

bility Region

Suppose a stochastic matrix � = (�mi; m 2 M; i = 1; : : : ; N) is �xed, which means that
�mi � 0 for all m and i, and

P
i �mi = 1 for every m. Consider a Static Service Split (SSS)

scheduling rule, parameterized by the matrix �. When the server is in state m, the SSS
rule chooses for service queue i with probability �mi. (The word Static in the name of the
rule reects the fact that scheduling decisions depend only on the server state.) Clearly, the
vector v = (v1; : : : ; vN) = v(�), where

vi =
X

�m�mi�
m
i ;

gives the long term average service rates allocated to di�erent ows. This observation makes
the following simple (and quite standard) result very intuitive.

Theorem 1 For the existence of a scheduling rule H under which the system is stable, the
following condition (3) is necessary

� � v(�) for some stochastic matrix � ; (3)
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and the following condition (4) is suÆcient

� < v(�) for some stochastic matrix � : (4)

Proof. The necessity of the condition (3) is almost obvious. Consider a rule H under
which the system is stable, and consider the Markov chain S in a stationary regime. (Such
a stationary regime exists, but is not necessarily unique.) We will denote by Hi(s) the
probability with which the SSS rule choses for service the queue i when S(t) = s. Then, for
any i (and arbitrary �xed time slot t), we can write

�i = EAi(t) = EDi(t) =
X
m

�mE(Di(t) j m(t) = m)

�
X
m

�m
X
s

P (S(t) = s j m(t) = m)Hi(s)�
m
i =
X
m

�m�mi�
m
i ;

where we denote
�mi

:
=
X
s

P (S(t) = s j m(t) = m)Hi(s):

Obviously, we have
P

i �mi = 1 for each m. The necessity of (3) is proved.

SuÆciency of condition (4) is almost obvious as well: the SSS rule associated with any
matrix � satisfying (4) makes system stable. Indeed, the rates at which service is provided
to di�erent ows i is a random process \modulated" by the underlying (ergodic) Markov
chain m, independent of the aggregate arrival process A. Moreover, the average service rate
vi(�) available to each ow i is strictly greater than its average arrival rate �i. If the Markov
chain of interest would be

f(Q1(t); : : : ; QN (t));m(t)g; t = 0; 1; 2; : : : ;

namely, its states would track queue lengths only, then, for example, maxiQi(t) can be used
as a Lyapunov function to show the stability via standard \drift" criteria, such as those in
[18]. However, the states of our Markov chain S include customer sojourn times as well.
To accomodate this, the stability proof for the SSS rule (assuming (4)) can be obtained, for
example, as a much simpli�ed version of the proof of M-LWDF rule stability (Theorem 3),
which is the main result of this paper. Since such a proof requires a fair amount of prelimi-
naries, introduced later in the paper, we present its details in the Appendix, for an interested
reader. (We also note that Theorem 3 itself implies suÆciency of (4). It is however more
intuitive, simple and standard to demonstrate this fact via the SSS rule, or a similar static
rule. That is why we discuss the SSS rule here.)

The set of all (average arrival rate) vectors � satisfying condition (4) is usually called the
system maximum stability region, or just stability region.

An SSS rule associated with stochastic matrix �� will be called maximal if the vector v(��)
is not dominated by v(�) for any other stochastic matrix �. (We say that vector v(1) is
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dominated by vector v(2) if v
(1)
i � v

(2)
i for all i, and the strict inequality v

(1)
i < v

(2)
i holds for

at least one i.) The following theorem provides a useful characterization of maximal SSS
rules.

Theorem 2 Consider a maximal SSS rule associated with a stochastic matrix ��. Suppose
in addition that all components of v� = v(��) are strictly positive. Then there exists a set of
strictly positive constants �i; i = 1; 2; : : : ; N , such that for any m and i,

��mi > 0 implies i 2 argmax
j

�j�
m
j : (5)

The theorem says that a maximal SSS rule always chooses for service at any time t a queue
i for which �i�

m(t)
i is maximal. (It does not say what to do in case of a tie.)

Proof. Consider the following linear program:

max
�;f�mig

�

subject to

MX
m=1

�m�
m
i �mi � �v�i ; i = 1; : : : ; N; (6)

NX
i=1

�mi = 1; m 2M; 0 � �mi � 1; m 2 M; i = 1; : : : ; N: (7)

From the de�nition of v� we know that � = 1 and � = �� solve this linear program, with
constraints (6) satis�ed as equalities. Then, by Kuhn-Tucker theorem (see for example [13]),
there exists a set of non-negative Lagrange multipliers �0; �1; : : : ; �N such that � = 1 and
� = �� also solve the following linear program (with the same value of the maximum):

max
�;f�mig

�0�+
NX
i=1

�i(
MX
m=1

�m�
m
i �mi � �v�i ) (8)

subject to

NX
i=1

�mi = 1; 0 � �mi � 1; 8m; i : (9)

It is easy to verify that all �i must be strictly positive and �0 = 1. Then rewriting (8) as

max
�;f�mig

�� �
NX
i=1

�iv
�
i +

MX
m=1

�m

NX
i=1

�i�
m
i �mi
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we see that the condition (5) must hold, because otherwise the maximum would not be
achieved by � = ��.

4 The Modi�ed Largest Weighted Delay First Disci-

pline

4.1 Main Result

The following natural question arises. Is there a scheduling rule which (unlike SSS) does not
use a priori information about the input rates �i and the stationary distribution � of the
server state, and yet ensures system stability as long as the necessary and suÆcient stability
condition (4) is satis�ed. Theorem 3 below shows that the answer is yes.

Let us call the value
Wi(t)

:
= Ui1(t)

(with Wi(t) = 0 if Qi(t) = 0 by convention) the delay of ow i at time t.

Let a set of positive constants 1; : : : ; N , and a positive constant � > 0 be �xed. We de�ne
Modi�ed Largest-Weighted-Delay-First (M-LWDF) the be the scheduling rule that chooses
for service in time slot t a single queue

i 2 argmax
j

j�
m(t)
j (Wj(t))

�:

(The \ties" are broken arbitrarily; for example, in favor of the largest index i.)

An analogous rule, which we will call Modi�ed Largest-Weighted-(Un�nished)-Work-First
(M-LWWF), chooses a single queue

i 2 argmax
j

j�
m(t)
j (Qj(t))

�:

Theorem 3 Let an arbitrary set of positive constants 1; : : : ; N , and � > 0 be �xed. Then
either of the two scheduling rules, M-LWDF or M-LWWF, are throughput optimal, namely,
they make the system stable as long as condition (4) holds, i.e., as long as the arrival rate
vector � is within the system stability region.

As mentioned in the Introduction, our proof of Theorem 3 uses the uid limit technique.
This technique allows us to \derive" the stability of M-LWDF from the stability of M-LWWF
using the fact that their uid limits are in a certain sense indistinguishable.
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4.2 Generalizations

It will be clear from the proof of Theorem 3 that this result can be signi�cantly general-
ized. First, the (virtually unchanged) proof allows us to show throughput optimality of the
following \mixed" M-LWDF/M-LWWF rule:
Serve queue

i 2 argmax
j

j�
m(t)
j (Vj(t))

�;

where Vj = �
(W )
j Wj + �

(Q)
j Qj, and �

(W )
j and �

(Q)
j are non-negative constants that satisfy

�
(W )
j + �

(Q)
j > 0.

In addition, the model assumption that only one queue may be served at a time can be
relaxed as follows. For each server state m there is an associated �nite set K(m) of service
rate decisions. Associated with each decision k 2 K(m) is a service rate vector

(�m1 (k); : : : ; �
m
1 (k)) :

If the decision k is chosen when the server is in state m, then �mj (k) customers from each
queue j (or the entire queue j content Qj(t) if it is less than �mj (k)) are served within one
time slot. Again, a slightly adjusted proof of Theorem 3 allows us to prove that the following
MaxWeight-type rule is throughput optimal:
Choose a service rate decision

k 2 arg max
k2K(m(t))

X
j

j�
m(t)
j (k)(Vj(t))

� :

In the latter general form, our result includes as special cases the throughput optimality
results in both the \switch scheduling" model setting [15, 17] (and related ones in [14, 3])
and the variable channel scheduling setting which is the main focus of this paper.

5 Proof of Theorem 3

Throughout the proof we consider a system with a �xed set of parameters, and such that
condition (4) holds. It needs to be proved that this system is stable under both M-LWDF
and M-LWWF rules.

To simplify notation, the proof will be for the case � = 1. The generalization of the proof
for arbitrary � > 0 is trivial: the quadratic Lyapunov function in (36) needs to be replaced
by the power law function

L(y) =
1

1 + �

NX
1

iy
1+�
i ;

in the formulations of Lemmas 2 and 6, qi(t), qj(t), wi(t), wj(t), need to be replaced by
qi(t)

�, qj(t)
�, wi(t)

�, wi(t)
�, respectively; corresponding minor adjustments need to be made

throughout the proofs.
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5.1 Preliminaries

Let us de�ne the norm of the state S(t) as follows:

kSk
:
=

NX
i

Qi(t) +
NX
i

Wi(t) :

Let S(n) denote a process S with an initial condition such that kS(n)(0)k = n. In the analysis
to follow, all variables associated with a process S(n) will be supplied with the upper index
(n).

The following theorem follows from the state depenent Lyapunov-type stability criteria for
countable Markov chains, obtained �rst by Malyshev and Menshikov [16].

Theorem 4 Suppose there exist � > 0 and an integer T > 0 such that for any sequence of
processes fS(n); n = 1; 2; : : :g, we have

lim sup
n!1

E[
1

n
kS(n)(nT )k] � 1� � : (10)

Then S is stable.

It was shown by Rybko and Stolyar [19] that a stability condition of the type (10) naturally
leads to a uid-limit approach to the stability problem of queueing systems. This approach
was further developed by Dai [8], Chen [7], Stolyar [20], and Dai and Meyn [9]. As the form
of (10) suggests, the approach studies a uid process s(t) obtained as a limit of the sequence
of scaled processes 1

n
S(n)(nt); t � 0. At the heart of the approach in its standard form is a

proof that any s(t) starting from any initial state with norm ks(0)k = 1 reaches 0 in �nite
time T and stays there. It is suÆcient however to show that for some � > 0, ks(T )k � 1� �,
which is what we are going to do in this paper. (In many cases of interest, a still weaker
condition is suÆcient: it is enough to verify that any s(t) is such that inft�0 ks(t)k < 1, as
shown in [20]. This is true in our case as well, as could be shown with a little extra work.)
In our setting we need to de�ne what the scaling 1

n
S(n)(nt) means. In order for this scaling

to make sense, we will need an alternative de�nition of the process.

To this end, let us de�ne the following random functions associated with the process S(n)(t).

Let F
(n)
i (t) be the total number of type-i customers that arrived by time t � 0, including

the customers present at time 0; and F̂
(n)
i (t) be the number of type-i customers that were

served by time t � 0. Obviously, F̂
(n)
i (0) = 0 for all i. As in [19] and [20], we \encode" the

initial state of the system; in particular, we extend the de�nition of F
(n)
i (t) to the negative

interval t 2 [�n; 0) by assuming that the customers present in the system in its initial state
S(n)(0) arrived in the past at some of the time instants �(n� 1);�(n� 2); : : : ; 0, according

to their delays in the state S(0). By this convention F
(n)
i (�n) = 0 for all i and n, andPN

i=1 F
(n)
i (0) = n. Also, denote by G

(n)
m (t) the total number of time slots before time t (i.e.,
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among the slots 0; 1; : : : ; t� 1), when the server was in state m; and by Ĝ
(n)
mi (t) the number

of time slots before time t when the server state was m and the server was allocated to serve
queue i. Let us also denote

U
(n)
i (t)

:
= t�W

(n)
i (t); t � 0; i = 1; 2; : : : ; N:

Then the following relations obviously hold:

Q
(n)
i (t) � F

(n)
i (t)� F̂

(n)
i (t); t � 0; i = 1; 2; : : : ; N; (11)

U
(n)
i (t) � t; t � 0;

U
(n)
i (t) = inffs � t : F

(n)
i (s) > F̂

(n)
i (t)g; t � 0: (12)

It is clear that the process S(n) = (S(n)(t); t � 0) is a projection of the process X(n) =
(F (n); F̂ (n); G(n); Ĝ(n); Q(n);W (n); U (n)), where

F (n) = (F
(n)
i (t); t � �n; i = 1; 2; : : : ; N) ;

F̂ (n) = (F̂
(n)
i (t); t � 0; i = 1; 2; : : : ; N);

G(n) = (G(n)
m (t); t � 0; m 2M) ;

Ĝ(n) = (Ĝ
(n)
mi (t); t � 0; m 2M; i = 1; 2; : : : ; N);

Q(n) = (Q
(n)
i (t); t � 0; i = 1; 2; : : : ; N);

U (n) = (U
(n)
i (t); t � 0; i = 1; 2; : : : ; N);

W (n) = (W (n)
i (t); t � 0; i = 1; 2; : : : ; N):

In other words, a sample path of X(n) uniquely de�nes the sample path of S(n).

Let us also adopt the convention

Y (t) = Y (btc); for Y = S(n); F
(n)
i ; F̂

(n)
i ; G(n)

m ; Ĝ
(n)
mi ; Q

(n)
i ; U

(n)
i ;W

(n)
i

with t � �n for Y = F
(n)
i and t � 0 for all other functions. This convention allows us to

view the above functions as continuous-time processes de�ned for all t � 0 (or t � �n), but
having constant values in each interval [t; t+ 1).

Now consider the scaled process x(n) = (f (n); f̂ (n); g(n); ĝ(n); q(n); u(n); w(n)), where

f (n) = (f
(n)
i (t); t � �1; i = 1; 2; : : : ; N) ;

f̂ (n) = (f̂
(n)
i (t); t � 0; i = 1; 2; : : : ; N);

g(n) = (g(n)m (t); t � 0; m 2M) ;

ĝ(n) = (ĝ
(n)
mi (t); t � 0; m 2M; i = 1; 2; : : : ; N);
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q(n) = (q
(n)
i (t); t � 0; i = 1; 2; : : : ; N) ;

u(n) = (u
(n)
i (t); t � 0; i = 1; 2; : : : ; N) ;

w(n) = (w
(n)
i (t); t � 0; i = 1; 2; : : : ; N) ;

and the scaling is de�ned as

z(n)(t) =
1

n
Z(n)(nt) :

From (11) we get:

q
(n)
i (t) � f

(n)
i (t)� f̂

(n)
i (t); t � 0; i = 1; 2; : : : ; N: (13)

The following lemma establishes convergence to a uid process and is a variant of Theorem
4.1 in [8]. The lemma is a list of basic convergence properties of the scaled sequences
fx(n)g which we need for future reference. Although the lemma statement is quite long,
the properties it describes are rather simple because they follow almost directly from the
structure of the model and the strong law of large numbers for the input ow and server
state processes.

Lemma 1 Consider our system under any scheduling rule such that, within each type i, the
customers are served in the order of their arrival in the system. The following statements hold
with probability 1. For any sequence of processes fX(n); n 2 Ng, there exists a subsequence
fX(k); k 2 K � Ng such that, as k ! 1, the scaled subsequence fx(k); k 2 Kg has the
following convergence properties for each i 2 f1; : : : ; Ng and m 2M :

(f
(k)
i (t); t � �1)) (fi(t); t � �1) ; (14)

(f
(k)
i (t); t � 0)! (fi(t); t � 0) u:o:c: ; (15)

(f̂
(k)
i (t); t � 0)! (f̂i(t); t � 0) u:o:c: ; (16)

(q
(k)
i (t); t � 0)! (qi(t); t � 0) u:o:c: ; (17)

(g(k)m (t); t � 0)! (gm(t); t � 0) u:o:c: ; (18)

(ĝ(k)mi (t); t � 0)! (ĝmi(t); t � 0) u:o:c: ; (19)

(u
(k)
i (t); t � 0)) (ui(t); t � 0) ; (20)

(w
(k)
i (t); t � 0)) (wi(t); t � 0) ; (21)

12



where the functions fi are RCLL non-negative non-decreasing in [�1;1), the functions
fi; f̂i; gm; ĝmi are non-negative non-decreasing Lipschitz-continuous in [0;1), functions qi
are continuous in [0;1), functions ui are non-decreasing RCLL in [0;1), functions wi are
non-negative RCLL in [0;1), and \)" signi�es convergence at every continuity point of the
corresponding limit function. The limiting set of functions

x = (f; f̂ ; g; ĝ; q; u; w)

also satis�es the following properties for all i 2 f1; : : : ; Ng and m 2 M :

NX
i=1

fi(0) � 1 ; (22)

fi(t)� fi(0) = �it; t � 0 ; (23)

f̂i(0) = 0 ; (24)

f̂i(t) � fi(t); t � 0 ; (25)

gm(t) = �mt; t � 0 ; (26)

qi(t) = fi(t)� f̂i(t); t � 0 ; (27)

ĝmi(0) = 0 ; (28)

NX
i=1

ĝmi(t) = gm(t) ; (29)

for any interval [t1; t2] � [0;1),

f̂i(t2)� f̂i(t1) �
X
m2M

�mi (ĝmi(t2)� ĝmi(t1)) ; (30)

if qi(t) > 0 for t 2 [t1; t2] � [0;1), then

f̂i(t2)� f̂i(t1) =
X
m2M

�mi (ĝmi(t2)� ĝmi(t1)) ; (31)

ui(t) = t� wi(t) ; (32)

for any �xed t1 > 0 the conditions ui(t1) > 0 and f̂i(t1) > fi(0) are equivalent and if they
hold, then in the interval [t1;1)

�iwi(t) = qi(t); (33)

which in particular implies that wi and ui are Lipschitz continuous in [t1;1).
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Remark. The sets of functions x are (\uid") limits of the sequences of scaled paths fx(k)g.
As such, its components have the usual natural interpretations. For example: fi(t) and f̂(t)
are the amounts of type i \uid" arrived into the system and served by the system by the
(scaled) time t, respectively, and qi(t) = fi(t)� f̂ (t) is the amount of unserved type i at time
t; gm(t) is the total (scaled) time before time t when the server state was m; ĝmi(t) is the total
(scaled) time before time t when the server state was m and queue i was chosen for service.
Property (23) then means that after time 0 the uid of each type arrives at the constant rate
�i; this is generally not true for the interval [�1; 0], because the uid arrival processes fi(t) in
this interval simply code sojourn times of the customers present at time 0, and these initial
sojourn times can be distributed in a \bad" way. The inequality (30) simply means that the
amount of uid served in any interval cannot exceed the \potential" amount which could
be served if server would never incur idleness while serving queue i (the idleness is incurred
when queue i is served in a slot at the rate �mi , but there are less than �mi customers in the
queue); the inequality (31) means that if the amount of unserved uid qi(t) in some (scaled)
interval is bounded away from 0, then the actual amount of uid served in this interval is
exactly equal to the potential amount of service. The property containing (33) is also simple,
but is particularly important for our analysis: it says that if by some �xed (scaled) time t1
the amount of type i uid served is greater than its initial amount (in particular, all the
\initial uid" is \gone" by time t1), then for all t � t1 the strict linear relation �iwi(t) = qi(t)
exists between the amount of uid qi(t) and the \head-of-the-line" uid delay wi(t). It is
this relation which will allow us to, roughly speaking, make a \transition" from stability of
M-LWWF to the stability of M-LWDF, by showing that the uid limit under M-LWDF is
in a certain sense indistinguishable from that under M-LWWF, after the system \gets rids"
of all the initial uid.

Proof of Lemma 1. It follows from the strong law of large numbers that, with probability
1 for every i,

(f
(n)
i (t)� f

(n)
i (0); t � 0)! (�it; t � 0) u:o:c:

To prove (15), (22), and (23) it suÆces to choose a subsequence fx(k)g such that for every i,

limf
(k)
i (0) exists, and denote the limit by fi(0). Since all f

(k)
i and u

(k)
i are non-decreasing,

we can always choose a further subsequence such that (14) and (20) hold. Then (21) follows
from (20).

The properties (18) and (26) follow from the ergodicity of the server state process.

Also, for any �xed 0 � t1 � t2, for every i, m, and any n, we have (using the notation
��

:
= maxm;j �

m
j ):

f̂ (n)i (t2)� f̂ (n)i (t1) �
X
m2M

�mi (ĝ
(n)
mi (t2)� ĝ(n)mi (t1) + 1=n) � ��(t2 � t1 + 1=n) :

From this inequality we deduce the existence of a subsequence (of the subsequence already
chosen) such that the convergences (16) and (19) take place, and (30) holds.

The relations (24), (25), (28), (29), and (32), follow from the corresponding relations which

14



trivially hold for the prelimit functions (for any index n 2 N ). The convergence (17) and
identity (27) trivially follow from identity (13).

Suppose, qi(t) > 0 for t 2 [t1; t2] � [0;1). Let us �x Æ 2 (0;mint2[t1;t2] qi(t)). The Lipschitz

continuity of qi(�), along with u.o.c. convergence of q(k)i to qi, implies that (with probability
1) the sequence fX(k)g is such that for all suÆciently large k, the following inequalities hold:

min
t2[bt1kc;t2k+1]

Q
(k)
i (t) > Æk > max

m
�mi :

The latter property implies that if the queue i was chosen for service anywhere in the interval
[bt1kc; t2k + 1] when the server state was m, then exactly �mi type i customers were served.
So, we must have

jF̂ (k)
i (kt2)� F̂

(k)
i (kt1)�

X
m2M

�mi (Ĝ
(k)
mi (kt2)� Ĝ

(k)
mi(kt1))j � 2max

m
�mi :

Multiplying the last inequality by 1=k and taking the limit k!1 we obtain (31).

The property (33) easily follows from the fact that in the interval [0;1) the scaled input

ow function f
(k)
i (�) converges u.o.c. to the strictly increasing linear function fi(0)+�it. We

omit details.

Since some of the component functions included in x, namely fi(�), f̂i(�), gm(�), ĝmi(�), qi(�),
are Lipschitz in [0;1), they are absolutely continuous. Therefore, at almost all points
t 2 [0;1) (with respect to Lebesgue measure), the derivatives of all those functions exist.
We will call such points regular.

In the rest of this paper, when we consider a �xed limiting set of functions x, as de�ned
in Lemma 1, we always assume that a sequence of prelimit paths fx(k)g which \de�nes
it" (namely, the convergence properties of Lemma 1 hold) is �xed as well, along with the
corresponding sequence of unscaled paths fX(k)g.

5.2 Proof of Theorem 3 for the M-LWWF discipline

The meaning of the following auxiliary lemma is that if the relation (34) (below) holds at
some (scaled) time t, then, by virtue of the M-LWWF scheduling rule, in some neighborhood
of point t ow i cannot be served.

Lemma 2 Consider the system with the M-LWWF discipline. With probability 1, a limiting
set of functions x, as de�ned in Lemma 1, satis�es the following additional property. If

i�
m
i qi(t) < max

j
j�

m
j qj(t) (34)

for some regular point t � 0, for some i and m, then

ĝ0mi(t) = 0: (35)
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Proof. Let us pick a j at which the maximum in the inequality (34) is attained. In a similar
manner to the proof of property (31) (in Lemma 1), we can �x a small positive Æ1 > 0, such
that for all suÆciently large k, for the unscaled path X(k) we must have

max
�2[(t�Æ1)k;(t+Æ1)k]

i�
m
i Q

(k)
i (�) < min

�2[(t�Æ1)k;(t+Æ1)k]
j�

m
j Q

(k)
j (�) :

(If t = 0 then the time interval should be [0; Æ1k].) This means that in the interval [(t �
Æ1)k+1; (t+ Æ1)k� 1], queue i can not be served in any time slot when the server is in state
m, because it would contradict the M-LWWF scheduling rule. Thus, for all suÆciently large
k we must have:

ĝ
(k)
i (t+ Æ1=2)� ĝ

(k)
i (t� Æ1=2) = 0 ;

which implies ĝi(t+ Æ1=2)� ĝi(t� Æ1=2) = 0 and we are done.

Let us introduce a quadratic Lyapunov function

L(y) =
1

2

NX
1

iy
2
i ; (36)

for a vector y = (y1; : : : ; yN).

The following lemma embodies the key idea behind MaxWeight type scheduling rules - they
try to maximize the rate of decrease of the Lyapunov function L(q(t)). So, roughly speaking,
since there exists at least one scheduling rule (for example, an SSS rule with � such that
� < v(�)) under which L(q(t)) has a negative drift (when L(q(t)) > 0), the drift of L(q(t))
under M-LWWF has to be negative as well.

Lemma 3 Consider a system with the M-LWWF discipline. For any Æ1 > 0, there exists
Æ2 > 0 such that the following holds. With probability 1, a limiting set of functions x, as
de�ned in Lemma 1, satis�es the following additional properties:

L(q(t)); t � 0; is an absolutely continuous function;

L(q(0)) �
1

2

NX
1

i ; (37)

and at any regular point t,

L(q(t)) � Æ1 implies
d

dt
L(q(t)) � �Æ2 : (38)

Proof. Let us pick a �xed stochastic matrix � such that �i < vi(�) for all i. (The existence
of such a matrix is the condition (4).)
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For any regular t � 0 such that L(q(t)) > 0, the derivative of L(q(t)) can be written as
follows:

d

dt
L(q(t)) =

NX
i=1

iqi(t)(�i � f̂ 0i(t)) = (39)

NX
i=1

iqi(t)(�i � vi(�)) +
NX
i=1

iqi(t)vi(�)�
NX
i=1

iqi(t)vi(�̂) (40)

where
�̂mi(t)

:
= ĝ0mi(t)=�m ;

and we use the fact (following from property (31)) that

f̂ 0i(t) =
X
m

�mi ĝ
0
mi(t) if qi(t) > 0 :

Let us choose Æ3 > 0 such that L(y) � Æ1 implies maxi yi � Æ3. Then the �rst sum in (40) is
bounded as follows:

NX
i=1

iqi(t)(�i � vi(�)) � �(min
i
i)Æ3min

i
(vi(�)� �i)

:
= �Æ2

It remains to show that

K(�̂(t); q(t)) � K(�; q(t)) ; (41)

where K(�; y) denotes the function of a stochastic M � N matrix � and a non-negative
N -dimensional vector y, de�ned as

K(�; y)
:
=

NX
i=1

iyivi(�) =
X
i

iyi
X
m

�m�mi�
m
i =
X
m

�m
X
i

�mii�
m
i yi :

It is easy to see that for any non-negative vector y, a stochastic matrix � maximizes K(�; y)
if and only if the following condition holds for every i and m: if i�

m
i yi < maxj j�

m
j yj, then

�mi = 0 : (42)

But, property (35) shows that (42) is satis�ed for y = q(t) and � = �̂(t). This proves (41)
and the lemma.

Lemma 4 Consider a system with the M-LWWF discipline. For any Æ > 0, there exists
T > 0 such that with probability 1, a limiting set of functions x, as de�ned in Lemma 1,
satis�es the following additional property:

L(q(t)) � Æ; t � T: (43)
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Proof follows from Lemma 3.

Proof of Theorem 3 for M-LWWF. According to Lemmas 1- 4, for any �xed �1 > 0 we
can always choose a large enough integer T > 0 such that for any sequence of random pro-
cesses fX(n)g, there exists a subsequence fX(k)g such that with probability 1 the convergence
to a limiting set of functions x takes place, and moreoverX

i

qi(T ) � �1 : (44)

If we recall that T is large, then it follows from (44) that

f̂i(T ) = fi(T )� qi(T ) > fi(0) 8i; (45)

implying (by (33)) that

wi(T ) = qi(T )=�i 8i: (46)

This in turn implies (since �1 is small) thatX
i

qi(T ) +
X
i

wi(T ) � (1 + 1=(min
i
�i))�1

:
= 1� � < 1:

Therefore, with probability 1,

lim sup
n!1

1

n
kS(n)(nT )k � 1� � : (47)

Since
kS(n)(nT )k � n +

X
i

[F
(n)
i (nT )� F

(n)
i (0)] +N [n + nT ] ;

our input process assumptions easily imply that the sequence f 1
n
kS(n)(nT )kg is uniformly

integrable. This, along with (47), veri�es condition (10). The proof is complete.

The following supplemental statement about the M-LWWF discipline will play an important
role in the stability proof for the M-LWDF discipline.

Consider a generalized system with a given discipline H. The generalization is to assume
that some time slots are unavailable for service of any queue. In each available for service
time slot, the scheduling rule is H. In a generalized system let G

(n)
m (t) denote the number of

available for service time slots (by time t) when the server is in state m. (Such a generalized
system arises later, when we want to study the service dynamics of a subset of queues. To
do that, we will view the time slots allocated to any other queue as unavailable for service
of the subset of queues we focus on.)

Lemma 5 Let positive constants K0 and K1 be �xed. Consider a sequence of �xed sample
paths fX(k)g of the generalized system under M-LWWF, such that, as k !1, all properties
described in Lemmas 1 and 2 hold with the following modi�cations:
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property (22) is replaced by

NX
i=1

fi(0) � K0 <1; (48)

property (26) is replaced by

gm(t) = �mt� hm(t); t � 0; (49)

where each function hm is non-decreasing Lipschitz continuous, hm(0) = 0, andX
m

lim
t!1

hm(t) � K1 :

Then the function L(q(t)) has the upper bound C <1 which depends only on K0 and K1:

L(q(t)) � C; t � 0 : (50)

Proof. The idea of the proof is simple - the total \amount" of (scaled) time when service
is unavailable to the queues is �nite, bounded above by K1. During the \rest of the time,"
when the service is available, the Lyapunov function L(q(t)) cannot increase, due to the
\reasons" presented in the proof of Lemma 3. However, we need to apply this idea in a
continuous time setting, which requires some care with the estimates. We now proceed with
the details.

We will use the notation �L(t)
:
= L(q(t)). Let us choose Æ > 0 small enough, so that the

following holds for regular points t. If g0m(t) � �m� Æ for each m, then (d=dt)�L(t) < 0. (The
existence of such a Æ is easily obtained using the argument and the estimates used in the
proof of Lemma 3.) Note that

P
m h0m(t) � Æ implies g0m(t) � �m � Æ for each m.

Let us denote by � the Lebesgue measure, and by L the �-algebra of Lebesgue measurable
subsets of [0;1). Consider the subset

B
:
= ft 2 [0;1) : t is regular;

X
m

h0m(t) > Æg :

It is easy to check that B 2 L and

�(B) � K1=Æ :

De�ne the measure � on L as follows:

�(A)
:
= �(A \ B) :

Notice that �([0;1)) = �(B).

For future reference we note that for some �xed positive c1 and c2, and all regular t,

�L0(t) � c1 + c2 �L(t) ; (51)
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which follows from the estimate

�L0(t) =
X
i

iqi(t)q
0
i(t) � (max�i)

X
i

iqi(t) � (max�i)
X
i

i[1 + (qi(t))
2] :

We see that the derivative �L0(t) is bounded above as in (51) at regular points t 2 B, and is
negative at regular points t 2 [0;1)nB. We can write

�L(t) � �L(0) +

Z
[0;t]\B

�L0(y)�(dy) = �L(0) +

Z t

0

�L0(y)�(dy) �

� �L(0) + c1�([0; t]) + c2

Z t

0

�L(y)�(dy) � �L(0) + c1�([0;1)) + c2

Z t

0

�L(y)�(dy)

Applying Gronwall's inequality ([11], p. 498), we obtain

�L(t) � [ �L(0) + c1�([0;1))] expfc2�([0;1))g

and �nally
�L(t) � [K0 + c1K1=Æ] expfc2K1=Æg; t � 0;

which proves the lemma.

5.3 Proof of Theorem 3 for the M-LWDF discipline

The following lemma describes the key property of the M-LWDF discipline which is analogous
to the M-LWWF property described in Lemma 2.

Lemma 6 Consider a system with the M-LWDF discipline. With probability 1, a limiting
set of functions x, as de�ned in Lemma 1, satis�es the following additional property. If in
some interval [t1; t2], 0 � t1 < t2 <1, for some �xed m and �xed i and j we have

sup
t1�t�t2

i�
m
i wi(t) < inf

t1�t�t2
j�

m
j wj(t) ; (52)

then

ĝmi(t2)� ĝmi(t1) = 0: (53)

Proof is analogous to the proof of Lemma 2. (The only additional diÆculty is the fact that
the functions wi(�) may not be continuous.) Note that condition (52) implies that �mj > 0.
We will consider only the non-trivial case, when �mi > 0. (The case �mi = 0 is treated
analogously to and simpler than this case.) Let us �x positive constants � and Æ such that

sup
t1�t�t2

i�
m
i wi(t) < �� Æ < � + Æ < inf

t1�t�t2
j�

m
j wj(t) : (54)
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Then for all t 2 [t1; t2] we have

ui(t) > t� (�� Æ)=(i�
m
i )

and
uj(t) < t� (�+ Æ)=(j�

m
j ) :

Since for each i, ui(�) and all u
(k)
i (�) are non-decreasing, and we have the convergence

u
(k)
i (t) ! ui(t) for every t where ui is continuous, we see that for all suÆciently large k,

and for all t 2 [t1; t2],

u
(k)
i (t) > t� �=(i�

m
i )

and
u
(k)
j (t) < t� �=(j�

m
j ) :

From the latter two inequalities we see that

i�
m
i w

(k)
i (t) < � < j�

m
j w

(k)
j (t); t 2 [t1; t2]:

Just as in the proof of Lemma 2, we observe that the latter property implies that for all
large k,

ĝ
(k)
mi (t2 � 1=k)� ĝ

(k)
mi (t1 + 1=k) = 0;

because the corresponding unscaled path X(k) is such that queue i may not be served in any
time slot in the interval [kt1+1; kt2�1] when the server is in state m. (Otherwise, we would
get a violation of the M-LWDF scheduling rule.) Taking the limit k ! 1 completes the
proof.

The following lemma shows that, under M-LWDF, all uid limits x are such that, after some
�xed time TN all the \initial uid" is served (and therefore the linear relation qi(t) = �iwi(t)
holds) for all t � TN and all queues i.

Lemma 7 Consider a system with the M-LWDF discipline. There exists TN > 0 such that
with probability 1, a limiting set of functions x, as de�ned in Lemma 1, satis�es the following
additional property:

f̂i(TN) > fi(0); i = 1; : : : ; N :

To illustrate the intuition behind the formal proof (below), we present the following informal
discussion. Suppose we consider the system with two ows i = 1; 2, and assume that by some
�xed time T1 � 0 we have f̂1(T1) > f1(0), i.e., all the initial uid of type 1 has been served.
Consider a �xed suÆciently large time T2. Let us show why the assumption that the initial
type 2 uid is not served by time T2, namely

f̂2(T2) � f2(0) ; (55)

leads to a contradiction. We observe that, �rst, the ow 2 delay w2(t) � t for all t 2 [T1; T2].
Secondly, the amount of time unavailable to ow 1 in [T1; T2] is bounded above: f2(0) � 1.
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Then, according to Lemma 5, q1(t) - and therefore w1(t) = q1(t)=�1 - is bounded above in
[T1; T2] by a constant independent of T2. Therefore, during the most of the interval [T1; T2],
the ratio of the waiting times w2(t)=w1(t) is very large. This means that (during the most
of the interval [T1; T2]), as long as the server state m is such that ow 2 can be served at
strictly positive rate �m2 , M-LWDF rule must choose for service queue 2 over queue 1. This
means that the amount of time when queue 2 is served is of the order of T2, which is large.
But then all initial type 2 uid, the amount of which is upper bounded by 1, must be served
by time T2 - a contradiction to the assumption (55).

Proof of Lemma 7. Let us �x an arbitrary �2 > 0. We have

fi(�2) = fi(0) + �i�2 > fi(0); 8i;

and X
i

qi(�2) �
X
i

fi(�2) � K1
:
= 1 + (

X
i

�i)�2 :

We will show the existence of TN such that

f̂i(TN ) � fi(�2); i = 1; : : : ; N : (56)

The proof of (56) is by induction.

Induction Base. There exists T1 > 0 such that for at least one i,

f̂i(T1) � fi(�2):

Let us set T1
:
= �2 + K1=�

�, where �� is the sum of the stationary probabilities �m over
server states m such that �mj > 0 for at least one j. Suppose the statement of the induction
base, with this T1, does not hold. Then for all suÆciently large k we must haveX

i

[f̂
(k)
i (T1)� f̂

(k)
i (�2)] � ��(T1 � �2) + o(1) = K1 + o(1) ;

where o(1) is a term vanishing as k !1. Taking the k!1 limit, we obtainX
i

[f̂i(T1)� f̂i(�2)] � K1;

which means (see the de�nition of K1) that
P

i f̂i(T1) �
P

i fi(�2), and therefore f̂i(T1) �
fi(�2) for at least one i. This contradiction proves the induction base.

Induction Step. Suppose there exists Tl > 0, 1 � l < N , such that for at least one subset
Nl � f1; : : : ; Ng of cardinality l, we have

f̂j(Tl) � fj(�2) (57)

for all j 2 Nl. Then there exists Tl+1 � Tl such that (57) holds for all j within at least one
subset Nl+1 of cardinality l + 1.

22



We will prove the induction step for l = 1. (The generalization for arbitrary l is straightfor-
ward.) Thus, we need to prove the existence of T2 � T1 such that for at least two di�erent
ows i and r, (57) holds for j = i; r, with T1 being the constant from the induction base
statement.

Let us �x i for which
f̂i(t) � fi(�2); t � T1;

according to the induction base.

Suppose

f̂j(T1) < fj(�2); for all j 6= i: (58)

We observe that X
j 6=i

(fj(�2)� f̂j(T1)) � K1 ;

where K1 is already de�ned above, and

qi(T1) � K0
:
= 1 + �iT1 :

Suppose a constant T2 > T1 is �xed such that

f̂r(T2) < fr(�2) for all r 6= i : (59)

(Below we provide a choice of T2 such that assumption (59) leads to a contradiction.)

Let us view each unscaled path X(k) after time kT1 as a generalized system (described just
above Lemma 5) with the single input ow of type i, and with time slots allocated to any
other ow being unavailable to ow i. (By convention, only the slots in which at least one
customer of at least one ow r 6= i was actually served, are considered unavailable to ow
i.) Then, for the scaled generalized system, starting at time T1 we have

hm(t) =
X
r 6=i

[ĝmr(t)� ĝmr(T1)] � K1; T1 � t � T2; m 2M : (60)

Since x is such that the simple linear relation �iwi(t) = qi(t) holds for ow i for all t � T1, the
generalized system with the M-LWDF discipline satis�es all the properties of the generalized
system with the M-LWWF discipline (including Lemma 5) with each i replaced by i=�i.
Thus, from Lemma 5 we have

(1=2)(i=�i)q
2
i (t) � C ;

where the LHS is the \L(q(t))" for the generalized system, and C � 0 is the constant de�ned
in Lemma 5 depending only on the constants K0 and K1 speci�ed above in this proof. From
the last display we have the estimate

qi(t) � C1
:
=

s
2C�i
i

; t 2 [T1; T2] : (61)
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Note that C1 does not depend on the choice of T2.

From this point we \switch back" to interpreting X(k) as a path of the original system. Let
us denote by M(i) the subset of elements m 2 M such that �mj > 0 for at least one ow
j 6= i, and denote ��(i)

:
=
P

m2M(i) �m. Let us choose T
0
2 > T1 large enough so that for any

pair of j 6= i and m 2M such that �mj > 0 we have

i�
m
i C1=�i < j�

m
j (T

0
2 � �2) : (62)

Finally, let us choose T2 > T 0
2 large enough so that

��(i)(T2 � T 0
2) > K1 :

Our choice of T 0
2 in (62) guarantees that for all suÆciently large k, the unscaled path X(k)

must be (according to the M-LWDF rule) such that in the interval [kT 0
2; kT2], in every time

slot in which the state of the server belongs to the set M(i), one of the ows r 6= i is chosen
for service. This observation implies that, in the k !1 limit for the corresponding scaled
paths, we must have X

r 6=i

[ĝmr(T2)� ĝmr(T1)] � ��(i)(T2 � T 0
2) > K1 :

This is a contradiction to (60), which shows that, for the T2 chosen above, (59) cannot hold,
and therefore

f̂r(T2) � fr(�2) : (63)

for at least one r 6= i.

We have proved claim (63), assuming condition (58). But, the opposite of the condition (58)
means that, trivially, (63) holds for some r 6= i and any T2 � T1. Thus, (63) holds for the
chosen T2 regardless of the condition (58).

Our choice of T2 depended on i. However, since there is only a �nite number of possible
values of i, we can choose T2 so that (63) holds for some r 6= i no matter what i is. The
proof of the induction step is complete.

Proof of Theorem 3 for M-LWDF. We proved the existence of TN > 0 such that for
any sequence of random processes fX(n)g, there exists a subsequence fX(k)g, such that with
probability 1 the convergence to a limiting set of functions x takes place, and moreover x is
such that the linear relation exists for all i:

�iwi(t) = qi(t); t � TN :

This fact, along with Lemma 6, means that, with probability 1 in the interval [TN ;1) the
set x also satis�es all the properties described in Lemmas 2-4 if only in their formulations
we replace i by i=�i, replace (37) by condition

L(q(TN)) �
1

2

NX
1

i(1 + �iTN)
2 ;
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and move the time origin to TN . Therefore, for any �1 > 0 there exists T � TN such that,
with probability 1, x satis�es the conditionX

i

qi(T ) � �1 :

The rest is exactly as in the proof of the Theorem for M-LWWF. The only di�erence is that
we obtain (46) directly from the property (33) and Lemma 7, and not from (45).

6 Conclusions

We consider the variable channel scheduling queueing model which naturally arises in wireless
communications. We show that a wide class of online scheduling rules, including the M-
LWDF and M-LWWF rules (and their generalizations), are throughput optimal, i.e., they
make all queues stable as long as the ow arrival rates are within the system stability region.
One of the main contributions of this work is that we show that the throughput optimality
of MaxWeight type scheduling rules is preserved when ow waiting times are used as queue
state variables in place of (or in conjunction with) the queue lengths.

We believe that the class of scheduling algorithms we study in this paper can be eÆciently
used in applications to provide exible control of Quality of Service to multiple data ows,
in particular ows sharing a time varying wireless link.

7 Appendix: Details of the proof of suÆciency in The-

orem 1

Lemma 1 holds for any scheduling rule, including the SSS rule associated with the matrix
�. For this rule, with probabitity 1, a limiting set of functions x is such that

ĝmi(t) = �migm(t) = �mi�mt; t � 0:

From this and the argument analogous to that used in (39) and (40) we see that at any
regular point t � 0, condition qi(t) > 0 implies

q0i(t) = �i � f̂ 0i(t) = �i � vi(�) < 0 :

Therefore, q(t) � 0 for all t � maxi 1=(vi(�) � �i). The rest of the proof is same as in the
proof of Theorem 3 for M-LWWF rule, which follows Lemma 4 in Section 5.2.
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